高中近代物理及发展史总结
高中物理学史归纳整理版2023
高中物理学史归纳整理版2023以下是高中物理学史的归纳整理版2023:一、古代物理学的产生古希腊哲学家亚里士多德(Aristotle)提出了许多关于自然界的理论,如物体运动的原因和自然界的秩序。
中国古代的墨子记载了光的直线传播和影子的形成。
二、近代物理学的开端文艺复兴时期,达芬奇(Leonardo da Vinci)对光、水和空气的运动进行了研究。
伽利略(Galileo Galilei)通过实验观测和数学推理,提出了自由落体定律和惯性原理。
三、经典物理学的建立牛顿(Isaac Newton)提出了三大运动定律和万有引力定律,建立了经典力学的基础。
麦克斯韦(James Clerk Maxwell)总结了电磁场的理论,预言了电磁波的存在。
四、相对论的提出爱因斯坦(Albert Einstein)提出了相对论,解释了时间和空间的关系,以及质量和能量的关系。
五、量子力学的诞生普朗克(Max Planck)提出了量子化的概念,解释了黑体辐射的规律。
爱因斯坦解释了光电效应,进一步推动了量子力学的发展。
波尔(Niels Bohr)提出了原子模型,解释了原子结构和光谱的规律。
六、现代物理学的发展德布罗意(Louis de Broglie)提出了物质波的概念,开启了波粒二象性的研究。
海森堡(Werner Heisenberg)、薛定谔(Erwin Schrödinger)等人发展了量子力学的理论体系。
狄拉克(Paul Dirac)预言了正电子的存在,与泡利(Wolfgang Pauli)一起提出了不相容原理。
奥本海默(J. Robert Oppenheimer)领导的研究团队实现了人类第一次核反应堆的成功运行。
贝尔实验室的巴丁(John Bardeen)、布拉顿(William Shockley)和肖克利(Walter Brattain)发明了晶体管。
霍金(Stephen Hawking)研究了黑洞辐射和宇宙起源的问题,提出了黑洞辐射理论。
高中近代物理总结归纳
高中近代物理总结归纳近代物理是高中物理课程中的重要一部分,它主要讲述了自十七世纪末至二十世纪初科学家们所做出的一系列关于物质、能量和相互作用的重大突破。
本文将对高中近代物理的主要内容进行总结归纳,旨在帮助同学们更好地理解和记忆这一知识点。
一、光的粒子性与波动性在高中物理中,我们学习了光的粒子性与波动性的理论。
根据爱因斯坦的光电效应实验,光可以被看作一种由光子组成的粒子流。
而根据杨氏实验的结果,光又表现出波动性。
这似乎是一个矛盾的情况,但实际上光既具有粒子性又具有波动性。
这一点在双缝干涉实验和波粒二象性理论中得到了充分的解释。
二、玻尔理论与原子结构近代物理的另一个核心概念是玻尔理论和原子结构。
根据玻尔的理论,电子只能处在特定能级上,电子能级之间的跃迁导致了电子的吸收和发射能量的现象。
这一理论解释了氢原子光谱的发射线和吸收线的性质。
此外,我们还学习了原子的组成和结构,包括质子、中子和电子的性质以及原子的核外电子排布规律。
三、相对论与时空观念的改变爱因斯坦的相对论是近代物理领域的又一重要突破。
狭义相对论理论揭示了光的速度是一个不变量,并改变了我们对时间和空间的观念。
它提出了伽利略相对性原理和洛伦兹变换,揭示了物体在高速相对运动中的时间膨胀和长度收缩的现象。
广义相对论则进一步推翻了牛顿力学的时间和空间观念,提出了引力场的概念,并通过弯曲时空解释了引力的起源。
四、量子力学与波函数描述量子力学是揭示微观领域物质和辐射的行为的理论框架。
它基于波函数的概念,通过薛定谔方程描述了微观粒子(如电子)的运动和性质。
我们学习了波函数的概念、波函数的叠加原理以及哈密顿算符和马赫-波尔定理等重要概念。
量子力学的启示是微观粒子的行为是不确定的,只能通过概率来描述。
五、核能与核技术的应用核能和核技术是近代科学技术的重要应用领域。
我们学习了核反应、裂变和聚变的原理,了解了核电站和核武器的基本工作原理。
此外,我们还学习了放射性物质的衰变规律,了解了放射性同位素的医疗和工业应用。
物理高三近代史知识点总结
物理高三近代史知识点总结近代史是物理学中一门重要的学科,它涵盖了众多的知识点,为了方便高三学生对这些知识点有一个全面的了解,下面将对物理高三近代史知识点进行总结。
1. 物理学的发展历程近代史起源于17世纪,当时以伽利略、牛顿等人的研究为基础,逐渐形成了经典力学和光学理论。
18世纪末,电学和磁学开始崛起,进一步推动了物理学的发展。
20世纪初,相对论和量子力学的提出彻底改变了物理学的格局,开创了量子物理学和现代物理学的新纪元。
2. 热力学和热学热力学研究热量和功的转化关系,以及物质在温度变化下的行为。
热学是研究热力学基本理论和热学性质的学科。
近代物理学中的热力学概念包括内能、热力学第一定律、熵等。
以及热传导、热辐射和热扩散等方面的知识点。
3. 光学光学是研究光的传播规律和光与物质相互作用的学科。
近代物理学的光学理论包括几何光学、物理光学、光的波粒二象性等。
其中的知识点涉及到光的偏振、光的干涉、光的衍射、光的折射等。
4. 电学和电磁学近代物理学中的电学是以库仑定律为基础,研究电荷、电场和电势等电性质的学科。
电磁学是研究电磁场和电磁波的学科。
电学和电磁学的知识点包括电场与电势、电容、电流与电阻、电磁感应、电磁波等。
5. 相对论和量子力学相对论是爱因斯坦于1905年提出的一种基本物理理论,研究光速不变的原理和质量能量关系等。
量子力学是研究微观世界中微观粒子的运动和相互作用的学科。
相对论和量子力学的知识点包括相对论的相对性原理、量子纠缠、波粒二象性、不确定性原理等。
6. 核物理学和粒子物理学核物理学是研究原子核及其内部结构、核变换、核能源等的学科。
粒子物理学是研究基本粒子、宇宙射线、强、弱、电磁相互作用等的学科。
核物理学和粒子物理学的知识点包括放射性衰变、核反应、粒子加速器等。
总结:物理高三近代史知识点的总结包括物理学的发展历程、热力学和热学、光学、电学和电磁学、相对论和量子力学、核物理学和粒子物理学等知识点。
高中近代物理知识点总结
高中近代物理知识点总结近代物理是高中物理中的重要分支之一,研究的是20世纪初以来的物理学发展与应用。
本文将对几个近代物理的重要知识点进行总结,以帮助高中学生更好地理解和掌握这些内容。
一、光电效应光电效应是近代物理的重要实验现象之一,指的是将光照射到金属上时,金属表面电子被光子激发后跃迁到导体内并引起电流。
通过对光电效应的研究,研究者发现光子具有粒子性,并提出了光子的概念。
光电效应的实验结果也可以用经典的波动理论进行解释,但是无法解释光电效应中出现的一些现象,如截止电压的存在。
光电效应的发现推动了光的量子论的发展,对于理解光的本质和光学技术的应用有着重要的意义。
二、相对论相对论是爱因斯坦提出的重要物理理论,它涉及到时间、空间和物体的质量等概念的变化。
狭义相对论主要讨论的是惯性系中相对运动的物体,它的核心概念是光速不变原理和相对性原理。
狭义相对论揭示了质量增加和长度收缩等效应,并推翻了牛顿力学中的绝对时间和绝对空间的观念。
广义相对论则进一步研究了引力的本质,提出了引力场的几何描述和引力波的概念。
相对论在宇宙学、引力研究等领域有着广泛的应用,并对现代科学哲学产生了重要影响。
三、量子力学量子力学是研究微观粒子的运动和性质的物理学分支,是近代物理学的重要理论体系之一。
量子力学的核心概念包括波粒二象性、量子态和波函数、不确定性原理等。
量子力学对于解释电子的行为、原子的结构和化学键的形成等具有重要意义。
通过量子力学的研究,人们发现微观粒子的运动遵循概率性规律,电子以波的形式存在于原子中,并且存在着离散的能级结构。
量子力学的发展使得原子物理学、凝聚态物理学等领域得到了极大的发展,对现代技术的进步起到了重要的促进作用。
四、核物理核物理是研究原子核结构、放射性衰变和核反应等现象的物理学分支。
核物理的重要概念包括原子核的质量数、原子核的稳定性和放射性衰变等。
核物理的研究揭示了原子核的内部结构和强交互力的本质。
核物理在核能的开发利用、医学诊断和治疗等方面有着重要的应用,但同时也带来了核武器扩散和核辐射的安全问题,对人类社会产生了深远的影响。
高中物理学史总结归纳 高中物理学史总结
高中物理学史总结归纳高中物理学史总结高中物理学史总结归纳篇一高中物理学史总结叶涛一、力学1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);2、一⑦世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。
同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。
4、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。
5、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。
6、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。
7、一⑦世纪,德国天文学家开普勒提出开普勒三大定律;8、牛顿于1687年正式发表万有引力定律;一⑦98年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;9、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。
10、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。
11、1957年10月,苏联发射第一颗人造地球卫星;1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。
高中近代物理史归纳总结
高中近代物理史归纳总结近代物理是20世纪及之后发展起来的一门科学领域,涵盖了许多重要的物理理论和实验。
高中近代物理通常包括相对论、量子力学和原子物理等内容。
本文将对高中近代物理的重要概念和理论进行归纳总结。
第一部分:相对论相对论是20世纪初爱因斯坦提出的一种理论框架,主要包括狭义相对论和广义相对论。
狭义相对论主要研究相对运动的物体之间的物理规律,广义相对论则进一步考虑了引力的效应。
1. 狭义相对论狭义相对论的核心概念是光速不变原理和等效原理。
光速不变原理指出,光在真空中的速度是恒定不变的,与观察者的运动状态无关。
等效原理指出,任何在惯性系中进行的物理实验都会得到相同的结果。
基于狭义相对论的推论,出现了一些重要的概念,例如时间膨胀、尺缩效应和质能关系。
时间膨胀指的是运动物体的时间流逝速度会变慢,尺缩效应则指的是运动物体的长度会在运动方向上收缩。
2. 广义相对论广义相对论进一步推广了狭义相对论的概念,引入了弯曲时空的概念。
根据爱因斯坦场方程,质量和能量会使时空曲率发生变化,从而形成引力场。
广义相对论预言了一系列重要的现象,如引力透镜效应、时空弯曲导致的时间延迟效应等。
此外,黑洞和宇宙膨胀也是广义相对论的重要应用领域。
第二部分:量子力学量子力学是研究微观粒子行为的理论,提出了波粒二象性和不确定性原理。
量子力学的关键概念包括波函数、量子态和算符等。
1. 波粒二象性波粒二象性指的是微观粒子既有粒子特性也有波动特性。
根据德布罗意关系,物质粒子的动量和波长存在一定关系。
2. 不确定性原理不确定性原理由海森堡提出,表明在对微观粒子进行测量时,无法同时准确测量粒子的位置和动量。
这意味着在量子世界中存在一定的不确定性。
量子力学的应用广泛涉及到原子物理、分子物理和固体物理等领域。
著名的应用包括在原子核物理研究中的量子隧穿效应和放射性衰变,以及在电子学中的量子点、量子井和量子纠缠等。
第三部分:原子物理原子物理是研究原子和原子核结构及其相互作用的物理学分支。
高二物理学习中的历史与发展概述
高二物理学习中的历史与发展概述物理学是研究非生物的自然现象和物质性质的科学。
它是一门关注着力、运动、能量和物质之间相互作用的学科。
高二物理学习是学生在高中阶段接触和学习这门学科的重要时期。
在这篇文章中,将对高二物理学习的历史与发展进行概述,并了解其对现代社会的影响和重要性。
1. 物理学的起源物理学的起源可以追溯到古代的希腊和中国。
在古希腊,亚里士多德奠定了自然哲学的基础,提出了许多对后世有重要影响的观点。
而在中国,古代科学家如张衡和沈括也提出了一系列关于物理现象的实验与理论。
2. 经典物理学时期在16世纪至19世纪的欧洲,经典物理学开始蓬勃发展。
牛顿的力学定律成为自然科学的基础,拉普拉斯的确定论思想使物理学更加系统化。
此时期物理学的发展主要侧重于解释运动和力的现象。
3. 电磁学与光学19世纪末至20世纪初,电磁学和光学成为物理学中的重要分支。
麦克斯韦的电磁理论和法拉第的电磁感应法则极大地推动了电磁学的发展。
此外,光的波动理论也得到了进一步的完善,并发展出光的粒子性理论。
4. 相对论与量子力学爱因斯坦的相对论和量子力学的发展对物理学产生了深远的影响,开启了现代物理学时代。
相对论提出了时间和空间的相对性,解释了质能等效原理和光的粒子性。
量子力学则揭示了微观世界的奇特现象,如波粒二象性和量子纠缠。
5. 当代物理学的研究方向当代物理学的研究方向多种多样,其中包括高能物理、量子力学、天体物理学、原子物理学等。
科学家们不断开展各种实验和研究,以进一步深化对自然界的认识和理解。
6. 高二物理学习的重要性高二物理学习不仅是学生进一步了解自然科学和世界的契机,而且也提供了扎实的物理知识和解决问题的能力。
物理学的研究方法培养了学生的实验和观察能力,提高了他们的逻辑思维和创造力,这对学生的学术发展和将来从事科学研究具有重要的促进作用。
总结:物理学作为一门研究自然现象和物质性质的科学,在历史上经历了漫长的发展和演变。
从古代的亚里士多德到现代的量子力学,每一步都为我们揭示了宇宙奥秘的一角。
高考物理近代史知识点总结
高考物理近代史知识点总结近代物理史是研究物理学在近代发展中的历史和演变过程的一门学科。
它包括了自牛顿力学的诞生开始,到相对论和量子力学的奠基,直至现代物理学的形成。
了解近代物理史对于高考物理考试是非常重要的,因为它能够帮助我们理解现代物理学的基本原理和发展脉络。
本文将为大家总结一些高考物理考试中常见的近代史知识点。
1. 牛顿力学的诞生牛顿力学是近代最早也是最重要的物理学分支之一。
1642年,牛顿出生在英国的一个农村家庭中。
他在1667年发表了《自然哲学的数学原理》,奠定了现代力学的基础。
牛顿的三大定律成为了力学研究的基础:惯性定律、加速度定律和作用力与反作用力定律。
2. 法拉第电磁感应定律迈克尔·法拉第是19世纪初英国的一位物理学家。
他在1831年提出了电磁感应定律,即当导体在磁场中运动或磁场变化时,会产生感应电流。
法拉第电磁感应定律是电磁学的基本定律之一,也是电磁感应现象的核心。
它的发现对于电磁能量的转换和利用具有重要的意义。
3. 波尔的量子理论尼尔斯·波尔是20世纪初丹麦的一位物理学家。
他在1913年提出了量子理论,揭示了原子结构和原子光谱的奥秘。
波尔的量子理论对于解释电子能级、光谱线和电子跃迁具有重要的作用,为量子力学的发展奠定了基础。
4. 狭义相对论爱因斯坦的狭义相对论是20世纪物理学的一大突破。
1905年,爱因斯坦发表了相对论的论文,提出了相对论的基本原理。
狭义相对论包括了两个重要的原理:相对性原理和光速不变原理。
它解决了牛顿力学无法解释的时空结构、光速不变等问题,对于粒子高速运动和重力场的研究具有重要意义。
5. 普朗克的量子假设马克斯·普朗克是20世纪早期的一位德国物理学家。
他在1900年提出了普朗克的量子假设,揭示了黑体辐射的规律。
根据普朗克的假设,辐射的能量是离散的,而不是连续的。
这一假设对于量子力学和能量的量子化有着重要的影响。
以上只是近代物理史中的一部分知识点,每一个知识点都有其独特的价值和意义。
近现代物理学的发展史
对学科的发展脉络进行梳理有助于了解其现状,展望其未来。
物理学的历史很长,不能样样都谈到,仅从牛顿开始,牛顿以前的很多先驱性的工作只好从略了。
20世纪前物理学的三大综合17世纪至19世纪,物理学经历了三次大的综合。
牛顿力学体系的建立标志着物理学的首次综合,第二次综合是麦克斯韦的电磁理论的建立,第三次则是以热力学两大定律确立并发展出相应的统计理论为标志。
第一次综合——牛顿力学17世纪,牛顿力学构成了完整的体系。
可以说,这是物理学第一次伟大的综合。
牛顿将天上行星的运动与地球上苹果下坠等现象概括到一个规律里面去了,建立了所谓的经典力学。
至于苹果下坠启发了牛顿的故事究竟有无历史根据,那是另一回事,但它说明了人们对于形象思维的偏爱。
牛顿力学的建立牛顿实际上建立了两个定律,一个是运动定律,一个是万有引力定律。
运动定律描述在力作用下物体是怎么运动的;万有引力定律则描述物体之间的基本相互作用。
牛顿将两个定律结合起来运用,因为行星的运动或者地球上的抛物体运动都受到万有引力的影响。
牛顿从物理上把这两个重要的力学规律总结出来的同时,也发展了数学,成为微积分的发明人。
他用微积分、微分方程来解决力学问题。
由运动定律建立的运动方程,可以用数学方法把它具体解出来,这体现了牛顿力学的威力——能够解决实际问题。
比如,如果要计算行星运行的轨道,可以按照牛顿所给出的物理思想和数学方法,求解运动方程就行了。
根据现在轨道上行星的位置,可以倒推千百年前或预计千百年后的位置。
海王星的发现就充分体现了这一点。
当时,人们发现天王星的轨道偏离了牛顿定律的预期,问题出在哪里呢?后来发现,在天王星轨道外面还有一颗行星,它对天王星产生影响,导致天王星的轨道偏离了预期的轨道。
进而人们用牛顿力学估计出这个行星的位置,并在预计的位置附近发现了这颗行星——海王星。
这表明,牛顿定律是很成功的。
按照牛顿定律写出运动方程,若已知初始条件——物体的位置和速度,就可以求出以后任何时刻物体的位置和速度。
高考高中物理学史归纳总结
高考高中物理学史归纳总结高中物理学作为一门重要的学科,其发展历史可以追溯到古代,经历了漫长的发展过程。
在高考物理考试中,对物理学史的了解也是必不可少的。
下面,我们将对高中物理学史进行归纳总结,帮助大家更好地理解和掌握这一学科的发展历程。
首先,古代物理学的发展可以追溯到古希腊时期。
古希腊哲学家们对自然现象进行了观察和思考,提出了许多关于物质、运动和空间的理论。
其中,柏拉图和亚里士多德的理论对后世物理学的发展产生了深远的影响。
随后,随着科学技术的进步,近代物理学得到了迅猛的发展。
伽利略、牛顿等科学家的研究成果为物理学的发展奠定了坚实的基础。
伽利略提出了地球运动学说,揭示了物体运动的规律;牛顿则提出了经典力学的三大定律,开创了近代物理学的研究方向。
随着科学技术的不断进步,物理学的研究领域也不断扩展。
电磁学、热学、光学、相对论等新的物理学理论相继涌现,为人类对自然规律的认识提供了新的视角和方法。
爱因斯坦的相对论理论、居里夫人的放射性研究等成果,为物理学的发展注入了新的活力。
在当代,量子力学、原子物理学、核物理学等新的物理学分支不断涌现,为人类认识微观世界提供了全新的框架和视角。
同时,物理学在现代科技发展中也发挥着重要的作用,如半导体技术、激光技术、核能技术等都是基于物理学理论的应用。
总的来说,高中物理学史是一部充满辉煌成就和深刻思想的历史。
从古代的自然哲学到近代的经典力学,再到当代的量子力学和相对论,物理学在人类认识自然规律、改造世界的过程中发挥着重要的作用。
通过对物理学史的归纳总结,我们可以更好地理解物理学的发展脉络,把握其核心思想和基本原理,从而更好地掌握和运用物理学知识。
总而言之,高中物理学史的归纳总结对于理解和掌握物理学知识具有重要意义。
通过对古代物理学思想和近代物理学理论的了解,我们可以更好地把握物理学的发展脉络和基本原理,为今后的学习和科研打下坚实的基础。
希望大家能够认真对待物理学史的学习,不断提高自己的物理学素养,为科学事业的发展做出贡献。
高中物理学史总结
高中物理学史总结一、古代物理学的发展古代物理学是物理学学科的起源,它的发展可以追溯到古代文明时期。
古代物理学主要是通过观察和实验,总结出一些物质和运动的基本规律。
其中最有代表性的莫过于古希腊的物理学家亚里士多德和克拉克。
亚里士多德提出了四种元素理论,即地、水、火、气四种物质在宇宙中的存在形式。
克拉克则成功地用实验方法验证了亚里士多德的理论,并提出了物体的自由下落规律。
二、近代物理学的起源近代物理学的起源可以追溯到17世纪的科学革命时期。
在这个时期,一系列突破性的发现和理论提出,为物理学的进一步发展奠定了基础。
其中最重要的是牛顿的三大定律和万有引力定律。
牛顿的三大定律为物体的运动提供了完整的描述,而万有引力定律则解释了物体之间相互作用的原理。
此外,伽利略的运动学研究也为近代物理学的发展做出了巨大贡献。
他通过实验和数学推导,提出了匀速运动和自由落体运动的规律,并强调了用数学方法描述物理现象的重要性。
三、电磁学的兴起19世纪电磁学的兴起标志着物理学的一个重要里程碑。
安培、法拉第、麦克斯韦等科学家的研究成果,为电磁学的发展提供了坚实的理论基础。
安培的电流定律和法拉第的电磁感应定律为电磁学打开了新的研究领域。
同时,麦克斯韦的电磁场理论和麦克斯韦方程组的形成奠定了电磁学的基础。
电磁学的兴起不仅为科学技术的发展带来了巨大的推动力,也为光学的发展提供了重要的参考。
麦克斯韦的电磁辐射理论奠定了电磁波和光的关系,并通过实验证实了光是电磁波的一种表现形式。
四、相对论与量子力学的革新20世纪初,相对论和量子力学的提出彻底改变了人们对物理世界的认识。
爱因斯坦的狭义相对论和广义相对论揭示了时间、空间和质量之间的关系以及引力的本质。
相对论对于高速运动和强引力场下的物理现象提供了统一的解释,对于物理学的发展具有深远的影响。
量子力学的提出则深刻地改变了人们对微观世界的认识。
通过研究原子和分子尺度下的物理现象,科学家们发现了量子现象的存在,如波粒二象性、不确定性原理等。
高中近代物理及发展史总结
高中近代物理总结一、原子结构:1、电子的发现和汤姆生的原子模型:(1)电子的发现:1897年英国物理学家汤姆生,对阴极射线进行了一系列的研究,从而发现了电子。
电子的发现表明:原子存在精细结构,从而打破了原子不可再分的观念。
(2)汤姆生的原子模型:1903年汤姆生设想原子是一个带电小球,它的正电荷均匀分布在整个球体内,而带负电的电子镶嵌在正电荷中。
2、α粒子散射实验和原子核结构模型(1)α粒子散射实验:1909年,卢瑟福及助手盖革手吗斯顿完成①装置:②现象:a. 绝大多数α粒子穿过金箔后,仍沿原来方向运动,不发生偏转。
b. 有少数α粒子发生较大角度的偏转c. 有极少数α粒子的偏转角超过了90度,有的几乎达到180度,即被反向弹回。
(2)原子的核式结构模型:由于α粒子的质量是电子质量的七千多倍,所以电子不会使α粒子运动方向发生明显的改变,只有原子中的正电荷才有可能对α粒子的运动产生明显的影响。
如果正电荷在原子中的分布,像汤姆生模型那模均匀分布,穿过金箔的α粒了所受正电荷的作用力在各方向平衡,α粒了运动将不发生明显改变。
散射实验现象证明,原子中正电荷不是均匀分布在原子中的。
1911年,卢瑟福通过对α粒子散射实验的分析计算提出原子核式结构模型:在原子中心存在一个很小的核,称为原子核,原子核集中了原子所有正电荷和几乎全部的质量,带负电荷的电子在核外空间绕核旋转。
原子核半径小于10-14m,原子轨道半径约10-10m。
3、玻尔的原子模型(1)原子核式结构模型与经典电磁理论的矛盾(两方面)a. 电子绕核作圆周运动是加速运动,按照经典理论,加速运动的电荷,要不断地向周围发射电磁波,电子的能量就要不断减少,最后电子要落到原子核上,这与原子通常是稳定的事实相矛盾。
b. 电子绕核旋转时辐射电磁波的频率应等于电子绕核旋转的频率,随着旋转轨道的连续变小,电子辐射的电磁波的频率也应是连续变化,因此按照这种推理原子光谱应是连续光谱,这种原子光谱是线状光谱事实相矛盾。
物理学发展简史
一、古典物理学与近代物理学:1、古典物理学:廿世纪以前所发展的物理学称为古典物理学,以巨观的角度研究物理,可分为力学、热学、光学、电磁学等主要分支.2、近代物理学:廿世纪以后1900年卜朗克提出量子论后所发展的物理学称为近代物理学,以微观的角度研究物理,量子力学与相对论为近代物理的两大基石.一、古典物理学对人类生活的影响:1、力学:简单机械杠杆、轮轴、滑轮、斜面、螺旋、劈……2、光学:一反射原理:1平面镜:镜子……2凹面镜:手电筒、车灯、探照灯……3凸面镜:路口、商店监视镜……二折射原理:1凸透镜:放大镜、显微镜、相机……2凹透镜:眼镜、相机……3、热学:蒸汽机、内燃机、引擎、冰箱、冷暖气机……4、电学:一利用电能运作:一般电器用品,如:电视机、冰箱、洗衣机……二利用电磁感应:发电机、变压器……三利用电磁波原理:无线通讯、雷达……二、近代物理学对人类生活的影响:1、半导体:一半导体:导电性介于导体和绝缘体间之一种材料,可分为元素半导体如:硅、锗等和化合物半导体如:砷化镓等两种.二用途:1半导体制成晶体管,体积小、耗电量少,具有放大电流讯号功能.2半导体制成二极管具整流能力.3集成电路IC:A1958年发展出「集成电路」技术,系利用长晶、蚀刻、蒸镀等方式于一小芯片上容纳上百万个晶体管、二极管、电阻、电感、电容等电子组件之技术,而此电路即称为集成电路.BIC之特性:体积小、效率高、耗电低、稳定性高、可大量生产.CIC之应用:计算机、手机、电视、计算器、手表等电子产品.4计算机信息科技之扩展大辐改变了人类的生活习惯,故俗称第二次工业革命.2、雷射:一原理:利用爱因斯坦「原子受激放射」理论,诱发大量原子由受激态同时做能态之跃迁并放射同频率之光子,藉以将光加以增强.二特性:聚旋光性好、强度高、光束集中、频率单一单色光.三应用:1工业上:测量、切割、精密加工……2医学上:切割手术肿瘤、近视……3军事上:定位、导引……4生活、娱乐上:激光视盘、光纤通讯……3、光纤:一光纤:将高纯度石英熔融抽丝制成极细之圆柱体,柔软可挠曲,含内层纤芯及外层包层两层.二原理:纤芯之折射率大于包层,光讯号以特定角度射入纤芯之一端后,因连续之全反射而传递至另一端.三特性:1通讯容量大频宽较大,约为传统铜线之10倍以上.2重量轻、价格便宜.3传输过程中耗能低,利于长程传输.4不受干扰,保密性佳.四应用:通讯.4、核能发电:一核能:较大原子核发生分裂核裂变,如:核弹、核电厂内部或较小原子核发生融合核聚变,如:氢弹、太阳内部时,因生成物质量减少而转变成能量,此能量称为核能.二原理:质量与能量之转换遵守爱因斯坦狭义相对论中之「质能互换公式」:2E mc=.三过程:利用铀235在可控制的情形下进行核分裂反应,产生之核能转变成热能使水变成水蒸气后,推动发电机产生电能,核能⇒热能⇒动能⇒电能.5、超导体:一超导体:1908年翁内斯发现部份物质于某特定温度临界温度T以下,c其电阻完全消失,此时此物称为超导体.二特性:超导体具有「零电阻」及「完全反磁性」之特性.三高温超导体:1987年朱经武、吴茂昆发现钇钡铜氧化物之临界温度约为92K,高于液态氮之沸点77K,称为「高温超导体」.四应用:超强力磁铁、磁浮列车.一、物理量:1、定义:物理学上所使用的量.2、分类:一依有无方向性而分:1向量:兼具大小及方向性者,如:速度、力……2纯量:仅具大小无方向性者,如:体积、时间、功……二依定义方式而分:1基本量:由基本概念定义而出之物理量,共有时间、长度、质量、电流、温度、发光强度光度、物质的量物量七种.2导出量:由基本量所定义出之物理量,如:体积、面积、速度等. 3物理学力学上最常用的三个基本量:时间、长度、质量.二、测量:1、定义:将待测物理量与一标准量做比较的过程.2、结果:⎧⎧⎫⎪⎨⎬⎨⎩⎭⎪⎩準確值 數值有效數字測量結果一位估計值單位 3、科学记号:将一数字化为n a 10(1a 10)⨯≤<之形式,称为科学记号.4、数量级:一数化为科学记号后一若a 3.16≥≈,则其数量级为n 110+ 二若a 3.16<≈,则其数量级为n 10三、单位:1、定义:物理量之比较标准.2、条件:单位须具「恒常性」及「方便性」.3、SI 单位:国际度量衡局选定七个基本量之单位基本单位作为单位系统之基础,简称SI 单位,亦称为公制单位.45、辅助前缀:一意义:置于单位前方,用以表示极大或极小物理量之符号.四、物理学三大基本量之测量及单位:1、时间之测量及单位:一秒之定义:11967年前:A定义:以太阳日为标准.地球上任一点连续2次对正太阳之时间间隔称为太阳日,一年内太阳日之平均值称为平均太阳日,再将一平均太阳日分为24小时,1小时分为60分,1分分为60秒,故1秒1=平均太阳日.86400B缺点:a平均太阳日逐年改变.b使用不便.21967年后:原子间之振动具良好之恒常性,故国际度量衡局于1967年会议中,选定了以铯原子之某一固定振动70次的时间定义为1秒,此标准沿用至今.二单摆之等时性:1当单摆之摆角不大摆角<︒时,其周期T25=只与摆长有关.g2周期T2=秒之单摆称为秒摆,其摆长1m≈三半衰期半生期τ:1定义:放射性物质衰变数量达原来总数之一半即剩下一半尚未衰变所需的时间,称为半衰期或半生期.2公式:设半衰期为τ之某放射性物质原数量为0N ,经过时间t 后,剩下数量为N,则:τ=t 210)(N N 3应用:利用物体所含C 14之浓度可鉴定其年代.2、长度之测量及单位: 一公尺之定义: 118世纪:以北极经巴黎至赤道的子午线长之一千万分之一为1公尺,并以此标准制作了一标准尺铂铱合金棒.21889年后:因标准尺长之一千万倍不等于子午线长,遂改以标准尺为1公尺之标准,其缺点为易受环境影响.31961年:国际间同意将公尺之标准改订为氪的同位素所发出某一特定光的波长的倍.41983年:国际度量衡会议决议将光在真空中8分之一秒所行之距离定义为1公尺.二常用特殊长度单位:1光年.:光在一年中所行之距离159.4610m ≈⨯.2天文单位.:地球绕日公转轨道之平均半径111.4910m ≈⨯500光秒 3埃oA :o101A 10m -≈,常用于表示原子之大小.3、质量之测量及单位: 一公斤之定义: 11889年前:A 定义:定义4C ︒、1公升之纯水其质量为1公斤.B 缺点:a 纯水取得不易.b 易受环境温度影响.21889年后:国际度量衡会议决议采用铂铱合金制之「公斤原器」为1公斤之标准.4五、密度ρ之测量:1、密度之定义:单位体积中所含的质量.2、公式:M()V=ρ=質量密度體積 3、质量可由天平测得.4、形状规则之物体如:正立方体、长方体、圆柱体等体积可由边长测量求出,形状不规则之物体其体积则可用「排水法」求出.5、单位: 一SI 制:3kg m二常用:3gcm 三换算:33g kg 11000cm m =。
高中物理学史总结
高中物理学史总结
1. 定义和起源
物理学是一门研究物质运动和能量转化的自然科学。
高中物理学作为对学生智力和科学素养的锻炼,具有重要的教育意义。
2. 古代物理学
古代的物理学发展着重于观察和描述自然现象,如古希腊的亚里士多德和托勒密对物理学的贡献。
3. 近代物理学的兴起
17世纪的科学革命标志着物理学的现代化。
伽利略、牛顿和开普勒的研究为物理学的发展打下了坚实的基础。
4. 物理学的分支
高中物理学通常包括力学、热学、光学、电磁学和原子物理学等分支。
每个分支都有着自己的特点和研究内容。
5. 物理学的实践应用
物理学在现代科学和技术的进步中发挥着重要的作用。
例如,物理学在能源开发、材料科学、通信技术等领域有着广泛的应用。
6. 物理学的未来发展
随着科技的不断发展和人类对自然的探索,物理学将继续发展和演变,为人类社会带来更多的科学发现和创新。
7. 高中物理学的重要性
高中阶段的物理学教育培养了学生的科学思维和实践能力,为他们未来的研究和职业发展奠定了基础。
以上是对高中物理学史的简要总结,不涉及详细的历史事件和法理问题。
物理学作为一门重要的学科,不断推动着人类社会的发展和科学的进步。
高中物理学习的历史与发展
高中物理学习的历史与发展物理学是自然科学的一门重要学科,研究物质和能量以及它们之间的相互关系和规律。
在高中阶段,物理学习成为学生的必修课程,旨在培养学生的科学思维和实验能力。
本文将探讨高中物理学习的历史与发展,了解它在教育体系中的地位和作用。
一、古代物理学的起源物理学的研究可以追溯到古代。
在古希腊时代,众多哲学家开始探讨自然现象的原理,如泰勒斯的水是万物之源,毕达哥拉斯的宇宙音乐等等。
这些先贤们对物质和自然现象有了初步的认识,对后世的物理学发展起到了重要的推动作用。
二、近代物理学的兴起近代物理学的发展可以追溯到16世纪。
伽利略、牛顿等科学家积极进行实验和观察,提出了许多重要的物理学原理和定律。
伽利略的运动物理学、牛顿的经典力学等为物理学打开了新的大门。
这些学者对力、运动、光学等领域的研究将物理学从哲学中分离出来,成为一门独立的科学学科。
三、现代物理学的发展20世纪是物理学发展的黄金时代。
爱因斯坦的相对论、普朗克的量子论等重大突破引发了物理学的革命。
物理学的研究领域进一步扩大,涉及到了相对论、量子力学、原子核物理等等。
同时,科学技术的快速发展也推动了物理学的进步,如电子显微镜的出现使得人们对微观世界有了更全面的认识。
四、高中物理学习的意义高中物理学习对学生的科学素质和综合能力培养起着重要的作用。
首先,物理学习可以培养学生的科学思维和逻辑思维能力,帮助他们掌握科学的研究方法和思维方式。
其次,物理学习可以培养学生的实验操作和观察分析能力,通过实验实践来加深对物理现象规律的理解。
此外,物理学习还可以提高学生的问题解决能力和创新能力,培养他们对科学技术的兴趣和好奇心。
总结:高中物理学习有着悠久的历史和丰富的发展。
从古代到现代,物理学经历了漫长的发展过程,不断壮大和完善。
物理学作为一门基础学科,对学生成长起着重要的推动作用。
通过高中物理学习,学生能够培养科学素质,提高实验能力,并开展对科学的深入研究。
物理学习的历史与发展为学生提供了丰富的知识和思维工具,为他们的未来学习和科研打下坚实的基础。
高一物理学科的发展历程
高一物理学科的发展历程物理学是一门探索自然界基本规律和物质运动的学科,它在人类文明发展的各个阶段都起到了重要的推动作用。
本文将从古代物理学、近代物理学到现代物理学的发展历程进行探讨。
古代物理学的发展古代物理学是指在古代社会形成和发展起来的物理学,最早的物理学知识可以追溯到古埃及、古巴比伦等文明。
在古代社会,人们通过观察自然现象,积累了一些物理学知识,如冰融化、物体下落等基本规律。
古代物理学还包括了哲学思辨对物质本质的探讨,例如希腊哲学家柏拉图和亚里士多德的思想。
虽然古代物理学的发展水平有限,但为后来的物理学奠定了基础。
近代物理学的崛起近代物理学从17世纪开始迅速崛起,它的发展是由伽利略、牛顿等科学家的贡献推动的。
伽利略是近代物理学研究的先驱之一,他通过实验和观察提出了“等时间内物体在同一高度自由落体”的定律,从而打破了亚里士多德的学说。
牛顿则以他的力学理论和万有引力定律为基础,建立了近代物理学的经典体系。
牛顿力学为后来的物理学研究提供了坚实的基础,也开启了科学革命的大门。
19世纪到20世纪初的物理学突破19世纪到20世纪初是物理学的重要突破期。
电磁学的发展成为这一时期的重要里程碑。
法拉第和麦克斯韦等科学家提出了电磁场理论,成功解释了电磁现象,并预言了电磁波的存在。
同时,热力学和统计物理学的发展也为物理学的进一步发展提供了重要的理论基础。
人们对能量守恒和熵增定律有了更深入的认识。
这一时期还涌现了许多优秀的科学家,如赫兹、居里夫人等,他们通过实验和理论的探索,推动了物理学的迅速发展。
现代物理学的多元化20世纪初以来,物理学进入了一个高速发展的阶段,并逐渐多元化。
量子力学的建立标志着物理学从经典物理学向现代物理学的转变。
通过研究微观粒子的行为,量子力学提出了波粒二象性的观点,打开了微观世界的大门。
与此同时,相对论的提出也颠覆了牛顿力学的观念,爱因斯坦的相对论理论在物理学中占据了重要地位。
在现代物理学的进展中,核物理、粒子物理、凝聚态物理等领域都取得了重要的成果。
近代物理学史高考总结
近代物理学史高考总结
1. 光学:牛顿光学实验和杨氏干涉实验证明了光的波动性,赫兹的电磁波首次将电磁力与光的波动联系起来。
爱因斯坦的相对论和光量子假设解释了光电效应和康普顿散射现象。
2. 热学:卡诺等科学家研究了热力学第一和第二定律,形成了热力学理论。
后来麦克斯韦的分子运动论进一步加深了人们对热学原理的理解。
3. 电学:法拉第、安培、欧姆等科学家的研究让人们对电的基本规律有了更深入的认识。
麦克斯韦的电磁理论奠定了电学和电磁学的基础。
4. 物态变化:居里夫妇研究了放射性衰变和发现了放射性元素,朗缪尔等人对晶体的对称性理论进行了研究,热力学和统计物理学的发展支持了这些创新。
5. 原子核物理:拉夫学派提出了原子的核心结构和量子力学,卢瑟福提出了原子核和探究了放射性元素的物理性质,同时玻尔还研究了原子的结构和光谱现象。
总之,近代物理学史伴随着科学家们对自然世界的不断探索和思考,不断推动着物理学的研究和发展。
高中物理学习中的历史与发展回顾
高中物理学习中的历史与发展回顾物理学作为一门自然科学,研究物质及其运动规律,对人类文明的发展起到了重要的推动作用。
作为学生们在高中阶段学习的一门科学课程,物理学不仅有着丰富的知识内容,而且也有着丰富的历史与发展背景。
在本文中,我们将回顾一下高中物理学习中的历史与发展。
一、物理学的起源物理学的起源可以追溯到古代,最早的物理学研究可以追溯到古希腊时期的自然哲学家们,如亚里士多德、伽利略等人。
亚里士多德将物理学研究与哲学相结合,提出了一系列关于自然的理论,对物理学的发展起到了重要的推动作用。
而伽利略则通过实验和观察,提出了许多与力、运动等相关的理论,为现代物理学奠定了基础。
二、经典物理学时期经典物理学时期是物理学发展的一个重要阶段。
在这个时期,牛顿力学理论的提出给物理学带来了革命性的变化。
牛顿提出了三大定律,描述了物体受力的运动规律,并通过万有引力定律解释了行星运动等天体现象。
这些理论不仅对当时的物理学产生了深远的影响,而且至今仍然被广泛应用。
三、电磁学与光学的发展在19世纪时期,电磁学和光学成为物理学研究的热点。
法拉第和麦克斯韦等科学家通过实验和推理,建立了电磁场理论和电磁波理论。
他们的研究成果不仅揭示了电、磁的本质和相互关系,而且为电磁波的传播提供了理论依据。
此外,光的波动理论的提出和干涉、衍射等现象的解释,也极大地推动了光学的发展。
四、量子力学的诞生20世纪初,量子力学的诞生开创了物理学研究的新纪元。
普朗克和爱因斯坦的工作为量子论的发展奠定了基础。
之后,薛定谔的波动力学和海森堡的矩阵力学为量子力学的形成提供了数学上的描述。
量子力学的诞生不仅揭示了微观粒子的本质和行为,而且对后来的原子物理学、核物理学等研究领域产生了深远影响。
五、现代物理学的发展近年来,随着科学技术的进步,物理学的研究领域不断拓展。
高能物理学、凝聚态物理学、粒子物理学等新兴领域的发展,使得物理学越来越贴近现实世界,与其他学科的交叉研究也越来越频繁。
近代物理学发展史结题报告
近代物理学发展史结题报告篇一:物理学发展简史物理学发展简史摘要:物理学的发展大致经历了三个时期:古代物理学时期、近代物理学时期(又称经典物理学时期)和现代物理学时期。
物理学实质性的大发展,绝大部分是在欧洲完成,因此物理学的发展史,也可以看作是欧洲物理学的发展史。
关键词:物理学;发展简史;经典力学;电磁学;相对论;量子力学;人类未来发展0 引言物理学的发展经历了漫长的历史时期,本文将其划分为三个阶段:古代、近代和现代,并逐一进行简要介绍其主要成就及特点,使物理学的发展历程显得清晰而明了。
1 古代物理学时期古代物理学时期大约是从公元前8世纪至公元15世纪,是物理学的萌芽时期。
物理学的发展是人类发展的必然结果,也是任何文明从低级走向高级的必经之路。
人类自从具有意识与思维以来,便从未停止过对于外部世界的思考,即这个世界为什么这样存在,它的本质是什么,这大概是古代物理学启蒙的根本原因。
因此,最初的物理学是融合在哲学之中的,人们所思考的,更多的是关于哲学方面的问题,而并非具体物质的定量研究。
这一时期的物理学有如下特征:在研究方法上主要是表面的观察、直觉的猜测和形式逻辑的演绎;在知识水平上基本上是现象的描述、经验的肤浅的总结和思辨性的猜测;在内容上主要有物质本原的探索、天体的运动、静力学和光学等有关知识,其中静力学发展较为完善;在发展速度上比较缓慢。
在长达近八个世纪的时间里,物理学没有什么大的进展。
古代物理学发展缓慢的另一个原因,是欧洲黑暗的教皇统治,教会控制着人们的行为,禁锢人们的思想,不允许极端思想的出现,从而威胁其统治权。
因此,在欧洲最黑暗的教皇统治时期,物理学几乎处于停滞不前的状态。
直到文艺复兴时期,这种状态才得以改变。
文艺复兴时期人文主义思想广泛传播,与当时的科学革命一起冲破了经院哲学的束缚。
使唯物主义和辩证法思想重新活跃起来。
科学复兴导致科学逐渐从哲学中分裂出来,这一时期,力学、数学、天文学、化学得到了迅速发展。
高中物理学史归纳
高中物理学史归纳物理学作为一门自然科学,是研究物质、能量和宇宙基本规律的学科。
在人类文明的发展过程中,物理学一直扮演着重要的角色。
本文将简要梳理高中物理学史的发展脉络,从古至今,从经典到现代,探讨物理学家们在这一领域所取得的重要成就和贡献。
1. 古代物理学古代物理学的发展可以追溯到古希腊时期。
柏拉图和亚里士多德等学者提出了一些关于物质组成和运动规律的理论,比如“四元素说”和“自然哲学”。
古代物理学的研究主要集中在对自然现象的观察和推理上,尚未形成系统的理论体系。
然而,古希腊学者们的思想奠定了后世物理学研究的基础。
2. 经典物理学时期经典物理学时期从17世纪开始,以伽利略、牛顿等科学家的研究成果为代表。
牛顿的三大定律和万有引力定律等理论开创了经典力学的时代,为后世的物理学研究奠定了基础。
此时期还涌现出一系列重要的物理学家,如法拉第、安培、奥斯特等,为电磁学和热力学的发展贡献了重要成果。
3. 近代物理学革命近代物理学革命发生在19世纪末至20世纪初,是哥白尼、开普勒、伽利略等科学家的工作为基础上,以爱因斯坦的相对论和量子力学的诞生为标志。
相对论革命了人们对时间和空间的观念,揭示了高速运动对象的时空效应。
量子力学揭示了微观世界的奇妙规律,颠覆了经典物理学的认知。
4. 现代物理学的发展现代物理学继承了经典和近代物理学的成果,在发展中又不断推陈出新。
20世纪以来,粒子物理学、宇宙学、凝聚态物理等新兴领域的兴起,为人类对自然界的认知提供了新的视角。
相对论和量子力学的统一、宇宙大爆炸理论、黑洞等概念成为了现代物理学研究的热点。
5. 物理学在科技发展中的应用物理学作为一门基础科学,广泛应用于各个领域。
在航空航天、电子技术、能源开发、医学影像等领域,物理学的理论和方法为科技创新提供了支撑。
基于光子学、超导技术等物理学原理的应用不断涌现,为人类生活带来了诸多便利。
总结而言,高中物理学史的演进充分展示了人类对世界的探索和认知过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中近代物理总结一、原子结构:1、电子的发现和汤姆生的原子模型:(1)电子的发现:1897年英国物理学家汤姆生,对阴极射线进行了一系列的研究,从而发现了电子。
电子的发现表明:原子存在精细结构,从而打破了原子不可再分的观念。
(2)汤姆生的原子模型:1903年汤姆生设想原子是一个带电小球,它的正电荷均匀分布在整个球体内,而带负电的电子镶嵌在正电荷中。
2、α粒子散射实验和原子核结构模型(1)α粒子散射实验:1909年,卢瑟福及助手盖革手吗斯顿完成①装置:②现象:a. 绝大多数α粒子穿过金箔后,仍沿原来方向运动,不发生偏转。
b. 有少数α粒子发生较大角度的偏转c. 有极少数α粒子的偏转角超过了90度,有的几乎达到180度,即被反向弹回。
(2)原子的核式结构模型:由于α粒子的质量是电子质量的七千多倍,所以电子不会使α粒子运动方向发生明显的改变,只有原子中的正电荷才有可能对α粒子的运动产生明显的影响。
如果正电荷在原子中的分布,像汤姆生模型那模均匀分布,穿过金箔的α粒了所受正电荷的作用力在各方向平衡,α粒了运动将不发生明显改变。
散射实验现象证明,原子中正电荷不是均匀分布在原子中的。
1911年,卢瑟福通过对α粒子散射实验的分析计算提出原子核式结构模型:在原子中心存在一个很小的核,称为原子核,原子核集中了原子所有正电荷和几乎全部的质量,带负电荷的电子在核外空间绕核旋转。
原子核半径小于10-14m,原子轨道半径约10-10m。
3、玻尔的原子模型(1)原子核式结构模型与经典电磁理论的矛盾(两方面)a. 电子绕核作圆周运动是加速运动,按照经典理论,加速运动的电荷,要不断地向周围发射电磁波,电子的能量就要不断减少,最后电子要落到原子核上,这与原子通常是稳定的事实相矛盾。
b. 电子绕核旋转时辐射电磁波的频率应等于电子绕核旋转的频率,随着旋转轨道的连续变小,电子辐射的电磁波的频率也应是连续变化,因此按照这种推理原子光谱应是连续光谱,这种原子光谱是线状光谱事实相矛盾。
(2)玻尔理论上述两个矛盾说明,经典电磁理论已不适用原子系统,玻尔从光谱学成就得到启发,利用普朗克的能量量了化的概念,提了三个假设:①定态假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然做加速运动,但并不向外在辐射能量,这些状态叫定态。
②跃迁假设:原子从一个定态(设能量为E2)跃迁到另一定态(设能量为E1)时,它辐射成吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hv=E2-E1③轨道量子化假设,原子的不同能量状态,跟电子不同的运行轨道相对应。
原子的能量不连续因而电子可能轨道的分布也是不连续的。
即轨道半径跟电子动量mv的乘积等于h/2π的整数倍,即:轨道半径跟电了动量mv的乘积等于h/2π的整数倍,即mvr n hn==2123π、、……n为正整数,称量数数(3)玻尔的氢子模型:①氢原子的能级公式和轨道半径公式:玻尔在三条假设基础上,利用经典电磁理论和牛顿力学,计算出氢原子核外电子的各条可能轨道的半径,以及电子在各条轨道上运行时原子的能量,(包括电子的动能和原子的热能。
)氢原子中电子在第几条可能轨道上运动时,氢原子的能量E n,和电子轨道半径r n分别为:E E nr n r nn n ==⎫⎬⎪⎭⎪=121123、、……其中E1、r1为离核最近的第一条轨道(即n=1)的氢原子能量和轨道半径。
即:E1=-13.6ev, r1=0.53×10-10m(以电子距原子核无穷远时电势能为零计算)②氢原子的能级图:氢原子的各个定态的能量值,叫氢原子的能级。
按能量的大小用图开像的表示出来即能级图。
其中n=1的定态称为基态。
n=2以上的定态,称为激发态。
③玻尔理论的局限性。
由于引进了量子理论(轨道量子化和能量量子化),玻尔理论成功地解释了氢光谱的规律。
但由于它保留了过多的经典物理理论(牛顿第二定律、向心力、库仑力等),所以在解释其他原子的光谱上都遇到很大的困难。
4、光谱和光谱分析⑴炽热的固体、液体和高压气体发出的光形成连续光谱。
⑵稀薄气体发光形成线状谱(又叫明线光谱、原子光谱)。
根据玻尔理论,不同原子的结构不同,能级不同,可能辐射的光子就有不同的波长。
所以每种原子都有自己特定的线状谱,因此这些谱线也叫元素的特征谱线。
根据光谱鉴别物质和确定它的化学组成,这种方法叫做光谱分析。
这种方法的优点是非常灵敏而且迅速。
只要某种元素在物质中的含量达到10-10g,就可以从光谱中发现它的特征谱线。
5、氢原子中的电子云对于宏观质点,只要知道它在某一时刻的位置和速度以及受力情况,就可以应用牛顿定律确定该质点运动的轨道,算出它在以后任意时刻的位置和速度。
对电子等微观粒子,牛顿定律已不再适用,因此不能用确定的坐标描述它们在原子中的位置。
玻尔理论中说的“电子轨道”实际上也是没有意义的。
更加彻底的量子理论认为,我们只能知道电子在原子核附近各点出现的概率的大小。
在不同的能量状态下,电子在各个位置出现的概率是不同的。
如果用疏密不同的点子表示电子在各个位置出现的概率,画出图来,就像一片云雾一样,可以形象地称之为电子云。
6、激光的特性及其应用普通光源(如白炽灯)发光时,灯丝中的每个原子在什么时候发光,原子在321ν3 ν2ν1哪两个能级间跃迁,发出的光向哪个方向传播,都是不确定的。
激光是同种原子在同样的两个能级间发生跃迁生成的,其特性是:⑴是相干光。
(由于是相干光,所以和无线电波一样可以调制,因此可以用来传递信息。
光纤通信就是激光和光导纤维结合的产物。
)⑵平行度好。
(传播很远距离之后仍能保持一定强度,因此可以用来精确测距。
激光雷达不仅能测距,还能根据多普勒效应测出目标的速度,对目标进行跟踪。
还能用于在VCD或计算机光盘上读写数据。
)⑶亮度高。
能在极小的空间和极短的时间内集中很大的能量。
(可以用来切割各种物质,焊接金属,在硬材料上打孔,利用激光作为手术刀切开皮肤做手术,焊接视网膜。
利用激光产生的高温高压引起核聚变。
)7、粒子物理学到19世纪末,人们认识到物质由分子组成,分子由原子组成,原子由原子核和电子组成,原子核由质子和中子组成。
20世纪30年代以来,人们认识了正电子、μ子、K介子、π介子等粒子。
后来又发现了各种粒子的反粒子(质量相同而电荷及其它一些物理量相反)。
现在已经发现的粒子达400多种,形成了粒子物理学。
按照粒子物理理论,可以将粒子分成三大类:媒介子、轻子和强子,其中强子是由更基本的粒子——夸克组成。
从目前的观点看,媒介子、轻子和夸克是没有内部结构的“点状”粒子。
用粒子物理学可以较好地解释宇宙的演化。
二、原子核1、天然放射现象(1)天然放射现象的发现:1896年法国物理学,贝克勒耳发现铀或铀矿石能放射出某种人眼看不见的射线。
这种射线可穿透黑纸而使照相底片感光。
放射性:物质能发射出上述射线的性质称放射性放射性元素:具有放射性的元素称放射性元素天然放射现象:某种元素白发地放射射线的现象,叫天然放射现象天然放射现象:表明原子核存在精细结构,是可以再分的(2)放射线的成份和性质:用电场和磁场来研究放射性元素射出的射线,在电场中轨迹,如图(1)各种放射线的性质比较种类本质质量(u)电荷(e)速度(c)电离性贯穿性α射线氦核 4 +2 0.1 最强最弱,纸能挡住β射线电子1/1840 -1 0.99 较强较强,穿几mm铝板γ射线光子0 0 1 最弱最强,穿几cm铅版三种射线在匀强磁场、匀强电场、正交电场和磁场中的偏转情况比较:如⑴、⑵图所示,在匀强磁场和匀强电场中都是β比α的偏转大,γ不偏转;区别是:在磁场中偏转轨迹是圆弧,在电场中偏转轨迹是抛物线。
⑶图中γ肯定打在O点;如果α也打在O点,则β必打在O点下方;如果β也打在Aabcβγααγβ⑴⑵⑶OO 点,则α必打在O 点下方。
2、原子核的衰变:(1)衰变:原子核由于放出某种粒子而转变成新核的变化称为衰变在原子核的衰变过程中,电荷数和质量数守恒 类 型 衰变方程 规 律 α 衰 变 新核电荷数减少质量数减少24⎧⎨⎩ β 衰 变新核电荷数增加质量数不变1⎧⎨⎩γ射线是伴随αβ、衰变放射出来的高频光子流 在β衰变中新核质子数多一个,而质量数不变是由于反映中有一个中子变为一个质子和一个电子,即:(2)半衰期:放射性元素的原子核有半数发生衰变所需的时间叫半衰期。
(对大量原子核的统计规律)计算式为:T tt N N ⎪⎭⎫ ⎝⎛=210N 表示核的个数 ,此式也可以演变成 T tt m m ⎪⎭⎫ ⎝⎛=210或T t t n n ⎪⎭⎫ ⎝⎛=210,式中m 表示放射性物质的质量,n 表示单位时间内放出的射线粒子数。
以上各式左边的量都表示时间t 后的剩余量。
半衰期由核内部本身的因素决定,跟原子所处的物理、化学状态无关。
3、原子核的人工转变:原子核的人工转变是指用人工的方法(例如用高速粒子轰击原子核)使原子核发生转变。
(1)质子的发现:1919年,卢瑟福用α粒子轰击氦原子核发现了质子。
7142481711N He O H+→+ (2)中子的发现:1932年,查德威克用α粒子轰击铍核,发现中子。
4、原子核的组成和放射性同位素(1)原子核的组成:原子核是由质子和中子组成,质子和中子统称为核子。
在原子核中: 质子数等于电荷数;核子数等于质量数;中子数等于质量数减电荷数(2)放射性同位素:具有相同的质子和不同中子数的原子互称同位素,放射性同位素:具有放射性的同位素叫放射性同位素。
正电子的发现:用α粒子轰击铝时,发生核反应。
发生+β衰变,放出正电子(3).放射性同位素的应用⑴利用其射线:α射线电离性强,用于使空气电离,将静电泄出,从而消除有害静电。
γ射线贯穿性强,可用于金属探伤,也可用于治疗恶性肿瘤。
各种射线均可使DNA 发生突变,可用于生物工程,基因工程。
⑵作为示踪原子。
用于研究农作物化肥需求情况,诊断甲状腺疾病的类型,研究生物大分子结构及其功能。
⑶进行考古研究。
利用放射性同位素碳14,判定出土木质文物的产生年代。
一般都使用人工制造的放射性同位素(种类齐全,各种元素都有人工制造的放射性同位。
半衰期短,废料容易处理。
可制成各种形状,强度容易控制)。
三、核能:1、核能:核子结合成的子核或将原子核分解为核子时,都要放出或吸收能量,称为核能。
例如:2、质能方程:爱因斯坦提出物体的质量和能量的关系: E mc =2——质能方程3、核能的计算:在核反应中,及应后的总质量,少于反应前的总质量即出现质量亏损,这样的反就是放能反应,若反应后的总质量大于反应前的总质量,这样的反应是吸能反应。
吸收或放出的能量,与质量变化的关系为:∆∆E mc =24、释放核能的途径——裂变和聚变(1)裂变反应:①裂变:重核在一定条件下转变成两个中等质量的核的反应,叫做原子核的裂变反应。