丁烯催化氧化脱氢制丁二烯工艺流程
正丁烯氧化脱氢制备丁二烯的工艺流程
正丁烯氧化脱氢制备丁二烯的工艺流程下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!1. 前言本篇文章主要介绍正丁烯氧化脱氢制备丁二烯的工艺流程,旨在深入研究该工艺流程的原理、优缺点以及未来的发展方向,以期帮助广大读者更好地了解和掌握这一工艺流程。
1-丁烯氧化1,3-丁二烯动力学
1-丁烯氧化1,3-丁二烯动力学
丁烯氧化1,3-丁二烯是一种重要的化学反应,其产物可以用于制备
丁二酸、异戊二酸等化合物。
本文将介绍丁烯氧化1,3-丁二烯的动力学
过程。
丁烯是一种不饱和烃,其分子式为C4H8。
丁烯氧化1,3-丁二烯是通
过将丁烯和氧气在存在催化剂的条件下反应得到的。
此反应的催化剂通常
为过渡金属,如铑、铑钯合金、钯等。
反应机理如下:
首先,丁烯与氧气反应生成过渡态丁烯醇醛,随后发生异构化反应得
到1,3-丁二烯。
C4H8+O2→C4H7OOH*。
C4H7OOH*→C4H6CH=CH2+HO2*。
然后,1,3-丁二烯与氧气反应生成过渡态1,3-丁二烯醇醛,最终生
成戊二酸。
C4H6CH=CH2+O2→C4H5OOH*。
C4H5OOH*→HOOCCH2CH=CHCH2OO*。
HOOCCH2CH=CHCH2OO*→HOOC(CH2)3COOH+OH*。
上述反应中,*表示反应中间体或过渡态。
其中,反应速率决定于催
化剂种类、反应物浓度、温度等因素。
总之,丁烯氧化1,3-丁二烯是一种有用的化学反应,可以用于制备
多种化合物。
了解其动力学过程有助于优化反应条件,提高产率和选择性。
1-丁烯氧化制丁二烯
摘要化学工业在我国发展十分迅速,而丁二烯又是重要的化工原料及有机产品。
丁二烯是由1-丁烯氧化生成的。
本书设计包括方案的选取,主要设备的工艺设计计算—物料衡算、热量衡算、工艺参数的选定、设备的结构设计和工艺尺寸的设计计算,辅助设备的选型,工艺流程图等内容。
此设计针对1-丁烯氧化制丁二烯的问题进行分析、选取、计算、核算、绘图等,是较完整的设计过程。
通过设计计算得到了精馏塔的基本的设计尺寸、塔内气泡的大小、气泡的上升速度、气含率,以及传质、传热系数等。
关键词:丁二烯;工艺设计;衡算目录摘要 (I)第1章总论 (1)1.1 项目性质 (1)1.2 研究工作依据 (1)1.3 设计原则 (1)1.4 项目概况 (1)1.5 建设规模 (2)1.6 建设意义 (2)1.7效益概述 (3)1.7.1 项目投资及资金来源 (3)1.7.2 经济评价 (3)第2章原料产品路线 (3)2.1原料路线的确定 (3)2.1.1原料成分 (3)2.1.2原料选择依据 (3)第3章产品分析 (3)3.1产品性质和用途 (4)3.1.1 产品性质 (4)3.1.2产品用途 (4)第4章工艺路线的确定 (6)4.1工艺路线论证原则和依据 (6)4.2工艺路线简介 (7)4.2.1工艺路线发展历史 (7)4.2.2 工艺路线介绍 (8)4.2.2.1 碳四抽余油捕获工艺路线 (8)4.2.2.2丁二烯工艺路线 (8)4.2.2.3联产物甲基丙烯醛工艺路线 (8)4.3本项目工艺的确定 (9)4.3.1概述 (9)4.3.2丁二烯提纯工艺 (10)4.3.3项目创新点 (10)4.4本项目工艺流程 (11)4.4.1流程框图 (11)4.4.2本项目工艺流程叙述 (11)第5章三废的处理 (12)5.1废气治理 (12)5.2废水治理 (13)5.3固体废弃物处理 (13)5.4噪声处理 (13)参考文献 (14)第1章总论1.1 项目性质本项目的目标是为某一烃化工综合企业设计一座混合C4综合加工子系统。
碳四系列典型产品的生产工艺
第一节 丁二烯的生产
(三) 工艺流程
第一节 丁二烯的生产
2. 绝热式固定床反应器生产丁二烯的工艺流程
第一节 丁二烯的生产
(四) 物料衡算
以下以流化床法丁烯氧化脱氢生产丁二烯为例进行氧 化工段的物料衡算。
1. 基础数据 (1)年产量 18000t/年丁二烯,年开工时数8000h。 (2)配料比 丁烯∶氧∶水=1∶0.7∶10 (摩尔比)。 (3)计算参数 正丁烯转化率67.78%;丁二烯选择性 90%;丁二烯收率61%;一氧化碳收率1.512%;二氧化碳 收率4.85%。均指摩尔分数。 含氧有机化合物收率:酮 (以 丙 酮 计)0.223%;醛 (以 乙 醛 计)0.08%;呋 喃0.115%;均指摩尔分数。异丁烯转 化率为100%,其中50%转化为一氧化碳,50%转化为二氧 化碳。
第一节 丁二烯的生产
丁二烯在常温常压下为无色而略带大蒜气味的 气体,沸点为268.6K,空气中的爆炸极限 (体积分 数)为2%~11.5%。丁二烯微溶于水和醇,易溶于苯 、甲苯、乙醚、氯仿、无水乙腈、二甲基甲酰胺、 糠醛、二甲基亚砜等有机溶剂。丁二烯具有毒性, 低浓度下能刺激黏膜和呼吸道,高浓度能引起麻醉 作用。工作场所空气中允许的丁二烯浓度为 ≤0.1mg/L。
第一节 丁二烯的生产
(四) 物料衡算
5. 物料衡算
第一节 丁二烯的生产
(四) 物料衡算
5. 物料衡算
第一节 丁二烯的生产
(四) 物料衡算
5. 物料衡算 进反应器混合物料 (含循环气)的流量和组成列于表68中。
第一节 丁二烯的生产
(四) 物料衡算
5. 物料衡算 进反应器混合物料 (含循环气)的流量和组成列于表6-8中。
(二) 工艺条件 4. 氧烯摩尔比 如表6-5所示,随着氧烯摩尔比的增加,转化率 增加,而选择性下降。
1-丁烯氧化生成1,3丁二烯动力学
1-丁烯氧化生成1,3丁二烯动力学
1,3丁二烯是一种十分重要的有机物质,它被大量用于制备聚酯
类高分子、聚酰胺类高分子、塑料衍生物等材料。
1,3丁二烯的生产一般由丁烯氧化进行,其成功的动力学受到了技术界的高度重视。
丁烯氧化反应以氧化态的C2丁烯为原料,氧化剂为水,其活性
和电子的传递,有助于形成1,3丁二烯和产氢气。
此外,提高温度也
有利于氧化反应进行,因此温度对1,3丁二烯生成具有重要作用。
在丁烯氧化过程中,C2丁烯向出氢或脱氢反应。
氢原子一个个逐步脱离,C2生成1,3丁二烯,这是1,3丁二烯形成的基本动力学过程。
1,3丁二烯氧化反应六个分子试剂参与,有C2、H2O、O2、1,3丁二烯、产氢气和再氧化丁烯,C2与H2O存在脱氢反应,产氢气和再氧
化的C2被氧化;另外,空气中的氧气、空气中离子及各种分子可以加
速氧化反应。
另外,在1,3丁二烯的氧化反应过程中,有些抑制剂会抑制反应
的发生,如有机物质、金属离子等,因此控制反应的抑制剂的添加有
助于保证反应的稳定性和质量。
因此,良好控制氧化剂、反应温度、反应压力是保证1,3丁二烯
生成过程可靠的关键技术。
只有对这些参数进行全面、合理地控制,
才能确保反应的稳定性和提高1,3丁二烯的合成率。
1-丁烯氧化制丁二烯.
摘要化学工业在我国发展十分迅速,而丁二烯又是重要的化工原料及有机产品。
丁二烯是由1-丁烯氧化生成的。
本书设计包括方案的选取,主要设备的工艺设计计算—物料衡算、热量衡算、工艺参数的选定、设备的结构设计和工艺尺寸的设计计算,辅助设备的选型,工艺流程图等内容。
此设计针对1-丁烯氧化制丁二烯的问题进行分析、选取、计算、核算、绘图等,是较完整的设计过程。
通过设计计算得到了精馏塔的基本的设计尺寸、塔内气泡的大小、气泡的上升速度、气含率,以及传质、传热系数等。
关键词:丁二烯;工艺设计;衡算目录摘要 (I)第1章总论 (1)1.1 项目性质 (1)1.2 研究工作依据 (1)1.3 设计原则 (1)1.4 项目概况 (1)1.5 建设规模 (2)1.6 建设意义 (2)1.7效益概述 (3)1.7.1 项目投资及资金来源 (3)1.7.2 经济评价 (3)第2章原料产品路线 (3)2.1原料路线的确定 (3)2.1.1原料成分 (3)2.1.2原料选择依据 (3)第3章产品分析 (3)3.1产品性质和用途 (4)3.1.1 产品性质 (4)3.1.2产品用途 (4)第4章工艺路线的确定 (6)4.1工艺路线论证原则和依据 (6)4.2工艺路线简介 (7)4.2.1工艺路线发展历史 (7)4.2.2 工艺路线介绍 (8)4.2.2.1 碳四抽余油捕获工艺路线 (8)4.2.2.2丁二烯工艺路线 (8)4.2.2.3联产物甲基丙烯醛工艺路线 (8)4.3本项目工艺的确定 (9)4.3.1概述 (9)4.3.2丁二烯提纯工艺 (10)4.3.3项目创新点 (10)4.4本项目工艺流程 (11)4.4.1流程框图 (11)4.4.2本项目工艺流程叙述 (12)第5章三废的处理 (13)5.1废气治理 (13)5.2废水治理 (13)5.3固体废弃物处理 (13)5.4噪声处理 (13)参考文献 (14)第1章总论1.1 项目性质本项目的目标是为某一烃化工综合企业设计一座混合C4综合加工子系统。
丁二烯生产工艺流程设计与安全评价
丁二烯生产工艺流程设计与安全评价丁二烯是一种重要的化工原料,在合成橡胶、塑料和化学品制造中具有广泛的应用。
为了确保丁二烯的生产过程高效、安全、稳定,需要进行工艺流程设计和安全评价。
本文将探讨丁二烯生产工艺的流程设计以及安全评价的相关内容。
一、工艺流程设计1. 原料准备:丁二烯的主要原料是丁烯和乙醇。
其中丁烯为乙醇脱水制备,需要确定合适的脱水剂、温度和时间等参数,以提高丁烯的纯度和产率。
2. 反应装置设计:丁二烯的生产主要是通过丁烯的烯烃加聚反应完成的。
反应器的设计应考虑反应温度、压力、催化剂的选择以及反应器的尺寸和材料等因素。
同时,为了提高反应效率和产品质量,还需要考虑适当的搅拌和冷却条件。
3. 分离纯化:在反应后,需要进行产品的分离纯化。
这包括对乙醇催化剂的回收利用、丁二烯和其他副产物的分离、纯化和再生等步骤。
分离纯化过程的设计需结合实际情况和工艺要求,选择适当的分离技术和设备,以提高产品的纯度和收率。
4. 产品储存和运输:生产完成后,丁二烯需要储存和运输至下游工艺或客户处。
应选择适当的储罐和容器,对丁二烯进行储存和包装,确保产品的安全性和稳定性。
二、安全评价1. 火灾和爆炸风险评估:丁二烯是易燃易爆的化学品,因此应对生产过程中的火灾和爆炸风险进行评估。
包括对原料、反应装置、储存设施和环境条件等因素进行分析,预测潜在的火灾和爆炸风险,并采取相应的措施进行防范。
2. 有害物质防护:丁二烯的生产过程中还包括一些有害物质的生成和释放,如有毒气体、废水和废气等。
应对这些有害物质进行评估,确定其对环境和人体的潜在风险,并采取相应的防护设施和处理措施,以减少对环境和人体的影响。
3. 装置安全设计:在丁二烯生产工厂的设计过程中,应考虑装置的安全设计。
包括对设备的选择、设计和材料的选择,以及安全设备的设置。
同时,在施工和运营过程中,还需要进行定期的安全检查和维护,确保装置的正常运行和安全性。
4. 应急预案和培训:针对丁二烯生产过程中可能发生的事故和紧急情况,需要制定相应的应急预案。
丁烯氧化脱氢制丁二烯工艺技术简介
丁烯氧化脱氢制丁二烯工艺技术简介内部资料一、前言丁二烯通常指1,3一丁二烯,是碳四(C4)中最重要的组分之一。
在烯烃原料中的地位仅次于乙烯和丙烯。
是合成橡胶和树脂的重要原料之一。
丁二烯生产目前主要有两种,一种是从乙烯裂解装置副产的混合C4馏分中分离得到(丁二烯含量40~45%)。
另一种是从炼油厂C4馏分中分离丁烯,然后再将丁烯脱氢分离制得丁二烯(50~65%)。
我公司采用第二种方法生产丁二烯。
二、工艺路线本工艺采用丁烯氧化脱氢制备丁二烯技术路线。
主要步骤:丁烯制备(俗称前乙腈)、丁烯氧化脱氢反应、丁二烯抽提(俗称后乙腈)与精制。
反应器为流化床,分离均采用乙腈(CAN)法。
三、产品——丁二烯质量标准(企标)丁二烯含量% ≥99.5总炔烃PPm <20乙腈PPm 微量二聚物PPm ≤150T.B.C PPm ≤3(阻聚剂)H20值PPm ≤20含氧化合物PPm ≤10羟基化合物PPm ≤10硫化物(以H2S)计PPm <1四、原材料规格及动力配置名称规格原料;混合碳四分析项目碳二总量丙烷丙烯异丁烷正丁烷反-2-丁烯1-丁烯异丁烯顺-2-丁烯异戊烷正戊烷1,3-丁二烯甲醇含量二甲醚含量其他合计鲁深发0.052.60.8632.7412.7814.2713.88138.740.590.160.150.060.030.12100其他单位0.042.540.2622.2920.620.6716.83114.290.690.10.150.080.090.37100氧化脱氢反应用丁烯原料丁烯(重量):% ≤98% 异丁烯(重量):% ≤0.5 总碳三(重量):% ≤0.1 总碳五(重量):% ≤0.1 总硫(重量):PPm ≤3乙腈纯度(重量):% ≥98氢氰酸:PPm <50丙烯腈:PPm ≤500酸度(以醋酸计):PPm <50 水:(重量)% ≤0.5丙腈:% ≤1.0甲醇工业级亚销酸钠纯度:(重量)% ≥98水不溶物:% <0.01 NaNO3含量:(重量)% <1.5对叔丁基苯邻二酚(T.B.C)纯度(重量)%:≥99 熔点:℃≥52外观:白色或微黄晶体吸收油(正己烷)馏程:℃碘值:I2g/100g <0.1 水溶性酸碱中性脱氢催化剂铁系催化剂D-006催化剂外观:灰色不透明球状颗粒,水质量分数≤%氧气用空气生压机润滑油Iso-vg46动力规格:动力电:供生产装置用380伏。
丁烯氧化脱氢
丁烯氧化脱氢是指将丁烯(C4H8)通过氧化反应转化为丁二烯(C4H6)的过程。
这个过程通常涉及催化剂的使用,可以通过以下反应方程式表示:
丁烯+ 氧气→丁二烯+ 水
在实际的工业生产中,丁烯氧化脱氢通常采用高温下的氧化剂进行。
其中,常用的催化剂是铜、铬、钼等金属或其氧化物。
这些催化剂可以提供活性位点,促进丁烯分子与氧气之间的反应,从而实现氧化脱氢过程。
丁烯氧化脱氢具有以下一些特点和应用:
生产丁二烯:丁二烯是一种重要的石化原料,可用于合成橡胶、塑料、纤维等化工产品。
通过丁烯氧化脱氢,可以高效地生产丁二烯,满足工业生产的需求。
催化剂的选择和优化:不同的催化剂对丁烯氧化脱氢的反应效率和选择性有影响。
因此,催化剂的选择和优化是提高丁烯氧化脱氢过程效率的关键。
温度和反应条件的控制:丁烯氧化脱氢通常需要在高温下进行,而且反应过程中需要控制氧气的供应和反应物的混合程度等因素,以实现高效的转化率和选择性。
产品分离和纯化:丁烯氧化脱氢的产物中除了目标产品丁二烯外,还可能包含其他副产物和不纯物质。
因此,需要进行产品的分离和纯化处理,以获得高纯度的丁二烯。
正丁烯氧化脱氢制丁二烯
六、正丁烯氧化脱氢制丁二烯丁二烯是最简单的具有共轭双键的二烯烃,易发生齐聚和聚合反应,也易与其它具有双键的不饱和化合物共聚,因此是重要的聚合物单体,主要用来生产合成橡胶,也用于合成塑料和树脂,丁二烯的主要用途见表3-2-22。
表3-2-22丁二烯的主要用途1.生产方法(1)从烃类热裂解制低级烯烃的副产C4馏分得到。
目前获取丁二烯的最经济和最主要的方法。
C4馏分产量约为乙烯的30%~50%,其中丁二烯含量可高达40%左右。
由C4馏分制取丁二烯的一种分离方案示于图3-2-37。
由于C4馏分各组分的沸点相近(正丁烯,异丁烯和丁二烯的沸点分别为-6.3,-6.9和-4.4℃),工业上通常采用萃取精馏法将它们分离,所用的萃取剂有:N-甲基吡咯烷酮,二甲基甲酰胺和乙腈等。
图3-2-37 由C4馏分制取丁二烯的工艺过程(2)由乙醇生产丁二烯乙醇合成丁二烯的总反应式为实际上反应经过一系列阶段属气-固相催化反应,在常压或减压下进行,从丁二烯中分离出的乙醛返回反应系统。
世界上采用本法生产丁二烯的不多。
(3)由正丁烷和正丁烯脱氢生产丁二烯正丁烷脱氢是连串可逆反应脱氢反应第一阶段得到三种正丁烯异构体,第二阶段三种丁烯异构体继续脱氢得到1,3-丁二烯。
两个阶段的热效应分别为-126kJ/mol和-113.7kJ/mol。
脱氢是吸热而且是摩尔数增加的反应,因而采用高温和低压(甚至负压)对脱氢反应是有利的,由于高温下副反应激烈,副产物增加,故要采用催化活性高,选择性好的催化剂。
如同乙苯脱氢一样,在反应第二阶段尚需添加水蒸气以降低丁烯的分压,提高反应平衡转化率,减少副反应(特别是丁烯热分解以及缩聚成焦反应),帮助清除催化剂表面结炭以及为脱氢反应提供热量等。
由于烯烃缩聚成焦反应比较利害,为保持催化剂活性,需频繁再生,因此脱氢周期较短,一般为几小时,甚至几分种,需专门设置再生器或设置几台(一般为2~3台)反应器切换输流使用,为此需要设置复杂的自动控制系统。
丁烯氧化脱氢制丁二烯技术研究
丁烯氧化脱氢制丁二烯技术研究丁烯氧化脱氢制丁二烯技术研究引言丁二烯是一种重要的有机化工原料,在合成橡胶、树脂、塑料和溶剂等方面具有广泛的应用。
传统的丁二烯生产工艺主要通过丁烯-丁烷异构化、丁烷脱氢和丙烯丁二烯化的方式制备,但这些方法存在能耗高、非可再生能源消耗多以及环境污染等问题。
近年来,一种新的丁二烯生产技术——丁烯氧化脱氢制丁二烯逐渐引起了人们的关注。
本文将介绍丁烯氧化脱氢制丁二烯技术的研究进展。
一、丁烯氧化脱氢制丁二烯的机理丁烯氧化脱氢制丁二烯是利用催化剂催化乙炷氧化生成丙烯和丁烯,然后再经过选择性脱氢反应得到丁二烯的方法。
该方法相较于传统的制备工艺来说更加环保、高效。
首先,催化剂被选择性地选择催化乙炔氧化反应。
随着研究的进展,人们发现过渡金属催化剂如Pd、Pt、Ru、Ir等在这一反应中表现出较好的催化活性和选择性。
其次,丙烯与丁烯的脱氢反应是通过催化剂促进进行的。
一些研究表明,添加碱金属催化剂如K、Cs等可以有效提高丙烯和丁烯的选择性脱氢。
最后,通过控制反应条件如温度、压力、催化剂种类和添加剂等,可以实现丁烯的选择性生成,进一步提高丁二烯的产率。
二、丁烯氧化脱氢制丁二烯的研究进展1. 催化剂的研究进展过渡金属催化剂是丁烯氧化脱氢制丁二烯的核心。
在过去的研究中,人们广泛探索了不同催化剂对该反应的催化活性和选择性的影响。
研究发现,Pd基催化剂表现出较好的活性和选择性,因此被认为是最有潜力的催化剂之一。
此外,制备高分散度催化剂也成为了研究的重点,以提高反应的效率和选择性。
2. 添加剂的研究进展在丁烯氧化脱氢制丁二烯的过程中,添加剂的引入对催化剂的活性和选择性起到了重要的作用。
研究表明,碱金属催化剂的引入可以提高丙烯和丁烯的选择性脱氢。
此外,添加一些促进剂如硫、氯等也能够改善催化剂的性能。
3. 反应条件的研究进展反应条件对丁烯氧化脱氢制丁二烯的反应效果具有重要影响。
温度、压力、反应物比例和催化剂用量等参数的优化可以提高反应的选择性和产率。
浅谈丁烯氧化脱氢制丁二烯工艺中的余热利用
浅谈丁烯氧化脱氢制丁二烯工艺中的余热利用发表时间:2019-02-13T16:26:37.110Z 来源:《建筑模拟》2018年第32期作者:豆林廷许纪生[导读] 简要叙述丁烯氧化脱氢制丁二烯工艺中余热利用的情况及重要性,实例分析运用热泵技术回收余热产汽所产生的良好效益,并指明丁烯氧化脱氢制丁二烯工艺技术的发展方向。
山东东明石化集团摘要:简要叙述丁烯氧化脱氢制丁二烯工艺中余热利用的情况及重要性,实例分析运用热泵技术回收余热产汽所产生的良好效益,并指明丁烯氧化脱氢制丁二烯工艺技术的发展方向。
关键词:氧化脱氢;余热利用;节能降耗引言受乙烯原料不断轻质化、国内合成橡胶产能快速增长等因素的影响,近年国内丁二烯供应短缺。
在这种情况下,丁二烯扩能迅速。
国内目前现有的生产装置大多采用乙烯裂解碳四馏分抽提工艺,但原料基本被中石化、中石油两大石油公司所垄断,造成丁二烯的供应短缺,价格也不断攀升。
面对主流工艺的原料供应短缺,不少合成橡胶民营及外资合资企业只能寻求其他生产工艺来获得丁二烯,从而刺激了丁烯氧化脱氢制丁二烯工艺的复苏。
1、工艺流程及余热利用简述丁烯氧化脱氢制丁二烯的工艺流程简述如下:(1)氧化脱氢及水冷洗酸单元:原料丁烯、空气、水蒸气按一定比例混合后去一段反应器反应,然后再配入丁烯、空气和急冷水去二段反应器反应。
反应后的生成气经前换热器、废热锅炉、后换热器回收热量,然后去水冷洗酸塔洗去酸、醛并进一步降温后去生成气压缩机。
(2)生成气压缩单元:将生成气由0.12MPa(绝)经螺杆压缩机提至1.0~1.5MPa(绝),加压后的生成气去油吸收解吸。
(3)油吸收解吸单元:加压后的生成气在吸收塔中被塔顶加入的贫油吸收,尾气经吸附达标排放。
塔底富油送往解吸塔解吸,解吸塔侧线采出粗丁二烯经冷凝后送罐区,塔顶全回流,塔底贫油部分循环使用,部分送往再生塔再生。
(4)丁二烯抽提单元:本单元主要包括萃取精馏、丁二烯精制得丁二烯产品、溶剂回收后循环使用。
丁二烯生产技术现状及发展方向
丁二烯生产技术现状及发展方向1.丁烯氧化脱氢制丁二烯技术1.1反应原理在进行丁烯氧化脱氢生产丁二烯过程中,会释放出大量的热量,此时可以借助系统的提纯处理来获取丁二烯,丁烯完全氧化后可以得到一氧化碳、二氧化碳和水。
但是在实际反应过程中受多方面因素影响,从而导致氧化反应发生一系列的变化,最终得到多种含氧化合物。
氧化降解后会生成丙酮、甲醛等氧化合物,氧化生成四个碳原子的含氧化合物,如丁烯醛、丁酮等。
在进行深度氧化反应过程中,脱氢后可以得到乙烯基乙炔等产物,然后通过一系列的氧化后可以得到二氧化碳、一氧化碳和水等產物,该阶段所生成的产物与副产物又能够通过凝结聚合形成新的产物。
1.2工艺流程丁烯氧化脱氢制丁二烯的工艺生产流程主要包括油吸收和氧化脱氢反应两个单元。
其中氧化脱氢反应单元又能够细分为反应、水冷以及洗醛三个主要环节。
图一所示为氧化脱氢反应单元的主要流程示意图。
在反应器内,丁烯与空气在催化剂的作用下发生反应,从而生成丁二烯以及醛酸等一系列副产物。
由于整个反应为放热反应,为了避免放热温度过高对反应温度造成影响,需要在反应器内注入大量蒸汽,从而有效控制反应温度,以此来有效延长催化剂的操作周期。
之后对反应器生成的产物借助水冷塔进行冷却处理,将复合产物中的酸成分分离,再通过生成器压缩机对水冷后生成气进行加压,在洗醛塔中加压水洗清除产物中的醛和酮成分,最后将生成气引入油吸收系统进行下一个生成环节。
图二所示为油吸收单元的基本操作流程,通过油吸收单元可以有效分离和剔除生成气中的C4烃。
通常情况下,油吸收单元需要先进行吸收油吸收,随后开展重吸收油吸收,这样可以有效地减少C4以及吸收油的损耗。
在吸收塔中洗醛塔顶产生的C4物料与吸收油进行逆流接触,而C4相关物料能够溶于吸收油,从而在解析塔中被吸收油分解提取。
塔顶的C4物料能够直接参与到丁二烯抽提单元,该过程中塔釜的吸收油能够循环使用,并且还可以与尾气混合在一起进入重油吸收系统并进行二次抽取和循环利用,进一步对尾气中的C4物料进行收集和提取,并回收,从而有效提高吸收油的再利用效率。
丁二烯抽提工艺选择
的最终高操作温度163℃,相差15℃。较低的操
作温度有利于抑制丁二烯聚合。
NMP法与DMF法技术对比
丁二烯抽提工艺的选择
系统中含水情况对比
(2)NMP工艺中的溶剂含有8.3%的水,不但降低了沸点,保持了低挥 发度,同时也增大了溶剂的选择性。而DMF工艺中却要严格控制循环溶剂中 的含水量在5*104以下。 NMP溶剂性能优良。能与水以任何比例混溶,且不易发生水解或热降解, 溶剂本身及其与水的混合物无腐蚀性,设备材质可用碳钢。而DMF溶剂虽然 也能与水混溶,但遇水将发生水解,生成二甲胺及甲酸,对设备产生严重腐 蚀。 DMF水解量将随着温度和水含量的增加而增加,同时,含酸或碱的介质 又能促进DMF的水解,而DMF的水解产物又恰恰是酸、碱介质。因此,水解 一旦发生,如得不到有效控制,将会形成恶性循环,威胁到产品质量及设备 的正常运行。二甲胺在系统中的逐渐累积可能会造成丁二烯产品中胺值升高 异致产品不合格。甲酸含量增高则会腐蚀设备,缩短设备的运行周期,尤其 对高温的设备危害较大。
CAN与NMP法和DMF法相比,CAN法具有一定 的优势,但乙腈溶剂毒性较大,随着人们的环保
意识日益加强,该工艺逐渐被淘汰。而NMP工艺
由于其诸多的技术优势,文中对NMP法和DMF法2
种工艺进行对比,阐述了NMP工艺的综合优势。
NMP法与DMF法的工艺
丁二烯抽提工艺的选择
NMP法与DMF法的工艺流程基本相同,都是通过2段萃 取、2段普通精馏的过程最终获得高纯度的丁二烯产品,2 种工艺的萃取过程有所别,普通精馏的过程完全相同。
丁二烯抽提工艺的选择14
环保对比
DMF职业性接触毒物危害程度为lll级(中毒危害),在 水存在下会分解,且含DMF的废水不易被生物降解。DMF
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.淬冷水处理
从淬冷塔塔底排出的水,含有沸点比较高的含氧副产物,一部分经热交换回收部分能量后,循环作淬冷水用,其余经吹脱塔脱除低沸点副产物后,排放到污水处理厂处理。
丁二烯分离和精制流程如图4-20(P195)所示。
由于铁酸盐尖晶石催化剂有比较宽的操作温度范围,所以可以采用绝热床反应器氧化脱氢。
1.原料混合
新鲜原料正丁烯和循环正丁烯混合后,再与预热到一定温度的空气和水蒸气混合物充分混合,并使混合物达到一定的温度,然后进入绝热式反应器进行氧化脱氢反应。
3.反应产物淬冷(直接喷水急冷)
反应物料经废热锅炉回收能量后,进入淬冷系统。反应物料在淬冷塔中,直接进行喷水急冷。
经过急冷,进一步降低温度和除去高沸点副产物后,输入吸收分离工序,分离出产物丁二烯和没有转化的正丁烯。
4.反应产物压缩(提高吸收效率)
为了提高吸收效率,反应物料进入吸收塔以前,先经过压缩机增加压力。
5.反应产物中丁烯、丁二烯被吸收
吸收塔可以采用沸程为60~90℃的馏分油作吸收剂。丁二烯和丁烯被吸收后,在解吸塔中进行解吸,得到粗丁二烯,经过脱重组份精馏塔,脱除高沸点杂质以后,送入分离和精制部分,吸收剂(或经过油吸收塔11)循环使用。
6.反应产物中没被吸收的气体经吹脱塔送火炬
9.粗丁二烯一、二级萃取
粗丁二烯先在一级萃取精馏塔中,分离出没有转化的正丁烯和丁烷,然后再在二级萃取精馏塔中分离出炔烃,萃取剂大部分循环使用,一部分送再生塔再生。
10.丁二烯脱轻组分、精馏à获得聚合级丁二烯
从二级蒸出塔蒸出的丁二烯,还可能含有少量甲基乙炔和顺-2-丁烯。先在脱轻组分塔中,蒸出甲基乙炔,然后在丁二烯精馏塔中,分出顺-2-丁烯,获得聚合级丁二烯。
工艺流程丁烯催化氧化脱氢制丁二烯过程的特点:
(1)强放热反应,必须及时移去反应热;
(2)产物沸点低,在酸存在下容易自聚;
(3)副产物类型多,其中不饱和的含氧化合物在一定压力、温度条件下,容易自聚,而且,在酸的存在下,加速了自聚的速度。副产物大部分溶于水,因此可用水作溶剂,使丁烯及丁二烯与副产物分离。
根据上述特点,丁烯氧化脱氢制丁二烯的流程如图4-19(P195)及图4-20(P195)所示。
正丁烯氧化脱氢,生成丁二烯的工艺流程,主要分三部分:
反应部分;
丁二烯的分离和精制;
没有转化的正丁烯的回收。
正丁烯氧化脱氢制丁二烯反应部分的流程如图4-19(P195)所示。
11. 正丁烯和正丁烷萃取精馏分离à正丁烯循环使用
从丁二烯分离精制部分分出的正丁烯和正丁烷,为了避免正丁烷在循环过程中的积累,需要将正丁烷分出以后,才能循环使用。由于正丁烷的沸点与顺-2-丁烯的沸点接近,所以也需要采用萃取精馏法分离。
丁二烯在贮存过程中应当注意的问题:
8.粗丁二烯进一步分离 来自 从解吸塔解吸得到的粗丁二烯,除含有没有转化的丁烯外,还可能含有副产物炔烃、还有原料带入的惰性物质丁烷。从粗丁二烯中分离精制出聚合级丁二烯,其分离方案,与从裂解C4馏分中获取聚合级丁二烯的分离、精制方案基本相似,也需要采用二级萃取精馏的方法,其流程组织见图4-20(P195)所示。
丁二烯不仅能与空气形成爆炸性混合物(爆炸极限2~11.5%(体积)),而且能与空气中氧气形成具有爆炸性的过氧化物,过氧化物的的生成,增加了贮藏和蒸馏过程中的危险性,并能促进丁二烯的聚合。为了防止过氧化物的生成,在精馏和贮藏过程中,应避免与空气接触。
2.反应产物预热à产生水蒸气
从反应器出来的高温反应产物,进入废热锅炉,利用反应产物的热量,来产生水蒸气供反应器使用。
反应物料在废热锅炉出口的控制温度,与反应物料的组成有关。以铁酸盐尖晶石作催化剂的正丁烯氧化脱氢产物中,不含有机酸,不容易结焦,所以可以控制比较低的(反应物料)废热锅炉出口温度,以提高能量的回收率。