图形的平移与旋转、对称练习题

合集下载

图形的对称、平移和旋转专项训练题

图形的对称、平移和旋转专项训练题

图形的对称、平移和旋转专项训练题一.选择题(共9小题)1.以下是几所知名大学的校徽,其中是轴对称图形的是()A.B.C.D.2.下列图形中,既是轴对称图形也是中心对称图形的有()A.4个B.3个C.2个D.1个3.如图,将△ABC折叠,使AC边落在AB边上,展开后得到折痕AD.将△ABC再次折叠,使BC边落在BA边上,展开后得到折痕BE,BE,AD交于点O.则以下结论一定成立的是()A.AO=2OD B.S△ABO=S四边形ODCEC.点O到△ABC三边的距离相等D.点O到△ABC三个顶点的距离相等4.下列各式中,是中心对称图形的是()A.B.C.D.5.下列图形中,既是中心对称图形也是轴对称图形的是()A.B.C.D.6.把点P(2,﹣5)向上平移3个单位后再关于原点对称的点的坐标是()A.(5,﹣5)B.(﹣2,2)C.(﹣5,5)D.(2,﹣2)7.如图,△ABC的周长为30cm,将△ABC沿CB向右平移得到△DEF,若平移的距离为4cm,则四边形ACED的周长是()cm.A.34B.36C.38D.408.“会飞的饺子皮”刷爆朋友圈,卡塔尔世界杯吉祥物“拉伊卜”刷爆网络!下面是“拉伊卜”的形象图片,在下面的四个图形中,能由左图经过平移得到的图形是()A.B.C.D.9.通过光的反射定律知道,入射光线与反射光线关于法线成轴对称(图1).在图2中,光线自点P射入,经镜面EF反射后经过的点是()A.点A B.点B C.点C D.点D二.填空题(共8小题)10.“做数学”可以帮助我们积累数学活动经验.如图,已知三角形纸片ABC,第1次折叠使点B落在BC边上的点B'处,折痕AD交BC于点D;第2次折叠使点A落在点D处,折痕MN交AB'于点P.若BC=12,则MP+MN=.11.如图,在矩形纸片ABCD中,AB=5,BC=3,将△BCD沿BD折叠到△BED位置,DE交AB于点F,则sin∠ADF的值为.12.如图,将△ABC绕点C顺时针旋转30°得到△DEC,边ED,AC相交于点F,若∠A=32°,则∠EFC的度数为°.13.如图,在△ABC中,BC=7,把△ABC沿射线AB方向平移4个单位至△EFG处,EG与BC交于点M.若CM=3,则图中阴影部分的面积为.14.在平面直角坐标系中,将点(1,﹣2)先向右平移2个单位长度,再向上平移3个单位长度,则所得的点的坐标是.15.如图,在矩形ABCD中,AB=8,AD=6,将矩形ABCD绕点A逆时针旋转得到矩形AEFG,AE交CD于点H,且DH=EH,则AH的长为.16.等腰直角△ABC中,BAC=90°,AB=5,点D是平面内一点,AD=2,连接BD,将BD绕D点逆时针旋转90°得到DE,连接AE,当DAB=(填度数)度时,AE 可以取最大值,最大值等于.17.如图,矩形ABCD的边AD的长为6,将△ADC沿对角线AC翻折得到△AD′C,CD′与AB交于点E,再以CD′为折痕,将△BCE进行翻折,得到△B′CE,若两次折叠后,点B′恰好落在△ADC的边上,则AB的长为.三.解答题(共3小题)18.如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均在格点(网格线的交点)上.(1)将△ABC向右平移5个单位长度,再向下平移2个单位长度,画出△ABC平移后的图形△A1B1C1;(2)以点A为旋转中心,将△ABC按逆时针方向旋转90°,得到△AB2C2,请画出△AB2C2.19.已知O是坐标原点,的坐标分别为(3,1),(2,﹣1).(1)画出绕点O顺时针旋转90°后得到的,并写出A1的坐标为;(2)在y轴的左侧以O为位似中心作的位似图形,使新图与原图相似比为2:1;(3)若点D(a,b)在线段OA上,直接写出变化(2)后点D的对应点D2的坐标为.20.如图,在正方形网格中,△ABC各顶点都在格点上,点A,B,C的坐标分别为(﹣5,1),(﹣5,4),(﹣1,4).(1)画出△ABC关于y轴对称的△A1B1C1,点A,B,C的对应点分别是A1、B1、C1.(2)画出△ABC关于原点O对称的△A2B2C2,点A,B,C的对应点分别是A2、B2、C2.。

小学数学 《图形的平移、旋转与轴对称》习题1

小学数学 《图形的平移、旋转与轴对称》习题1
《图形的平移、旋转与轴对称》习题
1、分别画出将平行四边形向下平移4格,向左平移8格后得到的图形。
2、把图形向右平移7格后得到的图形涂上颜色。
3、把图形向左平移5格后得到的图形涂上颜色。
4、画出小船向右平移6格后的图形。
5、画下面的图形向右平移6格后的图形。
6、小汽车向()平移了()格,小船机向()平移了()格,小飞机向()平移了()格。
(2)图1绕点“O”逆时针旋转1800到达图()的位置;
(3)图1绕点“O”顺时针旋转()到达图4的位置;
(4)图2绕点“O”顺时针旋转()到达图4的位置;
(5)图2绕点“O”顺时针旋转900到达图()的位置。
10、选择。
(1)时钟从6:00走到18:00是围绕钟面中心旋转()。
(A)180°(B)90°(C)360°
(2)时钟围绕钟面中心旋转()才能从3:00走到9:00。
(A)180°(B)90°(C)360°
11、如图,我国主要银行的商标设计基本上都融入了中国古代钱币的图案,下图中我国四大银行的商标图案中轴对称图形的是()。
A B C D
12、如图是用纸折叠成的图案,其中是轴对称图形的有()。
A B C
13、下面的图形是轴对称图形吗?如果是,请你画出它们的对称轴。
22、照这样排下去,第26图形是()。
23、有一列数按“654321654321……”排列着,则第34个数字应是()。
24、王兵在家练习硬笔书法时,写“我们爱科学我们爱科学……”依次写下去,那么第23个字应是()。
25、北京奥运北京奥运北京奥运……,根据排列规律,第43个字是(),第84个字是(),第105个字是(),第122个字是()。
7、画出三角形向右平移4格和梯形向左平移2格后的图形。

图形的平移,对称与旋转的经典测试题附答案

图形的平移,对称与旋转的经典测试题附答案
即点 的坐标为
∵点A向右平移 个单位,向下平移6个单位得到点
∴ 的坐标为 .
故选:D.
【点睛】
本题考查的知识点是坐标与图形变化-平移,熟练掌握坐标平面图形平移的规律是解决本题的关键.
16.观察下列图形,其中既是轴对称又是中心对称图形的是()
A. B. C. D.
【答案】D
【解析】
【分析】
根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.
∴在Rt∆A′】
本题主要考查图形的轴对称以及勾股定理的实际应用,把立体图形化为平面图形,掌握“马饮水”模型,是解题的关键.
2.如图,在 中, , , ,将 绕一逆时针方向旋转 得到 ,点 经过的路径为弧 ,则图中阴影部分的面积为( )
A. B. C. D.
【答案】D
D、能够通过平移得到,故符合题意,
故选D.
【点睛】
本题考查了图形的平移,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解题的关键.
6.如图,在平面直角坐标系中, 的顶点 在第一象限,点 在 轴的正半轴上, , ,将 绕点 逆时针旋转 ,点 的对应点 的坐标是()
A. B. C. D.
【答案】D
【详解】
由旋转的性质可知, ,
∵ , ,
∴ 为等边三角形,
∴ ,
∴ ,
故选:A.
【点睛】
此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB
19.下列图形中,既是轴对称图形,又是中心对称图形的是()
A. B. C. D.
【答案】A
【解析】
【分析】
根据轴对称图形与中心对称图形的概念求解.

初一数学图形的对称平移与旋转试题答案及解析

初一数学图形的对称平移与旋转试题答案及解析

初一数学图形的对称平移与旋转试题答案及解析1.下面有4个汽车标志图案,其中是轴对称图形的有( )A.1个B.2个C.3个D.4个【答案】C.【解析】由轴对称图形的概念可知第1个,第2个,第3个都是轴对称图形.第4个不是轴对称图形,是中心对称图形.故是轴对称图形的有3个.故选C.【考点】轴对称图形.2.如图,将三角形ABC绕点O旋转得到三角形A/B/C/,且∠AOB=300,∠AOB/=200,则(1)点B的对应点是________________;(2)线段OB的对应线段是____________;(3)∠AOB的对应角是________________;(4)三角形ABC旋转的角度是__________;【答案】B′,OB′,∠A′OB′,50°.【解析】△ABC经过旋转得到△A′B′C′,旋转中心为点O,点B的对应点是B′,线段OB的对应线段为OB′,∠AOB对应∠A′OB′,旋转角∠BOB′=∠AOB+∠AOB′.试题解析:依题意,△ABC经过旋转得到△A′B′C′,可知:旋转中心为点O,点B的对应点是B′,线段OB的对应线段为OB′,∠AOB对应∠A′OB′,∠BOB′=∠AOB+∠AOB′=30°+20°=50°.【考点】旋转的性质.3.下列说法不正确的是()A.平移或旋转后的图形的形状大小不变B.平移过程中对应线段平行(或在同一条直线上)且相等C.旋转过程中,图形中的每一点都旋转了相同的路程D.旋转过程中,对应点到旋转中心的距离相等【答案】C【解析】A、平移或旋转后的图形的形状大小不变,所以A选项的说法正确;B、平移过程中对应线段平行(或在同一条直线上)且相等,所以B选项的说法正确;C、旋转过程中,图形中的每一点所旋转的路程等于以旋转中心为圆心、每个点到旋转中心的距离为半径、圆心角为旋转角的弧长,所以C选项的说法不正确;D、旋转过程中,对应点到旋转中心的距离相等,所以D选项的说法正确.故选C.【考点】1、旋转的性质;2、平移的性质4.(本题4分)如图,在方格纸中,△ABC的三个顶点和点M都在小方格的顶点上.按要求作图,使△ABC的顶点在方格的顶点上.(1)过点M做直线AC的平行线;(2)将△ABC平移,使点M落在平移后的三角形内部.【答案】作图见解析.【解析】(1)根据直线AC经过的网格得出过点M作直线AC的平行线.(2)再将△ABC向下平移1个单位向右平移5个单位得出即可.试题解析:(1)如图所示:(2)如图所示:【考点】作图—基本作图和平移变换.5.把两块全等的直角三角形和叠放在一起,使三角板的锐角顶点与三角板的斜边中点重合,其中,,,把三角板固定不动,让三角板绕点旋转,设射线与射线相交于点,射线与线段相交于点.(1)如图1,当射线经过点,即点与点重合时,易证.此时,;将三角板由图1所示的位置绕点沿逆时针方向旋转,设旋转角为.其中,问的值是否改变?答:(填“会”或“不会”);若改变,的值为(不必说明理由);(2)在(1)的条件下,设,两块三角板重叠面积为,求与的函数关系式.(图2,图3供解题用)【答案】(1)8,不会;(2)当时,当时,.【解析】(1)根据旋转的性质及相似三角形的性质求解即可;(2)情形1:当时,,即,此时两三角板重叠部分为四边形,过作于,于,根据三角形的面积公式求解即可;情形2:当时,时,即,此时两三角板重叠部分为,由于,,易证:,根据相似三角形的性质求解即可.(1)由题意得8;将三角板旋转后的值不会改变;(2)情形1:当时,,即,此时两三角板重叠部分为四边形,过作于,于,由(2)知:得于是情形2:当时,时,即,此时两三角板重叠部分为,由于,,易证:,即,解得于是综上所述,当时,当时,.本题涉及了旋转问题的综合题,此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.6.在正方形网格中,每个小正方形的边长均为1个单位长度,△的三个顶点的位置如图所示,现将△平移,使点对应点,点分别对应点.(1) 画出平移后的△.(2) △的面积是_ ;(3) 连接,则这两条线段之间的关系是__ __.【答案】(1)作图见解析;(2)3.5;(3)平行且相等.【解析】(1)由图可得将△ABC先向左平移了3个单位长度,又向下平移了1个单位长度,则可画出图形;(2)△A′B′C′的面积等于边长为3的正方形的面积减去直角边长为2,1的直角三角形的面积,减去边长为1,3的直角三角形面积,减去直角边长为3,2的直角三角形的面积;(3)根据平移前后对应点的连线平行且相等判断即可.试题解析::(1)如图:=3×3-×1×2-×1×3-×2×3=3.5;(2)S△A′B′C′(3)平行且相等.【考点】作图—平移变换.7.如图的图形中只能用其中一部分平移可以得到的是()【答案】B.【解析】A、图形为轴对称所得到,不属于平移;B、图形的形状和大小没有变化,符合平移性质,是平移;C、图形为旋转所得到,不属于平移;D、最后一个图形形状不同,不属于平移.故选B.【考点】利用平移设计图案.8.将长度为5cm的线段向上平移10cm,则所得线段的长度为()A.5cm B.10cm C.15cm D.无法确定【答案】A.【解析】根据平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得:线段长度不变,还是5cm.故选A.【考点】平移的性质.9.把图形(1)进行平移,能得到的图形是()【答案】C【解析】观察图形可知图形进行平移,能得到的图形C,故选C.【考点】生活中的平移现象.10.如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)补全△A′B′C′根据下列条件,利用网格点和三角板画图:(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为。

图形的平移,对称与旋转的经典测试题含答案

图形的平移,对称与旋转的经典测试题含答案
故选B.
【点睛】
本题主要考查图形的轴对称以及勾股定理的实际应用,把立体图形化为平面图形,掌握“马饮水”模型,是解题的关键.
11.下列字母中:H、F、A、O、M、W、Y、E,轴对称图形的个数是()
A.5 B.4 C.6 D.7
【答案】D
【解析】从第一个字母研究,只要能够找到一条对称轴,令这个字母沿这条对称轴折叠后,两边的部分能够互相重合,就是轴对称图形,可以得出:字母H、A、O、M、W、Y、E这七个字母,属于轴对称图形.
本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.
15.下列几何图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、是轴对称图形,不是中心对称图形,故本选项错误;
B、可以通过平移得到,不符合题意;
C、不可以通过平移得到,符合题意;
D、可以通过平移得到,不符合题意.
故选C.
【点睛】
本题考查平移的性质,属于基础题,要掌握图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.
2.在平行四边形、菱形、矩形、正方形这四种图形中,是轴对称图形的有( )
故选:D.
12.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=4,CD=5.把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为()
A. B. C. D.4
【答案】A
【解析】

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析1.如图①,将两个完全相同的三角形纸片ABC与DEC重合放置,其中∠C=90°,∠B=∠E=30°。

(1)如图②,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,DE交BC于点F,则线段DF与AC有怎样的关系?请说明理由。

(2)当△DEC绕点C旋转到图③所示的位置时,设△BDC的面积为S1,△AEC的面积为S2。

猜想:S1与S2有怎样的数量关系?并证明你的猜想。

【答案】(1) DF∥AC;(2) S1=S2.【解析】(1)根据旋转的性质可得AC=CD,然后求出△ACD是等边三角形,根据等边三角形的性质可得∠ACD=60°,然后根据内错角相等,两直线平行解答;(2)过D点作DN⊥BC于N,AM⊥CE于M,先依据ASA求得△ACM≌△DCN求得AM=DN,然后根据等底等高的三角形面积相等.试题解析:(1)DF∥AC;解:如图②所示,∵∠ACB=90°,∠B=∠E=30°,∴∠A=∠CDE=60°,∵AC=DC,∴△ACD是等边三角形,∴∠ACD=60°=∠CDE,∴DF∥AC,∴∠CFD=90°,∠DCF=30°,∴DF=DC=AC;(2)猜想:S1=S2;证明:过D点作DN⊥BC于N,AM⊥CE于M,∵∠ECD=90°,∴∠DCM=90°∴∠DCN=90°-∠NCM,又∵∠ACM=90°-∠NCM,∴∠ACM=∠DCN,在△ACM与△DCN中∠ACM=∠DCNAC=CD∠AMC=∠DNC,∴△ACM≌△DCN(ASA),∴AM=DN,又∵CE=BC,∴BC•DN=CE•AM,即S1=S2.【考点】全等三角形的判定与性质;等边三角形的判定与性质.2.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个【答案】B.【解析】①是轴对称图形,也是中心对称图形;②是轴对称图形,不是中心对称图形;③是轴对称图形,也是中心对称图形;④是轴对称图形,也是中心对称图形.故选B.【考点】1.中心对称图形;2.轴对称图形.3.如图,在平面直角坐标系中,,,.(1)求出的面积.(2分)(2)在图中作出绕点B顺时针旋转90度得到的.(2分)(3)写出点的坐标.(2分)【答案】(1)S△ABC =7.5;(2)图形见解析;(3).【解析】(1)由A、B的坐标,易求得AB的长,以AB为底,C到AB的距离为高,即可求出△ABC的面积;(2)找出将△ABC绕点B顺时针旋转90°的三角形各顶点的对应点,然后顺次连接即可;(3)根据图形写出即可.试题解析:(1)根据题意,得:AB=5﹣0=5;∴S △ABC =AB•(|x C |﹣1)=×5×3=7.5;(2)如图:(3)根据图形可得:.【考点】作图-旋转变换.4. 下列图形中,是轴对称图形的有( ) 个①角;②线段;③等腰三角形;④直角三角形;⑤圆;⑥锐角三角形A .2B .3C .4D .5【答案】C .【解析】根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,因此,是轴对称图形的有①角;②线段;③等腰三角形;⑤圆4个. 故选C .【考点】轴对称图形.5. 如图,在正方形ABCD 中,E 是AB 上一点,BE=2,AE=3BE ,P 是AC 上一动点,则PB+PE 的最小值是______________【答案】10.【解析】由正方形性质的得出B 、D 关于AC 对称,根据两点之间线段最短可知,连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小,进而利用勾股定理求出即可.试题解析:如图,连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小. ∵四边形ABCD 是正方形, ∴B 、D 关于AC 对称,∴PB=PD , ∴PB+PE=PD+PE=DE . ∵BE=2,AE=3BE , ∴AE=6,AB=8,∴DE=.故PB+PE 的最小值是10.【考点】1.轴对称-最短路线问题;2.正方形的性质.6. 如图1,将矩形纸片沿虚线AB 按箭头方向向右对折, 再将对折后的纸片沿虚线CD 向下对折,然后剪下一个小三角形,最后,把纸片打开,所得展开图为( )【答案】D.【解析】∵第三个图形是三角形,∴将第三个图形展开,可得,即可排除答案A,∵再展开可知两个短边正对着,∴选择答案D,排除B与C.故选D.【考点】剪纸问题.7.下列说法错误的是()A.关于某直线对称的两个图形一定能完全重合B.全等的两个三角形一定关于某直线对称C.轴对称图形的对称轴至少有一条D.线段是轴对称图形【答案】B.【解析】 A.两个关于某直线对称的图形是全等的,此说法正确;B.平面内两个全等的图形不一定关于某直线对称,此说法错误;C.轴对称图形的对称轴至少有一条,此说法正确;D.线段是轴对称图形,此说法正确.故选;B.【考点】轴对称的性质.8.正九边形绕它的旋转中心至少旋转°后才能与原图形重合.【答案】400.【解析】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与原来的图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.要与原来的正九边形重合.可用一个圆周角的度数(即360度)除以9,便可知道至少要旋转多少度才能和原来的九边形重合.因为3600÷9=400,故填400.【考点】旋转对称图形.9.在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可以进行以下哪项操作()A.先逆时针旋转90°,再向左平移B.先顺时针旋转90°,再向左平移C.先逆时针旋转90°,再向右平移D.先顺时针旋转90°,再向右平移【答案】A.【解析】本题结合游戏,考查了旋转与平移的性质.在旋转和平移变换中,图形的形状和大小均不发生改变,由图可以看出,将屏幕上方出现一小方格块逆时针旋转90°,再向左平移后,竖直下来正好使屏幕下面三行中的小方格都自动消失.故选A.【考点】旋转与平移的性质.10.如图,直线MN和EF相交于点O,∠EON=45°,AO=2,∠AOE=15°,设点A关于EF的对称点是B,点B关于MN的对称点是C,则AC的距离为()A.2B.C.D.【答案】D【解析】根据轴对称的性质得出∠AOB=∠BON=∠NOC=30°,进而利用勾股定理得出即可.解:∵∠EON=45°,AO=2,∠AOE=15°,点A关于EF的对称点是B,点B关于MN的对称点是C,∴∠A0E=∠EOB,∠BON=∠NOC,AO=BO=CO=2,∴∠AOB=∠BON=∠NOC=30°,∴∠AOC=90°,则AC的距离为:=2.故选:D.点评:此题主要考查了轴对称图形的性质,根据已知得出∠A0E=∠EOB,∠BON=∠NOC,AO=BO=CO=2是解题关键.11.将△ABC的三个顶点坐标的横坐标和纵坐标都乘以﹣1,则所得图形与原图形的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将原图形向x轴负方向平移了1个单位【答案】C【解析】根据题意可得新的坐标都是原坐标的相反数,则所得图形与原图形的关系是关于原点对称.解:△ABC的三个顶点坐标的横坐标和纵坐标都乘以﹣1,则所得新的坐标都是原坐标的相反数,则所得图形与原图形的关系是关于原点对称,故选:C.点评:此题主要考查了关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).12.下列几何图形中:(1)平行四边形;(2)线段;(3)角;(4)圆;(5)正方形;(6)任意三角形.其中一定是轴对称图形的有_____________.【答案】(2)(3)(4)(5)【解析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.由题意其中一定是轴对称图形的有(2)线段;(3)角;(4)圆;(5)正方形.【考点】轴对称图形的定义点评:本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成.13.如图,△ABC中,AB=AC,∠BAC=40°,D为△ABC内一点,如果将△ACD绕点A按逆时针方向旋转到△ABD′的位置,则∠ADD′的度数是A.40°B.50°C.60°D.70°【答案】D【解析】根据旋转的性质可得∠DAD′=∠BAC=40°,AD′=AD,再根据三角形的内角和定理求解即可.由题意得∠DAD′=∠BAC=40°,AD′=AD则∠ADD′=(180°-∠DAD′)÷2=70°故选D.【考点】旋转的性质,三角形的内角和定理点评:解题的关键是熟练掌握旋转的性质:每一条边旋转的角度相等,均等于旋转角.14.小明上午在理发店理发时,•从镜子内看到背后墙上普通时钟的时针与分针的位置如图所示,此时时间是__________.【答案】10点45分【解析】轴对称图形,由题意分析,此类试题属于对轴对称图形的基本运算和对称的分析,指示是反过来是10点45分【考点】轴对称点评:此类试题属于对轴对称图形的基本运算和对称的分析15.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行【答案】B【解析】已知条件,根据轴对称的性质和平移的基本性质可得答案.观察原图,有用进行了平移,所以有垂直的一定不正确,A、C是错误的;对应点连线是不可能平行的,D是错误的;找对应点的位置关系可得:对应点连线被对称轴平分.故选B.【考点】轴对称的性质,平移的性质点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等及轴对称的性质;按要求画出图形是正确解答本题的关键16.如图,点P在∠AOB的内部,点M、N分别是点P关于直线OA、OB的对称点,线段MN 交OA、OB于点E、F,若△PEF的周长是20cm,则线段MN的长是( )A.10cmB. 20cmC. 在10cm和20cm之间D.不能确定【答案】B【解析】根据轴对称的性质可得ME=PE,NF=PF,再结合△PEF的周长即可求得结果.∵点M、N分别是点P关于直线OA、OB的对称点∴ME=PE,NF=PF∵△PEF的周长=PE+EF+PF=20cm∴ME+EF+NF=20cm,即MN=20cm故选B.【考点】轴对称的性质点评:本题属于基础应用题,只需学生熟练掌握轴对称的性质,即可完成.17.如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出关于轴对称的.(2)写出点的坐标(直接写答案).A1 _____________,B1______________,C1______________【答案】(1)如图所示:(2)A1(1,-2),B1(3,-1),C1(-2,1)【解析】(1)分别作出的三个顶点关于轴对称的对称点,再顺序连接即可.(2)根据(1)中所作的图形即可作出判断.(1)如图所示:【考点】基本作图,点的坐标点评:解题的关键是熟练掌握轴对称变换的作图方法,正确找到关键点的对称点.18.(本题满分6分)如下图,直线L是一条河,A,B是两个村庄。

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析1.正三角形、正方形、等腰直角三角形、平行四边形中,既是轴对称图形又是中心对称图形的是()A.正三角形B.正方形C.等腰直角三角形D.平行四边形【答案】B【解析】正三角形,等腰直角三角形是轴对称图形,平行四边形是中心对称图形,既是轴对称图形又是中心对称图形的是:正方形,故选:B.【考点】1、中心对称图形;2、轴对称图形2.如图,在△ABC中,∠ACB=90°,∠A=35°,若以点C为旋转中心,将△ABC旋转θ°到△DEC的位置,使点B恰好落在边DE上,则θ值等于.【答案】70【解析】∵∠ACB=90°,∠A=35°,∴∠ABC=90°﹣35°=55°,∵以点C为旋转中心,将△ABC旋转θ°到△DEC的位置,使点B恰好落在边DE上,∴∠DEC=∠ABC=55°,∠ACD=∠BCE=θ°,CB=CE,∴∠CBE=∠BEC=55°,∴∠BCE=180°﹣∠CBE﹣∠BEC=70°,∴θ值为70.故答案为:70.【考点】旋转的性质3.下列图形:①线段;②等边三角形;③平行四边形;④等腰梯形;⑤长方形;⑥圆。

其中既是轴对称图形,又是中心对称图形的有(填序号)【答案】①⑤⑥.【解析】根据轴对称图形与中心对称图形的概念求解.试题解析:①是轴对称图形,也是中心对称图形;②是轴对称图形,不是中心对称图形;③不是轴对称图形,是中心对称图形;④是轴对称图形,不是中心对称图形;⑤是轴对称图形,也是中心对称图形;⑥是轴对称图形,也是中心对称图形.故选答案为:①⑤⑥.【考点】1.中心对称图形;2.轴对称图形.4.作图题(6分):(1)把△ABC向右平移5个方格;(2)绕点B的对应点顺时针方向旋转90°.【答案】(1)作图见解析;(2)作图见解析.【解析】(1)找出平移后的点A、B、C的对应点的位置,然后顺次连接即可;(2)找出旋转变换后的点A'、C'的对应点的位置,然后顺次连接即可.试题解析:如图所示,(1)△A′B′C′即为平移后的图形;(2)△A″B'C″即为旋转后的图形.【考点】1.作图-旋转变换;2.作图-平移变换.5.如图,△ABC平移到△DEF,那么和∠BAC、BC对应的分别为 ,如果∠ABC=40°,BC=3cm,则 .【答案】∠EDF,EF;∠DEF=40°,EF="3" cm .【解析】根据平移的性质,①对应线段相等且平行,对应角相等,对应点的连线相等且平行;②平移后的图形全等. 因此,△ABC平移到△DEF,那么和∠BAC、BC对应的分别为∠EDF,EF;如果∠ABC=40°,BC=3cm,则∠DEF=40°,EF="3cm" .【考点】平移的性质.6.下列图形中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个【答案】B.【解析】图(1)、图(5)都是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.图(3)不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;也不是中心对称图形,因为绕中心旋转180度后与原图不重合.图(2)、图(4)既是轴对称图形,又是中心对称图形.故选B.【考点】1.中心对称图形2.轴对称图形.7.如图1,将矩形纸片沿虚线AB按箭头方向向右对折,再将对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,最后,把纸片打开,所得展开图为()【答案】D.【解析】∵第三个图形是三角形,∴将第三个图形展开,可得,即可排除答案A,∵再展开可知两个短边正对着,∴选择答案D,排除B与C.故选D.【考点】剪纸问题.8.下列图案是我国几家银行的标志,其中是中心对称图形的为( )【答案】A【解析】根据中心对称图形的概念,观察可知,只有第1个是中心对称图形,其它三个都不是中心对称图形.故选A.【考点】1.中心对称图形;2.生活中的旋转现象.9.如图所示,点为∠内一点,分别作出点关于、的对称点,,连接交于点,交于点,已知,则△的周长为_______.【答案】15【解析】∵点关于的对称点是,关于的对称点是,∴,.∴△的周长为.10.在平面直角坐标系中,已知△OAB,A(0,-3),B(-2,0).(1)在图1中画出△OAB关于x轴的轴对称图形;(2)将先向右平移3个单位,再向上平移2个单位,在图2中画出平移后的图形;(3)点A平移后的坐标为 .【答案】(1)(2)如下图;(3)(3,-2).【解析】(1)根据轴对称的性质作出关键点的对称点,再顺次连接即可得到结果;(2)先将O、A、B分别按要求平移,然后顺次连接即可得出平移后的图形;(3)根据所作的图形即可得出平移后的点A的坐标.试题解析:(1)(2)如下图(3)点A平移后的坐标为:(3,-2).【考点】坐标与图形变化11.已知点和关于x轴对称,则的值为_________;【答案】﹣3.【解析】关于x轴对称的点,横坐标相同,纵坐标互为相反数,所以a=2,b=﹣5,则a+b=﹣3.故答案为:﹣3.【考点】关于x轴、y轴对称的点的坐标.12.在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?【答案】(1)作图见试题解析;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).【解析】(1)根据网格结构找出点A、B、C关于MN的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质结合图形解答.试题解析:(1)△A1B1C1如图所示;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).【考点】1.作图-轴对称变换;2.作图-平移变换.13.如图,草原上两个居民点A、B在河流L的同旁,一汽车从A出发到B,途中需要到河边加水.汽车在哪一点加水,可使行驶的路程最短?在图上画出该点.【答案】作图见试题解析.【解析】作点A关于l的对称点A',连接A'B交l于C,点C即为所求.试题解析:①作A关于直线l的对称点A′;②连接A′B交直线l于点C,则点C即为所求点.汽车在C点加水,可使行驶的路程最短.【考点】1.轴对称-最短路线问题;2.作图题.14.下列平面图形中,不是轴对称图形的是()【答案】A.【解析】根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.故选A.【考点】轴对称图形.15.点(-2,m)关于x轴的对称点的坐标为________________.【答案】(-2,-m)【解析】由题,点(-2,m)关于x轴的对称点的坐标为(-2,-m).两点关于x轴对称,横坐标互为相等,纵坐标相反数,由题,点(-2,m)关于x轴的对称点的坐标为(-2,-m).【考点】点关于x轴对称.16.下列为轴对称图形的是().【答案】A【解析】根据轴对称图形与中心对称图形的概念,分析各图形的特征求解.A、是轴对称图形,有5条对称轴;B、是中心对称图形;C、是中心对称图形;D、既不是轴对称图形,也不是中心对称图形.故选A.【考点】轴对称.17.如图,在等腰Rt△ABC与等腰Rt△DBE中,∠BDE=∠ACB=90°,且BE在AB边上,取AE的中点F,CD的中点G,连结GF.(1)FG与DC的位置关系是,FG与DC的数量关系是;(2)若将△BDE绕B点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立? 请证明你的结论.【答案】(1)FG⊥CD ,FG=CD;(2)成立【解析】(1)延长ED交AC的延长线于M,连接FC、FD、FM,根据矩形的性质可得CM=BD,根据等腰直角三角形的性质可得ED=BD=CM,再结合∠E=∠A=45º可证得△AEM是等腰直角三角形,由F是AE的中点可证得MF⊥AE,EF=MF,∠E=∠FMC=45º,即可证得△EFD≌△MFC,则可得FD=FC,∠EFD=∠MFC,又∠EFD+∠DFM=90º即得∠MFC+∠DFM=90º,即可得到△CDF是等腰直角三角形,从而可以证得结论;(2)证法同(1).解:(1)FG⊥CD ,FG=CD;(2)延长ED交AC的延长线于M,连接FC、FD、FM∴四边形 BCMD是矩形.∴CM=BD.又△ABC和△BDE都是等腰直角三角形.∴ED=BD=CM.∵∠E=∠A=45º∴△AEM是等腰直角三角形.又F是AE的中点.∴MF⊥AE,EF=MF,∠E=∠FMC=45º.∴△EFD≌△MFC.∴FD=FC,∠EFD=∠MFC.又∠EFD+∠DFM=90º∴∠MFC+∠DFM=90º即△CDF是等腰直角三角形.又G是CD的中点.∴FG=CD,FG⊥CD.【考点】旋转问题的综合题点评:此类问题难度较大,在中考中比较常见,一般在压轴题中出现,需特别注意.18.下面三图是由三个相同的小正方形拼成的图形,请你在A,B,C三图中再添加一个同样大小的小正方形,使所得的新图形分别为下列要求的图形,请画出示意图.(1)是中心对称图形,但不是轴对称图形;(2)是轴对称图形,但不是中心对称图形;(3)既是中心对称图形,又是轴对称图形.【答案】(1)(2)(3)如图所示:【解析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形;中心对称图形的定义:一个图形绕一点旋转180°后能够与原图形完全重合即是中心对称图形.(1)(2)(3)如图所示:【考点】基本作图-轴对称图形与中心对称图形点评:本题属于基础应用题,只需学生熟练掌握轴对称图形与中心对称图形的定义,即可完成.19.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行【答案】B【解析】已知条件,根据轴对称的性质和平移的基本性质可得答案.观察原图,有用进行了平移,所以有垂直的一定不正确,A、C是错误的;对应点连线是不可能平行的,D是错误的;找对应点的位置关系可得:对应点连线被对称轴平分.故选B.【考点】轴对称的性质,平移的性质点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等及轴对称的性质;按要求画出图形是正确解答本题的关键20.下列各图案中,不是中心对称图形的是().【答案】B【解析】中心对称图形,即围绕图形中心旋转180度后,所得的新图形与原图形重合,由此可知B旋转180度后不能与原图形重合【考点】中心对称图形的判断点评:中心对称图形,即围绕图形中心旋转180度后,所得的新图形与原图形重合21.下列图案中是轴对称图形的是()【答案】D【解析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.由图可得只有D选项符合轴对称图形的定义,故选D.【考点】轴对称图形点评:本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成.22.把图中的五角星图案,绕着它的中心旋转,旋转角至少为()时,旋转后的五角星能与自身重合A.300B.450C.600D.720【答案】D【解析】五角星图案,可以被平分成五部分,因而每部分被分成的圆心角是72°,并且圆具有旋转不变性,因而旋转72度的整数倍,就可以与自身重合.该图形被平分成五部分,旋转72度的整数倍,就可以与自身重合,因而A、B、C都错误,能与其自身重合的是D,故选D【考点】旋转对称图形点评:本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角23.一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从A点到B点经过的路线长是 _.【答案】5【解析】先作点B关于y轴的对称点,连接,交y轴于点C,根据勾股定理求得的长,即可所求.作点B关于y轴的对称点,连接,交y轴于点C由题意得,则则光线从A点到B点经过的路线长是5.【考点】轴对称的应用,勾股定理点评:本题是勾股定理的应用,同时渗透光学中反射原理,构造直角三角形是解答本题的关键.24.下列四个图形中,不能通过基本图形平移得到的是()【答案】D【解析】根据平移的基本性质依次分析各选项即可判断。

八年级下册数学《图形的对称、平移、旋转》练习题

八年级下册数学《图形的对称、平移、旋转》练习题

《图形的对称、平移与旋转》知识点习题一、选择题1. 平面图形的旋转一般情况下会改变图形的()A.位置B.大小C.形状D.性质2. 剪纸是我国最普及的民间艺术.下列剪纸作品中,不是轴对称图形的是()3. 下列图形中,不是中心对称图形是()A.B.C.D.4. 下面生活中的实例,不是旋转的是()A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动5. 在下图所示的四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( )A.B.C.D.6. 如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是()A.0 B.1 C.2 D.37. 在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC上一点P (2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为()A.(1.4,﹣1)B.(1.5,2)C.(1.6,1)D.(2.4,1)8. 点(﹣3,2)关于x轴的对称点是()A.(﹣3,﹣2)B.(3,2)C.(﹣3,2)D.(3,﹣2)9. 下列图形中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个10. 如图,如果直线是△ABC的对称轴,其中∠B=70°,那么∠BAC的度数等于()A.60°B.50°C.40°D.30°11.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A'OB',若∠AOB=15°,则∠AOB'的度数是().A.25°B.30°C.35°D.40°12. 将正六边形绕其对称中心旋转后,恰好能与原来的正六边形重合,那么旋转的角度至少是()A.120°B.60°C.45°D.30°13. 已知点A(a,1)与点B(5,b)关于原点对称,则a、b值分别是().A.a=1,b=5 B.a=5,b=1C.a=﹣5,b=1 D.a=﹣5,b=﹣114. 如图,阴影部分组成的图案既是关于x轴成轴对称的图形又是关于坐标原点O成中心对称的图形.若点A的坐标是(1,3),则点M和点N的坐标分别是()A.M(1,﹣3),N(﹣1,﹣3)B.M(﹣1,﹣3),N(﹣1,3)C.M(﹣1,﹣3),N(1,﹣3)D.M(﹣1,3),N(1,﹣3)15. 下列“QQ表情”中属于轴对称图形的是().16. 点M(1,2)关于x轴对称的点的坐标为().A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,﹣1)17. 如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是().A.50°B.60°C.70°D.80°18. 如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA的度数是().A.15°B.20°C.25°D.30°19. 如图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5.EC=3,那么平移的距离为().A.2 B.3 C.5 D.720. 如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A.B.C.D.21. 下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是()A.B.C.D.22. 如图,D是等边△ABC边AB上的一点,且AD=1,BD=2,现将△ABC折叠,使点C与D 重合,折痕EF,点E、F分别在AC和BC上,若BF=1.2,则AE=()A.53B.43C.125D.3523. 风车应做成中心对称图形,并且不是轴对称图形,才能在风口处平稳旋转.现有一长条矩形硬纸板(其中心有一个小孔)和两张全等的矩形薄纸片,将纸片粘到硬纸板上,做成一个能绕着小孔平稳旋转的风车.正确的粘合方法是()A.B.C.D.24. 如图,将等腰三角板向右翻滚,依次得到b、c、d,下列说法中,不正确的是()A.a到b时旋转B.a到c是平移C.a到d是平移D.b到c是旋转25. 下列图形中,不是轴对称图形的是()A.B.C.D.26. 如图,将△AOB绕点O按顺时针方向旋转45°后得到△COD,若∠AOB=27°,则∠BOC 的度数是( )A.18°B.27°C.45°D.72°27. 将点(1,﹣2)向右平移3个单位得到新的点的坐标为()A.(1,﹣5)B.(4,﹣2)C.(1,1)D.(﹣2,2)28. 点M(3,-4)关于y的轴的对称点是M1,则M1关于x轴的对称点M2的坐标为( ) A.(-3,4)B.(-3,-4)C.(3,4) D.(3,-4)29. 下列图形绕某点旋转90°后,不能与原来图形重合的是()A.B.C.D.30. 如图,四边形ABCD为正方形,点O为AC、BD的交点,则三角形COD绕点O经过下列哪种旋转可以得到三角形DOA()A. 顺时针旋转45°B. 顺时针旋转90°C. 逆时针旋转45°D. 逆时针旋转90°31. 如图,把菱形ABOC绕点O顺时针旋转得到菱形DFOE,则下列角中不是旋转角的为()A.∠BOF B.∠AOD C.∠COE D.∠COF32. 如图所示,将△ABC沿着某一方向平移一定的距离得到△MNL,则下列结论中正确的有()①AM∥BN;②AM=BN;③BC=ML;④∠ACB=∠MNL。

平移旋转轴对称练习题

平移旋转轴对称练习题

平移旋转轴对称练习题一、选择题1. 下列图形中,哪一个图形可以通过平移得到另一个图形?A. 正方形B. 长方形C. 梯形D. 平行四边形2. 在平面直角坐标系中,点A(2, 3)经过平移后得到点B,若点B 的坐标为(5, 7),则平移向量为?A. (3, 4)B. (4, 3)C. (3, 5)D. (5, 3)3. 下列哪个图形是轴对称图形?A. 正三角形B. 正方形C. 等腰梯形D. 所有选项都是4. 下列哪个图形可以通过旋转90度得到自身?A. 正方形B. 长方形C. 等边三角形D. 圆二、填空题1. 图形平移时,对应点的连线__________。

2. 图形的旋转中心称为__________。

3. 轴对称图形的对称轴可以是__________、__________或__________。

4. 一个图形绕着某一点旋转180度后与原图形重合,这个点称为__________。

三、判断题1. 平移不改变图形的大小和形状。

()2. 旋转会改变图形的大小和形状。

()3. 轴对称图形的对称轴必须经过图形的中心。

()4. 平移和旋转都是刚体变换。

()四、作图题1. 请画出下列图形经过平移后的图形:(1)正方形,平移向量:(3, 2)(2)等腰三角形,平移向量:(4, 1)2. 请画出下列图形绕点O旋转90度后的图形:(1)正方形(2)等边三角形3. 请画出下列图形的对称轴:(1)正方形(2)等腰梯形五、解答题1. 请描述一个正方形绕其中心旋转180度后的位置变化。

2. 画出两个全等三角形,其中一个三角形通过平移、旋转或轴对称变换得到另一个三角形,并说明变换过程。

3. 请举例说明生活中平移、旋转和轴对称现象的应用。

六、应用题1. 在平面直角坐标系中,点P(1, 2)经过平移后到达点Q,点Q 的坐标是(4, 1)。

求平移向量,并画出平移后的图形。

2. 一个长方形的长是8厘米,宽是4厘米。

如果将这个长方形绕其一个顶点旋转90度,求旋转后长方形的面积。

初二数学图形的对称平移与旋转试题

初二数学图形的对称平移与旋转试题

初二数学图形的对称平移与旋转试题1.如图,已知△ABC的三个顶点的坐标分别为A(-2,3)、B(-6,0)、C(-1,0).(1)画出△ABC,关于原点对称的三角形△A′B′C′;(2)将三角形A、B、C绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.【答案】(1)画图见解析;(2)作图见解析;(3)D(-7,3)或(-5,-3)或(3,3).【解析】(1)根据网格结构找出点A、B、C关于原点对称的点A′、B′、C′的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C绕坐标原点O逆时针旋转90°的对应点的位置,然后顺次连接即可,再根据平面直角坐标系写出点B的对应点的坐标;(3)分AB、BC、AC是平行四边形的对角线三种情况解答.试题解析:(1)△A′B′C′如图所示;(2)如图所示,点B的对应点的坐标为(0,-6);(3)D(-7,3)或(-5,-3)或(3,3).【考点】1.作图-旋转变换;2.平行四边形的性质.2.如图是香港特别行政区的区徽,区徽中的紫荆花图形围绕自己的旋转中心,按下列角度旋转后,不能与其自身重合的是()A.72°B.108°C.144°D.216°【答案】B.【解析】该图形被平分成五部分,旋转72度的整数倍,就可以与自身重合,因而A、C、D都正确,不能与其自身重合的是B.故选B.【考点】旋转对称图形.3.在下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】C.【解析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,也是中心对称图形,故本选项正确;D、不是轴对称图形,也不是中心对称图形,故本选项错误.故选C.【考点】轴对称图形和中心对称图形.4.如图,已知△ABC三个顶点的坐标分别为A(-2,-1),B(-3,-3),C(-1,-3), (1)、画出△ABC向右平移三个单位的对应图形△,并写出的坐标;(2)、画出△ABC关于原点O对称的△,并写出的坐标;【答案】(1)作图见解析;(2)作图见解析.【解析】(1)根据轴对称的性质找到A、B、C三点对称点,顺次连接可得△A1B1C1,结合直角坐标系可得点A1的坐标.(2)根据中心对称的性质找到A、B、C三点对称点,顺次连接可得△A2B2C2,结合直角坐标系可得点A2的坐标.试题解析:(1)所作图形如下:点A1的坐标为(-2,1);(2)所作图形如下:点A2的坐标为(2,1).考点: 1.作图-旋转变换;2.作图-轴对称变换.5.在以下四个图形中,对称轴条数最多的一个图形是()A. B. C. D.【答案】B【解析】由题,A选项有两条对称轴,B选项有四条对称轴,C选项不是轴对称图形,无对称轴,D选项有一条对称轴,故选B.轴对称图形的定义是图形按照某条直线对折后,图形重合,这条直线叫做图形的对称轴,由题,A选项有两条对称轴,B选项有四条对称轴,C选项不是轴对称图形,无对称轴,D选项有一条对称轴,故选B.【考点】对称轴.6.如图,A、B表示两个村庄,直线X表示高速公路,已知AB=50km,A、B到直线X的距离分别为10km和40km,要在高速公路旁修建一出口P.小民设计了两种方案,图(1)是方案一的示意图(AP与直线X垂直,垂足为P),P到A、B的距离之和S1=PA+PB;图(2)是方案二的示意图(点A关于直线X的对称点是A',连接BA'交直线X于点P),P到A、B的距离之和S2=PA+PB.(1)求S1、S2,并比较它们的大小.(2)请你说明S2=PA+PB的值为最小.(3)拟建的另一高速公路Y与高速公路X垂直,建立如图所示的直角坐标系,B到直线Y的距离为30km,请你在X旁和Y旁各修建一出口P、Q,使P、A、B、Q 组成的四边形的周长最小.并求出这个最小值.【答案】(1)﹥(2) S2=BA'为最小(3) 四边形的周长为【解析】解:⑴图10(1)中过B作BC⊥AP,垂足为C,则PC=40,又AP="10,"∴AC=30在Rt△ABC 中,AB="50" AC=30 ∴BC=40∴ BP=S1=图10(2)中,过B作BC⊥AA′垂足为C,则A′C=50,又BC=40∴BA'=由轴对称知:PA=PA'∴S2=BA'=∴﹥(2)如图10(2),在公路上任找一点M,连接MA,MB,MA',由轴对称知MA=MA'∴MB+MA=MB+MA'﹥A'B∴S2=BA'为最小(3)过A作关于X轴的对称点A', 过B作关于Y轴的对称点B',连接A'B',交X轴于点P, 交Y轴于点Q,则P,Q即为所求过A'、 B'分别作X轴、Y轴的平行线交于点G,A'B'=∴所求四边形的周长为【考点】三角形性质与轴对称等等点评:本题难度中等,主要考查学生学习了三角形即多边形等几何知识后综合运用能力。

图形的平移,对称与旋转的真题汇编含答案

图形的平移,对称与旋转的真题汇编含答案
图形的平移,对称与旋转的真题汇编含答案
一、选择题
1.如图,在矩形 中, 将其折叠使 落在对角线 上,得到折痕 那么 的长度为()
A. B. C. D.
【答案】C
【解析】
【分析】
由勾股定理求出AC的长度,由折叠的性质,AF=AB=3,则CF=2,设BE=EF=x,则CE= ,利用勾股定理,即可求出x的值,得到BE的长度.
【点睛】
本题考查了坐标系中点、图形的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
4.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是
A.主视图B.左视图C.俯视图D.主视图和左视图
【答案】D
【解析】
【分析】
直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
【详解】
在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加上正数a(a>1),那么所得的图案与原图案相比,图案向右平移了a个单位长度,并且向上平移了a个单位长度.
故选D.
边关系是解题关键.
16.如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为( )
A.70°B.80°C.84°D.86°
【答案】BAB1C1,AB=AB1,由等腰三角形的性质和三角形的内角和定理可求得∠B=∠BB1A=∠AB1C1=40°,从而可求得∠BB1C1=80°.
∵AC是∠DAB的平分线,E是AB的中点,
∴E′在AD上,且E′是AD的中点,
∵AD=AB,
∴AE=AE′,

图形的平移旋转与轴对称中考真题精选(部分难题有答案)

图形的平移旋转与轴对称中考真题精选(部分难题有答案)

图形的平移旋转与轴对称中考真题精选(部分难题有答案)一、选择题1.(2022甘肃兰州)观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有()A.1个【答案】B2.(2022湖南益阳)小军将一个直角三角板(如图1)绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是()A.B.C.D.【答案】D3.(2022江苏南通)如图,已知□ABCD的对角线BD=4cm,将□ABCD绕其对称中心O旋转180°,则点D所转过的路径长为()AOB(第3题)B.2个C.3个D.4个图1DCB.3πcmA.4πcmC.2πcm【答案】CD.πcm4.(2022江苏盐城)以下图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.矩形【答案】B5.(2022辽宁丹东市)把长为8cm的矩形按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰梯形,剪掉部分的面积为6cm2,则打开后梯形的周长是()3cmC.等腰梯形D.平行四边形3cm第5题图A.(10+213)cmB.(10+13)cmC.22cmD.18cm【答案】A6.(2022山东青岛)下列图形中,中心对称图形有().【答案】C7.(2022山东烟台)如图,一串有趣的图案按一定的规律排列,请仔细观察,按此规律第2022个图案是【答案】B8.(2022四川凉山)下列图案中,只要用其中一部分平移一次就可以得到的是()A.B.C.D.【答案】B9.(2022台湾)将图(六)的正方形色纸沿其中一条对角线对折后,再沿原正方形的另一条对角线对折,如图(七)所示。

最后将图(七)的色纸剪下一纸片,如图(八)所示。

若下列有一图形为图(八)的展开图,则此图为何?()图(六)【答案】B(A)图(七)(B)图(八)(C)(D)10.(2022浙江杭州)如图,在△ABC中,CAB70.在同一平面内,将△ABC绕点A旋转到△AB/C/的位置,使得CC///AB,则BAB/()A.30B.35C.40D.50【答案】C11.(2022浙江宁波)下列各图是选自历届世博会会徽中的图案,其中是中心对称图形的是()(A)【答案】C12.(2022浙江义乌)下列几何图形中,即是中心对称图形又是轴对称图形的是(▲)A.正三角形B.等腰直角三角形C.等腰梯形D.正方形【答案】D13.(2022重庆)有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O按逆时针方向进行旋转,每次均旋转45,第1次旋转后得到图①,第2次旋转后得到图②……,则第10次旋转后得到的图形与图①~图④中相同的是()OOOO(B)(C)(D)图①图②图③图④…A.图①B.图②C.图③D.图④【答案】B14.(2022重庆市潼南县)如图,△ABC经过怎样的平移得到△DEF()A.把△ABC向左平移4个单位,再向下平移2个单位B.把△ABC向右平移4个单位,再向下平移2个单位C.把△ABC向右平移4个单位,再向上平移2个单位D.把△ABC向左平移4个单位,再向上平移2个单位DABEC14题图F【答案】C15.(2022浙江义乌)如图,将三角形纸片ABC沿DE折叠,使点A落在BC边上的点F处,且DE∥的个数是(▲)BC,下列结论中,一定正确..①BDF是等腰三角形②DE1BC2③四边形ADFE是菱形④BDFFEC2AADBFECA.1B.2C.3D.4【答案】C16.(2022江苏连云港)下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形.其中,既是轴对称图形又是中心对称图形的是()A.①②B.②③C.②④D.①④【答案】C17.(2022山东济南)如图,ΔABC与ΔA’B’C’关于直线l对称,lCA50A'BB'30C'第17题则∠B的度数为()A.50°B.30°C.100°D.90°【答案】C18.(2022福建福州)下面四个中文艺术字中,不是轴对称图形的是()A.B.C.D.【答案】C19.(2022江苏无锡)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【答案】B20.(2022河北)将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图6-1.在图6-2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图6-1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是向右翻滚90°逆时针旋转90°图6-1图6-2D.2A.6【答案】BB.5C.321.(2022山东省德州)下面的图形中,既是轴对称图形又是中心对称图形的是(A)【答案】B22.(2022山东莱芜)在下列四个图案中既是轴对称图形,又是中心对称图形的是(B)(C)(D)A.B.C.D.【答案】B23.(2022广东珠海)现有如图1所示的四张牌,若只将其中一张牌旋转180后得到图2,则旋转的牌是()A.BCD【答案】B24.(2022福建宁德)下列四张扑克牌图案,属于中心对称的是().【答案】B25.(2022浙江湖州)一个正方体的表面展开图如图所示,则正方体中的“★”所在面的对面所标的字是()A.上B.海C.世D.博A.B.C.D.图1图2【答案】B.26.(2022浙江湖州)如图,如果甲、乙关于点O成中心对称,则乙图中不符合题意的一块是()A.B.C.【答案】C.27.(2022湖南常德)下列几个图形是国际通用的交通标志,其中不是中心对称图形的是()D.!ABC图4【答案】D28.(2022湖南怀化)下列图形中,是中心对称图形但不是轴对称图形的是()【答案】B29.(2022江苏扬州)在等边三角形、正方形、菱形和等腰梯形这四个图形中,是中心对称图形的个数为()A.1个【答案】BB.2个C.3个D.4个30.(2022北京)美术课上,老师要求同学们将右图所示的白纸只沿虎虚线裁开,用裁开的纸片和白纸上的阴影部分围成一个立体模型,然后放在桌面上,下面四个示意图中,只有一个符合上述要求,那么这个示意图是....【答案】B31.(2022四川乐山)下列图形中,是轴对称图形的是()【答案】B32.(2022山东泰安)下列图形:其中,既是轴对称图形,又是中心对称图功的个数是()A.1个【答案】B33.(2022黑龙江哈尔滨)一列图形中,是中心对称图形的是()B.2个C.3个D.4个【答案】D34.(2022江苏徐州)下列四个图案中,是轴对称图形,但不是中心对称图形的是A【答案】ABCD35.(2022江苏徐州)如图,在6某4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是A.点MB.格点NC.格点PD.格点Q【答案】B36.(2022四川内江)学剪五角星:如图,先将一张长方形纸片按图①的虚线对折,得到图②,然后将图②沿虚线折叠得到图③,再将图③沿虚线BC剪下△ABC,展开即可得到一个五角星.如果想得到一个正五角星(如图④),那么在图③中剪下△ABC时,应使∠ABC的度数为A.126°【答案】AB.108°C.100°D.90°37.(2022湖北襄樊)下列四个图形中,既是轴对称图形又是中心对称图形的有()A.4个【答案】B38.(2022山东东营)把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生......活中,大量地存在这种图形变换(如图甲).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图乙)的对应点所具有的......性质是()(A)对应点连线与对称轴垂直(B)对应点连线被对称轴平分(C)对应点连线被对称轴垂直平分(D)对应点连线互相平行B.3个C.2个D.1个【答案】B39.(2022四川绵阳)对右图的对称性表述,正确的是().A.轴对称图形B.中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形又不是中心对称图形【答案】B40.(2022山东淄博)如图,△A′B′C′是由△ABC经过变换得到的,则这个变换过程是(A)平移(B)轴对称(C)旋转(D)平移后再轴对称AA′BC′(第5题)B′【答案】D41.(2022天津)下列图形中,既可以看作是轴对称图形,又可以看作是中心对称图形的为(A)(B)(C)(D)【答案】B42.(2022内蒙古包头)下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个【答案】B43.(2022贵州贵阳)如图3是小华画的正方形风筝图案,他以图中的对角线AB为对称轴,在对角线的下方再画一个三角形,使得新的风筝图案成为轴对称图形,若下列有一图形为此对称图形,则此图为(图3)(A)(B)(C)(D)【答案】C44.(2022湖北十堰)如图,将△ABC绕点C顺时针方向旋转40°得△A’CB’,若AC⊥A’B’,则∠BAC等于()A.50°B.60°C.70°D.80°AA′B(第44【答案】A45.(2022广西玉林、防城港)下列图形中,既是轴对称图形又是中心对称图形的是:()A.等边三角形B.平行四边形C.菱形D.正五边形【答案】C46.(2022青海西宁)如图9,下列汉字或字母中既是轴对称图形,又是中心对称图形的有A.1个B.2个C.3个D.4个CB′【答案】B47.(2022广西梧州)下列图形中是轴对称图形的是()①④A.①②B.③④C.②③D.①④【答案】D48.(2022云南昭通)下列图形是轴对称图形的是()ABCD【答案】B49.(2022贵州遵义)下列图形既是中心对称图形,又是轴对称图形的是【答案】B50.(2022广东深圳)下列图形中,是中心对称图形但不是轴对称图形的是()【答案】A51.(2022广东佛山)如图,把其中的一个小正方形看作基本图形,这个图形中不含的变换是A.对称B.平移C.相似(相似比不为1)C.旋转【答案】C52.(2022湖北宜昌)如图,正六边形ABCDEF关于直线l的轴对称图形是六边形的是()。

初三数学图形的对称平移与旋转试题答案及解析

初三数学图形的对称平移与旋转试题答案及解析

初三数学图形的对称平移与旋转试题答案及解析1.下列电视台的台标,是中心对称图形的是()【答案】D.【解析】A、不是中心对称图形,故A选项错误;B、不是中心对称图形,故B选项错误;C、不是中心对称图形,故C选项错误;D、是中心对称图形,故D选项正确.故选D.【考点】中心对称图形.2.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC和△DEF的顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)画出△ABC向上平移4个单位长度后所得到的△A1B1C1;(2)画出△DEF绕点O按顺时针方向旋转90°后所得到的△D1E1F1;(3)△A1B1C1和△D1E1F1组成的图形是轴对称图形吗?如果是,请直接写出对称轴所在直线的解析式.【答案】(1)作图见解析;(2)作图见解析;(3)是,y=x.【解析】(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点D、E、F绕点O按顺时针方向旋转90°后的对应点D1、E1、F1的位置,然后顺次连接即可;(3)根据轴对称的性质确定出对称轴的位置,然后写出直线解析式即可.试题解析:(1)△A1B1C1如图所示;(2)△D1E1F1如图所示;(3)△A1B1C1和△D1E1F1组成的图形是轴对称图形,对称轴为直线y=x.【考点】1.作图-旋转变换;2.待定系数法求一次函数解析式;3.作图-平移变换.3.下列图形一定是轴对称图形的是()A.平行四边形B.正方形C.三角形D.梯形【答案】B【解析】A、不一定是轴对称图形.故本选项错误;B、是轴对称图形.故本选项正确;C、不一定是轴对称图形.故本选项错误;D、不一定是轴对称图形.故本选项错误.故选B.【考点】轴对称图形4.如图,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则的值为()A.B.C.D.【答案】C.【解析】∵将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,∴∠ECN=75°,∵∠ECD=45°,∴∠NCO=180°﹣75°﹣45°=60°,∵AO⊥OB,∴∠AOB=90°,∴∠ONC=30°,设OC=a,则CN=2a,∵等腰直角三角形DCE旋转到△CMN,∴△CMN也是等腰直角三角形,设CM=MN=x,则由勾股定理得:x2+x2=(2a)2,x=a,即CD=CM=a,∴=.故选C.【考点】1.旋转的性质2.含30度角的直角三角形3.等腰直角三角形.5.下列图形中,既是轴对称图形,又是中心对称图形的为()【答案】B.【解析】A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、不是轴对称图形,也不是中心对称图形,不符合题意.故选B.【考点】1.中心对称图形;2.轴对称图形.6.下列几何体中,其主视图不是中心对称图形的是()【答案】B【解析】本题考查了简单几何体的三视图及中心对称的知识,判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.先判断出各图形的主视图,然后结合中心对称的定义进行判断即可.解:A、主视图是矩形,矩形是中心对称图形,故本选项错误;B、主视图是三角形,三角形不是中心对称图形,故本选项正确;C、主视图是圆,圆是中心对称图形,故本选项错误;D、主视图是正方形,正方形是中心对称图形,故本选项错误;故选B.7.如图,A(,1),B(1,),将∆AOB绕点O旋转1500后,得到∆A’OB’,则此时点A 的对应点A’的坐标为()A.(-,1)B.(-2,0)C.(-1,-)或(-2,0)D.(-,-1)或(-2,0)【答案】C.【解析】∵A(,1),B(1,),∴tanα=,∴OA与x轴正半轴夹角为30°,OB与y轴正半轴夹角为30°,∴∠AOB=90°-30°-30°=30°,根据勾股定理,,,①如图1,顺时针旋转时,∵150°+30°=180°,∴点A′、B关于原点O成中心对称,∴点A′(-1,-);②如图2,逆时针旋转时,∵150°+30°=180°,∴点A′在x轴负半轴上,∴点A′的坐标是(-2,0).综上所述,点A′的坐标为(-1,-)或(-2,0).故选C.考点: 坐标与图形变化-旋转.8.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是 ()【答案】A【解析】这是一道较容易的题目,主要考查了轴对称图形的概念:对折后直线两侧的部分完全重合,其中B、D显然不是轴对称图形,易产生错误的是C,正确的答案应选A.本题渗透了保护环境思想,这也是出题人指出的方向.9.如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是 ()A.①B.②C.⑤D.⑥【答案】A【解析】如图,球最后落入①球洞:10.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()【解析】A、是轴对称图形,又是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项错误;C、既不是中心对称图形也不是轴对称图形,故此选项正确;D、是轴对称图形,又是中心对称图形,故此选项错误.故选C.【考点】1.轴对称图形2.中心对称图形.11.如图,在平面直角坐标系中,将四边形ABCD称为“基本图形”,且各点的坐标分别为A(4,4),B (1,3),C(3,3),D(3,1).(1)画出“基本图形”关于原点O对称的四边形A1B1C1D1,并求出A1,B1,C1,D1的坐标.A1( , ),B1( , ),C1( , ),D1( , ) ;(2)画出“基本图形”关于x轴的对称图形A2B2C2D2;(3)画出四边形A3B3C3D3,使之与前面三个图形组成的图形既是中心对称图形又是轴对称图形.【答案】(1)(﹣4,﹣4),(﹣1,﹣3),(﹣3,﹣3),(﹣3,﹣1);(2)(3)图形见解析.【解析】(1)根据已坐标系中点关于原点对称的坐标特点,横纵坐标互为相反数,即可得出答案; (2)关于x轴对称的;两个点的坐标特点是:横坐标相等,纵坐标互为相反数,根据坐标关系画图,写坐标.(3)将图形顶点逆时针旋转90度即可得出答案.试题解析:(1)根据已坐标系中点关于原点对称的坐标特点,即可得出答案:(﹣4,﹣4),(﹣1,﹣3),(﹣3,﹣3),(﹣3,﹣1);(2)如图:图形A2B2C2D2;(3如图:图形A3B3C3D3.画的三个图形与原“基本图形”组成的整体图案既是中心对称图形又是轴对称图形..【考点】旋转变换与轴对称变换.12.下列图形中,是中心对称图形的是 ( )A.B.C.D.【解析】中心对称图形是图形沿对称中心旋转180度后与原图重合,因此符合的是选项C.故选C.【考点】中心对称图形.13.如图,C在线段BD上,△ABC和△CDE都是等边三角形,BE与AD有什么关系?请用旋转的性质证明你的结论。

图形的平移,对称与旋转的经典测试题及解析

图形的平移,对称与旋转的经典测试题及解析
3.在平面直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数 ,那么所得的图案与原来图案相比
A.形状不变,大小扩大到原来的 倍
B.图案向右平移了 个单位
C.图案向上平移了 个单位
D.图案向右平移了 个单位,并且向上平移了 个单位
【答案】D
【解析】
【分析】
直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
图形的平移,对称与旋转的经典测试题及解析
一、选择题
1.如图所示的网格中各有不同的图案,不能通过平移得到的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据平移的定义:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,结合各选项所给的图形即可作出判断.
【详解】
A、可以通过平移得到,不符合题意;
∴∠C=∠E,△ABD是等边三角形,∠CAD=60°,
∴∠D=∠CAD=60°、AD=BD,
∴AC∥BD,
∴∠CBD=∠C,
∴∠CBD=∠E,
则A、B、D均正确,
故选C.
【点睛】
本题主要考查旋转的性质,解题的关键是熟练掌握旋转的性质、等边三角形的判定与性质及平行线的判定与性质.
9.如图, 是由 经过平移后得到的,则平移的距离不是( )
B、可以通过平移得到,不符合题意;
C、不可以通过平移得到,符合题意;
D、可以通过平移得到,不符合题意.
故选C.
【点睛】
本题考查平移的性质,属于基础题,要掌握图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.
2.如图, 是等边三角形 内一点,将线段 绕点 顺时针旋转 得到线段 ,连接 .若 , , ,则四边形 的面积为()

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析1.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标(,);(2)将△ABC的三个顶点的横、纵坐标都乘以-1,分别得到对应点A2、B2、C2,画出△A2B2C2,则△ABC和△A2B2C2关于对称;(3)将△ABC在网格中平移,使点B的对应点B3坐标为(-6,1),画出△A3B3C3.【答案】(1) 5,﹣3; (2)画图见解析,原点;(3)画图见解析.【解析】(1)根据题意得出各对应点坐标进而求出即可;(2)利用已知得出各对应点坐标进而求出即可;(3)利用平移规律得出各对应点平移距离,进而求出即可.试题解析:(1)如图所示:△A1B1C1即为所求,点C1的坐标为;(5,﹣3);(2)如图所示:△A2B2C2即为所求,△ABC和△A2B2C2关于原点对称;(3)如图所示:△A3B3C3即为所求.【考点】1.作图-旋转变换;2.作图-轴对称变换;3.作图-平移变换.2.如图,有四块全等的直角三角形纸片,直角边长分别是1,2,请利用这四块纸片按下列要求在6×6方格纸中各拼一个图形(四块纸片都要用上,无缝隙且无重叠部分),直角顶点在格点上.(1)图甲中作出是轴对称图形而不是中心对称图形;(2)图乙中作出是中心对称图形而不是轴对称图形;(3)图丙中作出既是轴对称图形又是中心对称图形.【答案】【解析】理解轴对称中心对称的概念把一个图形沿着某一条直线折叠,如果它能够与另一个图形完全重合,称这两个图形为轴对称.把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称 .根据其特征画出相应图形即可.【考点】1.轴对称;2.中心对称3.在图中,画出△ABC关于轴对称的△A1B1C1,写出△ABC关于轴对称的△A2B2C2的各点坐标.【答案】画图见解析,A2(-3,-2),B2(-4,3),C2(-1,1).【解析】利用轴对称性质,作出A、B、C关于x轴的对称点,顺次连接各点,即得到关于y轴对称的△A1B1C1;利用轴对称性质,作出A、B、C关于y轴的对称点,顺次连接各点,即得到关于x轴对称的△A2B2C2;然后根据图形写出坐标即可.试题解析:△ABC的各顶点的坐标分别为:A(-3,2),B(-4,-3),C(-1,-1);所画图形如下所示,其中△A2B2C2的各点坐标分别为:A2(-3,-2),B2(-4,3),C2(-1,1).【考点】作图-轴对称变换.4.如图所示,已知O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,MN与PA,PB分别相交于点E,F,已知MN=5cm,则△OEF的周长为 .【答案】5cm.【解析】∵O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,∴OE=ME,OF=NF,∵MN=5cm,∴△OEF的周长为:OE+EF+OF=ME+EF+NF=MN=5(cm).故答案为:5cm.【考点】轴对称的性质.5.在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?【答案】(1)作图见试题解析;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).【解析】(1)根据网格结构找出点A、B、C关于MN的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质结合图形解答.试题解析:(1)△A1B1C1如图所示;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).【考点】1.作图-轴对称变换;2.作图-平移变换.6.下列图形是四家电信公司的标志,其中是轴对称图形的是()【答案】C.【解析】根据轴对称图形的定义,沿着某一条直线折叠后,直线两旁的部分能够互相重合,选项A、B、D中的图形无论怎么折叠,都不能使左右两部重合,只有选项C符合题意,选项C可左右对折或上下对折都能使直线两旁的部分重合,故选C.【考点】轴对称图形的定义.7.一个汽车牌在水中的倒影为,则该车牌照号码___________.【答案】【解析】本题是轴对称中的镜面对称问题,水面相当于一个平面镜,因为镜面对称的性质是在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称。

中考数学专题训练:图形的对称、平移与旋转(附参考答案)

中考数学专题训练:图形的对称、平移与旋转(附参考答案)

中考数学专题训练:图形的对称、平移与旋转(附参考答案)1.下列图形:其中轴对称图形的个数是( )A.4 B.3C.2 D.12.某小区的圆形花园中间有两条互相垂直的小路,园丁在花园中栽种了8棵桂花,如图所示.若A,B两处桂花的位置关于小路对称,在分别以两条小路为x,y 轴的平面直角坐标系内,若点A的坐标为(-6,2),则点B的坐标为( )A.(6,2) B.(-6,-2)C.(2,6) D.(2,-6)3.如图是用七巧板拼成的一个轴对称图形(忽略拼接线),小亮改变①的位置,将①分别摆放在图中左、下、右的位置(摆放时无缝隙不重叠),还能拼接成不同轴对称图形的个数为( )A.2 B.3C.4 D.54.在以“矩形的折叠”为主题的数学活动课上,某位同学进行了如下操作:第一步:将矩形纸片的一端,利用图1的方法折出一个正方形,然后把纸片展平;第二步:将图1中的矩形纸片折叠,使点C恰好落在点F处,得到折痕MN,如图2.根据以上的操作,若AB=8,AD=12,则线段BM的长是( )A.3 B.√5C.2 D.15.如图,已知矩形纸片ABCD,其中AB=3,BC=4,现将纸片进行如下操作:第一步,如图1将纸片对折,使AB与DC重合,折痕为EF,展开后如图2;第二步,再将图2中的纸片沿对角线BD折叠,展开后如图3;第三步,将图3中的纸片沿过点E的直线折叠,使点C落在对角线上的点H处,如图4.则DH的长为( )A.32B.85C.53D.956.在平面直角坐标系中,把点P(-3,2)向右平移2个单位长度后,得到对应点的坐标是( )A.(-5,2) B.(-1,4)C.(-3,4) D.(-1,2)7.如图,在平面直角坐标系中,等边三角形OAB的边长为4,点A在第二象限内,将△OAB沿射线AO平移,平移后点A′的横坐标为4√3,则点B′的坐标为( )A.(-6√3,2) B.(6√3,-2√3)C.(6,-2) D.(6√3,-2)8.如图,在平面直角坐标系中,△ABC各点坐标分别为A(-2,1),B(-1,3),C(-4,4).先作△ABC关于x轴成轴对称的△A1B1C1,再把△A1B1C1平移后得到△A 2B2C2.若B2(2,1),则点A2的坐标为( )A.(1,5) B.(1,3)C.(5,3) D.(5,5)9.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=10,DO=4,平移的距离为6,则阴影部分的面积为( )A.24 B.40C.42 D.4810.如图,△ABC沿BC方向平移后的图形为△DEF,已知BC=5,EC=2,则平移的距离是( )A.1 B.2C.3 D.411.如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是( )A BC D12.如图,在△ABC中,∠ACB=90°,∠BAC=α,将△ABC绕点C顺时针旋转90°得到△A′B′C,点B的对应点B′在边AC上(不与点A,C重合),则∠AA′B′的度数为( )A.αB.α-45°C.45°-αD.90°-α13.如图,将直角三角尺ABC绕顶点A顺时针旋转到△AB′C′,点B′恰好落在CA的延长线上,∠B=30°,∠C=90°,则∠BAC′的度数为( )A.90°B.60°C.45°D.30°14.如图,在△ABC中,AB=AC,若M是边BC上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是( )A.AB=ANB.AB∥NCC.∠AMN=∠ACND.MN⊥AC15.如图,在△ABC中,AC=BC,∠B=38°,点D是边AB上一点,点B关于直线CD的对称点为B′,当B′D∥AC时,∠BCD的度数为________.16.如图,在平面直角坐标系中,△OAB的顶点A,B的坐标分别为(3,√3),(4,0).把△OAB沿x轴向右平移得到△CDE,如果点D的坐标为(6,√3),则点E的坐标为____________.17.如图,在平面直角坐标系中,点A的坐标为(0,3),点B的坐标为(4,0),连接AB,若将△ABO绕点B顺时针旋转90°,得到△A′BO′,则点A′的坐标为______________.18.如图,在□ABCD中,∠B=60°,BC=2AB,将AB绕点A逆时针旋转角α(0°<α<360°)得到AP,连接PC,PD.当△PCD为直角三角形时,旋转角α的度数为______________________.参考答案1.B2.A3.B4.C5.D6.D7.D8.B9.D 10.C 11.B 12.C 13.B 14.C15.33° 16.(7,0) 17.(7,4) 18.90°或180°或270°。

人教版初中数学图形的平移,对称与旋转的技巧及练习题附答案

人教版初中数学图形的平移,对称与旋转的技巧及练习题附答案

人教版初中数学图形的平移,对称与旋转的技巧及练习题附答案一、选择题1.如图在平面直角坐标系中,等边三角形OAB的边长为4,点A在第二象限内,将OAB沿射线AO平移,平移后点A的横坐标为4百,则点B的坐标为()A. ( 60,2)B. (673, 273)C. (6, 2)D. (643, 2)【答案】D【解析】【分析】先根据已知条件求出点A、B的坐标,再求出直线OA的解析式,继而得出点A的纵坐标,找出点A平移至点A 的规律,即可求出点B的坐标.【详解】解:.「三角形OAB是等边三角形,且边长为4••• A( 2,3, 2), B(0,4)设直线OA的解析式为y kx,将点A坐标代入,解得:k3即直线OA的解析式为:y X3x3将点A的横坐标为4 J3代入解析式可得:y 4即点A的坐标为(4 73, 4)•・•点A向右平移6而个单位,向下平移6个单位得到点AB 的坐标为(0 6 J3,4 6) (6 J3, 2).故选:D.【点睛】本题考查的知识点是坐标与图形变化-平移,熟练掌握坐标平面图形平移的规律是解决本题的关键.2.如图,周长为16的菱形ABCD中,点E, F分别在边AB, AD上,AE= 1, AF= 3, P为BD上一动点,则线段EP+ FP的长最短为()A. 3B. 4C. 5D. 6【答案】B【解析】试题分析:在DC上截取DG=FD=AD- AF=4- 3=1,连接EG,则EG与BD的交点就是P. EG 的长就是EP+FP 的最小值,据此即可求解.解:在DC上截取DG=FD=AD- AF=4- 3=1,连接EG,贝U EG与BD的交点就是P.•. AE=DG,且AE// DG,••・四边形ADGE是平行四边形,EG=AD=4.故选B.3.如图,。

是AC的中点,将面积为16cm2的菱形ABCD沿AC方向平移AO长度得到菱形OB C D ,则图中阴影部分的面积是()B B2 2 2 2A. 8cmB. 6cmC. 4cmD. 2cm【答案】C【解析】【分析】根据题意得,?ABCg?OECF且AO=OC」AC ,故四边形OECF勺面积是? ABCD面积的214【详解】解:如图,…一, 一_一 一 1故四边形 OECF 的面积是?ABCD 面积—4 即图中阴影部分的面积为 4cm 2.故选:C【点睛】此题主要考查了相似多边形的性质以及菱形的性质和平移性质的综合运用.关键是应用相似多边形的性质解答问题. 4.如图,在平面直角坐标系中, AOB 的顶点B 在第一象限,点 A 在y 轴的正半轴上,AO AB 2, OAB 120°,将 AOB 绕点。

图形的平移,对称与旋转的技巧及练习题附答案解析

图形的平移,对称与旋转的技巧及练习题附答案解析

图形的平移,对称与旋转的技巧及练习题附答案解析一、选择题1.如图,圆柱形玻璃杯高为8cm ,底面周长为48cm ,在杯内壁离杯底3cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁上,它在离杯上沿2cm 且与蜂蜜相对的A 处,则蚂蚁从外壁A 处走到内壁B 处,至少爬多少厘米才能吃到蜂蜜( )A .24B .25C .23713+D .382【答案】B【解析】【分析】 将圆柱形玻璃杯的侧面展开图为矩形MNPQ ,设点A 关于MQ 的对称点为A′,连接A′B ,则A′B 就是蚂蚁从外壁A 处走到内壁B 处的最短距离,再根据勾股定理,即可求解.【详解】圆柱形玻璃杯的侧面展开图为矩形MNPQ ,则E 、F 分别是MQ ,NP 的中点,AM=2cm ,BF=3cm ,设点A 关于MQ 的对称点为A′,连接A′B ,则A′B 就是蚂蚁从外壁A 处走到内壁B 处的最短距离.过点B 作BC ⊥MN 于点C ,则BC=ME=24cm ,A′C=8+2-3=7cm , ∴在Rt∆A′BC 中,A′B=222272425A C BC +=+=′cm .故选B .【点睛】本题主要考查图形的轴对称以及勾股定理的实际应用,把立体图形化为平面图形,掌握“马饮水”模型,是解题的关键.2.在平面直角坐标系中,把点(5,2)P -先向左平移3个单位长度,再向上平移2个单位长度后得到的点的坐标是( )A .(8,4)-B .(8,0)-C .(2,4)-D .(2,0)-【答案】A【解析】【分析】根据平移变换与坐标变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减,可得答案.【详解】∵点P(-5,2),∴先向左平移3个单位长度,再向上平移2个单位长度后得到的点的坐标是(-5-3,2+2),即(-8,4),故选:A.【点睛】此题考查坐标与图形的变化,解题关键是掌握点的坐标的变化规律.3.下列图形中,是轴对称图形但不是中心对称图形的是()A.等边三角形B.干行四边形C.正六边形D.圆【答案】A【解析】【分析】【详解】解: A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,不合题意;D、是轴对称图形,也是中心对称图形,不合题意.故选A.【点睛】本题考查中心对称图形;轴对称图形.4.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆.下列说法中错误的是( )A.勒洛三角形是轴对称图形B .图1中,点A 到¶BC上任意一点的距离都相等 C .图2中,勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都相等 D .图2中,勒洛三角形的周长与圆的周长相等【答案】C【解析】【分析】根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴. 鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE 的扇形的重叠,根据其特点可以进行判断选项的正误.【详解】鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确;点A 到¶BC上任意一点的距离都是DE ,故正确; 勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都不相等,1O 到顶点的距离是到边的中点的距离的2倍,故错误;鲁列斯曲边三角形的周长=3×60180DE DE ππ⨯=⨯ ,圆的周长=22DE DE ππ⨯=⨯ ,故说法正确.故选C.【点睛】主要考察轴对称图形,弧长的求法即对于新概念的理解.5.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( ) A .B .C .D .【答案】D【解析】【分析】根据平移只改变图形的位置,不改变图形的形状和大小,逐项进行分析即可得.【详解】A 、不能通过平移得到,故不符合题意;B 、不能通过平移得到,故不符合题意;C 、不能通过平移得到,故不符合题意;D 、能够通过平移得到,故符合题意,故选D.【点睛】本题考查了图形的平移,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解题的关键.6.如图,在平面直角坐标系中,AOB ∆的顶点B 在第一象限,点A 在y 轴的正半轴上,2AO AB ==,120OAB ∠=o ,将AOB ∠绕点O 逆时针旋转90o ,点B 的对应点'B 的坐标是( )A .3(2,3)--B .33(2,2)---C .3(3,2)--D .(3,3)- 【答案】D【解析】【分析】 过点'B 作x 轴的垂线,垂足为M ,通过条件求出'B M ,MO 的长即可得到'B 的坐标.【详解】解:过点'B 作x 轴的垂线,垂足为M ,∵2AO AB ==,120OAB ∠=︒,∴'''2A O A B ==,''120OA B ∠=︒,∴'0'6M B A ∠=︒,在直角△''A B M 中,3==2=B'M B'M 'sin B A M B '''A ∠ , 1==22=A'M A'M 'cos B A M B '''A ∠, ∴'3B M ='1A M =,∴OM=2+1=3,∴'B 的坐标为(3)-.故选:D.【点睛】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.7.下列图形中,不是中心对称图形的是( )A .平行四边形B .圆C .等边三角形D .正六边形 【答案】C【解析】【分析】根据中心对称图形的定义依次判断各项即可解答.【详解】选项A 、平行四边形是中心对称图形;选项B 、圆是中心对称图形;选项C 、等边三角形不是中心对称图形;选项D 、正六边形是中心对称图形;故选C .【点睛】本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.8.在下面由冬季奥运会比赛项目图标组成的四个图形中,其中可以看作轴对称图形的是( )A .B .C .D .【答案】D【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A 、不是轴对称图形,故本选项错误;B 、不是轴对称图形,故本选项错误;C 、不是轴对称图形,故本选项错误;D 、是轴对称图形,故本选项正确.故选:D .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9.如图,DEF ∆是由ABC ∆经过平移后得到的,则平移的距离不是( )A.线段BE的长度B.线段EC的长度、两点之向的距离C.线段CF的长度D.A D【答案】B【解析】【分析】平移的距离是平移前后对应两点之间连线的距离,根据这可定义可判定【详解】∵△DEF是△ABC平移得到∴A和D、B和E、C和F分别是对应点∴平移距离为:线段AD、BE、CF的长故选:B【点睛】本题考查平移的性质,在平移过程中,我们通常还需要注意,平移前后的图形是全等图形.10.如图所示,共有3个方格块,现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格块()A.向右平移1格,向下3格B.向右平移1格,向下4格C.向右平移2格,向下4格D.向右平移2格,向下3格【答案】C【解析】分析:找到两个图案的最右边移动到一条直线,最下边移动到一条直线上的距离即可.解答:解:上面的图案的最右边需向右平移2格才能与下面图案的最右边在一条直线上,最下边需向下平移4格才能与下面图案的最下面重合,故选C.11.在下列图形中是轴对称图形的是()A.B.C.D.【答案】B【解析】【分析】根据轴对称图形的概念求解.【详解】A.不是轴对称图形,故本选项不符合题意,B.是轴对称图形,故本选项符合题意,C.不是轴对称图形,故本选项不符合题意,D.是不轴对称图形,故本选项不符合题意.故选B.【点睛】本题考查了轴对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.12.如图,在△ABC中,AB=AC,BC=9,点D在边AB上,且BD=5将线段BD沿着BC 的方向平移得到线段EF,若平移的距离为6时点F恰好落在AC边上,则△CEF的周长为()A.26 B.20 C.15 D.13【答案】D【解析】【分析】直接利用平移的性质得出EF=DB=5,进而得出CF=EF=5,进而求出答案.【详解】解:∵将线段BD沿着BC的方向平移得到线段EF,∴EF=DB=5,BE=6,∵AB=AC,BC=9,∴∠B=∠C,EC=3,∴∠B=∠FEC,∴CF=EF=5,∴△EBF的周长为:5+5+3=13.故选D.【点睛】本题考查了平移的性质,根据题意得出CF的长是解题关键.13.直角坐标系内,点P(-2,3)关于原点的对称点Q的坐标为()A.(2,-3)B.(2,3)C.(-2,3)D.(-2,-3)【答案】A【解析】试题解析:根据中心对称的性质,得点P(-2,3)关于原点对称点P′的坐标是(2,-3).故选A.点睛:平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).14.点M(﹣2,1)关于y轴的对称点N的坐标是( )A.(﹣2,﹣1) B.(2,1) C.(2,﹣1) D.(1,﹣2)【答案】B【解析】【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【详解】点M(-2,1)关于y轴的对称点N的坐标是(2,1).故选B.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.15.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】A. 是中心对称图形,不是轴对称图形,选项不符合题意;B. 是轴对称图形,不是中心对称图形,选项不符合题意;C. 不是中心对称图形,也不是轴对称图形,选项不符合题意;D. 是中心对称图形,也是轴对称图形,选项符合题意,故选D.【点睛】本题考查轴对称图形和中心对称图形,解题的关键是掌握轴对称图形和中心对称图形的定义.16.如图,在ABC ∆中,2AB =,=3.6BC ,=60B ∠o ,将ABC ∆绕点A 顺时针旋转度得到ADE ∆,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .1.6B .1.8C .2D .2.6【答案】A【解析】【分析】 由将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上,可得AD=AB ,又由∠B=60°,可证得△ABD 是等边三角形,继而可得BD=AB=2,则可求得答案.【详解】由旋转的性质可知,AD AB =,∵60B ∠=o ,AD AB =,∴ADB ∆为等边三角形,∴2BD AB ==,∴ 1.6CD CB BD =-=,故选:A .【点睛】此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB17.下列几何图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故本选项错误;B、是中心对称图形,不是轴对称图形,故本选项错误;C、是中心对称图形,也是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误;故选:C.【点睛】此题考查中心对称图形与轴对称图形的概念,注意掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.18.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、既是轴对称图形,又是中心对称图形,故本选项不符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、是轴对称图形,不是中心对称图形,故本选项符合题意.故选:A.【点睛】此题考查中心对称图形与轴对称图形的概念.解题关键在于掌握轴对称图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.19.对于图形的全等,下列叙述不正确的是()A.一个图形经过旋转后得到的图形,与原来的图形全等B .一个图形经过中心对称后得到的图形,与原来的图形全等C .一个图形放大后得到的图形,与原来的图形全等D .一个图形经过轴对称后得到的图形,与原来的图形全等【答案】C【解析】A. 一个图形经过旋转后得到的图形,与原来的图形全等,正确,不符合题意;B. 一个图形经过中心对称后得到的图形,与原来的图形全等,正确,不符合题意;C. 一个图形放大后得到的图形,与原来的图形不全等,故错误,符合题意;D. 一个图形经过轴对称后得到的图形,与原来的图形全等,正确,不符合题意, 故选C.【点睛】本题考查了对全等图形的认识,解题的关键是要明确通过旋转、轴对称、平移等都可以得到与原图形全等的图形,而通过放大或缩小只能得到与原图形形状一样的图形,得不到全等图形.20.如图,将ABC V 绕点A 逆时针旋转90︒得到,ADE V 点,B C 的对应点分别为,,1,D E AB =则BD 的长为( )A .1B 2C .2D .22【答案】B【解析】【分析】 根据旋转的性质得到AD=AB=1,∠BAD=90°,即可根据勾股定理求出BD .【详解】由旋转得到AD=AB=1,∠BAD=90°,∴22AB AD +2211+2,故选:B .【点睛】此题考查了旋转的性质,勾股定理,找到直角是解题的关键.。

图形的平移,对称与旋转的技巧及练习题附答案

图形的平移,对称与旋转的技巧及练习题附答案
【详解】
A、是轴对称图形,不是中心对称图形,故本选项错误;
B、是中心对称图形,不是轴对称图形,故本选项错误;
C、是中心对称图形,也是轴对称图形,故本选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误;
故选:C.
【点睛】
此题考查中心对称图形与轴对称图形的概念,注意掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
故选A.
【点睛】
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
9.下列图形中,是轴对称图形但不是中心对称图形的是()
A. B. C. D.
【答案】A
【解析】
A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D.是轴对称图形也是中心对称图形,错误,
∴ ,
∴ , ,
∴ .
∵将△ACD沿AD对折,使点C落在点F处,
∴ ,
∴ .
故选B.
【点睛】
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了直角三角形斜边上的中线的性质、等腰三角形的性质、三角形内角和定理以及三角形外角的性质.
A.向右平移1格,向下3格B.向右平移1格,向下4格
C.向右平移2格,向下4格D.向右平移2格,向下3格
【答案】C
【解析】
分析:找到两个图案的最右边移动到一条直线,最下边移动到一条直线上的距离即可.
解答:解:上面的图案的最右边需向右平移2格才能与下面图案的最右边在一条直线上,最下边需向下平移4格才能与下面图案的最下面重合,故选C.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档