离散数学(第二版)第5章代数系统的基本概念
离散数学第五章
作业:P178 (2);P185 (1), (2)
5.3 半群和独异点
一、半群
1、定义
①具有运算封闭性的代数系统A=〈s,*〉 称为 广群,满足运算封闭、结合律的代数 系统 A=<s,*>,称为半群,这里*是二 元运算。 ②存在么元的半群称为独异点,也称含么 半群, 单位半群,单元半群。
5.3 半群和独异点
二、么元(单位元)和零元
例:代数A=〈{a,b,c}, ○ 〉用下表定义: ○ a b c 特殊元: b是左么元,无右么元; a是右零元,b是右零元, 无左零元; 运算:既不满足结合律,也不满足交换律。 a a a a b b b b c b c a
二、么元(单位元)和零元
例: a)〈I,x〉, I为整数集
5.2 运算及其性质
5.吸收律:设<A,*,△>,若x,y,z∈A有: x*(x △z)=x 称运算*满足吸收律; x △(x * y) =x; 运算 △满足吸收律
例:N为自然数集,x,y∈N,x*y=max{x,y},
x△y=min{x,y}
试证:*,△满足吸收律 证明:x,y∈N, x*(x△y)=max{x,min{x,y}}=x ∴*满足吸收律 x x≥y x<y x≥y =x =x
则么元为1,零元为0
b)〈(s),∪,∩〉 对运算∪,是么元, s是零元,
对运算∩,s是么元 ,是零元。 c)〈N,+〉 有么元0,无零元。
二、么元(单位元)和零元
2、性质
性质1: 设*是s上的二元运算,满足结合律,具 有左么元el,右么元er,则el=er=e 证明: er = el* er = e
闭否,<A,+>,<A,/>呢? 解:2r,2s∈A, 2r x 2s=2r+s∈A (r+s∈N)
离散数学第五章
• 二元运算的性质
1.算律: 设 为S上的二元运算, (1)如果对于任意的x,y∈S,有x y=y x, 则称运算在S上满足交换律.
(2)如果对于任意的x,y,z∈S有 (x y) z=x (y z),则称运算在S上满足结 合律. (3)如果对于任意的x∈S有x x=x,则称 运算在S上满足幂等律.
4.群的性质 (1)群的幂运算规则 设G为群,则G中的幂运算满足: 1) a∈G,(a-1)-1=a. 2) a,b∈G,(ab)-1=b-1a-1. 3) a∈G,anam=an+m,n,m∈Z. 4) a∈G,(an)m=anm,n,m∈Z. 5)若G为交换群,则(ab)n=anbn.
设 和 为S上两个不同的二元运算,
(1)如果对于任意的x,y,z∈S有(x y) z= (x z) (y z)和z (x y)=(z x) (z y),则称 运 算对 运算满足分配律.
(2)如果 和 都可交换,并且对于任意的 x,y∈S有x (x y)=x和x (x y)=x,则称 和 运算满足吸收律.
(5) S为任意集合,则∪、∩、-、 为S 的幂集P(S)上的二元运算,这里∪和∩是初级 并和初级交.
(6) S为集合, SS为S上的所有函数的集合, 则函数的集合运算 为SS上的二元运算.
• 一元运算
1. 定义: 设S为集合,函数f:S→S称为S上的一 个一元运算,简称为一元运算. 2. 例: (1) 求一个数的相反数是整数集合Z,有理数集 合Q和实数集合R上的一元运算. (2) 求一个数的倒数是非零有理数集合Q*,非 零实数集合R*上的一元运算.
3.真子代数 任何代数系统V=<S,f1,f2,…,fk>,其子代数一定 存在. 最大的子代数就是V本身. 如果令V中所有代数常数构成的集合是B,且 B对V中所有的运算都是封闭的,则B就构成 了V的最小的子代数. 这种最大和最小的子代数称为V的平凡的子 代数. 若B是S的真子集,则B构成的子代数称为V的 真子代数.
赵洪銮《离散数学》第五章3-4节
有
b∈S,b2=b*b∈S,…,bi∈S,…,bn∈S,
因S是有限集,j>i,使得bi=bj,令p=j-i, 所以有 bi=bp*bi,显然对于q≥i,有bq=bp*bq,
7
∵p≥1,∴总可以找到k≥1,使得 kp≥i,
对于S中的元素bkp,就有
10
例4:设I是整数集合,m是任意正整数, Zm是由模m的同
余类组成的同余类集,在Zm上定义两个二元运算+m和×m
分别如下: 对于任意的[i],[j] ∈ Zm
[i] +m[j] = [(i+j)(mod m)]
[i] ×m[j] = [(i × j)(mod m)] 试证明在这两个二元运算的运算表中任何两行或两列都不 相同。 咋证呢?
12
3) ∵ [0] +m[i]= [i] +m[0]= [i],
∴ [0]是< Zm, +m >中的幺元。
∵ [1] ×m[i]= [i] ×m[1]= [i], ∴ [1]是< Zm, ×m >中的幺元。 因此,代数系统< Zm, +m >,< Zm, ×m >都是独异点。 由定理5-3.3可知这两个运算表中任何两行或两列都不相同。
5-3
半群
1、广群、半群及其性质
定义 5-3.1 :一个代数系统 <S,*> ,其中 S 是非空集合, * 是S上的一个二元运算,如果运算 *是封闭的,则称代数系统 <S,*>为广群。 例如: ??
1
定义5-3.2:一个代数系统<S,*>,其中S是非空集合,*
离散数学 ch5.1~2代数系统的概念及性质
代数系统:是用代数运算的方法构造数学模型。所 谓代数运算方法就是在建立满足一定规则的运算系 统(集合上定义若干个运算组成的系统)。
5-1 代数结构(系统)的概念
所谓代数结构(系统),无非是有一个运算对象的集合, 和若干个运算,构成的系统。 一. n元运算(n-Ary Operation) 如何定义运算,先看几个我们熟悉的例子: 取相反数运算“-”、集合的补运算“~” 以及N上的“+” I - I P(E) ~ P(E) N2 + N 。 Φ Φ。 (0,0)。 。 0 2。 。 -2 (0,1)。 。 {a} 。 。 {a} 1 1。 。 -1 (0,2)。 0。 。 。 0 2 {b} 。 。 {b} -1。 。 1 。 -2。 。 3 (1,0)。 2 {a,b} 。 。 {a,b} (1,1)。 (1,2)。 可见运算“-”、“~”、“+” 就是个映射(函数)。 ... ... ... ... ... ... ...
六.逆元 设是X上有幺元e 的二元运算,x∈X,如果存在元素 xL-1∈X,使得,xL-1x=e,则称xL-1是x相对的左逆元 如果存在xR-1∈X,使得xxR -1 =e,则称xR -1是x相对的 右逆元。 如果xL-1 = xR-1 =x-1 ,有x-1x=xx-1=e, 称x-1是x相对的 逆元。也称x-1与x互为逆元。如x-1∈X ,也称x可逆。 -1 xR x 例1实数集合R上的+和×,x∈R S R A L -1 = -x 对加+: x (e=0) S S R A L 对乘×: x-1 =1/x (x≠0) (e=1) 从运算表找x的左 逆元 xL-1 : x R R A L S A A L S R 在x列向下找到e后,再向左到 xL-1 L -1 。 L S R A 左表头元素即是xL 从运算表找x的右逆元 xR-1: 求R的逆: R-1 =L 在x行向右找到e后,再向上到上表头元素即是xR-1 。
离散数学(第二版)第5章代数系统的基本概念
(
x11
*x)*
x
2
1
=e*
x
2
1
=
x
2
1
由 x11 x21 ,故唯一性成立。 由逆元定义知,若x-1存在,则x-1*x=x*x-1=e。
证毕
第五章 代数系统的基本概念
定理5.1.4 设*是集合S中的一个可结合的二元运算,且 e为S中对于*的幺元,x有逆元x-1,则(x-1)-1=x。
证明 (x-1)-1=(x-1)-1*e=(x-1)-1*(x-1*x) =((x-1)-1*x-1)*x=e*x=x。 证毕
定理5.1.2 设*是S中的二元运算且θr 与θl分别是对于* 的右零元和左零元,则θr=θl=θ, 使对任意元素x∈S有 x*θ=θ*x=θ, 称元素θ是S中关于运算*的零元(zero)且唯一。
第五章 代数系统的基本概念
证明 因为θr 和θl分别是*的右零元和左零元,故有 θl*θr=θl,θl*θr=θr,所以θr=θl。 令其为θ,有
如,在〈P(A),∪,∩〉
P(A)的加法幺元、 乘法
零元, 称A为P(A)的乘法幺元、 加法零元。
第五章 代数系统的基本概念
定义5.1.5 设*是集合S中的一种二元运算,且S中对于* 有e为幺元,x,y为S中元素。若x*y=e,那么称x为y的左逆 元,y为x的右逆元,若x对于*运算既有左逆元又有右逆元, 则称x是左、 右可逆的。若x左右均可逆,称x可逆。
对于全集E的子集的交“∩
;
在命题集合中,对于析取“∨”运算,重言式是零元; 在命题集合中,对于合取“∧”运算,矛盾式是零元。
【例5.1.8】设S={a,b,c}, S上*运算由运算表(如
表5.1.5所示)确定,那么b是右零元, a是幺元。
离散数学第五章 代数系统基础
第五章 代数系统基础
第五章 代数系统基础
6、逆元 、 是集合A上具有单位元 的二元运算, 设 * 是集合 上具有单位元 e 的二元运算,对于元 , 素 a ∈ A,若 ∃一个元素 a l -1∈A,使得 a l -1* a = e , , 则称元素a 是左可逆的, 则称元素 对于运算 * 是左可逆的,并称 a l -1为 a 的 左逆元; 左逆元;若 ∃一个元素 a r -1∈A,使得 a * a r -1 = e , , 则称元素a 对于运算 * 是右可逆的,并称 r -1为a的 是右可逆的,并称a 则称元素 的 右逆元; 右逆元;若 ∃一个元素 a -1∈A ,使得 a -1* a = a * a -1 = e ,则称元素 a 对于运算 * 是可逆的,并称 -1为 a 是可逆的,并称a 的逆元。 的逆元。 显然, 的逆元, 也为a 显然,若a -1为 a 的逆元,则 a 也为 -1的逆元
第五章 代数系统基础
例7:代数系统 (ρ( E), ∼) 与 (ρ( E),∪) 的类型不相同。 : ∪ 的类型不相同。
第五章 代数系统基础
3、子系统(或子代数) 、子系统(或子代数) 定义: 定义:设 ( S ,
1
,
2
,⋯ ,
i
n
) 是代数系统, 是代数系统,
S ′ 是 S 的在每一运算
下 ( i = 1, 2, …,n ) ,
上述运算为 °( (x, y) ) = x · y (mod3),其中 · 是普通乘法 ,
第五章 代数系统基础
A={0, 1}, 二元运算 * 的定义见下表。 的定义见下表。 * 0 1 0 0 0 1 0 1
上述运算*是集合 , 上的逻辑合取运算 上述运算 是集合{0,1}上的逻辑合取运算 是集合
离散数学中代数系统知识点梳理
离散数学中代数系统知识点梳理离散数学作为一门数学学科,研究的是离散化的对象和结构。
代数系统作为离散数学的一个重要分支,是对数学对象的代数性质进行研究的一种形式化工具。
在离散数学中,代数系统的概念和相关知识点是非常重要的。
一、代数系统的基本概念代数系统是指由集合和一组运算构成的数学结构。
其中,集合是代数系统中最基本的概念,可以是有限集或无限集;运算是指对集合中的元素进行操作并得到新的元素。
代数系统主要包括代数结构、代数运算和代数性质三个方面。
1. 代数结构:代数结构由集合和一组运算构成,可以包括加法、减法、乘法、除法等。
常见的代数结构有群、环、域等。
2. 代数运算:代数运算是指对集合中的元素进行操作,可以是二元运算也可以是多元运算。
常见的代数运算有加法、乘法、幂运算等。
3. 代数性质:代数系统具有一些特定的性质,如封闭性、结合律、交换律、单位元素、逆元素等。
二、代数系统的分类根据代数运算的性质,代数系统可以分为群、环、域和向量空间等不同类型。
1. 群:群是一种代数系统,具有封闭性、结合律、单位元素和逆元素等性质。
群分为有限群和无限群,可以是交换群或非交换群。
2. 环:环是一种代数系统,具有封闭性、结合律、交换律和单位元素等性质。
环分为有限环和无限环,可以是可除环或非可除环。
3. 域:域是一种代数系统,具有封闭性、结合律、交换律、单位元素、逆元素和分配律等性质。
域是一种完备的代数系统,可以进行加、减、乘、除运算。
4. 向量空间:向量空间是一种代数系统,具有封闭性、结合律、交换律、单位元素、逆元素和分配律等性质。
向量空间是一种具有线性结构的代数系统。
三、代数系统的应用代数系统作为离散数学的一个重要分支,在计算机科学、密码学、通信工程等领域有着广泛的应用。
1. 计算机科学:代数系统在计算机科学中起到重要的作用,比如在数据库设计、编译原理、算法设计等方面都有应用。
代数系统可以描述和分析计算机系统的运行和性能。
离散数学第5章 代数系统
代数系统的性质
十.吸收律
设和 都是X上的二元运算,若对任何x,y∈X, 有
x(xy)=x
则与 满足吸收律。
和
x(xy)=x
例如
Hale Waihona Puke 集合的∪与∩满足吸收律。软件学院
a)
b)
c c a b
c)
c c c c
d)
c c c c
a a a b b c c
b b c a
a a a b b c c
软件学院
代数系统基础
就专业知识而言,计算机学科中要培养学生三个能力: 理论抽象设计 理论:就是计算机科学中各种理论课。 抽象:要把实际问题抽象成数学模型(数学系统)。 设计:系统设计、程序设计。 确定数学模型,需要了解有哪些代数结构(系统)。
另外,抽象代数可以培养学生的抽象逻辑思维能力。
本章主要讨论:代数结构(系统)的概念,运算的性质、代数 结构(系统)的同构、半群、独异点、群、环、域等。
软件学院
同态与同构
设<X,>,<Y, >是两个代数系统,和 都是二元运算,
如果存在映射f:XY,使得对任何x1 ,x2∈X,有
f(x1x2)=f(x1)f(x2) --------此式叫同态关系式 则称 f是从<X,>到<Y, >的同态映射,简称这两个代数
系统同态。
并称<f(X), >为<X,>的同态像。 如果f是满射的,称此同态f是满同态。 如果f是单射的,称此同态f是单同态。 如果f是双射的,称<X,>与<Y,>同构,记作(X,)≌(Y,)。 f是<X,>到 <X,>的同态(同构),称之为自同态(自构)。
离散数学讲解第五章
2018/12/20
20
例5 *
e a b c
设G= {a,b,c,e}, * 是G上的二元运算, e
e a b c
a
a e c b
b
b c e a
c
c b a e
a*=b*a=c,
b*c=c*b=a, a*c=c*a=b <G;*>是一阿贝尔群,但它不
是循环群,一般称这个群为
2018/12/20 2
例3 设S={|是集合A上的关系},对于关系的复合运 算可构成代数系统 <S; >,<S;>是半群。
若F={f |f :AA},则对于函数的复合运算,代
数系统<F;>也是半群。 对任意 a∈S ,定义 an+1=an*a a1=a (n=1,2,……) (* )
例7 对于半群 <S;*>的任一元素a S ,令集合 T={a,a2,a3,…}
<T;*>是<S;*>的子半群。
2018/12/20 6
定义5-6 设<S;*>是一独异点,若<T;* >是<S;*>的子代
数,且单位元 e T,则称<T;*>是<S;*>的子独 异点。 例8 对于独异点<Z;+ > , 子集N2, N3, N4, … ,它们均不 能构成<Z;+>的子独异点, 令Z2={2n|nZ}, Z3={3n|nZ}, Z4={4n|nZ} 则<Z2 ;+ >, <Z3 ;+ >, <Z4 ;+ >都是 <Z ;+>的子独异点。
离散数学 第五章 代数系统
5.1 代数系统的基本概念
• 当n = 1时,称f为一元运算,当n = 2时,称f为二元 运算,等等。
• 运算的例子很多。例如,在数理逻辑中,否定是 命题集合上的一元运算,合取和析取是命题集合 上的二元运算;在集合论中,集合的补是集合上 的一元运算,并与交是集合上的二元运算;在实 数算术中,加、减、乘、除运算都是二元运算。
可交换的二元运算,如果对于任意的x,yA,都
有
x*(x⊙y)=x 和 x⊙(x*y)=x
• 即(x)(y)(x,yA→x*(x⊙y)=x∧x⊙(x*y)=x),则称 运算*和运算⊙满足吸收律,或称*对于⊙以及⊙ 对于*是可吸收的。
5.2 运算及其性质
• 例5.9 给定<N,*,⊙>,其中N是自然数集合,* 和⊙定义如下: 对任意a,bN有a*b = max(a,b),a⊙b = min(a, b),试证,*和⊙互为吸收的。
1*(0⊙1)=1*0=1,而 (1*0) ⊙(1*1)=1⊙0=0
5.2 运算及其性质
• 形如表5-3的表常常称为运算表或复合表,它由运 算符、行表头元素、列表头元素及复合元素四部 分组成。对于集合的基数很小,特别是2或3时, 代数系统中运算常常用这种表给出。优点是简明 直观,一目了然。
• 性质5:吸收律 设*,⊙是定义在集合A上的两个
(1)x+yZ,
(封闭性)
(2)x+y=y+x
(交换律)
(3)(x+y)+z=x+(y+z)
(结合律)
• 容易找到与<Z,+>具有相同运算规律的一些代数 系统,如表5-2所示。
5.1 代数系统的基本概念
集合
离散数学第5章代数系统(学生用)
运算的分类
一元运算
只对一个元素进行操作的 运算。
二元运算
对两个元素进行操作的运 算。
n元运算
对n个元素进行操作的运算。
运算的实例
加法
是二元运算,满足结合性和交换性,不满足 幂等性和消去性。
指数运算
是二元运算,满足结合性和交换性,不满足 幂等性和消去性。
乘法
是二元运算,满足结合性和交换性,满足幂 等性和消去性。
离散数学第5章代数系统( 学生用)
• 代数系统的基本概念 • 代数系统的运算 • 代数系统的同态与同构 • 代数系统的子代数与商代数 • 代数系统的应用
01
代数系统的基本概念
定义与性质
定义
代数系统是一个有序的三元组 (A,F,D),其中A是一个非空集合, F是A上的一组二元运算,D是A上 的一组一元运算。
同构实例
例如,矩阵代数中的矩阵集合M与向量空间中的向量集合V之间存在一个一一对应的映射f,使得M中的每一个元 素x经过f的映射后,都对应于V中的某个元素y,并且M中的加法、数乘和乘法运算也对应于V中的加法、数乘和 外积运算,因此M与V同构。
04
代数系统的子代数与商代数
子代数与商代数的定义
子代数
如果代数系统的一个非空子集在给定的运算下仍然是一个代 数系统,则称这个子集为原代数系统的子代数。
同构性质
同构关系具有自反性、对称性和传递性,即如果A同构于B,那么B一定同构于A;如 果A同构于B,B同构于C,那么A一定同构于C。
同态与同构的实例
同态实例
例如,整数集合Z与有理数集合Q之间存在一个一一对应的映射f,使得Z中的每一个元素x经过f的映射后,都对应 于Q中的某个元素y,并且Z中的加法运算也对应于Q中的加法运算,因此Z与Q同态。
《离散数学》第5章 代数系统简介
在 M n (R) 上,对于矩阵乘法只有可逆矩阵 M M n (R) 存在逆元
M 1 , M M 1 E 和 M 1 M E 成立, 使得 其中 E 为 n 阶 单位矩阵.
9、设 为 S 上的二元运算,如果对任意的 x, y, z S 满足以下条件 (1)若 x y x z 且 x 不是零元,则 y z , (2)若 y x z x 且 x 不是零元,则 y z , 就称运算 满足消去律
例如: 在幂集 P ( S ) 上的 和 是满足吸收律的.
若 算“”满足左分配律; b c a b a c a , 则运算“ ”对运算“ ”满足右分配律.若左右分配律 均满足, 称运算“ ”对运算“ ”满足分配律. 则
5、 设 是 A 上的二元运算,若存在 a A ,有
1、若 a b b a ,则称运算“ ”在A上是可换的 ,或 者说运算“ ”满足交换律.
例如:在实数集R上,通常的加法和乘法都满足交换律,但减法 和除法不满足交换律.因为2和4都是实数.因为2-4≠4-2.在幂集 P(S)上 , , 都满足交换律,但相对补不满足交换律.
2、若a b c a b c,则称运算“*”在A上是可结合 的.或称“*”满足结合律.
这些相当于前缀表示法,但对二元运算用得较多的还是 a1 a2 b .我们在本书中所涉及的代数运算仅限于一元. 和二元运算.
如果集合S是有穷集,S上的一元和二元运算也可以用 运算表给出.表5―1和表5-2是一元和二元运算表的一 般形式.
表5-1
表5-1
例2、(2) 设 S 0,1, 2,3, 4 ,定义 S 上的两个 二元运算如下:
离散数学 5.2 代数系统及其子代数、积代数
f(1)+f(1) = f((1)(1))= f(1)=0 从而 f(1)=0,又有 f(1)=0,这与 f 的单射性矛盾.
22
14
同态映射的实例(续)
例3 设V1=<Q,+>, V2= <Q*,>,其中Q*= Q{0},令 f :QQ*, f(x)=ex
那么 f 是V1到V2的同态映射,因为x, yQ有 f(x+y) = ex+y = exey = f(x) f(y).
不难看出 f 是单同态.
15
同态映射的实例(续)
例 V1=<R,+>,V2=<R+, ∙ > f : R R+, f(x)=ex
11
例题
例1 V=<R*,>, 判断下面的哪些函数是V 的自同态? (1) f(x)=|x| (2) f(x)=2x (3) f(x)=x2 (4) f(x)=1/x (5) f(x)= x (6) f(x)=x+1
例4 V1=<Z,+>,V2=<Zn, >,Zn={0,1, … , n-1}, 是模 n 加. 令
f:Z→Zn,f(x) = (x)mod n 则 f 是V1到 V2 的满同态. x, y∈Z有
f(x+y) = (x+y)mod n = (x)mod n (y)mod n = f(x) f(y)
2
实例
1. <N,+>, <Z,+,·>, <R,+,·>是代数系统, + 和 ·分别表示普通加法和乘法.
离散数学代数系统总结
离散数学代数系统总结离散数学是数学的一个分支,主要研究离散对象和离散结构。
而代数系统是离散数学的一个重要分支,它研究的是一类具有特定性质的运算集合。
在这篇文章中,我们将从代数系统的基本概念、性质和应用几个方面对离散数学中的代数系统进行总结。
一、代数系统的基本概念代数系统是指一个非空集合A,以及在这个集合上定义的一个或多个运算。
根据运算的性质,代数系统可以分为不同的类型,包括群、环、域等。
其中,群是最基本的代数系统,它具有封闭性、结合律、单位元、逆元等性质。
环则在群的基础上增加了乘法运算,并满足了分配律。
域是环的一种扩充,它除了满足环的性质外,还具有乘法逆元。
二、代数系统的性质1. 封闭性:代数系统中的运算结果仍属于该系统,即对于任意a、b∈A,a运算b的结果仍然属于A。
2. 结合律:对于代数系统中的任意元素a、b、c,(a运算b)运算c 与a运算(b运算c)的结果相同。
3. 单位元:代数系统中存在一个元素e,对于任意元素a,a运算e与e运算a的结果均为a。
4. 逆元:代数系统中的每个元素a都存在一个逆元,使得a运算它的逆元等于单位元。
5. 交换律:对于代数系统中的任意元素a、b,a运算b与b运算a 的结果相同。
这些性质是代数系统的基本特征,不同类型的代数系统在这些性质上有所区别,比如群具有结合律和单位元,但不一定满足交换律。
三、代数系统的应用代数系统在数学及其他学科中有着广泛的应用。
以下是几个代数系统应用的例子:1. 编码理论:代数系统的运算可以用于编码和解码信息,例如循环冗余校验码(CRC)就是通过代数系统中的运算实现数据校验。
2. 密码学:代数系统中的数学运算被广泛应用于密码学中,用于加密和解密信息,保护数据的安全。
3. 图论:代数系统的概念和性质在图论中有着重要的应用,例如邻接矩阵和关联矩阵可以用于描述和分析图的结构和特性。
4. 计算机科学:代数系统在计算机科学中有着广泛的应用,例如布尔代数在逻辑电路设计和逻辑编程中的应用。
《离散数学》代数系统--代数系统的基本概念 ppt课件
解:(1) 封闭、可交换、等幂、幺元是b、无零元
b-1=b a-1=c c-1=a
(2) 封闭、不可交换、无等幂性、幺元是a、
无零元,d是左零元、
a-1=a b-1=b c-1=b b-1=c
23
P184
作业
(1)(2)
24
16
定理2:*是A上的二元运算,且在A中有关于*的左零元l和右零元 r,则l = r = ,且A中零元是唯一的。
证明:(1) r = l * r = l = (2) 设’也是A中关于*的零元,则 * ’= ’ 又∵ 是A中关于*的零元, ∴ * ’= ∴ = ’
定理3:设<A,*>是一个代数系统,且 | A |>1,若<A,*>中存在幺元e 和零元,则e ≠ 。 证明: 假设 = e ,则 对于A中任意元素,有x=e*x= *x= =e 即A中所有元素都是 ,也都是e,所有元素都相同, ∴ | A |=1 与已知矛盾,假设错 ∴e≠
例:代数系统<I,+>满足消去律。
11
代数系统的组成
N元运算法则
如+、-
×………
特异元素
如×中的1和0
代数载体
(集合:如实数集、整数集)
代数系统
12
4. 代数常元
幺元
定义3:设*是集合A上的二元运算 若elA,对于xA ,都有el*x=x,则称el为A中 关于运算*的左幺元; 若erA,对于xA ,都有x*er=x,则称er为A中 关于运算*的右幺元; 若eA,对于xA ,都有e*x=x*e=x,则称e为A 中关于运算*的幺元。
15
零元
定义4:设*是集合A上的二元运算 若lA,对于xA ,都有l*x=l ,则称l为A中关于运 算*的左零元; 若rA,对于xA ,都有x*r=r ,则称r为A中关于 运算*的右零元; 若A,对于xA ,都有*x=x*=,则称为A中关于 运算*的零元。
离散数学 代数系统
二元运算的性质
定义5.7 设°和∗为S上两个可交换的二元运算, 定义5.7 上两个可交换的二元运算, 上两个可交换的二元运算 如果对于任意的x,y∈ , 如果对于任意的 ∈S,都有 x∗(x°y)=x ∗ ° = x°(x∗y)=x ° ∗ = 则称运算° 满足吸收律 吸收律。 则称运算°和∗满足吸收律。
说 明
不是自然数集合N 不是自然数集合N上的二元运算
验证一个运算是否为集合S上的二元运算主要考虑两点: 验证一个运算是否为集合S上的二元运算主要考虑两点: 不封闭。 对减法不封闭 称N对减法不封闭。 中任何两个元素都可以进行这种运算, S中任何两个元素都可以进行这种运算,且运算的结果 是唯一的。 是唯一的。 中任何两个元素的运算结果都属于S S中任何两个元素的运算结果都属于S,即S对该运算是 封闭的。 封闭的。
ai ∅ {1} {2} {1,2}
~ ai {1,2} {2} {1} ∅
{2} {1,2}
{1,2} {1,2} {2}
例5.5
上的二元运算° 例5.5 设S={1,2,3,4},定义 上的二元运算°如下 ,定义S上的二元运算 x ° y=(xy) mod 5, ∀x,y∈S = , , ∈S
离散数学
第5章 代数系统
本章说明 本章的主要内容
–一元和二元运算定义及其实例 一元和二元运算定义及其实例 –二元运算的性质 二元运算的性质 –代数系统定义及其实例 代数系统定义及其实例 –子代数 子代数
与后面各章的关系
–是后面典型代数系统的基础 是后面典型代数系统的基础
本章内容
5.1 二元运算及其性质 5.2 代数系统 本章小结 作 业
二元与一元运算的算符
可以用° 可以用°、∗、·、⊕、⊗、∆等符号表示二元或一 、 元运算,称为算符 算符。 元运算,称为算符。
离散数学 第五章:2代数系统及其子代数和积代数 3代数系统的同态与同构
0 = 0⋅ n ∈nZ,
6
三. 代数系统的积代数
定义5- 定义 -14 其中 ∗ 和 设代数系统 V =< S1,∗> 和 1
V2 =< S2 , >
积代数是一个代数系统 都是二元运算 。V和 V2 的积代数是一个代数系统 1
其中 V ×V2 即 V1 ×V2 =< S , ⊕> ,其中 1
S = S1 × S2 ={(x1, y1)| x1 ∈S1, y1 ∈S2} 是二元运算, ⊕是二元运算,定义为对任意的 ( x1, y1 ),( x2 , y2 ) ∈ S
1
, 2 ,⋯,
k
满足B S,则称 则称V >满足B⊂S,则称V’是
5
例1. 设 V =< Z , +,0 >, 令
nZ = {nz z ∈Z} , n 为自然数, 为自然数,
证明: nZ是 的子代数. 证明: nZ是V的子代数. 证明: 证明: 任取nZ中的两个元素 任取nZ中的两个元素nz1, nz2 (z1, z2 ∈Z), 则有
.
11
3个代数系统的积代数: 个代数系统的积代数:
例如 V
=< Z, +,0 >, 那么有
V ×V ×V =< Z × Z × Z,∗, 0,0,0 >, 并且对任意的 < x1, y1, z1 >, < x2 , y2 , z2 >∈Z × Z × Z, 有
< x1, y1, z1 >∗< x2 , y2 , z2 >=< x1 + x2 , y1 + y2 , z1 + z2 >
< Z , +, 0 >
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 代数系统的基本概念
证明 因为er和el分别是*的右幺元和左幺元,故有 el*er=el,el*er=er,所以er=el。 令其为e,有
(b a)*(b b)=a*b=b (a a)*(a b)=a*a=a (b a)*(b a)=a*a=a (b b)*(b b)=b*b=a (a a)*(a a)=a*a=a (a b)*(a b)=a*a=a
第五章 代数系统的基本概念
(3) b*(a b)=b*a=b
(b*a) (b*b)=b a=a
第五章 代数系统的基本概念
表5.1.1
表5.1.2
第五章 代数系统的基本概念
事实上,对于表5.1.1,通过观察我们可看出其运算为 (〈x,y 〉)=x·y(mod 3)
其中,“·”是普通乘法。 而对于表5.1.2,此时的“*”运算应是在集合{0,1}上 的∧(逻辑合取运算符)。 下面介绍二元运算的性质。
【例5.1.3】加法、 乘法运算是自然数集上的二元运算,
减法和除法便不是。但是减法是有理数集、 实数集上的二
元运算,除法却仍不是。加法、 乘法满足结合律、 交换律,
乘法对加法、 减法满足分配律,减法不满足这些定律。乘
+”运算满足分配律(对“-”也满足)。但加
法“+”
第五章 代数系统的基本概念
【例5.1.4】设A是集合,在A的幂集P(A)上的二元运算 并∪、 交∩满足交换律、 结合律、 吸收律、 幂等律且彼此 满足分配律。
第五章 代数系统的基本概念
第五章 代数系统的基本概念
第五章 代数系统的基本概念
(2) A为集合,P(A)为其幂集。f: P(A)×P(A)→P(A)。 f可 以是∩、 ∪、 -、
(3) A={0,1}。f: A×A→A。f可以是∧、 ∨、 →、 (4) AA={f|f: A→A}。“。(复合)”是AA上的二元运算。 当A是有穷集合时,运算可以用运算表给出。如A={0, 1,2,3,4,5},二元运算“。”的定义见表5.1.1。
第五章 代数系统的基本概念
定义5.1.2 设*
S上的二元运算。
(1) x y z(x,y,z∈S→x*(y*z)=(x*y)*z),则称“*” 运算满足结合律。
(2) x y(x,y∈S→x*y=y*x),则称“*”运算满足 交换律。
(3) 则称“* z∈S→(y
x y z(x,y,z∈S→x*(y z)=(x*y) (x*z)),
第五章 代数系统的基本概念
一般地,二元运算用算符 。,* ‘,·,Δ,◇等等表示, 并将其写于两个元素之间,如Z×Z→Z的加法:
F(〈2,3〉)=+(〈2,3〉)=2+3=5 注意到Ran f A,即运算结果是A中的元素,这称为运 算的封闭性。另外,运算是函数,要具备函数所具有的对每 一个自变元有唯一的像的特性。
故*
又由a*(a b)=a*a=a 及上面(1)、 (2)、 (3)
*
满足吸收律。
*不满足幂等律。
下面我们来定义与集合A中的二元运算有关的集合A中
的特异元素。
第五章 代数系统的基本概念
定义5.1.3 设*是集合S中的一种二元运算,如果存在 er∈S(el∈S)且对任意元素x∈S 均有x*er=x(el*x=x),则称元素 er(el)为S中关于运算*的右幺元(左幺元)或右单位元(左单位 元)。
(2) 左、 右幺元,幺元,左、 右零元,零元都是依赖于
运算的。例如,在代数结构〈 N,+,·〉中,0关于数加 +
是幺元,关于数乘·是零元; 1关于·是幺元,关于+则既非幺
元又非零元。又如在P(A)
∪的幺元,是关于∩
的零元; A是关于∪的零元,又是关于∩的幺元。
第五章 代数系统的基本概念
(3) 今后,在不致造成混淆时,特殊元素是关于什么运
定理5.1.2 设*是S中的二元运算且θr 与θl分别是对于* 的右零元和左零元,则θr=θl=θ, 使对任意元素x∈S有 x*θ=θ*x=θ, 称元素θ是S中关于运算*的零元(zero)且唯一。
第五章 代数系统的基本概念
证明 因为θr 和θl分别是*的右零元和左零元,故有 θl*θr=θl,θl*θr=θr,所以θr=θl。 令其为θ,有
显然对于二元运算*,若*是可交换的,则任何左(右)可 逆的元素均可逆。
第五章 代数系统的基本概念
定理5.1.3 设*是集合S中的一个可结合的二元运算,且 S中对于*有e为幺元,若x∈S是可逆的,则其左、 右逆元相 等,记作x-1,称为元素x对运算*的逆元(inverse elements)且 是唯一的。(x的逆元通常记为x-1; 但当运算被称为“加法运 算”(记为+)时, x的逆元可记为-x。)
我们注意到,关于同一运算可能同时有幺元和零元,甚 至可能有这样的元素,它关于同一运算既是左(右)幺元,又 是右(左)零元,例如表5.1.5第一行(不计表头)改为三个a时, 那么*运算有左零元a和右幺元a。
第五章 代数系统的基本概念
我们强调以下几点:
(1) 左、 右幺元,幺元,左、 右零元,零元都是常元。
x*θ=θ*x=θ
设另有一零元为右零元θ′,那么
θ=θ*θ′=θ′
故θ对S中的*运算是唯一的零元。
证毕
同样,需强调零元是针对于哪个运算的。
第五章 代数系统的基本概念
【例5.1.7】在实数集R中,对加法“+”运算,没有零元;
在实数集R中,对乘法“×”运算,0是零元;
对于全集E的子集的并“∪”运算,E是零元;
x*e=e*x=x 设另有一幺元为右幺元e′,那么
e=e*e′=e′ 故e对*是唯一的幺元。
证毕
显然,对于可交换的二元运算来说,左幺元即为右幺元,
反之亦然。因此对于可交换的二元运算,左(右)幺元即幺元。
另外,我们必须强调是对哪一个运算而言的幺元。
第五章 代数系统的基本概念
【例5.1.6】在实数集R中,对加法“+”运算,0是幺元;
第五章 代数系统的基本概念
证明 设xr 和xl分别是x对*运算的右逆元和左逆元,故 有
xl*x=x*xr=e 由于*可结合,于是
xl=xl*e=xl*(x*xr)=(xl*x)*xr=e*xr=xr
故xl=xr。
假设
x11
,x
1 2
均是x对*的逆元,则
x11 = x11 *e=x11 *(x* x11 )=
在实数集R中,对乘法“×”运算,1是幺元;
对于全集E的子集的并“∪
对于全集E的子集的交“∩”运算,E是幺元; 在命题集合中,对于析取“∨”运算,矛盾式是幺元;
在命题集合中,对于合取“∧”运算,重言式是幺元;
在AA={f|f:A→A}
IA是幺元。
第五章 代数系统的基本概念
定义5.1.4 设*是集合S中的一种二元运算,如果存在 θr∈S(θl∈S)且对任意元素x∈S均有x*θr=θr(θl*x= θl),则称元素θr(θl)是S中关于运算*的右零元(左零元)。
对于全集E的子集的交“∩
;
在命题集合中,对于析取“∨”运算,重言式是零元; 在命题集合中,对于合取“∧”运算,矛盾式是零元。
【例5.1.8】设S={a,b,c}, S上*运算由运算表(如
表5.1.5所示)确定,那么b是右零元, a是幺元。
第五章 代数系统的基本概念
表 5.1.5
第五章 代数系统的基本概念
元。
定理5.1.5 设*是S上的二元运算,e为幺元,θ为零元,
并且|S|≥2,那么θ无左(右)逆元。
证明 首先证 θ≠e,否则θ=e,则S中另有元素a,a不是
幺元和零元,从而 θ=θ*a=e*a=a
与a不是零元矛盾,故θ≠e得证。
第五章 代数系统的基本概念
再用反证法证θ无左(右)逆元,即可设θ有左(右)逆元x, 那么
第五章 代数系统的基本概念
(4) 在P(A)中,对于∪
B(B≠ )均无逆元; 对于∩运算,其幺元为A,每个元素
B(B≠A)均无逆元。
(5) 在集合AA(其中 AA ={f|f: A→A})
合成运算,恒等函数IA为幺元,从而A中所有双射函数都有 逆元,所有单射函数都有左逆元, 所有满射函数都有右逆
如,在〈P(A),∪,∩〉
P(A)的加法幺元、 乘法
零元, 称A为P(A)的乘法幺元、 加法零元。
第五章 代数系统的基本概念
定义5.1.5 设*是集合S中的一种二元运算,且S中对于* 有e为幺元,x,y为S中元素。若x*y=e,那么称x为y的左逆 元,y为x的右逆元,若x对于*运算既有左逆元又有右逆元, 则称x是左、 右可逆的。若x左右均可逆,称x可逆。
(
x11
*x)*
x
2
1
=e*
x
21=x Nhomakorabea2
1
由 x11 x21 ,故唯一性成立。 由逆元定义知,若x-1存在,则x-1*x=x*x-1=e。
证毕
第五章 代数系统的基本概念
定理5.1.4 设*是集合S中的一个可结合的二元运算,且 e为S中对于*的幺元,x有逆元x-1,则(x-1)-1=x。
证明 (x-1)-1=(x-1)-1*e=(x-1)-1*(x-1*x) =((x-1)-1*x-1)*x=e*x=x。 证毕
算的不再一一指出,但当有两个或两个以上的运算时仍将对
此作出申明。这时,常常出现这样的情况,一个运算与数加
的性质接近,另一个运算与数乘的性质接近,为了简明、