程稼夫力学、电磁学习题答案详解
程稼夫电磁学第二版第一章习题解析
程稼夫电磁学篇第一章《静电场》课后习题1-1设两个小球所带净电荷为q,距离为l,由库仑定律:由题目,设小球质量m,铜的摩尔质量M,则有:算得1-2 取一小段电荷,其对应的圆心角为dθ:这一小段电荷受力平衡,列竖直方向平衡方程,设张力增量为T:解得1-3(1)设地月距离R,电场力和万有引力抵消:解得:(2)地球分到,月球分到,电场力和万有引力抵消:解得:1-4设向上位移为x,则有:结合牛顿第二定律以及略去高次项有:1-5由于电荷受二力而平衡,故三个电荷共线且q3在q1和q2之间:先由库仑定律写出静电力标量式:有几何关系:联立解得由库仑定律矢量式得:解得1-6(1)对一个正电荷,受力平衡:解得,显然不可能同时满足负电荷的平衡(2)对一个负电荷,合外力提供向心力:解得1-7(1)设P限制在沿X轴夹角为θ的,过原点的直线上运动(θ∈[0,π)),沿着光滑直线位移x,势能:对势能求导得到受力:小量近似,略去高阶量:当q>0时,;当q<0时,(2)由上知1-8设q位移x,势能:对势能求导得到受力:小量展开有:,知1-9(1)对q受力平衡,设其横坐标的值为l0:,解得设它在平衡位置移动一个小位移x,有:小量展开化简有:受力指向平衡位置,微小谐振周期(2)1-101-11先证明,如图所示,带相同线电荷密度λ的圆弧2和直线1在OO处产生的电场强度相等.取和θ.有:显然两个电场强度相等,由于每一对微元都相等,所以总体产生的电场相等.利用这一引理,可知题文中三角形在内心处产生的电场等价于三角形内切圆环在内心处产生的电场.由对称性,这一电场强度大小为0.1-12(1)如图,取θ和,设线电荷密度λ,有:积分得(2)(3)用圆心在场点处,半径,电荷线密度与直线段相等的,张角为θ0 ()的一段圆弧替代直线段,计算这段带电圆弧产生的场强大小,可以用其所张角对应的弦长与圆弧上单位长度所产生的电场强度大小的积求得:1-13我们先分析一个电荷密度为ρ,厚度为x的无穷大带电面(图中只画出有限大),取如图所示高斯面,其中高斯面的两个相对面平行于电荷平面,面积为S,由高斯定理:算得,发现这个无穷大平面在外部产生的电场是匀强电场,且左右两边电场强度相同,大小相反.回到原题,由叠加原理以及,算得在不存在电荷的区域电场强度为0(正负电荷层相互抵消.)在存在电荷的区域,若在p区,此时x处的电场由三个电荷层叠加而成,分别是左边的n区,0到x范围内的p区,以及右边的p区,有:,算得同理算出n区时场强,综上可得1-14(1)取半径为r的球形高斯面,有:,解得(2)设球心为O1,空腔中心为O2,空腔中充斥着电荷密度为−ρ的电荷,在空腔中任意一点A处产生的电场为:(借助第一问结论)同时在A处还有一个电荷密度为+ρ则有:1-15取金属球上一面元d S,此面元在金属球内侧产生指向内的电场强度,由于导体内部电场处处为0,所以金属球上除该面元外的其他电荷在该面元处产生的电场强度为所以该面元受到其他电荷施加的静电力:球面上单位面积受力大小:半球面受到的静电力可用与其电荷面密度相等的,该半球面的截口圆面的面积乘该半球面的单位面积受力求得:1-16设轴线上一点到环心距离为x,有:令其对x导数为0:解得1-17写出初态体系总电势能:1-18系统静电势能大小为:1-19由对称性,可以认为四个面分别在中心处产生的电势,故取走后,;设BCD,ACD,ABD在P2处产生的电势为U,而ABD在P2处产生的电势为,有:;取走后:,解得1-20构造如下六个带电正方体(1到6号),它们的各面电荷分布彼此不相同,但都能通过一定的旋转从程中电荷直接相加而不重新分布).这个带电正方体各面电势完全相同,都为.容易证明,正方体内部的每一个点的电势也都为(若不然,正方体内部必存在电场线,这样的电场线必定会凭空产生,或凭空消失,或形成环状,都与静电场原理不符).故此时中心电势同样为1-21 O4处电势:O1处电势:故电势差为:1-22从对称性方面考虑,先将半球面补全为整个球面.再由电势叠加原理,即一个半球面产生的电势为它的一半,从而计算出半球面在底面上的电势分布.即1-23设上极板下版面面电荷密度为,下极板上版面面电荷密度为.取一个长方体型的高斯面,其形状是是两极板中间间隔的长方体,并且把和囊括进去.注意到金属导体内部没有电场,故这个高斯面电通量为0,其中净电荷为0,有:再注意到上下极板电势相等,其中E1方向向上,E2方向向下:再由高斯定理得出的结论:解得1-24先把半圆补成整圆,补后P、Q和O.这说明,新补上的半圆对P产生的电势为,而由于对称性,这个电势恰好也是半球面ACB对Q产生的电势.故:1-25在水平方向上,设质点质量m,电量为q:运动学:整体带入得:1-26(1)先将半球面补全为整个球面,容易计算出此时半球底面的电势.再注意到这个电势由对称的两个半球面产生的电势叠加得到,即一个半球面产生的电势为它的一半,即可求出一个半球面对底面产生的电势恒为定值,故底面为等势面,由E点缓慢移至A点外力做功为W1=0.(2)由上一问的分析知由E点缓慢移至O点外力不做功,记电势能为E,E的右下标表示所代表的点,则有:依然将半球面补为整球面,此时q在球壳内部任意一点电势能为2EO.此时对于T点,其电势能为上下两个球面叠加产生,由对称性,有:综上有W2=−W.1-27小球受电场力方程:将a与g合成为一个等效的g′:方向与竖直夹角再将加速度分解到垂直于g′和平行与g′的方向上.注意到与g′平行的分量最小为0,而垂直的分量则保持不变,故速度的最小值为垂直分量:1-28假设给外球壳带上电量q2,先考虑q2在内外表面各分布了多少.取一个以内球壳外表面和外球壳内表面为边界的高斯面,并把内球壳外表面和外球壳内表面上的电荷囊括进去,真正的高斯面边界在金属内部.由于金属内部无电场,高斯面电通量为0,高斯面内电荷总量为0,得到外球壳内表面分布了−q1电荷,外表面分布了q2+q1电荷.由电势叠加原理知球心处的电势:解得由电势叠加原理及静电屏蔽:1-29设质点初速度为v0,质量为m,加速度为a,有:,其中.设时竖直向下速度为v1,动能为Ek1,初动能为Ek0,有:解得1-30球1依次与球2、球3接触后,电量分别为.当球1、4接触时满足由于解得.注:若此处利用,略去二阶小量则可以大大简便计算,有意思的是,算出的答案与笔者考虑二阶小量繁重化简过后所得结果完全一致,这是因为在最后的表达式中没有r与a的和或差的项的缘故。
程稼夫电磁学第二版第三章习题解析
前言:特别感谢质心教育的题库与解析,以及“程稼夫力学、电磁学习题答案详解”的作者前辈和血色の寂宁前辈的资料.非习题部分:P314 积分中运用了近似,这里给出非近似解答:3-2先计算圆环上的电流3-又垂直于磁场方向粒子做圆周运动得当运动了时,电子一定会回到轴上.即若,则聚焦到了屏上.解得.3-4考虑出射角度为θ为粒子,其运动在垂直于磁场平面内的投影为一个过原点的圆.设半径为r,1)2)对应的立体角为比值为——前辈大神云:当年我没事练习积分的时候发现,找一个球面,沿垂直于一固定方向的平面切两刀,则无论如何切,两刀间的面积总是仅与两刀间的距离呈正比。
(具体证明请在X3-5(1得(2)沿TM方向不受力,速度分量恒为;垂直于磁场方向的平面上,粒子的投影是匀速圆周运动.动力学方程:解得欲经过M点,须在时,圆周运动回到了圆周运动的起点,即周运动抵达原点.由此设计,并考虑方向,可得答案:3-8当摆角为θ时,设摆的速度v,(1解得.(2)若,便不能达到,这时只需考虑最低点,因为那里最接近二次函数的极值点:解得前面的条件要求,故,解得.即时,在最低点恰好T=0,而时不会出现情况2)综上所述(2)出发后时,粒子第一次经过x轴代入解得.(3),为整数个周期,即粒子回到x轴此时即粒子回到原点.粒子运动中占据的空间为一圆柱,轴线长即x坐标最大值:半径即粒子匀速圆周运动的半径:体积为.3-10因为E垂直于平面而质子轨迹在平面内,所以质子的动能守恒.. 3-11如图,速度方向、电场方向和磁场方向两两垂直,洛伦兹力与电场力平衡得取一小段时间,这期间冲到靶上的粒子的电量为.这些粒子的质量为.由动量定理其中F是质子束受到的力.作用在靶上的力是它的反作用力.3-12(1)在垂直于磁场方向粒子做匀速圆周运动,动力学方程时,3-取,记,有可见是以为角速度的匀速圆周运动的速度.,解得,故有积分得到(3)粒子速度为零,即,由此解得,相(4x投影3-14设粒子距离磁极r,轨道半径为R,回旋角速度为ω.粒子受力如图,其中动力学方程可由力三角表示,以为直角边的三角形,斜边为解得,故有.3-15设圆运动半径为R3-16法一:建立空间直角坐标系如图.取,记,有可见是以为角速度的匀速圆周运动的速度.知圆运动这部分的半径,且与y轴相切,由几何关系临界是当..(2)根据运动的独立性,首先只考虑匀速圆周运动由速度合成可得.3-18撤去重力场,以等效的电场代之.动力学方程:取,记,有,记,有可见是以为角速度的匀速圆周运动的速度.由初始条件,知线速度速度最大时圆运动的速度与漂移速度同向,第二阶段的速度最大值为综上,整个过程最大速度.3-20方法一:记这一段导管长为l,它受到安培力为,于是两壁压差为3-由于把3-竖直方向只有重力作用,是上抛运动水平方向,得,有所以由二次函数性质,在时有最小值3-23设横向电场E2,纵向电场E1.由横向电场力与洛伦兹力平衡:于是有.3-24(1)由动力学方程:得到,又回旋加速器中粒子作圆周运动的周期即为电场的周期解得(2).3-25(2)能够射出的电子,其轨迹圆心都在S的右半边.由于电子顺时针回旋,电子总是轨迹圆与MN 从较为靠上的交点射出.对于圆心在右下时,射出点在相切时最靠下.由几何关系对于圆心在右上时,射出点与S对径时最靠上.由几何关系所以(3)轨迹圆心在S右边的电子初速度方向是向上和斜向上的所有方向.故占. 3-26数据不足无法得到答案,这里提供解法:(1)初速度设为,由,解得3-28题设A的量纲明显不对,强行忽略就好了.动力学方程取,记,有可见是以为角速度的匀速圆周运动的速度.因为z方向无外力,故粒子会留在平面内,因为,所以圆周运动那部,依分离实部虚部得:电子在z方向的运动,由一个沿z方向的匀速直线运动和另一个同样沿z方向的谐振动叠加;电子运动在平面内的投影是一条旋轮线.。
程稼夫电磁学答案全解
Q1、Q2 ≤ Q
然后由于小球电势为负(易证),有从小球发出的电场线到达无穷远,故去掉等号。
用a图减去b图,然后就是左边一个不带电导体,右边一个大导体右边带负电,如果左边带正
电,很明显在没有外界净电荷干扰的情况下正负电荷会抵消于是左边应带负电即 Q1 < Q2
r − cos θx
r
(小量约化有关事宜请自己练习……)
然后把高阶小量x2拿走,化简化简答案就出来了
剩下的也用这方法搞搞就行了
8 方法同题 4 9 可以用极限法——如果向右移动很长距离,那么正负电荷离 q 的距离近似相等,那么合力 应该向左。于是乎,稳定平衡。图像程书的很详细嘛
10 嗯……大家都懂的 11 由对称性可知答案为 0
的电势好研究。) (2)它带电量为 0,那么对自身电势无贡献,只考虑环对它电势的影响即可 (3)…… (4)作用力的该变量相当于环对均匀分布在球表的多出来的电荷的作用力 (5)大家懂的 36 质子刚好不能到达时,速度与切线平行,根据角动量守恒和能量守恒得答案 37 证明切向是简谐振动,然后求出半周期乘以速度即可
(以上方法可行的原理在程书静电场唯一性定理的证明部分,大家自己读哈)
程书电磁学答案
主编:
血色の寂宁
小编:
lx10525 没有“等等”
编者的话:本人是freshman,故时间精力有限,还有能力有限……故步骤缺失与不
准确再所难免,请大家原谅。另感谢徒弟
第一章
1F
=
kQ 2
=
k(0.01ne) 2
=
k(0.01 m M
2
qN Ae)
电磁学第三章课后习题答案
电磁学第三章课后习题答案电磁学第三章课后习题答案电磁学是物理学中的重要分支,研究电荷和电流之间相互作用的规律。
在电磁学的学习过程中,习题是巩固知识和提高能力的重要途径。
本文将为大家提供电磁学第三章的课后习题答案,希望能对大家的学习有所帮助。
1. 一个导线的长度为l,电流为I,如图所示。
求导线两端的电势差。
答案:根据欧姆定律,电势差等于电流乘以电阻。
而导线的电阻可以通过电阻率乘以长度除以横截面积来计算。
所以,导线两端的电势差为V = I × (ρl/A)。
2. 一个导线的电阻为R,电流为I,如图所示。
求导线两端的电势差。
答案:根据欧姆定律,电势差等于电流乘以电阻。
所以,导线两端的电势差为V = I × R。
3. 一个导线的电阻为R,电流为I,导线的长度为l,电阻率为ρ,横截面积为A。
求导线两端的电势差。
答案:根据欧姆定律,电势差等于电流乘以电阻。
而导线的电阻可以通过电阻率乘以长度除以横截面积来计算。
所以,导线两端的电势差为V = I × R = I × (ρl/A)。
4. 在一个电路中,有一个电阻为R1的电阻器和一个电阻为R2的电阻器连接在一起,电流为I。
求两个电阻器上的电势差。
答案:根据欧姆定律,电势差等于电流乘以电阻。
所以,第一个电阻器上的电势差为V1 = I × R1,第二个电阻器上的电势差为V2 = I × R2。
5. 在一个电路中,有一个电阻为R1的电阻器和一个电阻为R2的电阻器连接在一起,电阻器之间的电势差为V。
求电流的大小。
答案:根据欧姆定律,电势差等于电流乘以电阻。
所以,V = I × (R1 + R2)。
解方程可得电流的大小为I = V / (R1 + R2)。
6. 一个电路中有两个电阻器,电阻分别为R1和R2,电流为I。
求电路中的总电阻。
答案:电路中的总电阻可以通过电阻器的并联和串联来计算。
如果电阻器是串联的,总电阻等于各个电阻器的电阻之和,即R = R1 + R2。
《电磁学答案》第一章
2
3
2
q2
4 0a
3q 2
a2
2 cos
2
30 0
| q0 3a
q
4 0
|
2
| (
q0 | 3a 3
)
2
4
3q | q0 | 3
3q q0 3
9. 电量都是Q的两个点电荷相距为l,连线中点为O;有另一 点电荷q,在连线的中垂面上距O为x处。(1)求q受的力;
(2)若q开始时是静止的,然后让它自己运动,它将如何运 动?分别就q与Q同号和异号情况加以讨论。
解:把p=ql分解为:pθ=psinθ,pr=pcosθ,由电偶极子在延 长线,垂直平分线公式得:
Er
2 pr
4 0r 2
2 p cos 4 0r 2
E
p
4 0r 2
p sin 4 0r 2
P(r,θ)
E
Er 2
E
2
p
4 0r 2
p
4 0r 2
3cos2 3
r
4 cos2 sin2
lθ -q o +q
解:(1) 从上题中得知: α粒子受的万有引力可以忽略, 它受的库仑力为:
F
(42q)1q02rα2粒 子9.0的1加09速度(7为9 :1.6
1019 ) (2 1.6 (6.9 1015 )2
1019
)
2
7.84 102 ( N )
a
F m
7.84 10 2 6.68 10 27
1.17 10 29 (m / s2 )
/r
x
2
2 1 l / r
( 1) x 2
2
取二级近似
电磁学第4版习题答案详解
电磁学第4版习题答案详解电磁学作为物理学的一个重要分支,研究电荷和电流之间的相互作用以及电磁波的传播规律。
对于学习电磁学的学生来说,习题是巩固知识、理解概念以及提高解题能力的重要途径。
然而,电磁学的习题往往涉及复杂的计算和推导,对于初学者来说可能会感到困惑。
因此,本文将对《电磁学第4版》的习题进行详细的答案解析,帮助读者更好地理解和掌握电磁学的知识。
第一章:电场和电势第一章主要介绍了电场和电势的基本概念和计算方法。
在习题中,常见的问题包括计算电场强度、电势差以及电势能等。
对于这些问题,我们可以通过库仑定律和电势公式进行求解。
例如,在计算电势能的问题中,我们可以利用电势能公式U=qV进行计算,其中q为电荷量,V为电势。
第二章:静电场第二章主要介绍了静电场的性质和计算方法。
在习题中,常见的问题包括计算电场强度、电场线和电势分布等。
对于这些问题,我们可以利用高斯定律和电势公式进行求解。
例如,在计算电场强度的问题中,我们可以利用高斯定律Φ=E·A进行计算,其中Φ为电场通量,E为电场强度,A为闭合曲面的面积。
第三章:恒定电流第三章主要介绍了恒定电流的基本概念和计算方法。
在习题中,常见的问题包括计算电流密度、电阻和电功等。
对于这些问题,我们可以利用欧姆定律和功率公式进行求解。
例如,在计算电功的问题中,我们可以利用功率公式P=IV进行计算,其中P为功率,I为电流,V为电压。
第四章:磁场第四章主要介绍了磁场的性质和计算方法。
在习题中,常见的问题包括计算磁场强度、磁感应强度和磁通量等。
对于这些问题,我们可以利用安培定律和磁场公式进行求解。
例如,在计算磁感应强度的问题中,我们可以利用安培定律B=μ0I/2πr进行计算,其中B为磁感应强度,μ0为真空中的磁导率,I为电流,r为距离。
第五章:电磁感应和电磁波第五章主要介绍了电磁感应和电磁波的基本概念和计算方法。
在习题中,常见的问题包括计算感应电动势、电磁波的传播速度和功率等。
电磁学课后习题答案
第五章 静 电 场5 -9 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为2204π1L r QεE -=(2) 在棒的垂直平分线上,离棒为r 处的电场强度为2204π21Lr r QεE +=若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为r r q εe E 20d π41d '=整个带电体在点P 的电场强度⎰=E E d接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=LE i E d(2) 若点P 在棒的垂直平分线上,如图(A )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是⎰⎰==Ly E αE j j E d sin d证 (1) 延长线上一点P 的电场强度⎰'=L r πεE 202,利用几何关系 r ′=r -x 统一积分变量,则()220022204π12/12/1π4d π41L r QεL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为E r εqαE L d π4d sin 2⎰'=利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则()2203/22222041π2d π41L r r εQ rx L xrQ εE L/-L/+=+=⎰当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度rελL r L Q r εE l 0220π2 /41/π21lim=+=∞→此结果与无限长带电直线周围的电场强度分布相同[图(B )].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线.5 -14 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.分析 方法1:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=SS d s E Φ方法2:作半径为R 的平面S ′与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理∑⎰==⋅0d 0q εSS E 这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而⎰⎰'⋅-=⋅=S SS E S E Φd d解1 由于闭合曲面内无电荷分布,根据高斯定理,有⎰⎰'⋅-=⋅=S SS E S E Φd d依照约定取闭合曲面的外法线方向为面元d S 的方向,E R πR E 22πcos π=⋅⋅-=Φ解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为①()r θθθE e e e E sin sin cos sin cos ++=r θθR e S d d sin d 2=ER θθER θθER SS2ππ2222πdsin d sin dd sin sin d ===⋅=⎰⎰⎰⎰S E Φ5 -17 设在半径为R 的球体内,其电荷为球对称分布,电荷体密度为()()R r ρkr ρ>=≤≤=0R r 0k 为一常量.试分别用高斯定理和电场叠加原理求电场强度E 与r 的函数关系.分析 通常有两种处理方法:(1) 利用高斯定理求球内外的电场分布.由题意知电荷呈球对称分布,因而电场分布也是球对称,选择与带电球体同心的球面为高斯面,在球面上电场强度大小为常量,且方向垂直于球面,因而有2S π4d r E ⋅=⋅⎰S E根据高斯定理⎰⎰=⋅V ρεd 1d 0S E ,可解得电场强度的分布. (2) 利用带电球壳电场叠加的方法求球内外的电场分布.将带电球分割成无数个同心带电球壳,球壳带电荷为r r ρq ''⋅=d π4d 2,每个带电球壳在壳内激发的电场0d =E ,而在球壳外激发的电场rrεqe E 20π4d d =由电场叠加可解得带电球体内外的电场分布()()()()R r r r Rr>=≤≤=⎰⎰d R r 0d 0E E E E解1 因电荷分布和电场分布均为球对称,球面上各点电场强度的大小为常量,由高斯定理⎰⎰=⋅V ρεd 1d 0S E 得球体内(0≤r ≤R ) ()40202πd π41π4r εk r r kr εr r E r ==⎰()r εkr r e E 024=球体外(r >R )()400202πd π41π4r εk r r kr εr r E R ==⎰ ()r εkR r e E 024=解2 将带电球分割成球壳,球壳带电r r r k V ρq '''==d π4d d 2由上述分析,球体内(0≤r ≤R )()r r rεkr r r r r k εr e e E 0222004d π4π41=''⋅'=⎰ 球体外(r >R )()r r Rr εkR r r r πr k πεr e e E 20222004d 441=''⋅'=⎰5 -20 一个内外半径分别为R 1 和R 2 的均匀带电球壳,总电荷为Q 1 ,球壳外同心罩一个半径为R 3 的均匀带电球面,球面带电荷为Q 2 .求电场分布.电场强度是否为离球心距离r 的连续函数? 试分析.分析 以球心O 为原点,球心至场点的距离r 为半径,作同心球面为高斯面.由于电荷呈球对称分布,电场强度也为球对称分布,高斯面上电场强度沿径矢方向,且大小相等.因而24d rπE ⋅=⎰S E .在确定高斯面内的电荷∑q 后,利用高斯定理∑⎰=0/d εq S E 即可求出电场强度的分布.解 取半径为r 的同心球面为高斯面,由上述分析∑=⋅02/π4εq r Er <R 1 ,该高斯面内无电荷,0=∑q ,故01=E R 1 <r <R 2 ,高斯面内电荷()31323131R R R r Q q --=∑ 故 ()()23132031312π4r R R εR r Q E --= R 2 <r <R 3 ,高斯面内电荷为Q 1 ,故2013π4r εQ E =r >R 3 ,高斯面内电荷为Q 1 +Q 2 ,故20214π4rεQ Q E +=电场强度的方向均沿径矢方向,各区域的电场强度分布曲线如图(B )所示.在带电球面的两侧,电场强度的左右极限不同,电场强度不连续,而在紧贴r =R 3 的带电球面两侧,电场强度的跃变量230234π4ΔεσR εQ E E E ==-=这一跃变是将带电球面的厚度抽象为零的必然结果,且具有普遍性.实际带电球面应是有一定厚度的球壳,壳层内外的电场强度也是连续变化的,本题中带电球壳内外的电场,在球壳的厚度变小时,E 的变化就变陡,最后当厚度趋于零时,E 的变化成为一跃变.5 -21 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 >R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理∑=⋅0/π2εq rL Er <R 1 ,0=∑q01=E在带电面附近,电场强度大小不连续,电场强度有一跃变 R 1 <r <R 2 ,L λq =∑rελE 02π2=r >R 2,0=∑q03=E在带电面附近,电场强度大小不连续,电场强度有一跃变00π2π2ΔεσrL εL λr ελE ===这与5 -20 题分析讨论的结果一致.5 -22 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.分析 由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为l E d 02⎰∞=Q W其中E 是点电荷Q 1 、Q 3 产生的合电场强度. (2) 根据电场力作功与电势能差的关系,有()0202V Q V V Q W =-=∞其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势). 解1 由题意Q 1 所受的合力为零()02π4π420312021=+d εQ Q d εQ Q 解得 Q Q Q 414132-=-=由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为()22031π2yd εQ E E E yy y +=+=将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为()dεQ y y d εQ Q Q W y 022/322002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E 解2 与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势的叠加得Q 1 、Q 3 在点O 的电势dεQd εQ d εQ V 003010π2π4π4=+=将Q 2 从点O 推到无穷远处的过程中,外力作功dεQ V Q W 0202π8=-=' 比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多. 5 -23 已知均匀带电长直线附近的电场强度近似为r rελe E 0π2=为电荷线密度.(1)求在r =r 1 和r =r 2 两点间的电势差;(2)在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取? 试说明. 解 (1) 由于电场力作功与路径无关,若沿径向积分,则有12012ln π2d 21r r ελU r r =⋅=⎰r E (2) 不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →∞处的电势应与直线上的电势相等.5 -27 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少?分析 通常可采用两种方法(1) 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=pp V l E d 可求得电势分布.(2) 利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为rεQV 0π4=在球面内电场强度为零,电势处处相等,等于球面的电势RεQV 0π4=其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布.解1 (1) 由高斯定理可求得电场分布()()()22021321201211π4π40R r r εQ Q R r R r εQ R r r r >+=<<=<=e E e E E 由电势⎰∞⋅=rV l E d 可求得各区域的电势分布.当r ≤R 1 时,有20210120212113211π4π4π411π40d d d 2211R εQ R εQ R εQ Q R R εQ V R R R R r+=++⎥⎦⎤⎢⎣⎡-+=⋅+⋅+⋅=⎰⎰⎰∞lE l E l E当R 1 ≤r ≤R 2 时,有202012021201322π4π4π411π4d d 22R εQ r εQ R εQ Q R r εQ V R R r+=++⎥⎦⎤⎢⎣⎡-=⋅+⋅=⎰⎰∞lE l E当r ≥R 2 时,有rεQ Q V r02133π4d +=⋅=⎰∞l E(2) 两个球面间的电势差⎪⎪⎭⎫⎝⎛-=⋅=⎰210121211π4d 21R R εQ U R R l E 解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则2021011π4π4R εQ R εQ V +=若该点位于两个球面之间,即R 1 ≤r ≤R 2 ,则202012π4π4R εQ r εQ V +=若该点位于两个球面之外,即r ≥R 2 ,则rεQ Q V 0213π4+=(2) 两个球面间的电势差()2011012112π4π42R εQ R εQ V V U R r -=-== 第六章 静电场中的导体与电介质6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定分析与解 不带电的导体B 相对无穷远处为零电势。
程稼夫电磁学第二版第二章习题解析
程稼夫电磁学篇第二章《恒定电流》因此两球间介质间的电阻:.法二:设总电流为,两球心间距,一球直径对另一球球心的张角利用电流的叠加原理,用张角为的这部分电流计算电势差:后同法一2-2变阻器在A位置时,焦耳热:,其中.变阻器在中间时,焦耳热:.代入题中数据,可得.2-32-4(1)即,在图中作出该直线,交伏安特性曲线于.电阻R热平衡:,解得.(2),即在图中作出该直线,交伏安特性曲线于.即.2-5(1)消耗的功率,不变,而随减小而增大,因而时,最大,消耗的功率最大.(2)电路中电流,消耗的功率根据均值不等式得,时,消耗的功率最大.2-6(1)电压按电阻分配.合上开关前,上电压为两端电压.(2)电源功率之比就等于干路电流之比,即总电阻之反比,设总电阻分别为,则.2-7未烧断前总电阻,烧断后,故干路电流之比为炉丝上电流由干路均分,所以故,几乎相等.2-8题意应是恰好不能烧开,即100℃时达到热平衡,断电后只下降1℃,可以认为散热功率是不变的:,其中水的比热容为2-9(1)周期,A位置时热平衡:,其中加热时间B位置时热平衡:,其中加热时间两式相除,解得(2)连续加热时热平衡:,解得.2-10注意电阻温度系数的基准是0℃,得.负载时,负载时,联立解得:.2-11题设是默认加热间断时间相等的,设为.电压最小时,,解得.2-12保险丝要保证熔断电流是一定的.在一定的融化温度下,辐射功率P与辐射体表面积S成正比.电流一定时,电功率Q与R成正比.解得,与无关.2-13绝缘层损坏使得相邻的两圈电阻丝接触,相当于损坏处产生的接触电阻与一圈漆包线并联之后,再与剩余九圈漆包线串联.一圈电阻为设绝缘层损坏处产生电阻为,则解得.2-14(1)作直线交A于,交B于故.(2).即110V为A、B串联时的工作电压的等差中项作伏安特性曲线关于直线的对称图像,分别交另一曲线于和.得.2-15(1)电容器极板带电量,极板间电流保持为电势差为0时,极板不带电,所以.(2)最大动能的电子到达上极板时动能全部转化为电势能所以,得.2-16(1)设流过的电流为,上流过的电流为.所以,故.此时.(2),取最小值(此时)代入得.2-17设流过灯泡电流为,.设图中三个定值电阻从左至右分别为K闭合时,R3与R并联,流过R2的电流于是可列出:K断开时,R与R1串联,该支路总电压该支路与R2并联,为R2两端电压,又R2,R3串联,R3两端电压为可以列出:两式联立,代入数据可解得:.2-18(1)由基尔霍夫方程知:.(2)沿n个电源这一路计算:.2-20设通过电源1的逆时针电流为,通过电源2顺时针电流为于是在电源1与R1构成的回路可列出:在电源2与R1R2构成的回路中,可列出:代入数据可解得,通过R1的电流为1A,通过R2的电流为0.5A.设从1向O流的电流为,从2向O流的电流为,则从O向3流的电流为则可由三点的电势得到:代入数据,联立可解得:.2-23设R1上电流为,R2上电流为由并联得又由节点电流方程知:,联立解得:.又因为,所以可得即CD上电流大小为1.0A,方向由C流向D.2-24将R替换为导线,用叠加原理计算短路电流等效内阻,等效电源.将R替换为导线,用叠加原理计算短路电流.等效内阻,等效电源.2-25设有x组电池组串联,每组内有y个电池并联.法一:电源最大输出功率,电池个数.要使电源达到最大输出功率,则必有内阻与负载相等:解得法二:回路内满足:令,电源最少,要使最小代入得是关于x的一元二次方程,该方程要有实数解:将n带回原方程即可解得答案同法一答:至少需要120个电池.此时有20组电池组串联,每组内有6个电池并联.2-26首先,B与B’为同一节点,思考时可视为一点,由(2)可知电路对称,此时容易联想到的是Y-△变换的Y型电路(b),设出电阻即可求解,然后用Y-△变换得到△型电路(a).2-27上式联立解得.2-28(i)由知122’1’回路为电路干路而无支路,该干路总电阻;1 2与1’2’间若有电阻,则应被导线短路.(ii)由知1 2与1’2’间确有电阻,设为;由于要求电路最简,不妨设12间仅有一个电阻;故此情况中两电阻并联:代入数据得:,带回各条件检查,满足.故电路图如下:,所以.2-29由分析知,安培表读数由两部分组成.第一部分,R2回路;第二部分,流过R1电流,于是流过R3R3(电流表)的电流:.所以安培表示数.2-30题意即5两端接电源.电压表示数是由其上电流决定的,所以可以把电压表全看成电阻,求其上电流比例.由分析,电路可简化为如下图:2-31(1)(2)设流经V1的电流为,流经V2的电流为,则流经V3从左到右的电流为则有2-32设电压表电阻为,电流表电阻为由并联两表电压相等可知由节点方程可知流经并联两表中电压表的电流欧姆定律:得.2-33由每个量程达到满偏时通过电流计的电流相同得:解得:.如用A修复,则在用1mA量程测量1mA电流时流过A的电流为0.195mA<0.2mA.若再串联一个电阻,则分到的电流更少.若并联,则由两个电阻并联变成三个电阻并联,A 在总电流中分到的电流依然会更少.综上:排除A 而B在此时分到的电流为0.57mA>0.5 mA故可以考虑并联一个17 欧的电阻或者串联一个40 欧的电阻。
电磁学课后习题答案及解析
第五章 静 电 场5 -9若电荷Q 均匀地分布在长为L 的细棒上.求证:<1>在棒的延长线,且离棒中心为r 处的电场强度为<2>在棒的垂直平分线上,离棒为r 处的电场强度为若棒为无限长<即L →∞>,试将结果与无限长均匀带电直线的电场强度相比较.分析这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为整个带电体在点P 的电场强度接着针对具体问题来处理这个矢量积分.<1>若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,<2>若点P 在棒的垂直平分线上,如图<A >所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是证 <1>延长线上一点P 的电场强度⎰'=L r πεq E 202d ,利用几何关系 r ′=r -x 统一积分变量,则 ()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.<2>根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为利用几何关系 sin α=r /r ′,22x r r +='统一积分变量,则当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度此结果与无限长带电直线周围的电场强度分布相同[图<B >].这说明只要满足r 2/L 2<<1,带电长直细棒可视为无限长带电直线.5 -14设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.分析方法1:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=S S d s E Φ 方法2:作半径为R 的平面S ′与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而解1由于闭合曲面内无电荷分布,根据高斯定理,有依照约定取闭合曲面的外法线方向为面元d S 的方向,解2取球坐标系,电场强度矢量和面元在球坐标系中可表示为①5 -17设在半径为R 的球体内,其电荷为球对称分布,电荷体密度为k 为一常量.试分别用高斯定理和电场叠加原理求电场强度E 与r 的函数关系.分析通常有两种处理方法:<1>利用高斯定理求球内外的电场分布.由题意知电荷呈球对称分布,因而电场分布也是球对称,选择与带电球体同心的球面为高斯面,在球面上电场强度大小为常量,且方向垂直于球面,因而有2S π4d r E ⋅=⋅⎰S E 根据高斯定理⎰⎰=⋅V ρεd 1d 0S E ,可解得电场强度的分布. <2>利用带电球壳电场叠加的方法求球内外的电场分布.将带电球分割成无数个同心带电球壳,球壳带电荷为r r ρq ''⋅=d π4d 2,每个带电球壳在壳内激发的电场0d =E ,而在球壳外激发的电场由电场叠加可解得带电球体内外的电场分布解1因电荷分布和电场分布均为球对称,球面上各点电场强度的大小为常量,由高斯定理⎰⎰=⋅V ρεd 1d 0S E 得球体内<0≤r ≤R > 球体外<r >R >解2将带电球分割成球壳,球壳带电由上述分析,球体内<0≤r ≤R >球体外<r >R >5 -20一个内外半径分别为R 1和R 2的均匀带电球壳,总电荷为Q 1,球壳外同心罩一个半径为R 3的均匀带电球面,球面带电荷为Q 2.求电场分布.电场强度是否为离球心距离r 的连续函数?试分析.分析以球心O 为原点,球心至场点的距离r 为半径,作同心球面为高斯面.由于电荷呈球对称分布,电场强度也为球对称分布,高斯面上电场强度沿径矢方向,且大小相等.因而24d r πE ⋅=⎰S E .在确定高斯面内的电荷∑q 后,利用高斯定理∑⎰=0/d εq S E 即可求出电场强度的分布.解取半径为r 的同心球面为高斯面,由上述分析r <R 1,该高斯面内无电荷,0=∑q ,故01=ER 1<r <R 2,高斯面内电荷()31323131R R R r Q q --=∑ 故 ()()23132031312π4rR R εR r Q E --= R 2<r <R 3,高斯面内电荷为Q 1,故r >R 3,高斯面内电荷为Q 1+Q 2,故电场强度的方向均沿径矢方向,各区域的电场强度分布曲线如图<B >所示.在带电球面的两侧,电场强度的左右极限不同,电场强度不连续,而在紧贴r =R 3的带电球面两侧,电场强度的跃变量这一跃变是将带电球面的厚度抽象为零的必然结果,且具有普遍性.实际带电球面应是有一定厚度的球壳,壳层内外的电场强度也是连续变化的,本题中带电球壳内外的电场,在球壳的厚度变小时,E 的变化就变陡,最后当厚度趋于零时,E 的变化成为一跃变.5 -21两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1和R 2>R 1>,单位长度上的电荷为λ.求离轴线为r 处的电场强度:<1>r <R 1,<2> R 1<r <R 2,<3>r >R 2.分析电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布.解作同轴圆柱面为高斯面,根据高斯定理r <R 1,0=∑q 在带电面附近,电场强度大小不连续,电场强度有一跃变 R 1<r <R 2,L λq =∑r >R 2,0=∑q 在带电面附近,电场强度大小不连续,电场强度有一跃变这与5-20题分析讨论的结果一致.5 -22如图所示,有三个点电荷Q 1、Q 2、Q 3沿一条直线等间距分布且Q 1=Q 3=Q .已知其中任一点电荷所受合力均为零,求在固定Q 1、Q 3的情况下,将Q 2从点O 移到无穷远处外力所作的功.分析由库仑力的定义,根据Q 1、Q 3所受合力为零可求得Q 2.外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:<1>根据功的定义,电场力作的功为 其中E 是点电荷Q 1、Q 3产生的合电场强度.<2>根据电场力作功与电势能差的关系,有其中V 0是Q 1、Q 3在点O 产生的电势<取无穷远处为零电势>.解1由题意Q 1所受的合力为零解得 Q Q Q 414132-=-=由点电荷电场的叠加,Q 1、Q 3激发的电场在y 轴上任意一点的电场强度为将Q 2从点O 沿y 轴移到无穷远处,<沿其他路径所作的功相同,请想一想为什么?>外力所作的功为解2与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势的叠加得Q 1、Q 3在点O 的电势将Q 2从点O 推到无穷远处的过程中,外力作功比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多.5 -23已知均匀带电长直线附近的电场强度近似为为电荷线密度.<1>求在r =r 1和r =r 2两点间的电势差;<2>在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取?试说明.解 <1>由于电场力作功与路径无关,若沿径向积分,则有<2>不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →∞处的电势应与直线上的电势相等.5 -27两个同心球面的半径分别为R 1和R 2,各自带有电荷Q 1和Q 2.求:<1>各区域电势分布,并画出分布曲线;<2>两球面间的电势差为多少?分析通常可采用两种方法<1>由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=p p V l E d 可求得电势分布.<2>利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为在球面内电场强度为零,电势处处相等,等于球面的电势其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布.解1 <1>由高斯定理可求得电场分布由电势⎰∞⋅=r V l E d 可求得各区域的电势分布.当r ≤R 1时,有当R 1≤r ≤R 2时,有当r ≥R 2时,有<2>两个球面间的电势差解2 <1>由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1,则若该点位于两个球面之间,即R 1≤r ≤R 2,则若该点位于两个球面之外,即r ≥R 2,则<2>两个球面间的电势差第六章 静电场中的导体与电介质6 -1将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将〔 〔A 升高 〔B 降低 〔C 不会发生变化 〔D 无法确定分析与解不带电的导体B 相对无穷远处为零电势。
程稼夫力学篇答案详解
解:在直角 ∆ABC 中,设 h = AB、l = BC、s = AC、α = ∠ACB,小球自 A 由静止
出发自由下落至 B 时的速度为 vB = √2gh,小球沿斜面 AC 自 A 滑至 C 时的速度为
υC
=
√ 2as
=
√ 2g
sin
α
· s = √2gh,以
v
表示Βιβλιοθήκη vB和vC
的大小,则依题述有
7. 一小球作竖直上抛运动,测得小球两次经过 A 点和两次经过 B 点的时间间隔分别为 ∆tA 和 ∆tB,设 B 点比 A 点高. 求 A、B 两点间的高度差 h.
解:由某点上升到最高点及下落回这点的过程所需时间相等,所以从最高点落到 A 点和 B
点需要的时间为 ∆tA/2 和 ∆tB/2,由此可得高差为
第1页
速运动,当速度达到 v 后再匀速行驶一段时间,然后刹车,并以加速度大小为 a2 作匀减速行 驶,使之正好停在 B 城. 求火车行驶的时间 t.
解:加速过程需要时间
t1
=
v ,位移为
a1
vt1 2
减速过程需要时间
t2
=
v ,位移为
a2
vt2 2
于是匀
速运动的时间
t3 =
S
−
vt1 2
−
vt2 2
u22 − u21 = 2as, u22 − v2 = v2 − u21 = as
(1)
v2 = u21 + u22
(2)
2
√
v = u21 + u22
(3)
2
2. 一火箭从某一无大气层的行星的一个极地竖直向上发射. 由火箭上传来的无线电信息表明,从火 箭发射的一段时间 τ 内,火箭上所有物体对支持物的压力或对其悬挂装置的拉力是火箭发射前 的 1.8 倍(这意味着火箭以 0.8g 的加速度加速上升). 除此之外,在落回行星表面前的所有时间 内,火箭里的物体处于失重状态(这意味着火箭以重力加速度下落). 问:从火箭发射到落回行 星表面经过多少时间?(设引力大小随距行星的高的变化可以忽略不计).
电磁学课后部分习题答案解析
电磁学课后部分习题答案解析1.2.2 两个同号点电荷所带电荷量之和为Q.在两者距离一定的前提下,他们带电荷量各为多少时相互作用力最大?解答:设一个点电荷的电荷量为1q q =,另一个点电荷的电荷量为()2q Q q =-,两者距离为r,则由库仑定律求得两个电电荷之间的作用力为()204q Q q F rπε-=令力F 对电荷量q 的一阶导数为零,即 ()2004Q q qdF dqrπε--==得122Q q q ==即取 122Q q q ==时力F 为极值,而222202204Q q d F dqrπε==-<故当 122Q q q ==时,F 取最大值1.2.6 两个电荷量相等的同性点电荷相距为2a ,在两者连线的中垂面上置一试探点电荷0q , 求0q 受力最大的点的轨迹.解答:如图(a)所示,设有两个电荷量为q 的点电荷 ,坐标分别为(-a ,0,0)和(a ,0,0),试探点电荷0q 置于二者连线的中垂面Oyz 上坐标为(0,y,z).r y j z k=+ 为原点O 至试探点电荷0q 的失径,距离为r =,如图(b)所示.根据对称性, 所受合力的方向与失径r 平行或反平行.其大小为 ()003222222sin 2q q q qrF kkr araα==++求上式的级值,去F 对r 的一阶导数并令其为零,的方程 ()22230r r a-++=求得2r =求二阶导数并带入2r =,得()272222022120r d Fa kqq r a rdr -=-+<说明此时F 取极大值因此,0q 受力最大的点的轨迹是在中垂面上的圆心坐标为(0,0,0)半径为2的圆.1.3.6 附图中均匀带电圆环的半径为R,总电荷量为q(1)求数轴线上离环心O 为x处的场强E(2) 轴线上何处场强最大?其值是多少? (3)大致画出E-x 曲线.解答:设圆环的带电线密度为 2q Rηπ=如图(a)所示,圆环一小段d l 到轴上一点P 的距离为r ,即有dq dl η=,cos x rα=,该小段对P 点产生的场强大小为22dq dldE k krrη==根据对称性,P 点场强仅有x 分量, d E在x 轴的分量大小为()3222cos x xdldE dE kRxηα==+()()()33322222222200224xxRxqxE dEkR RxR xR xηηπεπε====+++⎰P点场强为()322204qxE iR xπε=+(2)应求dE dx并令其值为0,求得当2x =,E取极值,而2220x d Edx<,根据对称性,位于轴上2x =±点的场强取最大值,其值为qE =±(3)如图(b )所示。
程稼夫电磁学第二版 习题解析
前言:特别感谢质心教育的题库与解析,以及“程稼夫力学、电磁学习题答案详解”的作者前辈和血色の寂宁前辈的资料.4-1动生电动势,电路中的电流要使功率最大,应取最小值1,即.4-2原题图片和答案结果不符,现分两种情况:(1)按答案来:整体绕过o点且于磁感应强度平行的轴转动将运动分解为绕c的平动和转动,转动对电势差无贡献4-3(1)OP电势相等时,OP速度沿磁场方向,显然当OP位于YOZ平面时,OP电势相等(2)当OP在YOZ平面右侧即X>0时,电势差(3)当OP在XOZ平面第一象限时,电势差最大4-4在任意时刻t,线圈中的电流为,则由电磁感应定律和欧姆定律得,该式也可以由能量得到4-5其中后一项式中与直杆平行,当与直杆方向垂直时,电动势绝对值最大故有.4-6对于回路有,故有力矩平衡故有.4-7(1)当转轮在磁场中旋转时,每一根轮辐上的感应电动势为四根辐条作为电源是并联的,轮子产生的感应电动势不变(2)根据戴维宁定理,将轮子作为电源,此时将外电路断路计算等效电动势. 4-8式中当转轮1和转轮2分别以ω1和ω2旋转并达到稳定时,闭合回路中感应电流为注意,因转轮1的四根轮辐并联,总电阻为;转轮2类似,其余连接导线、电刷、轮边缘的电阻均忽略不计.又,因转轮1和转轮2同方向旋转,ε1和ε2同方向,但在电路中的作用是彼此减弱的稳定转动时,转轮2所受磁力矩应与阻力矩抵消.磁力矩是四轮辐所受安培力产生的力矩,为式中是转轮2每根轮辐中的电流.阻力矩是阻力闸提供的力矩,因阻力恒为F,故有稳定将要向下滑动时安培力加滑动摩擦力等于重力分力解得可变电阻最大值匀速向上滑动时,电路中同时杆受力平衡,有联立解得.4-11注意题文描述中磁场竖直向上而所给图垂直于轨道平面,此处以文字为正.(1)下滑时,动生电动势与电源同向,故当加速下滑时,电流增大,V2读数增大,V1减小.(2)由牛顿第二定律及欧姆定律得:4-4-4-内电阻阻值负载电阻与内阻相等时,负载上功率最大.4-15平板的宽度d切割磁感线产生感应电动势,积累电荷产生电场,使自由电荷磁场力和4-16由受力平衡,;由力矩平衡,解得.4-17由于圆盘有厚度D,故当圆盘在磁场区域内竖直下落的速度为v时,在圆盘的厚度方向分离变量:两边积分:又初态,代入得:最大焦耳热:4-23(1)如图所示,当小球在管中任意位置x时,设该处的涡旋电场为E,则故式中r是小球在x位置时与O′的距离,式中的负号表示E的方向如图所示,即E与B的变化构成左手螺旋.因此,E的x分量为其中用到几何关系表示沿y轴正方向.小球所受洛仑兹力沿y方向,无x分量,为可见,即洛仑兹力沿y轴负方向小球在y方向还受管的支持力,因三力平衡,故管对小球的支持力为,于是,小球对管的作用力为.4-24法一:cd法二:记圆心为O,连接,.封闭回路中,与段无感生电动势,则.4-25由图中磁场方向及均匀减小,可知圆周上感应电动势方向为顺时针,大小为已知,联立解出故A、B两点电势差.4-26磁场变化产生感应电动势(负号代表逆时针方向)圆环电阻阻值,感应电流电功率.4-27回路以逆时针指向纸外为正,则磁通ab上解得做功.4-29K反向时,励磁电流反向,磁场反向,磁通量变化量大小为原来的两倍,方向相反.4-32根据自感定义,单匝线圈磁通为.4-36设原线圈电路电流为,副线圈电路电流为,由理想变压器性质由题整理得要求灯正常发光,所以算出额定电流,然后能得到每个回路上的电流.4-38(1)如图,由输入等效电路原理(2)原线圈上的电压;副线圈上的电压(3)变压比为.4-39(1)由题,安培力等于阻力(2)代入,(3)单位时间克服阻力做功单位时间电路中消耗代入得(2)当C2断路时,没有感应电流,C1中无互感电动势此时C2中只有互感电动势,a′、b′两端的电压为.。
程稼夫电磁学第二版第二章习题解析
前言:特别感谢质心教育的题库与解析,以及“程稼夫力学、电磁学习题答案详解”的作者前辈和血色の寂宁前辈的资料.2-2变阻器在A位置时,焦耳热:,其中.变阻器在中间时,焦耳热:.代入题中数据,可得.2-32-4(1)即,在图中作出该直线,交伏安特性曲线于.两端电压.(2)电源功率之比就等于干路电流之比,即总电阻之反比,设总电阻分别为,则.2-7未烧断前总电阻,烧断后,故干路电流之比为22AB2-10注意电阻温度系数的基准是0℃,得.负载时,负载时,联立解得:.2-11题设是默认加热间断时间相等的,设为.即110V为A、B串联时的工作电压的等差中项作伏安特性曲线关于直线的对称图像,分别交另一曲线于和.得.2-15(1)电容器极板带电量,极板间电流保持为电势差为0时,极板不带电,所以.(2)最大动能的电子到达上极板时动能全部转化为电势能所以,得.K断开时,R与R1串联,该支路总电压该支路与R2并联,为R2两端电压,又R2,R3串联,R3两端电压为可以列出:两式联立,代入数据可解得:.2-18(1)由基尔霍夫方程知:.(2)沿n个电源这一路计算:2-22注意看题,不要啥都不想直接Y-△变换了设从1向O流的电流为,从2向O流的电流为,则从O向3流的电流为则可由三点的电势得到:2-即2-将等效内阻,等效电源. 2-25设有x组电池组串联,每组内有y个电池并联.法一:电源最大输出功率,电池个数.要使电源达到最大输出功率,则必有内阻与负载相等:解得法二:回路内满足:到的是Y-△变换的Y型电路(b),设出电阻即可求解,然后用Y-△变换得到△型电路(a).2-27上式联立解得.2-28(i)由知122’1’回路为电路干路而无支路,该干路总电阻;1 2与1’2’间若有电阻,则应被导线短路.(ii)由知1 2与1’2’间确有电阻,设为;由于要求电路最简,不妨设12间仅有一个电阻;故此情况中两电阻并联:代入数据得:,带回各条件检查,满足.故电路图如下:所以安培表示数.2-30题意即5两端接电源.电压表示数是由其上电流决定的,所以可以把电压表全看成电阻,求其上电流比例.由分析,电路可简化为如下图:由节点方程可知流经并联两表中电压表的电流欧姆定律:得. 2-33由每个量程达到满偏时通过电流计的电流相同得:,干路电流为,而B,C间的电流为,即100kΩ电阻和电压表各分得干路电流的一半,可知电压表内阻也为100kΩ.在图(b)中,200kΩ电阻与电压表并联后的电阻为,电压表读数为A、B间所分的电压为.由本题推广,可以证明,电压表接入串联电路测得的数值与所测部分电阻成正比,此性质与电压表内阻无关.2-36首先说明,若测量过程中测得某两点间电阻为1Ω,由对称性及电阻串并联等效可以判断:特异电阻被短路,连接在另外两端点间.2-38等效电路图如下:其中,由电桥平衡条件,有,解得.2-39第一次实验,B端电压为40V,即电阻R分压40V,则左段电缆电阻为第二次实验,A端电压为40V,即电阻R分压40V,则右段电缆电阻为左右电缆的电阻之比为:由于电缆的电阻与长度成正比,可知左段电缆长度为由此得:2-41,解得,解得;对于上述两支路的交点A,列节点方程:;由欧姆定律,图中B点的电势为:.显然U1与U3所在支路的电流为0;由于电容所在支路电流为0,由节点方程,图中B与C之间的支路上电流为;对图中红圈内的部分列节点方程(以向下为正方向):.2-42设该平行板电容器极板面积为S,极板间距为d,漏电流为I.由平行板电容器的电容公式,得玻璃的电阻为.由高斯2-44首先明确,无论短接哪个电阻,总电阻一定变小将五个电阻分两类,一类是四周的4 个电阻臂,一类是中间的100Ω桥上电阻.短接桥上电阻,总电阻变为203Ω;短接一支电阻臂,以500Ω的为例:两个100Ω的并联后与200Ω的串联再与300Ω的并联.可以看出300Ω的在这里与其他所有电阻并联,而并联电路中的总电阻不超过最小的电阻,故让100Ω与其他电阻并联可以使变化最大.2-45等效电阻整理得,故或.2-46本题为无穷网络等效电阻题.先分析对称性:电路呈轴对称,可将图中各个处于对称轴上的中点断开,于是电路转化为:转化为:再将A,B两点左侧网络“翻折”至右侧:单电路:,即两导线间电压为零.2-51本题为无穷网络等效电阻题,解题关键在于网络的自相似性.记A点左侧无穷网络等效电阻为R1.分析电路可知:故只需求出R1.分析R1结构可知:除去三个电阻r后剩余部分仍为一无穷网络R1:2-52(1)本题中的三角形电阻网络具有高度对称性,可将分割n次后的电阻网络(设其两顶点之间的电阻为;图中未画出分割后电阻网络的全貌;最初的只有三条边的三角形当作分割了0次)等效为如下的Y形网络:其中每个电阻的大小均为则下一次分割所得的电阻网络可以等效为三个上图所示的网络相连接而成(每个电阻变为一半),如下图所示:其中每个电阻大小为.这是一个简单的电阻网络,我们可以依据串并联关系计算其两端点间的电阻:(2,解得.2-53本题为等效电容题.(a)图中三电容实为并联;(b)图为中心对称图形,由对称性可知中间的C0等价为断路:整个线路和原来的线路完全一样,线路结构没有改变,各线上电流、各点的电势均无改变.可见,由点2到点n−1这n−2个点是完全等价的.因此,上述n−2个点的电势必然完全相同,从而这些点之间的连线上都没有电流,在考虑本题所问时,这些连线可以全部撤去,于是可得.2-58(1)电阻网络E、G两点间电压可表示为从图中的二极管D的正向伏安曲线中可査得,电压UDI对应的电流I1为25.0mA,此电流就是流过电阻R及由E点流入电阻网络的电流,将数据代入上式得由对称性可得H、A、C、F电势相等,其等效电路如图13-13所示(除两只电阻为外,(2)当引线两端P、Q与电阻网络B、D两点相接时,等效电路仍如图所示,易得通过二极管DD的电流与二极管两端电压有关系代入数据得这是一条联系UD与ID的方程,但是UD与ID又必须满足二极管的伏安特性曲线,在图中绘出上式所述直线,它与曲线的交点的纵坐标即为通过二极管的电流ID,由图中读出由对称性,,,则.2-59本题为图像分析题,同时需要用到“负载功率最大时,路端电压等于电源电动势的一半”的结论(此处证明从略).图像显示电源可视为两个负载电流范围不同的电源``拼接''而成,分段讨论即可.电流小于0.26A时,电源电动势等于6.2V,故路端电压等于3.1V时(由(2)(3)C1电荷变化量C2电荷变化量故由a到b流过K的正电荷.2-62本题为含电容的电路分析题,只需分析始末状态和电量变化即可.通过K的电量即通过R的电量.闭合K前,两电容器不带电;闭合K并稳定后,两电容器靠近电键K的极板上均沿回路列出方程:联立解得代入数据.忽略接地信息的解法得到的答案与此一致,但无视了与大地间的电流和电位.。
程稼夫力学篇详细答案
程稼夫力学篇详细答案Q:为什么是这套书?A:全国中学生物理竞赛委员会指定参考书;北京教育科学研究院组织高等学校资深教授、青年学者、中学特级教师等合作编写,以学有余力的高中生为目标读者,北京大学原副校长沈克琦教授主编。
早年中学物理课本分甲种本、乙种本,因材施教,甲种本适合资优生。
这套《高中物理学》更像是甲种本的高中物理课本,不过它编写水平更高,更用心,更系统,更全面,特别适合学有余力的资优生,被中国物理学会选作物理竞赛的指定参考书,是高中物理竞赛零基础入门的不二之选。
Q:这套书有什么特色?A:中学物理课本和大学普通物理课本之间的桥梁;物理概念准确,物理图像清晰,物理思想深刻;专为中学生编写,中学生看得懂,能消化;图片质量高,版式精美,注重阅读体验。
Q:这套书在物理竞赛辅导中的地位如何?A:这套书与物理竞赛的关系,犹如高中课本与高考的关系。
它是竞赛的纲、本,辅导书可以五花八门,但权威的教材仅此一套。
作为物理竞赛教材,这套书是入门级的,难度最低,适合新高一的竞赛生。
Q:我不太了解主编沈克琦教授。
A:沈克琦,物理学家、教育家。
长期从事物理教学、物理教学研究工作和高等教育行政工作,为办好北京大学物理系、推进理科高等教育改革、提高中学物理教学质量做出了重要贡献,培养造就了一大批优秀物理学人才。
曾任北京大学副校长、烟台大学校长,晚年主编《中国科学技术专家传略》物理学卷。
Q:如何使用这套书?A:初三毕业后(或自学完初中物理课程后),直接以这套书作为高中物理课本进行学习,今后不论是应对自主招生还是走上物理竞赛之路,都会更加游刃有余。
学习这套书的过程中,可用《加拿大物理奥林匹克》刷题。
程稼夫教授的《力学篇》《电磁学篇》和崔宏滨教授的《热学·光学·近代物理学》是物竞经典图书,读者如果一上来就使用这些书,不免会感到很吃力。
《高中物理学》正好可以为此打基础、做铺垫。
Q:这套书的习题多吗?答案详细吗?A:这套书中,每节后面有练习题和思考题,每章后面有习题,分册还有总复习题。