中考数学压轴题专项汇编专题一线三等角模型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题17 一线三等角模型
破解策略
在直线AB 上有一点P ,以A ,B ,P 为顶点的∠1,∠2,∠3相等,∠1,∠2的一条边在直线AB 上,另一条边在AB 同侧,∠3两边所在的直线分别交∠1,∠2非公共边所在的直线于点C ,D .
1.当点P 在线段AB 上,且∠3两边在AB 同侧时. (1)如图,若∠1为直角,则有△ACP ∽△BP D .
321D
B
P
A
C
(2)如图,若∠1为锐角,则有△ACP ∽△BP D .
3
C
D
P
A
证明:∵∠DPB =180°-∠3-∠CPA ,∠C =180°-∠1-∠CPA ,而∠1=∠3 ∴∠C =∠DPB ,
∵∠1=∠2,∴△ACP ∽△BPD
(3)如图,若∠1为钝角,则有△ACP ∽△BP D .
231D
B
P
A
C
2.当点P 在AB 或BA 的延长线上,且∠3两边在AB 同侧时. 如图,则有△ACP ∽△BP D .
32
1C
P
D
B
A
证明:∵∠DPB =180°-∠3-∠CPA ,∠C =180°-∠1-∠CPA ,而∠1=∠3 ∴∠C =∠DPB ,
∵∠1=∠2=∠PBD ,∴△ACP ∽△BPD
3.当点P 在AB 或BA 的延长线上,且∠3两边在AB 异侧时. 如图,则有△ACP ∽△BP D .
32
1C
D
B
A
P
证明:∵∠C =∠1-∠CPB ,∠BPD =∠3-∠CPB ,而∠1=∠3 ∴∠C =∠BP D .
∵∠1=∠2,∴∠PAC =∠DBP .∴△ACP ∽△BP D . 例题讲解
例1:已知:∠EDF 的顶点D 在△ABC 的边AB 所在直线上(不与点A ,B 重合).DE 交AC 所在直线于点M ,DF 交BC 所在直线于点N .记△ADM 的面积为S 1,△BND 的面积为S 2.
(1)如图1,当△ABC 是等边三角形,∠EDF =∠A 时,若AB =6,AD =4,求S 1S 2的值; (2)当△ABC 是等腰三角形时,设∠B =∠A =∠EDF =α.
①如图2,当点D 在线段AB 上运动时,设AD =a ,BD =b ,求S 1S 2的表达式(结果用a ,b 和a 的三角函数表示).
②如图3,当点D 在BA 的延长线上运动时,设AD =a ,BD =b ,直接写出S 1S 2的表达式.
N
F
C M
E B
D
A
F N
M
E B
D A
C
F
N D
A
B
E
M C
图1 图2 图3 解:(1)如图4,分别过点M ,N 作AB 的垂线,垂足分别为G ,H .
H G A
D
B
E M
C F
N
则S 1S 2=
1
2
MG AD
12
NH BD =
14
AD AM sin A BD BN sinB .
由题意可知∠A =∠B =60º,所以sin A =sin B =32
. 由“一线三等角模型”可知△AMD ∽△BDN . ∴
AM AD
BD BN
,从而AM BN =AD BD =8,∴S 1S 2=12.
(2)①如图5,分别过点M ,N 作AB 的垂线,垂足分别为G ,H .
H
G C
A
D
B
E M N F
则S 1S 2=12MG AD 12NH BD =1
4
AD AM sin A
BD BN sinB .
由“一线三等角模型”可得△AMD ∽△BDN , 所以
AM AD
BD BN
=
,从而AM BN =AD BD =ab , 所以S 1S 2=
1
4
a ²
b ²sin²a ; ②如图6,分别过点M ,N 作AB 的垂线,垂足分别为G ,H .
H
G
C
M E
B
A D
N F
则S 1S 2=12MG AD 12NH BD =14
AD AM sin A BD BN sinB .
由“一线三等角模型”可得△AMD ∽△BDN ,
所以
AM AD
BD BN
=
,从而AM BN =AD BD =ab , 所以S 1S 2=
1
4
a ²
b ²sin²a ; 例2:如图,在等腰三角形ABC 中,∠BAC =120°,AB =AC =2,点D 是BC 边上的一个动点(不与B 、C 重合),在AC 上取一点E ,使∠ADE =30°.
(1)设BD =x ,AE =y ,求y 关于x 的函数关系式并写出自变量x 的取值范围; (2)当△ADE 是等腰三角形时,求AE 的长.
E
C
D B A
解(1)∵△ABC 是等腰三角形,且∠BAC =120°, ∴∠ABD =∠ACB =30°, ∴∠ABD =∠ADE =30°,
∵∠ADC =∠ADE +∠EDC =∠ABD +∠DAB ,
∴∠EDC =∠DAB , ∴△ABD ∽△DCE ;
∵AB =AC =2,∠BAC =120°, 过A 作AF ⊥BC 于F , ∴∠AFB =90°,
∵AB =2,∠ABF =30°, ∴AF =
1
2
AB =1, ∴BF
∴BC =2BF
= 则DC
=x ,EC =2-y ∵△ABD ∽△DCE , ∴
AB DC
BD CE =
,
∴
2x =
,
化简得:2
122
y x =
+(0x <<. E
C
D
B
A
(2)①当AD =DE 时,如图2, △ABD ≌△DCE ,
则AB =CD ,即2
=x ,
x
=2
,代入2122
y x =+
解得:y
=4-AE
=4- ②当AE =ED 时,如图,
∠EAD =∠EDA =30°,∠AED =120°, 所以∠DEC =60°,∠EDC =90°
则ED =
12 EC ,即y =1
2 (2-y ) 解得y =23,即AE =2
3
;
③当AD =AE 时,有∠AED -∠EDA =30°,∠EAD =120°
此时点D 和点B 重合,与题目不符,此情况不存在. 所以当△是ADE 等腰三角形时,AE =4-23或AE =
23
A
B
C
E
进阶训练
1.如图,在△ABC 中,AB =AC ,点E 在BC 边上移动(不与点B ,C 重台).满足
∠DEF =∠B ,且点D ,F .分别在边AB ,AC 上.当点E 移动到BC 的中点时,求证:FE 平 分∠DF C .
D
F
A
1.略
【提示】由题意可得∠B =∠DEF =∠C.由“一线三等 角模型”可得△BDE ∽△CEF ,可得BE CF =DE
EF
.而BE =CE · 所以
CE CF =DE
EF
,从而△DEF ∽ECF .所以∠DEF =∠EFC ,即FE 平分∠DF C .
2. 如图,在等边△ABC 中,点D ,E 分别在AB ,BC 边上,AD =2BE =6.将DE 绕点 E 顺时针旋转60°,得到EF .取EF 的中点G ,连结AG .延长CF 交AG 于点H .若2AH =5HG ,求BD 的长.
G
H F
D
C
B
2.BD =9. 【提示】如图,过点F 作FI ∥AC 交BC 于点I .则∠FIE =∠ACB =∠AB C .易证△DBE ≌△E IF ,则IF =BE ,IE =BD ,所以BC +BE =AD ,即IC =BE =IF ,则∠ACH = ∠BCH =30°.延长CH 变AB 于点J ,则CJ ⊥AB ,.A = BJ
分别过点G ,E 作AB 的垂线段,垂足为K ,L ,·则KL =KJ ·
AJ JK
=AH HG =52,所以AJ :JK :KL :BL =5:2:2:l .因为BE =3,∠LEB = 30°,所以BL =1.5.AB =15.所以BD
=9.
L K J I
B
C
D E
F H G。