全等三角形复习课 优秀教学设计

合集下载

中考数学全等三角形的复习课教学设计

中考数学全等三角形的复习课教学设计

全等三角形复习〔第1课时〕泰安六中苏晓林一、教材分析:本节课是全等三角形全章复习课,首先帮助学生理清全等三角形全章知识脉络,进一步了解全等三角形概念,理解性质、判定与运用;其次对学生所学全等三角形知识进展查缺补漏,再次通过拓展延伸以习题训练,提高学生综合运用全等三角形解决问题能力,并对中考对全等三角形考察方向有一个初步感知,为以后复习指明方向。

在练习过程中,要注意强调知识之间相互联系,使学生养成以联系与开展观点学习数学习惯.二、学情分析在知识上,学生经历全等三角形全章学习,对全等三角形性质、判定以及应用根本掌握,初步具有整体认识,但由于间隔时间有点长所以遗忘较多,全等三角形是学习初中几何根底与工具也是中考必考内容。

对全等三角形综合应用以及全章知识脉络形成正是以上各种能力综合表达,教学中要充分发挥学生主体作用,通过复习学生在全等三角形计算、证明对学生推理能力、发散思维能力与概括归纳能力将有所提高.三、教学目标1.进一步了解全等三角形概念,掌握三角形全等条件与性质;会应用全等三角形性质与判定解决有关问题.2.在题组训练过程中,引导学生总结出全等三角形解题模型,培养学生归纳总结能力,使学生体会数形结合思想、转化思想在解决问题中作用.3.培养学生把已有知识建立在联系思维习惯,并鼓励学生积极参与数学活动,在活动中学会思考、讨论、交流与合作。

四、教学重难点重点:全等三角形性质与判定应用.难点:能理解运用三角形全等解题根本过程。

五、教法与学法以“自助探究〞为主,以小组合作、练习法为辅;在具体教学活动中,要给予学生充足时间让学生自主学习,先形成自己全等三角形知识认知体系,尝试完成练习;给予学生充足空间展示学习结果,通过讨论交流、学生互评、教师最后点评方式实现本节课教学目.六、教具准备多媒体课件,七、课时安排2课时八、教学过程本节课是全等三角形全章复习课,本节课我主要采用学生“练后思〞模式,帮助学生搜整?全等三角形?全章知识脉络,建构知识网络,通过根底训练、概念变式练习、典例探究、拓展应用等活动进展查缺补漏与拓展延伸;借助“根底了题目-变式题目-典型题目-拓展题目〞五个梯次递进教学活动达成教学目标,使用多媒体课件展示教学思路,引导学生思维方向,实现课堂教学最优化。

第十二章全等三角形章末复(教案)

第十二章全等三角形章末复(教案)
6.章末总结与拓展
-对全等三角形的知识点进行梳理
-引导学生探讨全等三角形在其他学科领域的应用
二、核心素养目标
1.培养学生的逻辑推理能力:通过全等三角形的判定与性质的探讨,使学生能够运用逻辑思维进行推理,形成严谨的证明过程。
2.提升学生的空间想象力:通过全等三角形的作图与分析,培养学生的空间想象力,提高对几何图形的理解与识别能力。
2.全等三角形的性质
-对应角相等
-对应边相等
3.应用全等三角形解决实际问题的方法
-识别图形中的全等三角形
-利用全等三角形的性质进行计算
4.全等三角形的作图
-已知两边一角作全等三角形
-已知两角一边作全等三角形
5.综合习题
-设计具有代表性的习题,巩固全等三角形的判定与性质
-结合生活实际,设计应用题,培养学生的实际应用能力
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解全等三角形的基本概念。全等三角形是指在大小和形状上完全相同的两个三角形。它是解决几何问题的重要工具,广泛应用于工程、建筑等领域。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了全等三角形在实际中的应用,以及它如何帮助我们解决问题。
-例:给出一个三角形ABC,其中AB=AC,点D是BC上的一个点,且BD=DC。要求证明三角形ABD全等于三角形ACD。
-突破方法:引导学生观察图形,识别出已知信息,然后选择合适的判定方法(SSS或SAS)进行证明。
-难点二:全等三角形的作图。学生在根据给定条件作全等三角形时,可能会对如何准确画出全等图形感到困难。
6.培养学生的几何审美观念:通过对全等三角形的学习,使学生感受几何图形的和谐美,提高对几何美的鉴赏能力。

全等三角形的复习课教学设计

全等三角形的复习课教学设计

全等三角形的复习课教学设计一、教学内容本节课的教学内容为全等三角形的性质及判定。

教材选用为人教版《数学》五年级下册第二章第三节“全等三角形”。

内容包括:全等三角形的定义、全等三角形的性质、全等三角形的判定方法(SSS、SAS、ASA、AAS)。

二、教学目标1. 理解全等三角形的定义,掌握全等三角形的性质,能运用全等三角形的性质解决实际问题。

2. 掌握全等三角形的判定方法,能运用判定方法判断两个三角形是否全等。

3. 培养学生的空间想象力,提高学生的逻辑思维能力。

三、教学难点与重点重点:全等三角形的定义、性质及判定方法。

难点:全等三角形的判定方法的运用,以及如何根据全等三角形的性质解决实际问题。

四、教具与学具准备教具:黑板、粉笔、三角板、多媒体设备。

学具:练习本、彩笔、剪刀、胶水。

五、教学过程1. 情景引入教师展示两幅完全相同的三角形图案,提问:“请大家观察这两幅图案,它们有什么特点?”引导学生发现两幅图案的三角形完全相同,从而引出全等三角形的概念。

2. 知识讲解(2)全等三角形的性质:教师通过多媒体展示全等三角形的性质,引导学生发现全等三角形对应边相等、对应角相等。

(3)全等三角形的判定方法:教师讲解SSS、SAS、ASA、AAS四种判定方法,并通过例题展示判定过程。

3. 随堂练习教师给出练习题,学生独立完成,检验自己对全等三角形概念、性质和判定方法的理解。

4. 例题讲解教师选取一道典型例题,讲解解题思路,引导学生运用全等三角形的性质和判定方法解决问题。

5. 实践环节学生分组进行实践,利用全等三角形的性质和判定方法,解决实际问题。

教师巡回指导,解答学生疑问。

6. 课堂小结7. 作业布置教师布置作业,包括课后练习题和实际问题解决题。

六、板书设计板书内容:全等三角形的定义、性质、判定方法。

七、作业设计1. 课后练习题:(1)判断题:a. 全等三角形的对应边相等。

()b. 全等三角形的对应角相等。

()c. 如果两个三角形的一边和两个角分别相等,那么这两个三角形全等。

全等三角形的判定复习教学设计

全等三角形的判定复习教学设计

全等三角形的判定复习教学设计教学目标:1.知识目标:学生能够理解全等三角形的概念,并掌握全等三角形的判定方法。

2.能力目标:培养学生的逻辑推理能力和问题解决能力。

3.情感目标:培养学生对数学的兴趣,增强他们对数学的自信心。

教学重点和难点:1.重点:全等三角形的判定方法。

2.难点:学生掌握并运用判定方法进行实际问题的解决。

教学准备:1.教学材料:教科书、练习册、白板、彩色笔。

2.教学方法:讲授、互动、实践。

教学过程:Step 1 导入新知(10分钟)1.引入问题:请同学们回顾一下,什么是全等三角形?全等三角形有哪些性质?2.引导学生回答,并给出全等三角形的定义。

3.引入课题:本节课我们将复习全等三角形的判定方法,以及如何应用这些方法解决实际问题。

Step 2 示范教学(15分钟)1.教师给出两个全等三角形的形状,并解释这两个三角形相等的原因。

2.教师讲解全等三角形的判定方法,包括SSS判定法、SAS判定法、ASA判定法以及证明两组三角形全等的方法。

3.教师通过几个例题演示如何运用这些方法判定两个三角形是否全等。

Step 3 学生练习(20分钟)1.学生进行练习册上相关习题的解答,并在解答过程中运用全等三角形的判定方法。

2.部分学生上台讲解解题思路,并互相交流讨论。

Step 4 拓展运用(20分钟)1.学生分组合作,自选一个实际问题,并应用全等三角形的判定方法解决问题。

2.每个小组派一名代表上台展示解题过程和结果,其他小组进行评价和讨论。

Step 5 总结归纳(10分钟)1.教师与学生共同总结全等三角形的判定法,并强调每种判定法的使用条件和步骤。

2.教师提问学生,全等三角形的判定是一种证明方法,那么如何进行三角形全等的证明呢?Step 6 课堂作业(5分钟)1.布置课堂作业:完成练习册上的相关习题,同时要求学生用全等三角形的判定法证明一组三角形全等。

2.提醒学生写明解题思路和步骤。

教学反思:本节课通过引入问题、示范教学、学生练习、拓展运用以及总结归纳的多种教学手段,旨在帮助学生复习并掌握全等三角形的判定方法。

华师大版八年级上册第13章全等三角形复习课教学设计

华师大版八年级上册第13章全等三角形复习课教学设计
-邀请学生分享自己在学习全等三角形过程中的收获和感悟。
-对学生的表现进行点评,强调学习全等三角形的重要性。
2.教学目的:
-帮助学生巩固所学知识,形成知识体系。
-培养学生的归纳总结能力,提高学生的几何素养。
-激发学生学习数学的兴趣,增强学生的自信心。
五、作业布置
为了巩固学生对全等三角形知识的掌握,提高学生的应用能力和解题技巧,特布置以下作业:
1.强调作业完成的时间和质量,培养学生按时完成作业的良好习惯。
2.鼓励学生独立思考,遇到问题可以与同学讨论,培养合作学习能力。
3.注重作业反馈,教师应及时批改作业,给予评价和建议,帮助学生提高。
2.教学目的:
-激发学生的学习兴趣,引导学生关注全等三角形在实际生活中的应用。
-唤起学生对全等三角形相关知识点的回忆,为新课的学习做好铺垫。
(二)讲授新知
1.教学活动设计:
-对全等三角形的定义进行复习,强调全等三角形的含义和性质。
-详细讲解全等三角形的判定方法,如SSS、SAS、ASA、AAS等,结合具体实例进行分析。
-鼓励学生在课后进行自主学习和拓展阅读,提高学生的自主学习能力,拓宽知识视野。
四、教学内与过程
(一)导入新课
1.教学活动设计:
-通过展示一些生活中常见的全等三角形图案,如风筝、自行车三角架等,引起学生对全等三角形的好奇心和兴趣。
-提问:“同学们,你们知道这些图案有什么共同特点吗?它们在几何学中有什么特别之处?”
-通过小组讨论、合作解题,培养学生的团队协作能力和交流表达能力,同时也能够在讨论中发现问题、解决问题。
4.创设问题情境,激发学生的探究欲望。
-教学中应设计具有挑战性的问题,引导学生主动探究,培养学生的创新思维和解决问题的能力。

全等三角形的性质和判定复习教学设计

全等三角形的性质和判定复习教学设计

全等三角形的性质和判定复习教学设计一、教材分析:全等三角形是学习初中几何的基础和工具也是中考必考内容,本节课是全等三角形性质和判定的复习课,首先帮助学生理清全等三角形性质、判定及其运用;其次对学生所学的全等三角形知识进行查缺补漏,再次通过练习,提高学生综合运用全等三角形解决问题的能力。

在练习的过程中,要注意强调知识之间的相互联系,使学生在证明过程中感受反推法的好处。

二、学情分析在知识上,学生基本掌握全等三角形性质、判定以及应用,初步具有整体认识,但由于分课时讲授,间隔时间有点长,所以遗忘在所难免。

又加上是农村中学,所以教授的内容不能太复杂,也不能太多,应该多关注学生的基本知识的掌握。

三、教学目标1、让学生能够说出全等三角形的判定基本事实,并且能够根据给定的条件,找出条件来判定全等。

让学生识记全等三角形的性质,能理解“对应边和角相等”的“对应”的含义,学会利用全等三角形的记法,体验边角的对应。

2、通过上台展示、同桌合作,让学生体会到判定一对三角形全等可以用不同的条件组合,提高学生的归纳、合作学习的能力。

3、培养学生数学反推法的思维。

四、教学重难点重点:全等三角形性质与判定的综合应用。

难点:能运用反推法的思维解答三角形全等的问题。

五、教法与学法以“自助探究”为主,以同桌合作为辅;在具体的教学活动中,要给予学生充足的时间让学生自主练习,尝试归纳;给予学生充足的空间展示学习结果,通过学生互测、教师最后点评方式实现本节课的教学目的。

六、教具准备多媒体课件直尺七、课时安排1课时八、教学过程本节课是全等三角形全章的复习课,本节课我主要采用学生“练后思”的模式,帮助学生整理知识脉络,建构知识网络,通过有梯度的练习进行基础巩固和拓展延伸,使用多媒体课件展示教学思路,引导学生思维的方向,实现课堂教学最优化。

九、板书设计。

全等三角形复习课教案

全等三角形复习课教案

《全等三角形复习》教学设计市桥中学 数学科 梁仲宁一、教学目标1、 使学生能综合运用三角形全等的各种识别方法解题。

2、 让学生学会从多角度,多方位观察图形。

3、 培养学生将生活实际问题转化为数学问题去思考。

4、 培养学生合作交流,自主探究的能力。

二、教学重点与难点重点难点:三角形全等的各种识别方法的综合运用。

三、教具准备电脑、实物投影、相关课件。

四、教学过程设计 (一)知识回顾利用课件回顾三角形全等的各种识别方法。

(SSS 、SAS 、ASA 、AAS 、HL )(二)师生互动,熟悉全等三角形识别方法的基础应用1、投影以下图形,提供开放的教学平台,让学生自主编题与解题。

(图1) (图2) (图3)2、提醒学生注意发掘图中的隐含条件(公共边、对顶角、公共角)。

3、如有需要,教师对学生所编题目作出适当补充。

DCBAA BCDOOABCDE(三)全等知识在其他知识领域中的应用1、测量如图河的宽度,某人在河 的对岸找到一参照物树木A,视线AB 与河岸垂直,然后该人沿河岸步行7米 到O 处,进行标记,再向前7米到D 处, 最后背对河岸向前步行15米到C 点, 此时A ,O ,C 三点恰好在同一视线上, 则河的宽度为_________米.2、直线l 经过正方形ABCD 的顶点B , 点A 、C 到直线l 的距离分别是3和4,则 正方形的边长是______________.3、如图,AB 是⊙O 的直径,BC 是⊙O 的 切线,D 是⊙O 上一点,且∠ABD= ∠C=30°, 求证:ΔADB ≌ ΔOBC4、 将平行四边形纸片ABCD 按如图方式 折叠,使点C 与点A 重合,点D 落到D'处, 折痕为EF. 求证ΔABE ≌ΔAD'F(四)掌握全等的变换思想,深化提高5、 将两个全等的等腰直角三角板按如图所示摆放,令两个三角形的斜边在同一直线上,C 为两个三角形的公共顶点,连结AE 、DB ,试猜想AE 与DB 的关系。

初中数学《全等三角形》教案优秀6篇

初中数学《全等三角形》教案优秀6篇
课前准备全等三角形纸片、三角板、
教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、

全等三角形判定复习教案

全等三角形判定复习教案

全等三角形判定复习教案教案:全等三角形判定的复习一、教学目标:1.复习全等三角形的判定方法和性质。

2.掌握使用全等三角形的判定方法解决相关问题。

3.培养学生的逻辑思维能力和分析问题的能力。

二、教学重点:1.全等三角形的判定方法和性质。

2.全等三角形的相关题目解答。

三、教学难点:1.通过给出的条件判定三角形是否全等。

2.通过给出的三角形判定是否全等。

四、教学过程:Step 1:复习全等三角形的判定方法1.提问:回顾一下全等三角形的判定方法有哪些?2.学生回答:欢迎学生回答,教师进行总结。

3.教师解释:全等三角形的判定方法有以下几种:a.SSS判定法:三边相等的两个三角形全等。

b.SAS判定法:两边和夹角相等的两个三角形全等。

c.ASA判定法:两角和边相等的两个三角形全等。

d.AAS判定法:两角和对边相等的两个三角形全等。

e.RHS判定法:直角边和斜边相等的两个三角形全等。

Step 2:练习全等三角形的判定方法1.提问:根据给出的条件,判断以下三角形是否全等。

a.△ABC≌△DEF,AB=DE,BC=EF,∠B=∠E。

b.△ABC≌△DEF,AB=DE,BC=DF,AC=EF。

c.△ABC≌△DEF,AC=DE,∠A=∠D,∠C=∠F。

2.学生回答:请学生根据给出的条件,结合全等三角形的判定方法,回答问题。

3.教师解释和点评:让学生进行回答,并解释判断的依据和结果。

Step 3:复习全等三角形的性质1.提问:回顾一下全等三角形的性质有哪些?2.学生回答:欢迎学生回答,教师进行总结。

3.教师解释:全等三角形的性质包括以下几个方面:a.对应角相等:全等三角形的对应角相等。

b.对应边相等:全等三角形的对应边相等。

c.对应中线相等:全等三角形的对应中线相等。

d.对应角平分线相等:全等三角形的对应角平分线相等。

Step 4:练习全等三角形的性质1.提问:根据给出的全等三角形,判断下列几组线段是否相等。

a.AB≌DE,AC≌DF,∠B≌∠E,∠C≌∠F,AD≌DG,BE≌EH。

全等三角形的小结与复习教学设计20人教版八年级数学上册

全等三角形的小结与复习教学设计20人教版八年级数学上册
7.家长参与题:鼓励家长参与学生的作业过程,与学生一起探讨全等三角形在实际生活中的应用,共同完成作业。增进家长对学校教学的了解,提高学生的学习兴趣。
8.作业批改与反馈:要求学生在完成作业后,进行自我检查和互评,培养自主学习能力。教师应及时批改作业,给予评价和指导,帮助学生发现问题、提高能力。
4.结合实际案例,讲解全等三角形在实际生活中的应用,如建筑设计、工程测量等,增强学生的应用意识。
(三)学生小组讨论
1.将学生分成若干小组,针对全等三角形的判定方法和性质,设计一些讨论题目,让学生在小组内进行讨论交流。
2.每个小组选派一名代表进行汇报,分享本组的讨论成果和心得体会。
3.教师巡回指导,参与学生讨论,解答疑问,引导学生深入探究全等三角形的性质和判定方法。
(一)导入新课
1.利用多媒体展示生活中全等三角形的实例,如剪纸艺术、建筑图案等,引发学生对全等三角形的关注和兴趣。
2.提问:“我们已经学习过全等三角形的基本概念,那么如何判断两个三角形是全等的呢?”让学生回顾全等三角形的判定方法,为新课的学习做好铺垫。
3.通过一个简单的实际问题,如测量不规则图形的面积,引出全等三角形在实际问题中的应用,激发学生的学习兴趣。
5.培养团队合作精神,学会尊重他人,提高人际沟通能力。
本章小结与复习教学设计旨在帮助学生巩固全等三角形的知识,提高解决问题的能力,培养空间观念和几何直观,以及增强数学情感和价值观。在教学过程中,教师应关注学生的个体差异,因材施教,使每位学生都能在原有基础上得到提高。同时,注重启发式教学,引导学生主动探究、发现、总结规律,提高学生的自主学习能力。
5.培养问题解决能力,学会从实际问题中发现全等三角形的问题,并运用所学知识解决。
(三)情感态度与价值观

《全等三角形的复习课》教案

《全等三角形的复习课》教案

《全等三角形的判定复习课》教案老湾回族乡中心学校:吕梅一、教学目标1、了解判定两个三角形全等的5种方法,并能应用它们解决简单问题;2、学会用全等的方法证明线段(角)的相等,了解全等的证明思路;3、培养学生观察和理解能力,几何语言的叙述能力。

二、教学的重点和难点重点:学会用全等的方法证明线段(角)的相等。

难点:1:如何灵活运用合适的判定方法进行全等证明;2:初步认识并获得全等的证明思路。

三、教学过程(一)温故知新:(直接导入复习内容)学生回顾旧知识1、全等三角形的定义2、全等三角形的性质3、全等三角形的判定方法4、全等三角形的应用(二)基础训练已知:如图∠B=∠DEF,BC=EF,补充条件求证:ΔABC ≌ ΔDEF(1)如图一,若要以“SAS ”为依据,还缺条件 ____(2)如图一,若要以“ASA ”为依据,还缺条件____(3)如图一,若要以“AAS ”为依据,还缺条件____(4)如图二,若∠B=∠DEF=90°要以“HL ” 为依据,还缺条件_____图一 (三)探求新知例1:已知:如图AB=AE,∠B=∠E ,BC=ED , AF ⊥CD ,垂足为F ,求证:点F 是CD 的中点【变式训练】:已知:如图AB=AE,∠B=∠E ,BC=ED ,点F 是CD 的中点 , 求证:AF ⊥CD F DEA B C 图二例2 已知AD ∥BC , ∠1=∠2, ∠3=∠4, 直线DC 过点E 交AD 于D ,交BC 于C.求证:AD+BC=AB你还有其它的解题方法吗?【方法归纳】要证明两条线段的和与一条线段相等时常用的两种方法:1、截长法 :可在长线段上截取与两条线段中一条相等的一段,然后证明剩余的线段与另一条线段相等。

2、补短法 :将两线段中的一条延长,使延长部分等于另一线段,再证它与较长线段相等。

【变式训练】已知:AC 平分∠BAD ,CE ⊥AB ,垂足为E ,∠B+∠D=180°,求证:AE=AD+BE(四)课堂小结通过本节的学习,谈谈你在全等证明问题中的收获和经验。

课题全等三角形的复习教案

课题全等三角形的复习教案

课题:全等三角形复习教案(第一课时)欧阳荣富教学目标1.知识与技能(1)知道全等三角形的概念、弄清全等三角形性质和判定,会用全等三角形的性质与判定定理来证明线段相等和角相等的问题.(2)发展学生的逻辑思维,提高合情推理能力2.过程与方法经历探究、合作、交流、展示全等三角形有关性质和判定的运用,掌握几何的分析思想,能应用“综合法”表达问题.3.情感、态度与价值观(1) 让学生体会几何学的实际应用价值。

(2)感受合作交流、展示带来的成功体验,激发学生学习数学的热情享受快乐,树立自信心。

教法与学法;启发探究法、合作交流法、自主探究法。

重点:弄清全等三角形性质和判定难点:会用全等三角形的性质与判定定理来证明线段相等和角相等的问题.教学过程;一、创设问题情境:(1′)某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全相同的玻璃,那么你认为它应保留哪一块?请同学们先独立思考上述问题实质是判断三角形全等需要什么条件的问题。

今天我们这节课来复习全等三角形。

二、自主学习(2′)1、将一个平面图形上的每一点,绕这个平面内一定点旋转 ,得到的图形,图形的这种变换叫 。

2、对应点到旋转中心的 。

3、对应点与旋转中心的连线所成的角 ,且等于 ,旋转不改变图形的 。

4、_________的两个三角形全等;、5、全等三角形的对应边_____;对应角______;6、全等三角形的判定定理有7、如图1,若 △ABC ≌△DEF ,则∠E= 。

1 2 38、如图2△ABC 以A 为旋转中心,逆时针旋转至△ADE ,∠1=30°,则∠2= 9、如图3,要使△ABC ≌△DEC ,除公共边BC 外,请再添加两个条件使它全等,你有哪几种方法?图2 三、合作探究。

(20′)1、已知:如图A B ∥DE ,且AB=DE ,BE=CF,你认为∠A 与∠B 相等吗?请你说明理由。

分析 :要证△ABF ≌△DEC 只要找出 :直接的一个条件 和间接的两个条件A2、、已知:如图AB=AC,BD=CD,D 在AM 上,求证:∠BDM=∠CDM.分析:、要证∠BDM=∠CDM. 只要证∠ =∠ .再要证△ ≌△3. 如图,已知AB 平分∠BAC ,∠C=∠D 求证:AC=AD分析:1、要证AC=AD 只要证△ABC ≌△ABD,2、由AB 平分∠BAC 得3、由图可得 四、拓展创新(15′)4. 如图,∠1=∠2,AE 平分∠BAC ,你认为AB 与AC 相等吗?请你说明理由。

5 全等三角形的判定 复习课 一等奖创新教案

5 全等三角形的判定 复习课 一等奖创新教案

5 全等三角形的判定复习课一等奖创新教案《全等三角形的判定复习课》教学设计教学内容:新湘教版八年级上册第2单元第5小节《全等三角形的判定》教学目标:熟练掌握全等三角形的判定方法。

能准确、灵活的运用三角形全等的判定方法解决问题。

3、通过变式练习提高分析问题和解决问题的能力。

训练学生解题的严谨性。

重、难点:重点:利用三角形全等的判定方法正确的解题。

难点:能准确、灵活的运用三角形全等的判定方法解决问题。

教法学法:讲练结合、小组合作教学手段;多媒体辅助教学教学过程:一、解读目标(2分钟)采用了课前将学习目标写在导学案上,课上让学生先齐读,教师再解析的方法来完成。

在这个环节中,让学生通过齐读,教师解读目标的过程在课的开始就明确本节课的学习目标及学习的重、难点,带着目标进行学习,为学生指明了学习的方向。

二、自主学习(6分钟)知识点梳理:能够两个三角形叫做全等三角形;全等三角形的对应边,对应角;三角形全等的判定方法(简写)、、、;的两个直角三角形全等,简写为。

简单应用(如图1所示):由DE=DG, 、DF=DF根据SAS可以判定△DEF≌△DGF;由、DE=DG、根据ASA可以判定△DEF≌△DGF;由、∠E=∠G、DE=DG,根据AAS可以判定△DEF≌△DGF;由DE=DG、、根据SSS可以判定△DEF≌△DGF;由∠E=∠G=90°、DF=DF、根据HL可以判定Rt△DEF≌Rt△DGF。

对这9个小问题的思考与解答,学生既能回顾学过的三角形全等的几种判定方法,又能通过图形明确三角形全等的具体条件。

三、合作探究挖掘“隐含条件”判定三角形全等例1 如图2所示,AB=CD,AC=BD,则△ABC≌△DCB吗?请说明理由。

熟练转化“间接条件”判定三角形全等例2 如图3所示,AE=CF,∠AFD=∠CEB,DF=BE,△AFD≌△CEB 吗?请说明理由。

“添加辅助线”判定三角形全等例3 如图4所示,AB=AE,∠B=∠E,BC=ED,AF⊥CD。

《三角形复习课》教案

《三角形复习课》教案
(3)三角形全等的条件与性质:掌握三角形全等的判定方法(SSS、SAS、ASA、AAS),理解全等三角形的性质。
举例:若两个三角形的三组对应边分别相等,则这两个三角形全等。
2.教学难点
(1)三角形内角和定理的应用:如何运用内角和定理解决实际问题,如求三角形未知角度等。
举例:已知三角形的两个内角,求第三个内角。
1.教学重点
(1)三角形的性质:熟练掌握三角形的定义、分类及性质,特别是三角形的内角和定理、三边关系。
举例:三角形内角和形与等边三角形的判定与性质:区分等腰三角形与等边三角形,了解它们的性质及应用。
举例:等腰三角形两腰相等,等边三角形三边相等,且对应角相等。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
《三角形复习课》教案
一、教学内容
《三角形复习课》教案
本节课我们将复习人教版八年级数学下册第七章《三角形》的相关内容。主要包括以下知识点:
1.三角形的定义、分类及性质;
2.三角形的内角和定理;
3.三角形的三边关系;
4.等腰三角形的性质与判定;
5.等边三角形的性质与判定;
6.三角形全等的条件与性质;
7.直角三角形的性质与判定。
4.培养学生的数学建模素养,通过等腰三角形、等边三角形和全等三角形的性质学习,使学生能够构建数学模型,解决相关问题。

《全等三角形的复习》优秀教案.docx

《全等三角形的复习》优秀教案.docx

全等三角形的复习【教学目标】:(1)知识与技能目标:通过对典型例题评析,使学生进一步熟悉三角形全等的判定、性质及其综合应用,提高学生的逻辑推理能力和逻辑表达能力;学生通过参与开放性变式题的练习、分析,培养思维的发散性、探究性、发展性、创新性,进一步深化学生对全等三角形的认识。

(2)过程与方法目标:利用相关的知识和例题,通过学生的观察、思考、论证,培养学生的观察能力、逻辑推理能力、发散思维能力;通过同桌间的合作交流,培养学生的合作探究意识;通过学生的猜想,培养学生敢于发表见解的勇气。

利用“归纳小结”这一环节,培养学生自我反思的习惯及归纳概括能力。

(3)情感与态度目标:利用图形的变换,对学生进行所谓“形变质不变,万变不离其宗”的数学思想渗透;让学生知道数学内容中普遍存在着的运动、变化、相互联系和相互转化的规律,体会事物之问相互联系相互转化的辩证唯物主义观点;通过展示多彩的几何变换图形,激发学生的学习动机,拓宽学生的信息量、思维角度,激发学生的探索欲望;通过对几个变式问题的探究分析,培养学生多角度探究问题的习惯。

【教学重点】:常握全等三角形的性质与判定方法【教学难点】:对全等三角形性质及判定方法的运用【教学突破点】:学生通过在探究问题时的合作交流与对结论的探求猜想、教师对例题及学生回答的评析,培养学生的观察能力、发现问题能力、探究问题的兴趣、发散思维能力、归纳概括能力。

【教法、学法设计】:合作探究式分层次教学,讲授、练习相结合。

【课前准备】:课件、三角板【教学弓程设计】:教学环节教学活动~设计意图已知一边一角(边与角相邻):找夹这个角的另一边 —AD=CB(SAS)找夹这条边的另一角—a zACD=zCA«ASA),找边的对角 —► zD=zB(AAS)思路引导9 促 进 发展 1、如图,已知△ ABC 和ADCB 屮,AB 二DC,请补充一个条 件 ______________________ ,使AABC 竺 ADCBo 找夹角一► ZABC=ZDCB (SAS)培养学生结合 题目中的已知 条件、图形中 的隐含条件, 分析和寻找全 等三角形证明 的所须条件, 训练学生的解 题思路和解题 技巧。

全等三角形复习课说课稿(通用6篇)

全等三角形复习课说课稿(通用6篇)

全等三角形复习课说课稿(通用6篇)全等三角形复习课说课稿(通用6篇)作为一位杰出的教职工,通常会被要求编写说课稿,说课稿有助于提高教师的语言表达能力。

我们该怎么去写说课稿呢?下面是小编帮大家整理的全等三角形复习课说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。

全等三角形复习课说课稿篇1一、说教材全等三角形是八年级上册人教版数学教材第十一章的教学内容。

本章是在学过了线段、角、相交线、平行线以及三角形的有关知识以及在七年级教材中的一些简单的说理内容之后来学习的,通过本章的学习,可以丰富和加深学生对已学图形的认识,同时为学习其它图形知识打好基础。

根据课程标准,确定本节课的目标为:1、知道什么是全等形,全等三角形以及全等三角形对应的元素;2、能用符号正确地表示两个三角形全等;3、能熟练地找出两个全等三角形的对应顶点、对应边、对应角;4、知道全等三角形的性质和判定,并能用其解决简单的问题要求学生会确定全等三角形的对应元素及对全等三角形性质的理解;5、通过感受全等三角形的对应美,激发热爱科学勇于探索的精神。

通过文字阅读与图形阅读,构建数学知识,体验获取数学知识的过程,培养学生勇于创新,多方位审视问题的创造技巧。

二、说教法本节课以学生练习为主,教室归纳总结为辅的教学方法。

教师一边用幻灯片演示讲解,一边让学生动手、动脑,充分调动学生的积极性和主动性,有机融合各种教法于一体,做到步步有序,环环相扣,不断引导学生动手、动口、动脑。

积极参与教学过程,才能圆满完成教学任务,收到良好的教学效果。

1、教学生观察、归纳的方法为了适应学生的认识思维发展水平,有序的引导学生观察、分析,得出结论,让学生通过观察——认识——实践——再认识,完成认识上的飞跃。

2、通过设疑,启发学生思考根据练习情况设疑引导,重在让学生理解全等三角形的概念,展开学生的思维。

三、说学法学生在学习过程中可能难于理解全等三角形的对应顶点、对应边、对应角。

教师要做到教法与指导学习的学法有机统一。

初中数学_全等三角形(复习)教学设计学情分析教材分析课后反思

初中数学_全等三角形(复习)教学设计学情分析教材分析课后反思

《全等三角形(复习)》教学设计教学目标1.熟练掌握全等三角形的性质与判定定理;2.会用全等三角形性质与判定定理解决实际问题;3.通过复习,领悟数形结合思想、以及构建全等三角形在解决几何问题中的重要作用。

重难点、关键1.重点:熟练掌握全等三角形的性质与判定定理,会用它解决实际问题。

2.难点与关键:会用全等三角形性质与判定定理解决实际问题,领悟数形结合思想、以及构建全等三角形在解决几何问题中的重要作用。

教学过程一、课前热身(一)判断1.面积相等的三角形一定全等. ( )2.全等三角形的对应中线一定相等. ( )3.两边及其任意一边的对角对应相等的两个三角形全等 ( )4.有一边对应相等的等边三角形一定全等. ( )5.三个角对应相等的三角形一定全等. ( )(二)、判断下面各组的两个三角形是否全等并说明理由(1)(2)已知:AB=CD AB∥CD (3)已知:AC=AD,BC=BD二、典例分析一【例1】(2016·重庆)如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.三、跟踪训练一:1.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙 B.乙和丙 C.只有乙 D.只有丙2.如图,已知CD⊥AB于点D,BE⊥AC于点E,CD、BE交于点O,且AO平分∠BAC,则图中的全等三角形共有()A.1对 B.2对 C.3对D.4对3、如图,A在DE上,F在AB上,且AC=CE, ∠1=∠2=∠3,求证:DE=AB四、典例分析二【例2】(2016·济宁)如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点H,请你添加一个适当条件 ,使△AEH≌△CEB.并证明五、跟踪训练二4、如图:已知AB=CD, AD=BC则图中有()对全等三角形。

5、如图:已知AC=AD,只需附加一个条件,就能使△ACB≌△ADB,请写出一个符合的条件__________ 。

人教版数学八年级上册第十一章三角形全章复习优秀教学案例

人教版数学八年级上册第十一章三角形全章复习优秀教学案例
3.创设具有挑战性的数学问题,如利用三角形解决实际问题,激发学生的思考和探索欲望。
(二)问题导向
1.引导学生提出问题,如在复习三角形性质时,让学生思考:“三角形有哪些基本的性质?”、“如何判断两个三角形是否全等?”
2.引导学生通过观察、分析、推理等方法,自主探索问题,如利用三角形的边长和角度关系,推导出三角形的性质。
3.学生能够运用数形结合的思想,将抽象的三角形知识与具体的图形相结合,提高直观想象能力。
4.学生通过解决实际问题,将所学知识与生活实际相结合,提高应用能力和创新意识。
(三)情感态度与价值观
1.学生能够在学习过程中,体验到数学的趣味性和挑战性,激发对数学学科的兴趣和热情。
2.学生在团队合作中,感受到合作的力量和成功的喜悦,培养积极向上的情感态度。
1.教师引导学生回顾本节课所学内容,如三角形的性质、分类和应用等。
2.学生总结自己的学习收获,如对三角形性质的理解、判定方法的掌握等。
3.教师对学生的总结进行点评和指导,强调本节课的重点和难点,并指出后续学习的方向。
(五)作业小结
1.教师布置具有针对性的作业,如解决一些与三角形相关的实际问题,巩固学生对三角形知识的理解和应用能力。
(二)讲授新知
1.教师引导学生回顾三角形的基本性质,如三角形的内角和定理、三角形的边角关系等。
2.教师通过示例和讲解,介绍三角形的全等、相似判定定理,并解释其应用和意义。
3.教师讲解三角形的分类,如锐角三角形、直角三角形、钝角三角形的性质和判定方法。
4.教师通过几何计算实例,讲解利用余弦定理、正弦定理解决三角形边长、角度问题的方法。
人教版数学八年级上册第十一章三角形全章复习优秀教学案例
一、案例背景
本案例背景以人教版数学八年级上册第十一章“三角形”全章复习为主题,旨在通过复习三角形的相关知识,巩固学生对三角形性质、分类、判定及应用的理解。本章内容涉及三角形的边角关系、三角形的全等、相似以及三角形的几何计算等,是学生进一步学习几何知识的基础。

全等三角形专题复习教学设计(优秀范文5篇)

全等三角形专题复习教学设计(优秀范文5篇)

全等三角形专题复习教学设计(优秀范文5篇)第一篇:全等三角形专题复习教学设计《全等三角形专题复习课》教学设计哈尔滨市第三十五中学佟艳面对数学课堂中几何图形的变换、试题的灵活变化,学生总是很打怵,很容易让学生对数学有畏难情绪,甚至有的学生认为学习数学没有什么用,生活中也用不上,其实不然,数学的学习过程中所渗透的思想方法和思维的严谨性、思维的细致性、思维的灵活性是其它学科不能渗透的,所以我们应该交给学生学习数学的方法,学习数学的能力,让学生轻松的学习数学,让数学不再成为学生的负担所以我们应该在非毕业班的阶段多教给学生方法,在习题课中,以变式习题的形式,形成系列,这种思维方式是渗透在平时的所有教学中,我们应该引导学生发现解决几何问题的方法,让学生做一道题会多道题,一把钥匙开多把锁,以不变应万变.一、设计理念本课的设计本着关注学生的已有的认知结构、从学生已有的解决问题的经验出发的原则,注重人人参与数学活动,实现人人学有价值的数学、人人都能获得必需的数学、不同的人在数学上得到不同发展的目标.二、教材分析处理本节课是在学生学完全等三角形一章后进行的,是一节全等三角形的专题复习课,全等三角形是解决几何证明题重要数学模型.本节课是前面所学全等三角形的有关知识的提升,教学过程中渗透着“类比思想”和“方法迁移”的研究方法,这些数学思想和研究方法为后面学习相似三角形奠定了基础,在学生学习全等三角形这部分内容时,经常会遇到依托于一对等角、一组边来构建三角形全等,所以本节课以一个基本型为主线进行方法的渗透,可以采取类比和迁移的教学方法进行,让学生探究解决问题的方法、灵活掌握方法并应用,同时对角互补型在相似中应用的也很广泛,如果能在全等三角形这部分内容中将常见的图形、方法、辅助线总结全面,那么学习相似时学生会很轻松.所以本节课的知识有承上启下的作用.《课程标准》提出数学教师不是教教材,而是用教材教,所以我创造性的使用教材,自编例习题.在教学过程中,精心设计问题,关注学生兴趣和经验,鼓励学生参与探索,在活动的过程中获得对数学的积极体验和应用.通过本节课的学习力争达到以下教学目标:知识与技能:学生能够熟练地运用全等三角形的判定,解决全等三角形有关分类讨论计算、证明问题,培养学生解决分类讨论问题的能力.过程与方法:通过合作探究的学习方式,培养学生处理数学信息的能力,并作出合理的推断或大胆的猜测,体会转化的思想方法.情感态度与价值观: 使学生深刻理解数学知识的密切关系、及数学知识的应用价值,增强学习数学的兴趣.根据教学目标确定本节课的教学重点、难点如下:教学重点:将所见的习题善于转化为基本型:直接对角互补型.教学难点: 准确做出辅助线,构建三角形全等.三、教法、学法及教学手段教学方法:所以我运用的主要教学方法是:分析、讨论、归纳.学法指导:引导学生运用自主探究、合作交流的学习方式.教学手段:运用多媒体与实物投影相结合的手段辅助教学.四、教学过程设计环节一复习回顾:环节二探究发现环节三典例剖析:环节四变式训练:环节五拓展应用:复习回顾:射线OC是∠BOA的平分线,PE⊥OB,PD⊥OA,在图形中你能得出哪些结论?学生活动:学生认真读题,直接回答问题.设计意图:复习回顾角平分线的性质,引导学生从线段、角、和三角形去发现结论初步认识基本图形,为后续学习做铺垫,引导学生观察四边形ODPE的对角的特征,培养学生形成善于思考、善于观察、善于总结的良好的数学思维习惯.教学预设:观察四边形ODPE对角特征时,学生可能不易想到对角和的特征,而只是在研究两个直角,要让学生多说达成共识.探究发现:射线OC是∠BOA的平分线,∠PEO+∠PDO=180°,在图形中你能得出哪些结论?EPD 学生活动:学生独立思考,书写过程,探究不同的解法,学生进行讲解,其他同学进行补充评价,达成共识,只要有思维的碰撞就会有智慧的火花,形成对此题图形转化的认识.设计意图:培养学生分析题意,获取主要信息,将问题转化为基本型,得出直接对角互补型,为后续的习题做铺垫,打下坚实的基础.教学预设:学生的结论会说很多,教师要抓到想要的结论,进行总结归纳,本节课的主线要突出,否责就会贪多,学生不能消化理解本节课的数学思维训练.典例剖析:如图,在△ABC中,∠ABC=90°,AB=BC,D为AC中点,∠EDF=90°, 求证:DE=DF.ADEBF方法转化:CEM P DFN学生活动:学生分析题意,讲解不同的方法,同学之间互相补充评价,进行书写,培养规范书写的能力.设计意图:培养学生善于挖掘隐含条件的能力,BD仍然是∠ABC 的角平分线,转化为基本型,达到巩固提升的目的,学生也可以构建等腰三角形的方法转化线段,达到解决问题的目的.教学预设:学生不能灵活运用等腰三角形的性质,挖掘隐含条件BD仍然是∠ABC的角平分线,而是反复在证明三角形全等,教师要适当引导学生,学会灵活运用所学知识解决问题,形成体系.变式训练:那么当∠EDF绕点D旋转一定的角度后,上述结论还成立吗?EDDBFEFB常见方法:M N基本型挖掘:(连接形成四边形―隐含对角互补型)学生活动:学生独立分析,小组合作研究,得出不同的方法.设计意图:在变式训练中巩固基本型,引导学生挖掘隐含条件,观察图形的特征,得出与直接对角互补型相同的条件,同时得出隐含对角互补型.(对顶直角蝴蝶型)教学预设:挖掘“对顶直角蝴蝶型”后,学生不易转化为对角互补型四边形,要让学生先独立观察、讨论、分析、得出结论.拓展应用:如图,在平面直角坐标系中,Rt△PQR的直角顶点P的坐标为(3,3),两直角边与坐标轴交于点A和点B.(1)求OA+OB的值.y(2)求OA-OB的值.yBQOPPOAxRARxBQ(2)题(1)题学生活动:学生独立解决问题,同学之间互相评价、补充、解决坐标中的对角互补型.设计意图:培养学生分析问题、解决问题的能力,加强变试题的训练,达到巩固的目的,为本节课的学习达到巩固提升的目的.教学预设:数形结合时学生会遇到困难,要引导学生“先分离再结合”即分别研究数和形,再结合到一起进行研究.课后思考:如图在四边形OBAC中,AN⊥OB,现有:(1)∠COA=∠BOA;(2)AC=AB;(3)∠ACO+∠ABO=180°;(4)OC+OB=2ON.如果任意选取两个作为条件,能得到剩下的两个结论吗?学生活动:课下独立解决问题,小组交流意见,课上选代表进行展示.设计意图:完全放手,训练学生的发散思维,获取整理信息的能力.教学预设:一部分同学解决此题会有困难,让他们选择一部分解决._C_A_O_N_B我的收获:(1)直接对角互补型_C_O方法小结_A_B(2)隐含对角互补型 方法深入挖掘隐含条件巧妙构建旋转全等对角互补型转等角灵活转化为基本型基本型小结_C_A__OB_C__A__ONB 7第二篇:全等三角形-优秀教学设计教学内容三角形全等教学时间2021.9.22教学地点湟中区康川学校教师窦启莲全等三角形教学设计教学目标①通过实例理解全等形的概念和特征,并能识别图形的全等.②知道全等三角形的有关概念,能正确地找出对应顶点、对应边、对应角;掌握全等三角形对应边相等,对应角相等的性质.③能运用性质进行简单的推理和计算,解决一些实际问题.④通过两个重合的三角形变换其中一个的位置,使它们呈现各种不同位置的活动,让学生从中了解并体会图形变换的思想,逐步培养学生动态的研究几何图形的意识.教学重点全等三角形的有关概念和性质.知识难点理解全等三角形边、角之间的对应关系.教学准备复写纸、剪刀、半透明的纸、多媒体课件(几个重要片断中使用)等.教材分析本节是初中几何比较重要的一节入门课它的基础是学生已经了解三角形的基本概念,教师准备引导学生学习全等三角形,为后面进一步学习全等三角形的判定打一个良好的基础.通过本节学习要让学生了解怎样的两个图形是全等形,会用符号语言表示两个三角形全等.知道全等三角形的有关概念,会在全等三角形中正确地找出对应顶点、对应边、对应角.掌握全等三角形的性质,通过演绎变换两个重合的三角形,呈现出它们之间的各种不同位置的活动,从中了解体会图形变换的思想,逐步培养动态研究几何的意识.本节课的重点是全等三角形的性质.难点是确认全等三角形的对应元素.本节课可以通过丰富多彩的实验、投影、多媒体手段等让学生取得充分的感性认识在此基础上,教学重心应放在“全等三角形的性质”上,因而对它的处理,不论从时间分配上,还是从教学手段的应用上都应给予高度重视.在激发学生兴趣的同时,要对学生进行必要的能力训练.教学过程(师生活动)设计理念问题情境1.展现生活中的大量图片或录像片断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形复习课
【教学目标】:
(1)知识与技能目标:灵活运用三角形全等的判定、性质和角的平分线性质解决问题;体会构建知识框架。

(2)过程与方法目标:让学生建立整章框架的过程,领会分析、总结的方法。

(3)情感与态度目标:在掌握知识的同时,关注学生在观察、思考、探究、交流中主动参与的程度以及交流的意识,从而启迪思维,提高创新能力,培养团队合作精神。

【教学重点】:把全等三角形全章系统化和全等三角形开放性问题。

【教学难点】:全等三角形开放性问题
【教学突破点】:提出问题让学生回忆已学知识,并通过相应练习进行巩固,最后学生用图表小结来构建知识框架。

【教法、学法设计】:合作探究式分层次教学,教师引导归纳,学生以练习巩固为主。

【课前准备】:课件
【教学过程设计】:
B
巩固练习:
A 组
1、如图,已知AB=AD ,要使△ABC ≌△ADC ,可增加条件BC=DC , 理由是 SSS 定理。

或∠BAC=∠DAC ,SAS 或∠B=∠D=90°
,HL.
2、如图,△ABC 中,∠C=90º,AD 平分∠CAB 交BC 于点D ,DE ⊥AB ,垂足为E , 且CD=6cm ,则DE 的长为(
B )
A 、4cm
B 、6cm
C 、8cm
D 、10cm
第1题
A
第2题
A
3、下列说法中正确的是( D )
A 、两个直角三角形全等
B 、两个等腰三角形全等
C 、两个等边三角形全等
D 、两条直角边对应相等的直角三角形全等 4、三角形内到三条边的距离相等的点是(A )
A 、三角形的三条角平分线的交点
B 、三角形的三条高的交点
C 、三角形的三条中线的交点
D 、三角形的三边的垂直平分线的交点 5、在△ABC 中,∠A=70º,∠B=40º,则△ABC 是(
B )
A 、钝角三角形
B 、等腰三角形
C 、等边三角形
D 、等腰直角三角形 B 组
6、如图,AE=BE ,∠C=∠D ,求证:△ABC ≌△BAD 。

证明△ACE ≌△BDE (AAS ),那么AC=BD ,CE=DE ,因为AE=BE ,所以AE+DE=BE+CE ,即AD=BC ,所以△ABC ≌△BAD (AAS )
(第7题)
7、如图,在△ABC和△DEF中,B、E、C、F在同一直线上,下面有四个条件,请你从中选三个作为题设,余下的一个作为结论,写出一个正确的命题,并加以证明。

①AB=DE,②AC=DF,③∠ABC=∠DEF,④BE=CF.
解:我写的真命题是:
在△ABC和△DEF中,
如果

那么。

(不能只填序号)
证明如下:
答案不唯一,如:如果AB=DE,AC=DF,
证明:因为BE=CF,所以BE+EC=EC+CF,即
∠DEF。

8、已知:AC ,BD相交于点O,AO=OC,再添加一个什么条件,使两个三角形全等?
D
答案不唯一,如:添加BO=DO,那么AO=OC,∠AOB=∠CO D(对顶角相等),BO=DO,所以△AOB≌△COD(SAS)
9、已知:AB=CD,AB//CD,∠A=∠C,你能得到哪些结论?
A
C
D
答案不唯一,如:∠B=∠D,△ABE≌△CDO等。

C组
10、已知△ABC ≌△A’B’C’, △ABC 的三边长分别为3,m ,n ,△A’B’C’的三边长分别为5,p ,q ,若△ABC 的各边都是整数,则m+n+p+q 的最大值为_____22___。

11、已知:AB=CD ,AD=BC 。

试说明∠A=∠C 。

D
B
连结BD ,则△ABD ≌△CDB(SSS),所以∠A=∠C 。

12、如图,∠B=∠1=∠2,C D ⊥AD ,你发现AB 与AD 有什么关系?请说明理由。

AD=1/2AB 。

过C 作C D ′⊥AB 于D ′,则CD=CD ′,∴△ACD ≌△ACD ′(AAS),
∴AD=AD ′, ∴△ACD ′≌△BCD ′(AAS ), ∴AD ′=BD ′,即AD ′=1/2AB ,∴AD=1/2AB 。

C D B。

相关文档
最新文档