《平面向量的运算》平面向量及其应用PPT课件(第4课时向量的数量积).pptx
合集下载
平面向量的数量积与平面向量应用举例_图文_图文
三、向量数量积的性质
1.如果e是单位向量,则a·e=e·a. 2.a⊥b⇔ a·b=0 .
|a|2
4.cos θ=
.(θ为a与b的夹角)
5.|a·b| ≤ |a||b|.
四、数量积的运算律
1.交换律:a·b= b·a . 2.分配律:(a+b)·c= a·c+b·c . 3.对λ∈R,λ(a·b)= (λa)·b= a·(λb.) 五、数量积的坐标运算
∴a与c的夹角为90°. (2)∵a与b是不共线的单位向量,∴|a|=|b|=1. 又ka-b与a+b垂直,∴(a+b)·(ka-b)=0, 即ka2+ka·b-a·b-b2=0. ∴k-1+ka·b-a·b=0. 即k-1+kcos θ-cos θ=0(θ为a与b的夹角). ∴(k-1)(1+cos θ)=0.又a与b不共线, ∴cos θ≠-1.∴k=1. [答案] (1)B (2)1
解析:(1) a=(x-1,1),a-b=(x-1,1)-(-x+1,3)= (2x-2,-2),故a⊥(a-b)⇔2(x-1)2-2=0⇔x=0或2 ,故x=2是a⊥(a-b)的一个充分不必要条件.
答案: (1)B (2)D
平面向量的模 [答案] B
[答案] D
[典例总结]
利用数量积求长度问题是数量积的重要应用,要掌 握此类问题的处理方法:
[巩固练习]
2.(1)设向量a=(x-1,1),b=(-x+1,3),则a⊥(a-b)
的一个充分不必要条件是
()
A.x=0或2
B.x=2
C.x=1
D.x=±2
(2)已知向量a=(1,0),b=(0,1),c=a+λb(λ∈R),
向量d如图所示,则
()
A.存在λ>0,使得向量c与向量d垂直 B.存在λ>0,使得向量c与向量d夹角为60° C.存在λ<0,使得向量c与向量d夹角为30° D.存在λ>0,使得向量c与向量d共线
高考一轮第四章 第三节 平面向量的数量积及向量应用ppt
返回
|a|2 (3)a· a= ,|a|= a· a.
(4)cos〈a,b〉= (5)|a· b|
≤
a· b |a||b| .
|a||b|.
3.数量积的运算律: (1)交换律:a· b· . b= a
c (2)分配律:(a+b)· a· c= c+b· . b a· (3)对λ∈R,λ(a· b)= (λa)· = (λb) .
(
)
解析:|a· b|=|a|· |b||cos θ|,只有a与b共线时,才有|a· b| =|a||b|,可知B是错误的. 答案:B
返回
2.(2011· 辽宁高考)已知向量a=(2,1),b=(-1,k), a· (2a-b)=0,则k= ( )
A.-12
C.6
B.-6
D.12
解析:∵2a-b=(4,2)-(-1,k)=(5,2-k), 由a· (2a-b)=0,得(2,1)· (5,2-k)=0 ∴10+2-k=0,解得k=12. 答案: D
即18+3x=30,解得:x=4. [答案] C
返回
[例2]
π (2011· 江西高考)已知两个单位向量e1,e2的夹角为3,若向
量b1=e1-2e2,b2=3e1+4e2,则b1·2=________. b
[自主解答] b1=e1-2e2,b2=3e1+4e2,则b1·2=(e1-2e2)· 1+ b (3e
第 四 章 平 面 向 量、 数 系 的 扩 充 与 复 数 的 引 入
第三 节
平面 向量 的数 量积
抓 基 础
明 考 向
教 你 一 招 我 来 演 练
及向
量的 应用
提 能 力
返回
[备考方向要明了] 考 什 么
平面向量的数量积PPT课件
运算律
向量与标量乘法结合律
对于任意向量$mathbf{a}$和标量$k$,有$kmathbf{a} cdot mathbf{b} = (kmathbf{a}) cdot mathbf{b} = k(mathbf{a} cdot mathbf{b})$。
向量与标量乘法交换律
对于任意向量$mathbf{a}$和标量$k$,有$mathbf{a} cdot kmathbf{b} = k(mathbf{a} cdot mathbf{b}) = (kmathbf{b}) cdot mathbf{a}$。
向量数量积的性质
向量数量积满足交换律和结合 律,即a·b=b·a和 (a+b)·c=a·c+b·c。
向量数量积满足分配律,即 (a+b)·c=a·c+b·c。
向量数量积满足正弦律,即 a·b=|a||b|sinθ,其中θ为向量a 和b之间的夹角。
02 平面向量的数量积的运算
计算公式
定义
平面向量$mathbf{a}$和$mathbf{b}$的数量积定义为 $mathbf{a} cdot mathbf{b} = |mathbf{a}| times |mathbf{b}| times cos theta$,其中$theta$是向量 $mathbf{a}$和$mathbf{b}$之间的夹角。
交换律
平面向量的数量积满足交换律,即$mathbf{a} cdot mathbf{b} = mathbf{b} cdot mathbf{a}$。
分配律
平面向量的数量积满足分配律,即$(mathbf{a} + mathbf{b}) cdot mathbf{c} = mathbf{a} cdot mathbf{c} + mathbf{b} cdot mathbf{c}$。
《平面向量的运算》平面向量及其应用 PPT教学课件 (向量的数量积)
返回导航 上页 下页
向量 a 在向量 b 上的投影向量的求法 将已知量代入 a 在 b 方向上的投影向量公式|a|cos θ e(e 是与 b 方向相同的单位向量, 且 e=|bb|)中计算即可.
必修第二册·人教数学A版
返回导航 上页 下页
2.已知|a|=4,|b|=6,a 与 b 的夹角为 60°,则向量 a 在向量 b 上的投影向量是________. 解析:向量 a 在向量 b 上的投影向量是|a|cos 60°|bb|=4×12×16b=13b. 答案:13b
我们称上述变换为向量 a 向向量 b 投影 ,A→1B1叫做向量 a 在向量 b 上的 投影向量 .
必修第二册·人教数学A版
返回导航 上页 下页
(2)如图,在平面内任取一点 O,作O→M=a,O→N=b,设 与 b 方向相同的单位向量为 e,a 与 b 的夹角为 θ,过点 M 作直线 ON 的垂线,垂足为 M1,则O→M1= |a|ecos θ . 特别地,当 θ=0 时,O→M1= |a|e . 当 θ=π 时,O→M1= -|a|e . 当 θ=π2时,O→M1=0.
返回导航 上页 下页
必修第二册·人教数学A版
⑥cos θ=|aa|·|bb|.
必修第二册·人教数学A版
返回导航 上页 下页
知识点五 平面向量数量积的性质
预习教材,思考问题
根据实数乘法的运算律,类比得出向量数量积的运算律,如下表,这些结果正确吗?
运算律 实数乘法
平面向量数量积
交换律
ab=ba
a·b=b·a
结合律
(ab)c=a(bc)
(a·b)·c=a·(b·c) (λa)·b=a·(λb)=λ(a·b)
解析:(2a+3b)·(3a-2b) =6a2-4a·b+9b·a-6b2 =6|a|2+5a·b-6|b|2 =6×42+5×4×7·cos 120°-6×72 =-268.
2014年人教A版必修四课件 2.4 平面向量的数量积
则 q =135.
问题1. 向量的数量积与向量的数乘有什么区别? 向量的数量积是向量还是数量? 向量的数乘是一个向量, 而向量的数量积是一个 数量, 是三个数量的乘积. 几何意义: | a | cosq 表示 a 在 b 方向上的投影 (如图), |OC | = | a |cosq . A a a 方向上的投影, | b | cosq 表示 b 在 D | OD | = | b | cosq . q 即 a b =|Байду номын сангаасa | | b | cosq B O C b =OC· OB =OD· OA.
即两向量的夹角为锐角时, 数量积为正, 夹角为钝角时, 数量积为负, 夹角为直角时, 数量积为零.
两非零向量垂直 数量积为零.
练习: (课本106页) 2. 已知△ABC中, AB =a, AC =b, 当 a· b<0 或 a· b=0 时, 试判断△ABC的形状. 解: a b =| a | | b | cos A, 当 a b 0 时, cosA < 0, 则角A为钝角, ∴△ABC为钝角三角形. 当 a b = 0 时, cosA = 0, 则角A为直角, ∴△ABC为直角三角形.
练习: (课本106页) 3. 已知 |a|=6, e 为单位向量, 当 a、e 之间的夹角 q 分别等于 45、90、135 时, 画图表示 a 在 e 方向 上的投影, 并求其值. 解: 各图中的投影用OA表示. | a |= 6 (1) 当q =45º 时, | a |= 6 2 45º OA = | a | cos 45= 6 O 2 A e =3 2 . (1) O e (A) (2) 当q =90º 时, (2) OA = | a | cos 90=0. | a |= 6
6.2平面向量的运算课件共40张PPT
故选 B.
→
→
→
→
即时训练 3-2:在四边形 ABCD 中,=,若||=||,则四边形 ABCD 的
形状为
.
→
→
解析:由=,可得四边形 ABCD 为平行四边形,
→
→
由||=||,可得邻边相等,此平行四边形是菱形,
所以四边形 ABCD 为菱形.
答案:菱形
→
→
→
→
[备用例 3] 若 O 是△ABC 所在平面内一点,且满足|-|=|-+
探究点二
向量加法运算律的应用
[例 2] 化简:
→
→
(1)+;
→
→
→
→
→
解:(1)+=+=.
[例 2] 化简:
→
→
→
(2)++;
→
→
→
→
→
→
解:(2)++=++
→
→
→
=(+)+
→→Biblioteka =+=0.
[例 2] 化简:
→
→
→
→
→
→
→
→
→
→
→
→
解:(2)原式=--+=(-)+(-)=+=0.
→
→
→
[备用例 2] 化简:--.
→
→
→
→
→
→
解:法一 --=-=.
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
即时训练 3-2:在四边形 ABCD 中,=,若||=||,则四边形 ABCD 的
形状为
.
→
→
解析:由=,可得四边形 ABCD 为平行四边形,
→
→
由||=||,可得邻边相等,此平行四边形是菱形,
所以四边形 ABCD 为菱形.
答案:菱形
→
→
→
→
[备用例 3] 若 O 是△ABC 所在平面内一点,且满足|-|=|-+
探究点二
向量加法运算律的应用
[例 2] 化简:
→
→
(1)+;
→
→
→
→
→
解:(1)+=+=.
[例 2] 化简:
→
→
→
(2)++;
→
→
→
→
→
→
解:(2)++=++
→
→
→
=(+)+
→→Biblioteka =+=0.
[例 2] 化简:
→
→
→
→
→
→
→
→
→
→
→
→
解:(2)原式=--+=(-)+(-)=+=0.
→
→
→
[备用例 2] 化简:--.
→
→
→
→
→
→
解:法一 --=-=.
→
→
→
→
→
→
→
→
→
→
→
→
→
→
数学人教A版(2019)必修第二册6.2.4平面向量数量积(共15张ppt)
,求
∙ .
设 =12, =9, ∙ =-54 ,求与的夹角
向量的数量积的几何意义是什么?
B
a
A
b
C A1
B2
D
两个非零向量、,他们的夹角为,
探究向量在上的投影向量的情况.
两个非零向量、,他们的夹角为,是与方向相同的单位
向量.
(1) ∙ = , = .(求向量长度的工具)
如何规定向量的乘法.
向量的乘法的结果是什么量?这个值由那些量决定?符号
由什,我们把数量
cos量叫做、的数量积,记作 ∙
即 ∙ = cos
规定零向量与任一非零向量的数量积为0.
已知 = , = , 与的夹角 =
6.2.4向量的数量积
学习目标
1、向量数量积的运算.
2、向量投影及投影向量的概念
重点、难点 向量数量积的概念与运算律.
向量的概念源自哪一门学科?我们已经研究了向量的哪些
运算?这些向量的运算表运算结果是什么?
前面学习了向量的加,减,数乘(线性运算).
其运算结果是向量.
向量能否相乘?如何规定向量的乘法?我们该怎样研究?
(2) ⊥ ⟺ ∙ =0.(直线垂直的重要条件)
(3) ∙ = ∙ = cos.
已知 = , = , 与的夹角 = °,求 ∙ ,
( + )2 , + .
1、本节课学习了哪些知识和内容.
2、结合实例说明向量数量积的几何意义.
感谢聆听!
高中数学第六章平面向量及其应用-向量的数量积课件及答案
【对点练清】 1.(2020·全国卷Ⅱ)已知单位向量 a ,b 的夹角为 45°,ka -b 与 a 垂直,则 k=_____.
解析:由题意,得 a ·b =|a |·|b |cos 45°= 22.因为向量a =ka
2-a ·b =k-
22=0,解得
【学透用活】 [典例 3] (1)已知 e1 与 e2 是两个互相垂直的单位向量,若向量 e1+ke2 与 ke1+e2 的夹角为锐角,则 k 的取值范围为_________. (2)已知非零向量 a ,b 满足 a +3b 与 7a -5b 互相垂直,a -4b 与 7a -2b 互相垂直,求 a 与 b 的夹角. [解析] (1)∵e1+ke2 与 ke1+e2 的夹角为锐角, ∴(e1+ke2)·(ke1+e2)=ke21+ke22+(k2+1)e1·e2=2k>0,∴k>0.当 k =1 时,e1+ke2=ke1+e2,它们的夹角为 0,不符合题意,舍去.综上, k 的取值范围为 k>0 且 k≠1. 答案:(0,1)∪(1,+∞)
(3)设非零向量 a 与 b 的夹角为 θ,则 cos θ>0⇔a ·b >0.
(√)
(4)|a ·b |≤a ·b .
( ×)
2.若向量 a ,b 满足|a |=|b |=1,a 与 b 的夹角为 60°,则 a ·b 等于 ( )
1 A.2
3 B.2
C.1+
3 2
D.2
答案:A
3.已知|a |=1,|b |=2,设 e 是与 a 同方向上的单位向量,a 与 b 的夹 角为π3,则 b 在 a 方向上的投影向量为______.
(4)|a ·b |≤__|_a_|_|_b_|.
2.平面向量数量积的运算律:
《平面向量的运算》平面向量及其应用PPT下载(向量的数量积)
预习教材,思考问题 PPT模板:/moban/ PPT背 景 : /beijing/ PPT下 载 : /xiazai/ 资 料 下 载 : /ziliao/ 试 卷 下 载 : /shiti/ 手 抄 报 : /shouchaobao/
PPT素 材 : /sucai/
PPT背 景 : /beijing/
PPT图 表 : /tubiao/
PPT下 载 : /xiazai/
PPT教 程 : /powerpoint/
资 料 下 载 : /ziliao/
历 史 课 件 : /kejian/lishi/
6.2 平面向量的运算 6.2.4 向量的数量积
必修第二册·人教数学A版
返回导航 上页 下页
内容标准
学科素养
1.通过物理中功等实例,理解平面向量数量积的概念及其物
PPT模 板 : /moban/
PPT素 材 : /sucai/
语 文 课 件 : /kejian/yuwen/ 数 学 课 件 : /kejian/shuxue/
英 语 课 件 : /kejian/yingyu/ 美 术 课 件 : /kejian/meishu/
科 学 课 件 : /kejian/kexue/ 物 理 课 件 : /kejian/wuli/
语 文 课 件 : /kejian/yuwen/ 数 学 课 件 : /kejian/shuxue/
英 语 课 件 : /kejian/yingyu/ 美 术 课 件 : /kejian/meishu/
科 学 课 件 : /kejian/kexue/ 物 理 课 件 : /kejian/wuli/
PPT素 材 : /sucai/ PPT图 表 : /tubiao/ PPT教 程 : /powerpoint/ 个 人 简 历 : /jianli/ 教 案 下 载 : /jiaoan/ PPT课 件 : /kejian/
《平面向量的运算》平面向量及其应用 PPT教学课件 (向量的加法运算)
必修第二册·人教数学A版
返回导航 上页 下页
探究三 向量加法的实际应用
[例 3] 长江两岸之间没有大桥的地方,常常通过轮渡进行运输.如图,一艘船从长
江南岸 A 地出发,垂直于对岸航行,航行速度的大小为 15 km/h,同时江水的速度为
向东 6 km/h.
(1)用向量表示江水速度、船速以及船实际航行的速度;
解析:设A→B,B→C分别表示飞机从 A 地按北偏东 35°的方向飞行 800 km,从 B 地按 南偏东 55°的方向飞行 800 km, 则飞机飞行的路程指的是|A→B|+|B→C|; 两次飞行的位移的和指的是A→B+B→C=A→C. 依题意,有|A→B|+|B→C|=800+800=1 600 (km), 又 α=35°,β=55°,∠ABC=35°+55°=90°,
→ 因为 tan ∠CAB=|B→C|=52,所以利用计算工具可得∠CAB≈68°.
|AB| 因此,船实际航行速度的大小约为 16.2 km/h,方向与江水速度间的夹角约ห้องสมุดไป่ตู้ 68°.
必修第二册·人教数学A版
返回导航 上页 下页
向量加法应用的关键及技巧 (1)三个关键:一是搞清构成平面图形的向量间的相互关系;二是熟练找出图形中的 相等向量;三是能根据三角形法则或平行四边形法则作出向量的和向量. (2)应用技巧:①准确画出几何图形,将几何图形中的边转化为向量;②将所求问题 转化为向量的加法运算,进而利用向量加法的几何意义进行求解.
必修第二册·人教数学A版
1.如图,已知 a、b,求作 a+b. 解析: ①A→C=a+b ②A→C=a+b
返回导航 上页 下页
必修第二册·人教数学A版
返回导航 上页 下页
探究二 向量加法的运算律 [例 2] (1)化简下列各式: ①A→B+B→C+C→D+D→A; ②(A→B+M→B)+B→O+O→M. (2)如图,四边形 ABDC 为等腰梯形,AB∥CD,AC=BD, CD=2AB,E 为 CD 的中点.试求: ①A→B+A→E;②A→B+A→C+E→C; ③C→D+A→C+D→B+E→C.
高中数学A版必修第二册6.2.4向量的数量积-课件
解析
由题知
π a·b=1×2×cos =1,所以
c·b=(2a+b)·b=2a·b+b2=6,
3
|c|=|2a+b|= (2a+b)2= 4a2+4a· b+b2=2
c·b 3,设 c 与 b 的夹角为θ,则 cos θ= =
|c||b|
6
3
π
= .因为θ∈[0,π],所以θ= .
2 3×2 2
6
6.2.4 向量的数量积
O→A·A→F=1×1×cos 120°=-1,A→F·B→C=1×1×cos 60°=1,∴(O→A·A→F)·B→C=O→A·(A→F·B→C)⇔-1B→C=1O→A,
2
2
22
式子显然成立,故 C 正确;D 选项,设正六边形的边长为 1,|O→F+O→D|=|O→E|=1,|F→A+O→D-C→B|=|D→C+
06
第六章 平面向量及其应用
6.2
6.2 平面向量的运算
6.2
6.2.4 向量的数量积
6.2.4 向量的数量积
题型1 向量的数量积
π
1.已知|a|=1,|b|=2,向量 a,b 的夹角为 ,则 a·(a+b)=( C )
3 A. 3-1 B.1 C.2 D. 3+1
解析
∵a·(a+b)=a2+a·b=1+1×2×cosπ=2.故选 C. 3
整理得 2te12+(2t2+7)e1·e2+7te22<0.(*) ∵|e1|=2,|e2|=1,〈e1,e2〉=60°,∴e1·e2=1.∴(*)式化简, 得 2t2+15t+7<0,解得-7<t<-1.当 2te1+7e2 与 e1+te2 的夹角为 180°时,设 2te1+7e2=λ(e1+te2)(λ
由题知
π a·b=1×2×cos =1,所以
c·b=(2a+b)·b=2a·b+b2=6,
3
|c|=|2a+b|= (2a+b)2= 4a2+4a· b+b2=2
c·b 3,设 c 与 b 的夹角为θ,则 cos θ= =
|c||b|
6
3
π
= .因为θ∈[0,π],所以θ= .
2 3×2 2
6
6.2.4 向量的数量积
O→A·A→F=1×1×cos 120°=-1,A→F·B→C=1×1×cos 60°=1,∴(O→A·A→F)·B→C=O→A·(A→F·B→C)⇔-1B→C=1O→A,
2
2
22
式子显然成立,故 C 正确;D 选项,设正六边形的边长为 1,|O→F+O→D|=|O→E|=1,|F→A+O→D-C→B|=|D→C+
06
第六章 平面向量及其应用
6.2
6.2 平面向量的运算
6.2
6.2.4 向量的数量积
6.2.4 向量的数量积
题型1 向量的数量积
π
1.已知|a|=1,|b|=2,向量 a,b 的夹角为 ,则 a·(a+b)=( C )
3 A. 3-1 B.1 C.2 D. 3+1
解析
∵a·(a+b)=a2+a·b=1+1×2×cosπ=2.故选 C. 3
整理得 2te12+(2t2+7)e1·e2+7te22<0.(*) ∵|e1|=2,|e2|=1,〈e1,e2〉=60°,∴e1·e2=1.∴(*)式化简, 得 2t2+15t+7<0,解得-7<t<-1.当 2te1+7e2 与 e1+te2 的夹角为 180°时,设 2te1+7e2=λ(e1+te2)(λ
平面向量的概念PPT课件
04
平面向量数量积概念及性 质
数量积定义及几何意义
数量积定义
两个向量的数量积是一个标量,等于它们模长的乘积与它们夹 角余弦的乘积。
几何意义
数量积反映了两个向量的相对位置和角度关系,正值表示同向, 负值表示反向,零表示垂直。
数量积性质及运算规律
性质
满足交换律、分配律、结合律,与标量乘法相容等。
运算规律
向量坐标与点坐标关系
向量坐标
向量坐标是由起点指向终点的有 向线段,在直角坐标系中可以用
两个坐标值表示。
点坐标
点坐标是直角坐标系中点的位置表 示,同样可以用两个坐标值表示。
关系
向量坐标与点坐标密切相关,向量 的起点和终点坐标可以决定向量的 坐标,而点的坐标可以用来表示向 量的起点或终点。
向量运算坐标表示法
坐标法求解向量问题
求解向量坐标
通过已知点的坐标和向量的关系,可以 求解向量的坐标。
求解向量模长
通过向量的坐标可以计算向量的模长, 进而求解与模长相关的问题。
求解向量夹角
通过向量的坐标可以计算向量的夹角, 进而求解与夹角相关的问题。
求解向量运算结果
通过向量的坐标表示法可以求解向量的 加法、减法和数乘运算结果。
向量运算满足基本定律
加法结合律
(a + b) + c = a + (b + c)
数乘结合律
(kl)a = k(la)
加法交换律
a+b=b+a
数乘分配律
k(a + b) = ka + kb
向量共线定理,使得b = λa
03
平面向量坐标表示法
直角坐标系中向量表示方法
内蒙古满洲里市第七中学高中数学 第二章平面向量《向量数量积的坐标运算课件》课件 新人教A版必修4
cos a b
x1 x2 y1 y2
ab
x 2 y2 x 2 y2
1
1
1
1
例1(1)已知a =(5,- 7),b =(- 6,- 4),求a b。
(2)已知a =(3,4),b =(2,-1),且(a + mb)⊥(a - b), 则实数m为何值?
(3)已知a =(1,2),b =(n,1),且(a+2b)//(2a- b), 则实数n为何值?
m 23 3
例1(3)已知a =(1,2),b =(n,1),且
(a + 2b)//(2a - b),则实数n为何值?
解: (3) a 2b (1 2n,4)
2a b (2 n,3)
(a 2b)/( / 2a b)
(1 2n) 3 4(2 n) 0
n 1 2
变形:.已知 a 4, b 3, a与b的夹角为90,
列问题.
设x轴上单位向量为 i ,Y轴上单位向量为 j
请①计i算下i 列= 式子1 :
②
j
j
=
1
③ ij = 0
④ j i = 0
问题2:推导出
a b
的坐标公式.
已知两非零向量a (x ,y),b (x ,y)
1
1
2
2
设i,j分别为与x轴和y轴方向相同的单位向量,则有
ax iy j
1
1
b x2 i y2 j
另一方面 a x ( 3 1) m ( 3 1) n
……① ……②
∴由①,②知 ( 3 1) m ( 3 1) n 2
m2 n2 1
解得:
m1
3 2
1 n1 2
高考数学一轮总复习第五章平面向量与复数 3平面向量的数量积及平面向量的应用课件
=
D.6
3+
,解得
= 5.故选C.
命题角度3 两个向量的垂直
3
−
例4(1) (2022年全国甲卷)已知向量 = , 3 , = 1, + 1 .若 ⊥ ,则 =____.
4
解:由题意,知 ⋅ = + 3 + 1 = 0,解得 =
3
3
− .故填− .
4
4
(2)设非零向量,满足 + = − ,则 (
)
D.8
0
3
4.若 = 2,1 , = 2, −1 , = 0,1 ,则 + ⋅ =___;
⋅ =___.
解: + = 4,0 ,所以 + ⋅ = 0, ⋅ = 3.故填0;3.
考点一 平面向量数量积的运算
1
3
例1(1) (2022年全国甲卷)设向量,的夹角的余弦值为 ,且 = 1, = 3,
又因为 − = 3,所以 −
2
= 3.
即2 − 2 ⋅ + 2 = 2 = 3,所以 = 3.故填 3.
命题角度2 求平面向量的夹角
例3 (2023年全国甲卷)已知向量 = 3,1 , = 2,2 ,则cos⟨ + , − ⟩ =
(
)
B.
√
1
A.
17
17
.故选B.
17
【点拨】 求两向量,的夹角 ,通常采用公式cos =
⋅
进行求解.
变式3 (2022年新课标Ⅱ卷)已知向量 = 3,4 , = 1,0 , = + ,若⟨,⟩ = ⟨,
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
, 2
【思考】 (1)等边△ABC中,向量 AB,BC 所成的角是60°吗? 提示:向量 AB,B所C成的角是120°.
(2)向量夹角的范围与异面直线所成的角的范围相同 吗? 提示:向量的夹角和直线的夹角范围是不同的,它们 分别是[0,π]和
[0, ]. 2
2.向量的数量积的定义 已知两个非零向量a与b,它们的夹角为θ,我们把数 量|a||b|cos θ叫做a与b的数量积(或内积),记作 a·b,即a·b=|a||b|cos θ.
=
_______.
BA BC
【解析】如图,过A作AD⊥BC,垂足为D.
因为AB=AC,所以BD1= BC=2,
于是| |cos ∠ABC=| 2 |= | |= ×4=2.
2.选D.在菱形ABCD中,边长为2,∠BAD=60°,所以 =2×2×cos 60°=2,
又AB因A为D
所以
AE AB BE AB 1 AD, EF 1 BD 1(AD AB),
2
2
2
AE EF (AB 1 AD)1(AD AB) 22
1( 1 AD2 1 AB AD AB2) 1( 1 4 1 2 4) 1 .
规定:零向量与任一向量的数量积为0.
【思考】 (1)把“a·b”写成“ab”或“a×b”可以吗,为什么 ? 提示:不可以,数量积是两个向量之间的乘法,在书 写时,一定要严格,必须写成“a·b”的形式.
(2)向量的数量积运算的结果仍是向量吗? 提示:向量的数量积运算结果不是向量,是一个实数.
3.投影向量的概念
6.2 平面向量的运算 6.,O是平面上的任意一 点,作 OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫做 向量a与b的夹角(如图所示).
(1)范围:向量a与b的夹角的范围是0≤θ≤π. (2)当θ=0时,a与b同向;当θ=π时,a与b反向. (3)如果a与b的夹角是 我们说a与b垂直,记作a⊥b.
22
2
22
2
2
3.设a与b的夹角为θ,则有
a·b=|a|·|b|cos θ=-12,
所以向量a在向量b方向上的投影为|a|·cos θ=
=
向量b在向量a方向上的投影为|b|·
ab
cos θ= = =-4.
|b|
12= 12;
5
5
a b 12
|b|
3
答案:- 12 -4
5
【内化·悟】 如何解决几何图形中向量数量积的计算? 提示:一般选择已知长度与夹角的向量作基底,用基 底表示要求数量积的向量,再计算.
【素养小测】
1.思维辨析(对的打“√”,错的打“×”) (1)两个向量的数量积是向量. ( ) (2)对于向量a,b,若a·b=0,则a=0或b=0. ( ) (3)(a±b)2=a2±2a·b+b2. ( )
提示:(1)×.两个向量的数量积没有方向,是实数,不 是向量. (2)×.a·b=0,还可能有a⊥b. (3)√.
【类题·通】 求平面向量数量积的方法 (1)若已知向量的模及其夹角,则直接利用公式a·b =|a||b|cos θ.求解时要注意灵活使用数量积的运算 律.
(2)若所求向量的模与夹角未知,应先选取已知模与夹 角的两个向量,表示出所求向量,再代入运算.
【习练·破】
1.已知等腰△ABC的底边BC长为4,则
【思维·引】
1.利用向量数量积的定义与运算律计算.
2.先分别用基向量 AB,AD 表示 AE, EF, 再利用向量数
量积的定义与运算律计算.
3.向量a在向量b方向上的投影为|a|·cos
θ=
a b, |b|
向量b在向量a方向上的投影为|b|·cos
θ=
a b. |b|
【解析】 1.选B.因为|a|=1,a·b=-1, 所以a·(2a-b)=2a2-a·b=2×1-(-1)=3.
(3)模长公式:a·a=|a|2或|a|=
ab
(4)夹角公式:cos θ=__a__b__. (5)|a·b|≤|a||b|.
a a= a2 .
【思考】 (1)对于任意向量a与b,“a⊥b⇔a·b=0”总成立吗? 提示:当向量a与b中存在零向量时,总有a·b=0,但 是向量a与b不垂直.
(2)当“cos θ= a b ”为负值时,说明向量a与b的夹
A.12
B.-12
C.12
D.-12
3
3
【解析】选B.由题意,得a·(4b)=4(a·b)= 4|a||b|cos θ=4×2×3×cos 120°=-12.
类型一 向量数量积的计算及其几何意义
【典例】1.(2018·全国卷Ⅱ)已知向量a,b满足|a|=
1,a·b=-1,则a·(2a-b)= ( )
ab
角为钝角,对吗?
提示:不对,cos θ= 180°.
a b=-1时,向量a与b的夹角为
ab
5.向量数量积的运算律 (1)a·b=b·a(交换律). (2)(λa)·b=λ(a·b)=a·(λb)(结合律). (3)(a+b)·c=a·c+b·c(分配律).
【思考】 “若a·b=a·c,则b=c”成立吗? 提示:不成立.
A.4
B.3
C.2
D.0
2.如图,四边形ABCD是边长为2的菱形,∠BAD=60°,
E,F分别为BC,CD的中点,则
=( )
AE EF
A. 1
B. 3
C. 3
2
2
2
D. 1 2
3.已知|a|=3,|b|=5,且a·b=-12,则a在b方向上的 投影为________,b在a方向上的投影为________.
如图所示:OA =a,OB =b,过B作BB1垂直于直线OA,
垂足为B1,则
叫做b在向量a上的投影向量,得
| OB1 |=|b||coOsB1θ|.
4.向量的数量积的性质 设a与b都是非零向量,θ为a与b的夹角. (1)垂直的条件:a⊥b⇔a·b=0. (2)当a与b同向时,a·b=|a||b|; 当a与b反向时,a·b=-|a||b|.
2.在△ABC中,BC=5,AC=8,∠C=60°,则
=
BC C(A )
A.20
B.-20
C.20
D.-20
3
3
【解析】选B. =| =-20. BC CA
( 1 ) 2
|| |cos 120°=5×8×
BC CA
3.若|a|=2,|b|=3,a,b的夹角θ为120°,则a·(4b)
的值为 ( )
【思考】 (1)等边△ABC中,向量 AB,BC 所成的角是60°吗? 提示:向量 AB,B所C成的角是120°.
(2)向量夹角的范围与异面直线所成的角的范围相同 吗? 提示:向量的夹角和直线的夹角范围是不同的,它们 分别是[0,π]和
[0, ]. 2
2.向量的数量积的定义 已知两个非零向量a与b,它们的夹角为θ,我们把数 量|a||b|cos θ叫做a与b的数量积(或内积),记作 a·b,即a·b=|a||b|cos θ.
=
_______.
BA BC
【解析】如图,过A作AD⊥BC,垂足为D.
因为AB=AC,所以BD1= BC=2,
于是| |cos ∠ABC=| 2 |= | |= ×4=2.
2.选D.在菱形ABCD中,边长为2,∠BAD=60°,所以 =2×2×cos 60°=2,
又AB因A为D
所以
AE AB BE AB 1 AD, EF 1 BD 1(AD AB),
2
2
2
AE EF (AB 1 AD)1(AD AB) 22
1( 1 AD2 1 AB AD AB2) 1( 1 4 1 2 4) 1 .
规定:零向量与任一向量的数量积为0.
【思考】 (1)把“a·b”写成“ab”或“a×b”可以吗,为什么 ? 提示:不可以,数量积是两个向量之间的乘法,在书 写时,一定要严格,必须写成“a·b”的形式.
(2)向量的数量积运算的结果仍是向量吗? 提示:向量的数量积运算结果不是向量,是一个实数.
3.投影向量的概念
6.2 平面向量的运算 6.,O是平面上的任意一 点,作 OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫做 向量a与b的夹角(如图所示).
(1)范围:向量a与b的夹角的范围是0≤θ≤π. (2)当θ=0时,a与b同向;当θ=π时,a与b反向. (3)如果a与b的夹角是 我们说a与b垂直,记作a⊥b.
22
2
22
2
2
3.设a与b的夹角为θ,则有
a·b=|a|·|b|cos θ=-12,
所以向量a在向量b方向上的投影为|a|·cos θ=
=
向量b在向量a方向上的投影为|b|·
ab
cos θ= = =-4.
|b|
12= 12;
5
5
a b 12
|b|
3
答案:- 12 -4
5
【内化·悟】 如何解决几何图形中向量数量积的计算? 提示:一般选择已知长度与夹角的向量作基底,用基 底表示要求数量积的向量,再计算.
【素养小测】
1.思维辨析(对的打“√”,错的打“×”) (1)两个向量的数量积是向量. ( ) (2)对于向量a,b,若a·b=0,则a=0或b=0. ( ) (3)(a±b)2=a2±2a·b+b2. ( )
提示:(1)×.两个向量的数量积没有方向,是实数,不 是向量. (2)×.a·b=0,还可能有a⊥b. (3)√.
【类题·通】 求平面向量数量积的方法 (1)若已知向量的模及其夹角,则直接利用公式a·b =|a||b|cos θ.求解时要注意灵活使用数量积的运算 律.
(2)若所求向量的模与夹角未知,应先选取已知模与夹 角的两个向量,表示出所求向量,再代入运算.
【习练·破】
1.已知等腰△ABC的底边BC长为4,则
【思维·引】
1.利用向量数量积的定义与运算律计算.
2.先分别用基向量 AB,AD 表示 AE, EF, 再利用向量数
量积的定义与运算律计算.
3.向量a在向量b方向上的投影为|a|·cos
θ=
a b, |b|
向量b在向量a方向上的投影为|b|·cos
θ=
a b. |b|
【解析】 1.选B.因为|a|=1,a·b=-1, 所以a·(2a-b)=2a2-a·b=2×1-(-1)=3.
(3)模长公式:a·a=|a|2或|a|=
ab
(4)夹角公式:cos θ=__a__b__. (5)|a·b|≤|a||b|.
a a= a2 .
【思考】 (1)对于任意向量a与b,“a⊥b⇔a·b=0”总成立吗? 提示:当向量a与b中存在零向量时,总有a·b=0,但 是向量a与b不垂直.
(2)当“cos θ= a b ”为负值时,说明向量a与b的夹
A.12
B.-12
C.12
D.-12
3
3
【解析】选B.由题意,得a·(4b)=4(a·b)= 4|a||b|cos θ=4×2×3×cos 120°=-12.
类型一 向量数量积的计算及其几何意义
【典例】1.(2018·全国卷Ⅱ)已知向量a,b满足|a|=
1,a·b=-1,则a·(2a-b)= ( )
ab
角为钝角,对吗?
提示:不对,cos θ= 180°.
a b=-1时,向量a与b的夹角为
ab
5.向量数量积的运算律 (1)a·b=b·a(交换律). (2)(λa)·b=λ(a·b)=a·(λb)(结合律). (3)(a+b)·c=a·c+b·c(分配律).
【思考】 “若a·b=a·c,则b=c”成立吗? 提示:不成立.
A.4
B.3
C.2
D.0
2.如图,四边形ABCD是边长为2的菱形,∠BAD=60°,
E,F分别为BC,CD的中点,则
=( )
AE EF
A. 1
B. 3
C. 3
2
2
2
D. 1 2
3.已知|a|=3,|b|=5,且a·b=-12,则a在b方向上的 投影为________,b在a方向上的投影为________.
如图所示:OA =a,OB =b,过B作BB1垂直于直线OA,
垂足为B1,则
叫做b在向量a上的投影向量,得
| OB1 |=|b||coOsB1θ|.
4.向量的数量积的性质 设a与b都是非零向量,θ为a与b的夹角. (1)垂直的条件:a⊥b⇔a·b=0. (2)当a与b同向时,a·b=|a||b|; 当a与b反向时,a·b=-|a||b|.
2.在△ABC中,BC=5,AC=8,∠C=60°,则
=
BC C(A )
A.20
B.-20
C.20
D.-20
3
3
【解析】选B. =| =-20. BC CA
( 1 ) 2
|| |cos 120°=5×8×
BC CA
3.若|a|=2,|b|=3,a,b的夹角θ为120°,则a·(4b)
的值为 ( )