LIQIUCELL脱气膜膜手册
(整理)脱气膜元件及脱气设备使用手册
* 这就驱使从液体中的气体从液体移向气体。
液/气接触面在孔隙位置脱气膜元件具有脱气效率高、使用寿命长(正常使用寿命5年以上)的特点,主要是通过以下二方面来达到:n 采用增强型中空纤维膜孔隙率达到50%以上,分布均匀,脱气效率高,强度高;n 专利的布水结构,布水均匀使水放射形的流经中空纤维膜以增大接触面积,提高了气体透过膜的几率。
3、根据不同的脱气要求,可以采用不同的设计模式,常用的有三种模式(见图3):二、加气吹脱操作模式加气吹脱模式是待脱气的液体在中空纤维膜的外侧流动,在中空纤维膜的内侧通压缩气体(通常为压缩空气)进行吹扫。
气体吹扫的目的是为了将膜内侧的待脱除气体分压降低至几乎为零。
气相和液相总是要趋向动态的溶解平衡点,由于分压不同,液相中的气体就不断由液相向膜内侧的气相移动,并由吹扫气体带走。
这就降低了液相中的溶解气体浓度。
从而达到脱除气体的目的。
注:加气吹脱操作模式常见的应用是在二级反渗透系统之间脱除CO2,或者在进EDI系统前脱除CO2,通过多级串联,可以把CO2浓度降低至1ppm。
是最经济有效的方法。
1、加气体侧的基本配置和操作:当使用压缩气体作为吹扫气体时仪表基本配置(参见图4)。
2、脱除二氧化碳时可以采用压缩气体或无油的压缩空气,基本操作步骤:1) 通过调整压力调节阀门(PCV201),把进气压力设置压力在0.7 kg/cm2以下。
2) 通过调整针形阀门(V-212),观察流量计至设计的空气流量。
3) 通空气到每根脱气膜组件。
4) 出气气体排放到一个开阔地带以避免在密闭空间内氧气耗尽.。
5) 如果采用压缩空气,必须是无油压缩空气的。
6) 如果在高纯度要求的情况下,在压力调节阀门之前须采用0.2微米空气过滤器;一般工业应用采用1.0微米过滤器即可。
如果在脱除二氧化碳时没有压缩气体或无油压缩空气,可以使用鼓风机进行空气扫除。
鼓风机的选择可以根据脱气膜需要的风量以及气相侧的压降来确定。
吹风机的出风温度不能升高(>30℃)过高的空气温度会影响中空纤维膜的使用寿命。
LIQIUCELL脱气膜膜手册
涂敷工厂的200 立方米/小时(880加仑/分钟)的14英寸膜系统微电子研究领域的18 立方米/小时(79加仑/分钟)的10英寸膜系统行业业绩 C on t a ct o rT yp ea聚烯烃膜容量Fiber Type1x3 辐射流式2.5x8 外流式4x13 外流式6x28 外流式6x28 无挡板10x28 外流式高纯度14x28 外流式X40X50XIND 聚烯烃膜微型膜组件 最大到200毫升/分钟X–1升/分钟布水管中空纤维液体出口膜丝滤芯外壳封闭端盖真空单个Liqui-Cel 6 x 28 NBTM膜元件处理容量:5-50加仑/分钟(1.1-11.4 立方米/小时)。
主要应用领域:只用于真空抽吸去除溶解氧。
Liqui-Cel NBTM设计是采用中空纤维膜的辐射流装置。
Liqui-Cel NBTM膜组件没有中间挡板。
而是由一个封闭端盖起导流挡板作用。
Liqui-Cel NBTM膜组件液体出口端在膜组件的侧面,液体辐射状流经中空纤维。
NB(无中间挡板)设计在没有吹扫气体只能采用真空抽吸操作模式的领域中具MiniModule ® 小型膜组件设计MiniModule ® 小型膜组件没有采用中间挡板导流设计。
这种膜组件采用液体从膜丝内壁流过,而膜丝外壁采用真空抽吸。
这些小型膜组件是为小流量而设计。
这些装置是专门用于生化技术和分析仪器的水中气体脱除。
模块化设计能够灵活地实现您的系统未来快速平衡方式保证了设备迅速启动。
单位体积内的膜面积最大化保证了产品的优秀性能和空间的使用效率。
不同的膜组件尺寸和材料选择适合于各种系统设计反渗透锅炉Liqui-Cel ®膜组件广泛用于各行各业。
在高纯和工业领域使用Liqui-Cel ®膜组件以提高产能和实现腐蚀控制已成为行业的标准。
下面图示当今Liqui-Cel ®膜组件的一些应用。
电脱盐/连续电脱盐反渗透离子交换反渗透反渗透在反渗透后离子交换或电脱盐(EDI)前去除CO2, 不仅减少化学消耗而且能使EDI达到最佳的运行状态。
LIQIUCELL脱气膜膜手册
涂敷工厂的200 立方米/小时(880加仑/分钟)的14英寸膜系统微电子研究领域的18 立方米/小时(79加仑/分钟)的10英寸膜系统行业业绩 C on t a ct o rT yp ea聚烯烃膜容量Fiber Type1x3 辐射流式2.5x8 外流式4x13 外流式6x28 外流式6x28 无挡板10x28 外流式高纯度14x28 外流式X40X50XIND 聚烯烃膜微型膜组件 最大到200毫升/分钟X–1升/分钟布水管中空纤维液体出口膜丝滤芯外壳封闭端盖真空单个Liqui-Cel 6 x 28 NBTM膜元件处理容量:5-50加仑/分钟(1.1-11.4 立方米/小时)。
主要应用领域:只用于真空抽吸去除溶解氧。
Liqui-Cel NBTM设计是采用中空纤维膜的辐射流装置。
Liqui-Cel NBTM膜组件没有中间挡板。
而是由一个封闭端盖起导流挡板作用。
Liqui-Cel NBTM膜组件液体出口端在膜组件的侧面,液体辐射状流经中空纤维。
NB(无中间挡板)设计在没有吹扫气体只能采用真空抽吸操作模式的领域中具MiniModule ® 小型膜组件设计MiniModule ® 小型膜组件没有采用中间挡板导流设计。
这种膜组件采用液体从膜丝内壁流过,而膜丝外壁采用真空抽吸。
这些小型膜组件是为小流量而设计。
这些装置是专门用于生化技术和分析仪器的水中气体脱除。
模块化设计能够灵活地实现您的系统未来快速平衡方式保证了设备迅速启动。
单位体积内的膜面积最大化保证了产品的优秀性能和空间的使用效率。
不同的膜组件尺寸和材料选择适合于各种系统设计反渗透锅炉Liqui-Cel ®膜组件广泛用于各行各业。
在高纯和工业领域使用Liqui-Cel ®膜组件以提高产能和实现腐蚀控制已成为行业的标准。
下面图示当今Liqui-Cel ®膜组件的一些应用。
电脱盐/连续电脱盐反渗透离子交换反渗透反渗透在反渗透后离子交换或电脱盐(EDI)前去除CO2, 不仅减少化学消耗而且能使EDI达到最佳的运行状态。
液体脱气膜使用说明
目录目录 (2)第一节技术概述 (3)第二节气体脱除技术 (4)A.清扫气模式 (4)B.气侧抽真空模式 (6)C.组合模式 (7)第三节常规系统设计导则 (10)A.水流侧配置 (10)B.最大操作压力和温度 (11)C.过滤的要求 (11)D.膜污染 (11)E.仪表的最小配置 (11)第四节系统设计要求 (13)A.获得较含量的溶解氧 (13)B.空气泄漏和对溶解氧浓度的影响 (13)第五节启动和停运步骤 (14)A.启动步骤 (14)B.停运步骤 (14)C.停运后启动的步骤 (15)第六节问题解答 (15)第一节技术概述Liqui-Cel膜组件可以在不使水溶液分散(喷淋、雾化等)的情况下使其与气体分离或将气体加入其中。
膜组件包含由几千支Celgard微孔聚丙烯中空纤维围绕一个布水管编织而成的管束。
中空纤维均匀地排列成一个有进出水口的单元,可以有更大的水流容量和膜表面的更大利用。
由于中空纤维膜是疏水性的,因而水溶液无法透过微孔。
气液界面由于液相侧对气相侧的压力差而固定在微孔上。
并非像内装填料、分散液相的脱气塔,Liqui-Cel膜组件可以在超出水流量操作范围时提供一个恒定的分离界面。
虽然Liqui-Cel膜组利用的是微孔膜,但它的分离原理实质上不同与其它的例如渗滤膜和气体分离膜等膜分离技术。
在Liqui-Cel膜组件里,没有连续透过微孔的液流。
Liqui-Cel膜组件像一个惰性的支撑物使水相和液相直接接触而不需分散。
相间物质的转移几乎完全受气相侧压力的控制。
原因在于Celgard中空纤维的接触的几何原理,它的每列单元的接触表面积要比传统的接触高一个数量级。
这样将使在分离性能不变的情况下组件的体积大大减小。
膜Liqui-Cel 膜组件在用于吸收或分离技术中有两种不同的纤维可供选择,即X-30和X-40中空纤维膜。
X-30膜壁薄而且内径大。
这种特性使其与X-40相比有更大的二氧化碳的去除率,但对操作压力和温度有一定的限制。
脱氧膜 liqui-cel 10x28 脱氧膜
10x28 Extra-Flow 产品参数型录注意: 所有尺寸为一参考代表值.279.4 mm (11”) FRP295.3 mm (11.6”) 316L SS(46.7”)(9.75”)Membrana - CharlotteA Division of Celgard Inc. 13800 South Lakes Drive Charlotte, North Carolina 28273 USAPhone: (704) 587 8888 Fax: (704) 587 8585Europe OfficeNorderstedtErlengang 3122844 NorderstedtGermanyPhone: +49 40 5261 0878Fax: +49 40 5261 0879Japan OfficeShinjuku Mitsui Building, 27F1-1, Nishishinjuku 2-chomeShinjuku-ku, Tokyo 163-0427JapanPhone: 81 3 5324 3361Fax: 81 3 5324 3369膜管规格书特性测试条件规格X50 and X40 X50 and X40溶氧去除效率液相水流量: 160 gpm,20οC (68οF) 气相 N2吹入量:3.5 ft3/min, 1.0 atm at 20οC最低 83.2%液相压损液相水流量160 gpm, 200C (680F)最大 6.0 psi资料曲线代表值是用水温 20 0 C条件测出不同运行条件可能有不同资料本产品只限于熟悉者使用.应于载明之规范内运行之. 本品只保障无制造瑕疵, 不对其他范畴保证. 任何销售都应遵循卖方的术语与条款. 采购人应对本品之使用与安全承担负责.我方尽能力对于文内的资料常保精确. 但是卖方或服务代理商对此文内数据之准确与完整性无需承担任何责任, 又卖方保有权力在修改资料后不另通知买方或使用者. 最终产品选用之决定与工艺是否侵权纯属使用人之个人责任. 财产用户应满意于对该品之使用安全之自我评估. 我方可能有说明对膜件的危害物种类, 但无法保证那些就是唯一的种类. Celgard, SuperPhobic, MiniModule 及 NB 为 Celgard Inc. (注册)商标2002 Membrana – Charlotte A Division of Celgard Inc. (D61__Rev.6 10x28 7/02)10x28 Extra-Flow 产品参数型录。
Liqui-Cel脱气膜及常规使用问题解答
Liqui-Cel脱气膜及常规使用问题解答Liqui-Cel® Extra-Flow产品对于向水或表面张力和水类似的液体中添加气体或对其脱气而言,是很理想的。
Liqui-Cel Extra-flow 接触器有多种尺寸,可以处理不同的 流量。
您只需根据您的流量需求简单选择产品尺寸即可。
接触器平行地加入,以便处理大于其在表格中列出的工艺流量。
目前为止,我们拥有最多可脱气7400 gpm (1696 m3/hr)的单系统。
我们的 SuperPhobic® 膜脱气器对于喷墨墨水、电镀溶液、显影剂和其它表面张力在20-40 dynes/cm间的溶液的脱气和去气泡,是很理想的。
我们的 MicroModules® 和 MiniModules® 是小型除泡器和脱气器,对于实验室规模流量高达3000 ml/min的成行除泡是很理想的。
请点击下面的链接,查看我们产品的完整数据表。
如果您在为您的脱气应用确定真空泵尺寸时需要帮助,请联系我们,获取更多的帮助。
除泡产品ߋ列流量 (一支膜件)MicroModule® 0.5 x 15-30 毫升/分钟MicroModule® 0.75 x 115-100 毫升/分钟小型膜元件1 x 5.5高达 500 ml/min小型膜元件1.7 x 5.5高达 2500 ml/min小型膜元件1.7 x 8.75高达 3000 ml/min气体运移 (O2、CO2、N2、VOC 去除和O2、CO2、N2、H吸收)产品ߋ列流量 (一支膜件)Liqui-Cel® 外流式2.5 x 80.1-0.7 立方米/小时Liqui-Cel® 外流式4 x 130.5-3.4 立方米/小时Liqui-Cel® 外流式4 x 28 1.1-6.8 立方米/小时Liqui-Cel® 外流式6 x 28 1.1-11.4 立方米/小时Liqui-Cel® 外流式大流量 8 x 20 5 - 50 gpm ( 1.1 - 11.4 m3/hr)Liqui-Cel® 8x20 不锈钢 5 - 50 gpm ( 1.1 - 11.4 m3/hr)Liqui-Cel® High Pressure 8 x 4025 - 125 gpm ( 5.7 - 28.4 m3/hr)Liqui-Cel® High Pressure 8 x 8050 - 150 gpm ( 11.4 - 34.1 m3/hr)Liqui-Cel® 外流式大流量10 x 2810-57立方米/小时Liqui-Cel® 工业级10 x 2810-48立方米/小时Liqui-Cel® 工业级14 x 2816-90.8立方米/小时Liqui-Cel® 工业级14 x 4016 – 125 立方米/小时低表面张力流体脱气 (墨水、显影剂、感光乳剂和油料))产品ߋ列流量 (一支膜件)SuperPhobic MicroModule® 0.5 x 15 - 30毫升/分钟SuperPhobic® 1 x 315-60毫升/分钟SuperPhobic® 2 x 6100-1,000毫升/分钟SuperPhobic® 2.5 x 80.1- 0.7 立方米/小时SuperPhobic® 4 x 130.7- 3.4 立方米/小时SuperPhobic® 4 x 281.1 - 6.8 立方米/小时技术服务产品ߋ列技术服务此文档涵盖了广泛的支持选项真空泵(配用于大型膜管)产品ߋ列 5.3 标准平方英尺/每分钟 (9 m 3/hr )到242标准平方英尺/每分钟(420 m 3/hr )50Hz 5.9 标准平方英尺/每分钟 (10 m 3/hr )到307 标准平方英尺/每分钟(520 m 3/hr )50Hz4x28、10x28等数字是什么意思?这些数字代表Liqui-Cel膜接触器外壳内芯子的大致尺寸。
内冷水真空膜脱气装置运行维护说明
内冷水真空膜脱气装置运行维护说明一、目的发电机内冷水真空膜脱气装置包括:真空泵、脱气单元、真空泵冷却系统、流量计、阀门等组件。
连续对部分内冷水进行旁路脱氧处理,降低内冷水中溶解氧和二氧化碳的含量。
二、技术原理膜脱气工艺是选择了一种微孔性聚丙烯憎水性膜,该膜表面对水没有亲和力,气体不能透过该膜,膜脱气元件采用了管壳式设计,憎水膜成了水、气的分界面,降低溶液的溶解气体分压,将水中的溶解气体向真空侧渗透。
本脱气装置中采用的脱气膜为美国Liqui-Cel®脱气膜。
水流在中空纤维的里面通过,而中空纤维的外面在真空泵的作用下将气体不断的抽走,并形成一定的负压,从而达到去除水中气体的目的。
三、运行步骤1、真空脱气装置运行条件:内冷水系统正常运行,内冷水微碱性处理装置正常投入,内冷水水箱充氮密封。
2、保持脱气装置真空泵冷却水系统处于流动状态,启动真空泵。
3、依次全部开启脱气装置出水总阀,开启进水总阀,利用进水阀调节脱气装置进水流量为2.0t/h。
4、为防止脱气膜的超压损坏,保持脱气装置出水阀处于全开状态,整定进水稳压阀至0.15MPa。
5、正常运行条件下,真空脱气装置单流程脱氧效率大于70%,在连续运行后,即可将内冷水中的溶解氧含量降至要求范围。
四、注意事项1、内冷水水箱必须充氮密封,充氮压力根据有关发电机运行说明实施。
2、为保护脱气膜,必须利用进水阀调节流量,出水阀保持全开状态,避免膜内管超压。
进水温度应小于50℃。
3、真空泵冷却系统必须保证有冷却水流过,才能开启,避免真空泵损坏。
4、发电机内冷水微碱性处理装置的技术原理是:通过提高内冷水PH值,使得铜线棒进入自钝化状态而达到防腐要求。
微碱性处理方式既可以在内冷水富氧状态下实现,也可以在内冷水处于贫氧状态下实施,实施效果与内冷水中含氧量无明显相关性,但与内冷水中二氧化碳含量相关。
Liqui-Cel液体脱气膜使用说明书(中文译本)
液体脱气膜使用说明
目录
第一节 技术概述 .................................................................................................................................... 3 第二节 气体脱除技术 ............................................................................................................................ 4
中空纤维类型特性名称单位x40x30外径m300300内径m200240泡点psi240200断裂负重g430330断裂伸长率21214030克伸长率1212孔隙度2540第4页共16页孔径m003003气体吸收当用于气体吸收例如曝气或充二氧化碳工艺时气体流过中空纤维膜内侧液体则由中空维膜外即壳侧流动
注意事项:
当使用空气作清扫气时,一定注意: · 水温不能超过 30 摄氏度。 · 源水要去除游离氯、臭氧等氧化性强于 Liqui-Cel 膜组件的物质。
如果以上情况发生,膜的寿命会减短,性能无法保证。
当使用惰性气体作为清扫气时,一定注意: ·源水要去除游离氯、臭氧等氧化性强于 Liqui-Cel 膜组件的物质。 ·对于城市自来水,在水温<30 摄氏度时,游离氯<1ppm 是可行的。无论如何,为
空度对 脱气的影响。
表 3: 真空度
越大出水溶 解氧浓度,ppb
125mmHg 1400
74mmHg 850
50mmHg 580
36mmHg 425
脱气膜元件及脱气设备使用手册
* 这就驱使从液体中的气体从液体移向气体。
液/气接触面在孔隙位置脱气膜元件具有脱气效率高、使用寿命长(正常使用寿命5年以上)的特点,主要是通过以下二方面来达到:n 采用增强型中空纤维膜孔隙率达到50%以上,分布均匀,脱气效率高,强度高;n 专利的布水结构,布水均匀使水放射形的流经中空纤维膜以增大接触面积,提高了气体透过膜的几率。
3、根据不同的脱气要求,可以采用不同的设计模式,常用的有三种模式(见图3):二、加气吹脱操作模式加气吹脱模式是待脱气的液体在中空纤维膜的外侧流动,在中空纤维膜的内侧通压缩气体(通常为压缩空气)进行吹扫。
气体吹扫的目的是为了将膜内侧的待脱除气体分压降低至几乎为零。
气相和液相总是要趋向动态的溶解平衡点,由于分压不同,液相中的气体就不断由液相向膜内侧的气相移动,并由吹扫气体带走。
这就降低了液相中的溶解气体浓度。
从而达到脱除气体的目的。
注:加气吹脱操作模式常见的应用是在二级反渗透系统之间脱除CO2,或者在进EDI系统前脱除CO2,通过多级串联,可以把CO2浓度降低至1ppm。
是最经济有效的方法。
1、加气体侧的基本配置和操作:当使用压缩气体作为吹扫气体时仪表基本配置(参见图4)。
2、脱除二氧化碳时可以采用压缩气体或无油的压缩空气,基本操作步骤:1) 通过调整压力调节阀门(PCV201),把进气压力设置压力在0.7 kg/cm2以下。
2) 通过调整针形阀门(V-212),观察流量计至设计的空气流量。
3) 通空气到每根脱气膜组件。
4) 出气气体排放到一个开阔地带以避免在密闭空间内氧气耗尽.。
5) 如果采用压缩空气,必须是无油压缩空气的。
6) 如果在高纯度要求的情况下,在压力调节阀门之前须采用0.2微米空气过滤器;一般工业应用采用1.0微米过滤器即可。
如果在脱除二氧化碳时没有压缩气体或无油压缩空气,可以使用鼓风机进行空气扫除。
鼓风机的选择可以根据脱气膜需要的风量以及气相侧的压降来确定。
吹风机的出风温度不能升高(>30℃)过高的空气温度会影响中空纤维膜的使用寿命。
Liqui-Cel液体脱气膜使用说明书(中文译本)
3 和图 4):
·高压压力开关
·真空压力表
·止回阀 按以上步骤
A.清扫气模式 .................................................................................................................................... 4 B.气侧抽真空模式 ............................................................................................................................ 6 C.组合模式 ........................................................................................................................................ 7 第三节 常规系统设计导则 .................................................................................................................. 10 A. 水流侧配置 .............................................................................................................................. 10 B. 最大操作压力和温度 .............................................................................................................. 11 C. 过滤的要求 .............................................................................................................................. 11 D. 膜污染 ...................................................................................................................................... 11 E. 仪表的最小配置 ...................................................................................................................... 11 第四节 系统设计要求 .......................................................................................................................... 13 A. 获得较含量的溶解氧 .............................................................................................................. 13 B. 空气泄漏和对溶解氧浓度的影响 .......................................................................................... 13 第五节 启动和停运步骤 ...................................................................................................................... 14 A. 启动步骤 .................................................................................................................................. 14 B. 停运步骤 .................................................................................................................................. 14 C. 停运后启动的步骤 .................................................................................................................. 15 第六节 问题解答 .................................................................................................................................. 16
美国liqui-cel脱气膜简介
美国liqui-cel脱气膜简介美国liqui-cel脱气膜简介美国liqui-cel脱气膜脱氧膜,产要应用在热力除氧、化工、钢铁、集成电路、光电、封装、电厂、食品、啤酒饮料、摄像及医药等领域。
Liqui-Cel?膜组件在全世界范围内用于脱气液体。
它们被广泛用于从水中脱除氧气、二氧化碳。
这些装置可以代替全世界范围内真空蒸馏塔、强制通风脱气器和除氧剂20年。
O2 对很多过程都有负面影响,它具有腐蚀性,可以氧化多种材料。
在能源和工业领域,如果没有使用脱气,管道系统、锅炉和设备易受蚀。
Liqui-Cel?膜组件易于操作,对于脱气和去除O2提供模块化的解决方案,不需要化学药品,也不需要大的真空塔或脱气器。
Liqui-Cel?膜组件也有同时去除水中O2 和CO2 的好处,以及可在一个步骤内完成N2 控制。
美国liqui-cel脱气膜是利用扩散的原理将水中的气体,如二氧化碳、氧气去除的膜分离产品。
脱气膜内装有聚丙烯中空纤维,纤维的壁上的微孔水分子不能通过,而气体分子却能够穿过。
水流在一定的压力下从中空纤维的里面通过,而中空纤维的外面在真空泵的作用下将气体不断的抽走,并形成一定的负压,这样水中的气体就不断从水中经中空纤维向外溢出,从而达到去除水中气体的目的,脱气膜中装有大量的中空纤维可以扩大气液界面的面积,从而使脱气速度加快。
脱气膜的脱气效率可高达99.99%,出水二氧化碳和氧气浓度可小于2ppb。
无论是从液体中脱除气体、或是向液体中添加气体,世界技术领先的脱气膜-气液膜件无疑是您的最佳选择。
脱气膜可以处理各种大小不同的流量。
流量小至10毫升每分钟,大到数百吨每小时的系统都可满足要求。
脱气膜已经在世界各地广泛应用。
市场涵盖集成电路﹑光电﹑封装﹑电厂﹑食品﹑啤酒饮料﹑摄像及医药等领域。
主要产品型号:产品序列流量(一支膜件)Liqui-Cel? 4 x 28 1-6.8立方米/小时Liqui-Cel? 6 x 28 1.1-11.4 立方米/小时Liqui-Cel?8 x 20 5 - 50 gpm ( 1.1 - 11.4 m3/hr) Liqui-Cel?10 x 28 10-57立方米/小时。
脱气膜元件及脱气设备使用手册
* 这就驱使从液体中的气体从液体移向气体。
液/气接触面在孔隙位置脱气膜元件具有脱气效率高、使用寿命长(正常使用寿命5年以上)的特点,主要是通过以下二方面来达到:n 采用增强型中空纤维膜孔隙率达到50%以上,分布均匀,脱气效率高,强度高;n 专利的布水结构,布水均匀使水放射形的流经中空纤维膜以增大接触面积,提高了气体透过膜的几率。
3、根据不同的脱气要求,可以采用不同的设计模式,常用的有三种模式(见图3):二、加气吹脱操作模式加气吹脱模式是待脱气的液体在中空纤维膜的外侧流动,在中空纤维膜的内侧通压缩气体(通常为压缩空气)进行吹扫。
气体吹扫的目的是为了将膜内侧的待脱除气体分压降低至几乎为零。
气相和液相总是要趋向动态的溶解平衡点,由于分压不同,液相中的气体就不断由液相向膜内侧的气相移动,并由吹扫气体带走。
这就降低了液相中的溶解气体浓度。
从而达到脱除气体的目的。
注:加气吹脱操作模式常见的应用是在二级反渗透系统之间脱除CO2,或者在进EDI系统前脱除CO2,通过多级串联,可以把CO2浓度降低至1ppm。
是最经济有效的方法。
1、加气体侧的基本配置和操作:当使用压缩气体作为吹扫气体时仪表基本配置(参见图4)。
2、脱除二氧化碳时可以采用压缩气体或无油的压缩空气,基本操作步骤:1) 通过调整压力调节阀门(PCV201),把进气压力设置压力在0.7 kg/cm2以下。
2) 通过调整针形阀门(V-212),观察流量计至设计的空气流量。
3) 通空气到每根脱气膜组件。
4) 出气气体排放到一个开阔地带以避免在密闭空间内氧气耗尽.。
5) 如果采用压缩空气,必须是无油压缩空气的。
6) 如果在高纯度要求的情况下,在压力调节阀门之前须采用0.2微米空气过滤器;一般工业应用采用1.0微米过滤器即可。
如果在脱除二氧化碳时没有压缩气体或无油压缩空气,可以使用鼓风机进行空气扫除。
鼓风机的选择可以根据脱气膜需要的风量以及气相侧的压降来确定。
吹风机的出风温度不能升高(>30℃)过高的空气温度会影响中空纤维膜的使用寿命。
liqui脱氧膜1028
FRP
23.4 公升 (6.2 加仑) 9.0 公升 (2.4 加仑)
316L SS
19.3 公升 (5.1 加仑) 4.9 公升 (1.3 加仑)
Fiber Reinforced Plastic (FRP) with PVDF for all wetted surfaces and FRP flanges
内容积 (约略) 液相 气相
外壳选项与特性
材质
法兰接头
液相进出口端
气相二端
最高承受工作温度/压力 l*
(122°F, 105 psig) (158°F, 30 psig)
FRP 26.1 公升 (6.9 加仑) 10.6 公升 (2.8 加仑)
(77°F, 150 psig) (122°F, 105 psig) (158°F, 30 psig)
大流量型并含中央隔板装置
X50: 10 – 48 m3/hr (44 – 210 gpm) X40: 10 – 57 m3/hr (44 – 250 gpm)
X50 丝膜
X40丝膜
除水中CO2为主 ~40%
其它气体质量传送用途 ~25%
300 / 220 micron
300 / 200 micron
0
水流量 (US gpm)
88
132
176
220
真空吹扫模式
50 毫米汞柱真空度
20
30
40
水流量 (m3/hr)
水流量 (US gpm)
50
100 150 200
液相
11
23
34
45
水流量 (m3/hr)
50
250 6.0 5.0 127.5 3.0 2.0 1.0 0.0
liqui-cell脱气膜清洗 Cleaning_Guide_CG119_Rev8_7_11_12
VI.
VII. VIII. IX.
Cleaning Protocol When Particle Fouling Is Suspected ----------------------------------------- 10 Membrane Drying --------------------------------------------------------------------------------------------A. Bulk Water Removal --------------------------------------------------------------------------------B. Final Drying --------------------------------------------------------------------------------------------C. Drying Schematics -----------------------------------------------------------------------------------11 11 11 12
Liqui-Cel® Membrane Contactors
Cleaning Guidelines
TABLES
Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Sanitizing Guidelines --------------------------------------------------------------------------------Cleaning Solution Flow Rate and Backpressure Guidelines ------------------------------CIP Cleaning Guidelines ---------------------------------------------------------------------------High Temperature Sanitization Guidelines-----------------------------------------------------Normal Biological Soil Cleaning Protocol ------------------------------------------------------Severe Biological Soil Cleaning Protocol ------------------------------------------------------Cleaning Protocol for Mineral Deposit Removal ----------------------------------------------Bulk Water Removal Conditions------------------------------------------------------------------Final Drying Conditions -----------------------------------------------------------------------------Membrane Contactor Integrity Test --------------------------------------------------------------Typical Drip Rate Out of Lumenside Port ------------------------------------------------------2 4 5 5 6 7 9 11 11 13 13
Liqui-Cel 4x28 液体脱气膜技术参数
Membrana - Charlotte A Division of Celgard Inc. 13800 South Lakes DriveCharlotte, North Carolina 28273 USA Phone: (704) 587 8888 Fax: (704) 587 8585 Europe OfficeNorderstedt Erlengang 3122844 Norderstedt GermanyPhone: +49 40 5261 0878 Fax: +49 40 5261 0879 Japan OfficeShinjuku Mitsui Building, 27F 1-1, Nishishinjuku 2-chome Shinjuku-ku, Tokyo 163-0427 JapanPhone: 81 3 5324 3361 Fax: 81 3 5324 3369 当本品完全遵照我方各产品文件中的建议, 低于室温下使用于酒精类/非酒精类饮料业, 与一般水/酸性/非酸性食品业的水处理设备时, 本品符合相关的 美国 Title 21 of the Code of Federal regulations 之 FDA 规定.膜管规格书特性 测试条件 规格X50 与 X40X50 and X40 溶氧去除效率液相水流量: 27 gpm, 20οC (68οF) 气相 N 2 吹入量:1.0 ft 3/min, 1.0 atm at 20οC 最低 78% 液相压损液相水流量 27 gpm, 20οC最高7.7 psi资料曲线代表值是用水温 20 - 250 C 条件测出 不同运行条件可能有不同资料4 x 28 Extra-Flow 产品参数型录测试条件: 空气吹入与真空150 torr at 25 °C本产品只限于熟悉者使用.应于载明之规范内运行之. 本品只保障无制造瑕疵, 不对其它范畴保证. 任何销售都应遵循卖方的术语与条款. 采购人应对本品之使用与安全承担负责.我方尽能力对于文内的资料常保精确. 但是卖方或服务代理商对此文内数据之准确与完整性无需承担任何责任, 又卖方保有权力在修改资料后不另通知买方或使用者. 最终产品选用之决定与工艺是否侵权纯属使用人之个人责任. 财产用户应满意于对该品之使用安全之自我评估. 我方可能有说明对膜件的危害物种类, 但无法保证那些就是唯一的种类. Celgard, SuperPhobic, MiniModule 及 NB 为 Celgard Inc. (注册)商标2002 Membrana – Charlotte A Division of Celgard Inc.(D60_Rev3_7/02 4x28)2.3 4.5 6.8。
脱气膜清洗手册
Cleaning GuidelinesCleaning GuidelinesThe NewStandard ForDissolved Gas ControlLiqui-Cel® Membrane ContactorsCLEANING GUIDELINESCONTENTS Page1. Intent of Document 22. Cleaning Parameters 23. Chemical Compatibility / Sanitizing / Detergents 34. Cleaning Solution Flow Rate and Back Pressure Guidelines 45. High Temperature Cleaning / CIP 56. Cleaning Protocol for Biological Soil Removal 67. Cleaning Protocol for Mineral Deposits Removal 98. Cleaning Protocol for Particle Fouling 119. Membrane Drying 1210. Membrane Contactor Integrity Test 1411. Storage and Handling Guidelines 1512. Contactor Decontamination for Return to MEMBRANA 16Schematics Page1. Biological Soil Removal 82. Acid Cleaning for Mineral Deposit Removal 103. Particle Fouling Cleaning 114. Bulk and Final Drying 13IMPORTANT INFORMATION - PLEASE READ CAREFULLY1.0 INTENT OF DOCUMENTThere are many different types of contaminants that may adhere to the membrane. The cleaning protocol, which covers chemical cleaning agents, concentrations, time and flow rates, will be specific to your system. The cleaning guidelines contained in this document represent a starting point and may require modification to suit your specific application.2.0 CLEANING PARAMETERSThere are four parameters that affect the cleaning process:•Time (duration and frequency)• Temperature• Mechanical agitation•Chemical type (caustic, acid, alcohol, etc.)Changing any of these parameters can affect the others. Therefore, it is important to develop a specific cleaning protocol that best suits your application. The following guidelines will help you to begin and guide you through the cleaning process. We recommend that you start with cleaning chemicals that are generally used within your industry.The initial performance of the contactor should be monitored to establish its baseline performance.This baseline performance can be compared to the performance of the contactor after cleaning.Other considerations for establishing the best protocol for your applications are:• Experimentation with time (frequency and duration), temperature, chemical concentration and flow rate will determine the best method for cleaning the contactor.•Refer to the Liqui-Cel Membrane Contactor product data sheet for maximum temperature and pressure ratings. Take into account the temperature rise that occurs during a chemicalreaction (caustic in water) or from pumping.•An aggressive cleaning protocol may clean the contactor in a shorter time period, but can also reduce the contactor service life.The frequency of cleaning can generally be determined by monitoring a drop in the systemperformance.3.0 CHEMICAL COMPATIBILITY / SANITIZATION / DETERGENTSFor general questions about chemical resistance, refer to the Liqui-Cel® Membrane Contactor Chemical Resistance Guide available at or from your Membrana representative.Table 1 shows the maximum recommended exposure times for several chemicals, which can be used to clean or sanitize a Liqui-Cel Membrane Contactor. To determine the total exposure time as a function of concentration,divide the value shown in column 2 of Table 1 by your actual chemical concentration. The resulting value is the total number of hours the contactor can be exposed to a specific chemical concentration.Table 1: Sanitizing GuidelinesColumn 2 Column 3Chemical Concentration-hours at RoomTemperature Maximum Recommended Chemical Concentration *Chlorine pH > 7 24000 ppm-hours 100 ppmHydrogen Peroxide 4800 %-hours 10% wt.Peracetic acid 4800 ppm-hours 100 ppm* Exposure times were determined when the fiber tensile strength and elongation values just began to decrease.The test conditions did not exceed these maximum concentrations, and testing was completed at 23°C. Using higherconcentrations is not recommended, and at elevated temperatures the expected life is much shorter.Exposure Time CalculationsCase 1: 2% hydrogen peroxide sanitation everyday for 30 minutes.a) What is the total exposure time for a solution of hydrogen peroxide at 2% concentrationat room temperature?b) What is the maximum number of 30 minute cycles that the contactor can be subjectedto using this solution at room temperature?c) Assume the desired number of cycles will be 365 times per year and the contactor willhave a lifetime of 3 years.Should this cleaning chemical protocol be used?Solutiona) Divide 4800 % - hours by 2%. Total exposure time = 2400 hours.b) Divide 2400 hours by 0.5 hours (30 minutes). Total number of cycles = 4800.c) Using 365 cycles per year and an expected lifetime of 3 years, the total number ofexposure cycles is 1095 (365 * 3 years). It would be safe to use this chemical for dailycleaning for 30 minutes per day at 2% concentration at room temperature since 1095cycles < 4800 cycles.The total life expectancy of a Liqui-Cel Membrane Contactor is affected by many factors, one of which is the chemical cleaning cycle. Do not assume the total number of exposure cycles can be used to predict the ultimate lifetime of a contactor. Use this total number of cycles to judge whether the contactor lifetime will be affected by the cleaning cycle. In the case above, compare the number of theoretical cleaning cycles (4800 cycles) to the desired number of cleaning cycles over the expected lifetime of the contactor (1095 cycles). The conclusion in this example is that cleaning cycles will probably not reduce the 3-year lifetime of themembrane.Case 2 illustrates a cleaning protocol that we DO NOT RECOMMEND.Case 2: 200 ppm peracetic acid sanitization every day for 30 minutes.a) What is the total exposure time for a solution of peracetic acid at 200 ppmconcentration at room temperature?b) What is the maximum number of 30 minute cycles that the contactor can be subjectedto using this solution at room temperature?c) Assume the desired number of cycles will be 365 times per year and the contactor willhave a lifetime of 3 years.Should this cleaning chemical protocol be used?Solutiona) Divide 4800 ppm - hours by 200 ppm. Total exposure time = 24 hours.b) Divide 24 hours by 0.5 hours (30 minutes). Total number of cycles = 48.c) Using 365 cycles per year and an expected lifetime of 3 years, the total number ofexposure cycles is 1095 (365 * 3 years).It would NOT be safe to use this chemical for daily cleaning for 30 minutes per day at200 ppm concentration at room temperature since the required number of cycles(1095) is much greater than the maximum number of 48 cycles.However, the protocol could be used if the cleaning frequency was changed to 4 times peryear for 3 years = 12 cycles, which is less than maximum number of 48 cycles.IMPORTANT NOTES FOR CLEANING SOLUTION SELECTION:DO NOT USE STRONG OXIDIZING AGENTS such as ozone.Do NOT use any chemicals that contain DETERGENTS or surfactants.Surfactants may allow liquids to pass through the membrane. This phenomenon is called break-through or wet-out. The membrane can be restored to a hydrophobic state by rinsing thedetergent from the contactor and then drying it but this is a time consuming process.4.0 CLEANING SOLUTION FLOW RATE AND BACKPRESSURE GUIDELINESIt is important to apply a backpressure to the system to insure a liquid-full system during the cleaning cycle. To increase the cleaning solution backpressure, slowly close the outlet flow valve.Refer to Table 2 for general guidelines. Indicated flow rate is for a single unit and should be used just as a guideline. Depending on the fouling nature, the flow rate should be adjusted accordingly.Table 2: Cleaning Solution Flow Rate and Backpressure GuidelinesContactor Size MiniModule®Contactors2 × 6Contactor2.5 × 8Contactor4 × 28 & 6 × 28Contactor10 × 28Contactor14 × 28ContactorShellside Flow Rate≤ 0.13 gpm(≤ 500 ml/min)≤ 0.26(≤ 1 lit/min)1 –2 gpm(0.23 – 0.45 m3/h)10 – 30 gpm(2.3 – 6.8 m3/h)30 – 40 gpm(4.5 – 9.0 m3/h)50 – 60gpm(11.4 – 13.6 m3/h)Shellside Backpressure10 – 30 psig(30 psig/2.1 kg/cm2)10 – 30 psig(30 psig/2.1 Kg/cm2)10 – 30 psig(30 psig/2.1 Kg/cm2)10 – 30 psig(30 psig/2.1 kg/cm2)10 – 30 psig(30 psig/2.1 kg/cm2)10 – 30 psig(30 psig/2.1 kg/cm2)Lumenside Flow Rate≤ 0.08 gpm(≤ 300 ml/min)NotApplicable≤0.5 gpm(≤ 0 .11 m3/h)3 - 7 gpm(0.68 - 1.60 m3/h)10 - 20 gpm(2.3 - 4.5 m3/h)10 - 20 gpm(2.3 - 4.5 m3/h)Lumenside Backpressure5 – 10 psig(0.35-0.70 kg/cm2)5 – 10 psig(0.35-0.70 kg/cm2)5 – 10 psig(0.35-0.70 kg/cm2)5 – 10 psig(0.35-0.70 kg/cm2)5 – 10 psig(0.35-0.70 kg/cm2)5 – 10 psig(0.35-0.70 kg/cm2)NOTE: Shellside = Outside of fiber. Liquid flows shellside for 2x6, 2.5, 4, 6, 10 and 14-inch contactors Lumenside = Inside of fiber. MiniModules run with liquids on the lumenside. Since gas normally flows through lumenside with 2 x 6, 2.5, 4, 6, and 10-inch contactors, lumenside cleaning is less frequent.To prepare a cleaning solution when using untreated raw water, it is important to know the water chemistry. We recommend using water that has been filtered and de-chlorinated. We recommend using de-ionized water for cleaning if possible. We also recommend paying attention to metals, such as Mg, iron, Al, and to SiO2. These elements can precipitate onto the membrane when there is a pH shift in the water.5.0 HIGH TEMPERATURE & CIP CLEANINGHot water or hot caustic can be used to clean Liqui-Cel Membrane Contactors in stainless steel housings, depending upon the specific contactor. Please contact your representative prior to using temperatures above 122ºF (50ºC) at105 psi (7.4 kg/cm2).Circulate all solutions through theshellside.Table 3: CIP Cleaning GuidelinesStep Description Chemical Solution Time (min.)1 Water flush / oncethrough10 micron filtered, ambient to cold water 52 Alkalinewash/recirculated 2% to 5.5% w/w caustic (NaOH or KOH) solution, using 10micron filtered water.Suggested temperature ambient-122ºF (ambient-50ºC)30 min – 2 hours3 Water flush / oncethrough 10 micron filtered, ambient to cold, water Until neutral pH isachieved4 Acid rinse /recirculated 5% w/w citric, or 3% Nitric or phosphoric, or 3%hydrochloric or a combination of 3% Nitric and 3%phosphoric acid solution or 3% Nitric and 3% HCL usingfiltered (10 micron) water at ambient temp.30 – 605 Water flush / oncethrough 10 micron filtered, ambient to cold, water Until neutral pH isachieved6 Purgelumens CO2, N2, air, or gas at maximum flow rate. If operating in combomode, use maximum sweep gas in combination with yourvacuum pump. Until no water droplets appear from exit sweep portNOTE: in steps 1 - 6, always keep a water backpressure less than 30 psig.•Do not use a commercial caustic that contains surfactants.•Do not purge CO2 during alkaline wash. If vacuum is in the system, pull a vacuum during Hot CIP. Always purge with gas after the Hot CIP process is complete. (So long as the contactor has cooled down to room temperature, air sweep can be used for a final lumen purge).5.0 HIGH TEMPERATURE & CIP CLEANING CONTINUEDOnce the membrane has been cleaned, it is ready for the high temperature sanitization guidelines below. Be careful not to exceed 85ºC. Also note that only SS vessels are recommended for Hot CIP cycles to 85ºC.Table 4: High Temperature Sanitization Guidelines Stainless Steel Housings, X40 Fiber in 4 and 10-inch sizes. X-50 in 4-inch OnlyMaximum Temperature Maximum OperatingPressureMaximum exposure cycles(at 30 minutes per cycle)181ºF-185ºF(83 - 85ºC)30 psig (2.11 kg/cm2) 1000NOTE: The lumenside should have N2 or vacuum flow, if available, during high temperature cleaning cycle. Always purge with gas after the Hot CIP process is complete. (So long as the contactor has cooled down to room temperature, air sweep can be used for a final lumen purge).To maintain the product warranty, the maximum normal operating feed water temperature should not exceed 122ºF (50ºC).The water temperature during the sanitization cycle should be accurately controlled so it does not exceed 185ºF (85ºC).6.0 CLEANING PROTOCOL FOR BIOLOGICAL SOIL REMOVALA. Biological Soil RemovalIf the performance of the contactor is decreasing, the contactor probably needs to be cleaned. If the soil has not penetrated the membrane pore structure, surface cleaning of the wetted side of the membrane (normally the shellside) is usually sufficient to restore performance. If theperformance is not restored after two cleaning cycles, then use the Severe Biological Soil Cleaning Protocol – see 6.0 section B.Table 5: Normal Biological Soil Cleaning ProtocolStep Description Chemical Solution Time (min.)1 Water flush /once throughAmbient to cold water filtered to 10 micron 52 Alkalinewash/ recirculate 2% w/w caustic (NaOH or KOH) solution, using 10micron filtered water.Suggested temperature ambient-104ºF (up to-40ºC)45 min to 2 hrs.3 DrainContactor4 Acid rinse /recirculated 5% w/w citric, or 3% Nitric or phosphoric, or 3%hydrochloric or a combination of 3% Nitric and 3%phosphoric acid solution or 3% Nitric and 3% HCLusing filtered (10 micron) water at ambient temp.45 min to 2 hrs.5 Rinse Contactor /once through Ambient to cold water filtered to 10 micron 15-30 oruntil neutral pHis achievedNOTES: in steps 1 - 6, always keep a water backpressure less than 30 psig.Do not use a commercial caustic that contains surfactants.Do not purge the lumens with CO2 during an alkaline wash.B. Severe Biological Soil Cleaning ProtocolWet-out occurs when the membrane looses its hydrophobic property, thus allowing liquids to pass through the pore structure. Wet-out can also occur when the membrane is exposed to protein containing liquids such as beer, wine, or fruit juice. Removing the biological deposits that have penetrated the membrane pore structure will restore the membrane hydrophobicity.To remove the proteins adhering to the polymer surface, a Severe Biological Soil cleaning Protocol is recommended. This Severe Biological Soil Cleaning protocol uses an alcohol-water solution followed by caustic solution and a drying step. The frequency of cleaning will depend upon the types and concentrations of proteins. In order to prevent wet-out, a daily cleaning protocol should be used until an appropriate cleaning frequency for your system is determined.The drying step is critical in removing any liquid remaining in the pore structure. If liquidremains in the pore structure, any liquid that is introduced into the contactor will pass through the membrane. Therefore, the contactor must be dried before it is put back into service.Contact your Membrana representative to learn more about contract cleaning servicesavailable in our facility for your convenience.Table 6:Severe Biological Soil Cleaning ProtocolStep Description / FlowSchematic Chemical Solution Time(min.)1 Waterflush/Once-through Filtered (10 micron) water 52 Wet-outmembrane/ Recirculate 50% isopropyl alcohol + 50% filtered (10 micron)water (v/v).15-303 Pressurize shell side and let liquid come out of lumen sides4 Alkaline wash / recirculate 2-5% w/w. caustic (NaOH or KOH) solution usingfiltered (10 micron) water. Suggested temperature86ºF – 122ºF (30ºC – 50ºC) 1 to 4 hrs.5 Draincontactor6 Acid rinse /recirculated 5% w/w citric, or 3% Nitric or phosphoric, or 3%hydrochloric or a combination of 3% Nitric and 3% phosphoric acid solution or 3% Nitric and 3% HCLusing filtered (10 micron) water at ambient temp.1 to 2hrs.7 Draincontactor8 Water flush/Once-through Filtered (10 micron) water – ambient temperature.Flush until pH in = pH out.20-309 Drying Inert gas is preferred. Clean, dry, oil free air canalso be used. Do not exceed 122ºF (50ºC) gastemperature when using air to dry the contactorsSee section 8.010 Membrane Integrity Test Seesection9.0*Note that the air temperature should not exceed 30ºC (86ºF) in normal operations. Higher temperatures are only recommended for short cleaning/drying cycles.Flow Schematics for Normal Biological Soil RemovalFlow Schematics for Severe Biological Soil Removal7.0 CLEANING PROTOCOL FOR MINERAL DEPOSITS REMOVALThe inlet water should be treated to prevent mineral precipitation. For example changes in pH due to carbon dioxide removal may initiate a precipitation reaction.If the performance of the contactor decreases and the inlet water source is not treated to remove minerals, such as calcium carbonate, it is likely that a layer of mineral scale has formed on the wetted side (normally the shellside) of the contactor. A simple acid clean followed by a water flush should restore the performance. The contactor does not need to be dried after this protocol. Also note that phosphoric acid is more efficient for removing hard mineral deposits or other precipitated deposits.Table 7: Cleaning Protocol for Mineral Deposit RemovalStep Description / Flow Schematic Chemical Solution Time(min.)1 Waterflush/Once-through Filtered (10 micron) water 52 Acid wash / recirculate (repeatif necessary) 5% w/w citric, or 3% Nitric or phosphoric,or a combination of 3% Nitric and 3%phosphoric acid solution using filtered(10 micron) water – ambient temperature30-603 Draincontactor4 Water flush /Once through Filtered (10 micron) waterFlush until pH in = pH out5-10If silica, aluminum or a combination of these is found in the inlet water source, it is likely that they will precipitate on the membrane surface. If CO2 is used as a sweep gas, precipitation can occur depending on the concentration and the water pH shift. For aluminum precipitation follow the mineral deposit removal procedure. For Silica precipitation use the Biological soil removal procedure, but increase the caustic concentration to 5.5% by weight and increase the temperature to 50 C. If possible try to clean the contactors using similar process water flow rates and do not change the direction of the water flow.Flow Schematics for Acid Cleaning to Remove Mineral Deposits8.0 CLEANING PROTOCOL WHEN PARTICLE FOULING IS SUSPECTEDFollow the steps described in Sections 6.0(a.) and 7.0, with the following exceptions: •Backflush the cleaning solutions (i.e. introduce the cleaning solutions in the direction opposite of the normal operating flow direction).•Once the cleaning solution is flowing into the contactor, introduce clean, dry, and oil free compressed air into one gas port, in the same direction as the liquid flow. Valve off, or cap, the other gas port.•Regulate the air pressure 5-10 psig GREATER than the liquid pressure, such that the air will bubble vigorously into the cleaning solution.•At the end of the cleaning procedure, shut off the air supply first, then the liquid.9.0 MEMBRANE DRYINGThe drying process involves two steps:• Bulk Water Removal• Final DryingThe purpose of the Bulk Water Removal is to quickly remove water prior to passing the drying gas through the contactor. The purpose of the Final Drying is to evaporate the remaining water from the contactor. Dry air, nitrogen, and carbon dioxide gas can be used to facilitate drying. Tables 8 and 9 provide a reference point for flow rates and drying times.Vacuum is not recommended for drying the contactor. Tests have shown residual water after several hours of vacuum operation.A. Bulk Water RemovalTo reduce the drying time, it is recommended to first remove the bulk water by flowing room temperature gas into the top shellside and lumenside ports. See the Bulk Water Removalschematic on page 10. Use clean, dry filtered (0.2 micron) gas at flow rate shown in Table 8.Keep the lower lumen and shellside ports open.Discontinue the gas flow after the water discharge rates decreases to a few drips. Close the bottom shellside port when finished.Table 8: Bulk Water Removal ConditionsLiqui-Cel Membrane Contactor Size Gas Flow Rate scfm*MiniModules and 2 x 6 0.5 scfm (0.84 m3/hr)2.5 x 8 1 scfm (1.7 m3/hr)4 x 28 and 6 x 28 10 scfm (17 m3/hr)10 x 28 and 14 x 28 70 scfm (120 m3/hr)*Maximum gas pressure = 10 psig (0.7 kg/cm)B. Final DryingThe final drying step involves flowing a clean, dry, filtered (0.2 micron) gas into the top shellside port. Using a warm gas will reduce drying time. We recommend using Nitrogen as the gas in the final drying step, as hot air can shorten the membrane life.Table 9 can be used as a guide for the Final Drying step.Table 9: Final Drying ConditionsLiqui-Cel Membrane Contactor Size Gas Flow Rate* Estimated Drying Time**2 x 6 0.5 scfm (0.84 m3/hr) 1 hr @ 60ºC (140ºF)2.5 x 8 1 scfm (1.7 m3/hr) 1 hr @ 60ºC (140ºF)4 x 28 10 scfm (17 m3/hr) 4 hr @ 60ºC (140ºF)6 x 28 25 scfm ( 40 m3/hr) 8 hr @ 60ºC (140ºF)10 x 28 70 scfm (120 m3/hr) 16 hr @ 60ºC (140ºF)14 x 28 80 scfm ( 130 m3/hr) 24 hr @ 60ºC (140ºF)*Maximum gas pressure = 10 psig (0.7 kg/cm) **If using air in the final drying step, do not exceed 30ºC (86ºF)Drying SchematicsBulk Water Removal/Initial Drying StepFinal Drying*If using air in the final drying step, do not exceed 30ºC (86ºF)10.0 MEMBRANE CONTACTOR INTEGRITY TESTThere are three conditions, which will cause the contactor to leak.• Membrane wet-out• A fiber break•O-ring / seal failureMembrane wet-out can occur from solutions containing surfactants or proteins, such as beer, juice, wine, fermentation broth or other organic solutions. This is a reversible condition once the contactor is cleaned. The integrity test can be used to verify that the hydrophobic property of the membrane has been restored. This test involves pressurizing the shellside with water andmeasuring the drip rate leaving the lower lumenside port. The integrity test should be completed after cleaning.Table 10: Membrane Contactor Integrity TestSteps1. Relieve lumenside pressure. Blow-out lumenside stream with nitrogen or oil-free air. Openthe lower lumenside port connection so an observation can be made.2. Close the shellside outlet valve3. Fill the shellside with filtered (10-micron) water. Slowly apply 60 psig (4.2 kg/cm2) pressureto the shellside.4. Measure the drip rate from the lumenside port for 1 hour.5. Release the shellside pressure by slowly opening the outlet valve.Drain the contactor.If the contactor leaks at a higher rate than the value listed in Table 11, either the cleaning protocol needs to be repeated, a fiber is broken or an O-Ring is damaged. Contact your Membranarepresentative for further help.Table 11: Guidelines for Typical Amounts of Liquid Passing to the Lumenside2 x 6 Contactor2.5 x 8Contactor4 x 28Contactor10 x 28Contactor14 x 28ContactorCondensation <0.5ml/hr@60 psig<5ml/hr < 1.2 ml/min. <7 ml/min. <11ml/min.It is normal for water vapor to collect in the lumenside of the membrane. It can condense and flow out of the contactor. The condensate rate can be compared to a new contactor to establish a baseline. The rates vary slightly depending on the fiber types but table 11 provides a good guideline.11.0 STORAGE AND HANDLING GUIDELINESThe Liqui-Cel Membrane Contactor that you have purchased can be damaged through improper handling and storage. The following guidelines are intended to provide a framework for successful storage of these contactors. If you have any questions, please contact your Membrana representative. HandlingProper handling of contactors is critical. Care must be taken not to hit or jar (shock) the contactor to minimize the possibility of internal damage or damage to plastic parts from the contactor being knocked over or dropped. All four (4) ports should be protected to prevent the introduction of contaminants into the contactor. It is recommended that the contactors be stored in a dry, heat-sealed plastic bag or shrink-wrap material [0.076 mm (0.003 in.) wall thickness] in their original box.All plastic port extensions should be supported to prevent bending of extensions under excessive piping loads.TemperatureStore the contactors dry in their original boxes at temperatures not to exceed 49o C (120o F). Contactors stored at very low temperatures < 5o C (41o F) should be allowed to equilibrate to room temperature prior to introducing water.HumidityIt is recommended that contactors be stored at low to moderate humidity levels (< 60% relative humidity). Humidity will not affect the components of the contactor but exposure at high humidity levels may affect the integrity of any cardboard packaging.Storage PositionStore the contactors in the horizontal position. Ten-inch contactors with SS housings packaged in wooden crates and 14-inch contactors should not be stacked more than two crates/boxes high. Ten- inch contactors with FRP housings and six-inch contactors are packaged in foam reinforced cardboard boxes. For safety considerations, they should not be stacked more than 3 boxes high. Four-inch contactors are packed in cardboard boxes and can be stacked up to 7 boxes high.Shelf LifeMembrane samples from contactors stored for 4 years (room temperature, low to moderate humidity, heat-sealed bag but not stored in a box) have shown no changes in physical properties (hollow fiber tensile strength and elongation).Exposure to SunlightContactors should not be stored where they are exposed to direct sunlight. Contactors should always be stored in sealed bags, or shrink wrap material, in the original box or other opaque box.12.0 Contactor Decontamination for Return To MEMBRANAIn the event that a contactor needs to be returned to MEMBRANA for analysis, it must be cleaned and dried. A Returned Material Authorization (RMA) form must be obtained from MEMBRANA before a contactor is returned. Please follow the instructions below when returning a contactor.Call your MEMBRANA Representative at (704) 587-8888 to obtain an RMA Form. Complete the Form and return it by fax to (704) 587-8585, Attn: Liqui-Cel® Membrane ContactorTechnical Service.I. If Non-Hazardous materials (water, air, nitrogen, oxygen, and carbon dioxide) were used,clean and dry the contactor, and place it in a clean leak-proof plastic bag.II. Write the RGA number on the outside of the shipping box.III. If Hazardous Materials were used in the contactor, follow the cleaning procedure in section 6.0. Provide a Material Safety Data Sheets (MSDS) of any chemical(s) introducedinto the contactor to your product representative. Even though these chemicals need to beflushed from the contactor prior to shipment, the MSDS is required information to safe-guard our personnel when handling the returned contactor. Place the contactor in a cleanleak-proof plastic bag. Write the RGA number on the outside of the shipping box.If non-human (or other non-primate) blood or blood products were used in thecontactor, follow your established normal cleaning protocol. In addition, flush thecontactor with water until the rinsed water is completely clear. Continue rinsing for30 more minutes to ensure complete removal of any blood product.Prior to returning the contactor to MEMBRANA, it must be sterilized. The followingsanitizing protocol is recommended: (5.25% available chlorine) diluted 1:500 withfiltered water (final concentration = ~100 ppm available chlorine). Adjust the pH >10using caustic prior to adding the hypochlorite solution.Recommended contact time and temperature with the contactor is 30 minutes at 70°F -100°F (21°C - 38°C). The active chlorine level should be maintained at 100 ppm during theduration of the cleaning cycle. The entire cartridge needs to be contacted with this solutionto kill bacteria or viruses. Therefore, both the shell and tube side flow paths need to bedecontaminated.Dry the contactor as per section 8.0 and place the contactor in a leak-proof plastic bag.Write the RGA number on the outside of the shipping box.It is important to Fax a copy of the RMA form to MEMBRANA prior to shipping.Fax to: (704) 587-8585, Attn: Liqui-Cel® Membrane Contactor Technical Service.。
液体脱气膜使用说明
目录目录 (2)第一节技术概述 (3)第二节气体脱除技术 (4)A.清扫气模式 (4)B.气侧抽真空模式 (6)C.组合模式 (7)第三节常规系统设计导则 (10)A.水流侧配置 (10)B.最大操作压力和温度 (11)C.过滤的要求 (11)D.膜污染 (11)E.仪表的最小配置 (11)第四节系统设计要求 (13)A.获得较含量的溶解氧 (13)B.空气泄漏和对溶解氧浓度的影响 (13)第五节启动和停运步骤 (14)A.启动步骤 (14)B.停运步骤 (14)C.停运后启动的步骤 (15)第六节问题解答 (15)第一节技术概述Liqui-Cel膜组件可以在不使水溶液分散(喷淋、雾化等)的情况下使其与气体分离或将气体加入其中。
膜组件包含由几千支Celgard微孔聚丙烯中空纤维围绕一个布水管编织而成的管束。
中空纤维均匀地排列成一个有进出水口的单元,可以有更大的水流容量和膜表面的更大利用。
由于中空纤维膜是疏水性的,因而水溶液无法透过微孔。
气液界面由于液相侧对气相侧的压力差而固定在微孔上。
并非像内装填料、分散液相的脱气塔,Liqui-Cel膜组件可以在超出水流量操作范围时提供一个恒定的分离界面。
虽然Liqui-Cel膜组利用的是微孔膜,但它的分离原理实质上不同与其它的例如渗滤膜和气体分离膜等膜分离技术。
在Liqui-Cel膜组件里,没有连续透过微孔的液流。
Liqui-Cel膜组件像一个惰性的支撑物使水相和液相直接接触而不需分散。
相间物质的转移几乎完全受气相侧压力的控制。
原因在于Celgard中空纤维的接触的几何原理,它的每列单元的接触表面积要比传统的接触高一个数量级。
这样将使在分离性能不变的情况下组件的体积大大减小。
膜Liqui-Cel 膜组件在用于吸收或分离技术中有两种不同的纤维可供选择,即X-30和X-40中空纤维膜。
X-30膜壁薄而且内径大。
这种特性使其与X-40相比有更大的二氧化碳的去除率,但对操作压力和温度有一定的限制。
脱气膜在控制溶氧的应用
TechBrief当需要控制全部气体含量时,采用Liqui-Cel®脱气膜能够精确控制全部气体含量,使您的控制全部气体含量的最好选择。
而真空脱气塔不能够用于控制多种气体在特定的浓度。
脱气膜两级连接或两根串联就能很容易达到 O2/N2组和气体浓度控制。
采用2组脱气膜的第一个优点消除通常因需要控制进口O2和N2浓度波动而需要的复杂的过程控制按如下可实现对对O2 和N2浓度控制通常在第一组脱气膜采用非常高的真空度的N 2-combo模式从而达到去除水中O2 和N2浓度。
第二组脱气膜采用非常低的真空度的N 2-combo模式并混入很少量的气体到吹扫的氮气中去,来增大水中的N2浓度。
参见插图1。
采用Liqui-Cel ® 脱气膜在半体精确控制溶解氧导O 2和氮N 2的用应在半导体工业中精确控制超纯水中的溶解氧和氮含量已经是个新的趋向。
目标是在半导体工厂的抛光回路中控制溶解氧在1p pb 或5ppb,同时控制氮的含量在8-12ppm之间。
第一组脱气膜可以脱气达到水中O2和N2浓度基底。
第二组脱气膜然后将所需气体再溶入水中。
通过控制真空度和O2/N2气体比例使水达到一个饱和度水平。
用氮气吹扫和真空组合从而达到控制溶解性氮N 2 浓度在8-12ppm。
如插图2的平衡图表所示, 通过控制吹扫气体的绝对压力就能够控制气体浓度在一个范围内 Illustration 2 /插图 2 Illustration1/插图1 设计的水出口溶解氧浓度和混入吹扫氮气的空气量 控制吹扫气体N2的绝对压力可调节水出口的溶解氮N2浓度水出口平衡溶解的溶解氮N2浓度;ppm混入吹扫气体的空气流量,cc/min出水到真空(500托 到真空(50托进水 吹扫氮气N2 吹扫氮气 N2 控制空气流量引入痕量的O2 进入吹扫N2。
Membrana – CharlotteA Division of Celgard, LLC 13800 South Lakes DriveCharlotte, North Carolina 28273 USAPhone: (704) 587 8888 Fax: (704) 587 8585 Membrana GmbH Oehder Strasse 28 42289 Wuppertal GermanyPhone: +49 202 6099 -593 Phone: +49 202 6099 -224 Fax: +49 202 6099 -750Japan OfficeShinjuku Mitsui Building, 27F 1-1, Nishishinjuku 2-chome Shinjuku-ku, Tokyo 163-0427 JapanPhone: 81 3 5324 3361 Fax: 81 3 5324 3369TechBrief本产品使用者应熟悉使用方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
涂敷工厂的200 立方米/小时(880加仑/分钟)的14英寸膜系统微电子研究领域的18 立方米/小时(79加仑/分钟)的10英寸膜系统行业业绩 C o
n t a c
t o r
T y
p e
a聚烯烃膜
容量Fiber Type
1x3 辐射流式2.5x8 外流式4x13 外流式6x28 外流式6x28 无挡板10x28 外流式高纯度14x28 外流式X40X50XIND 聚烯烃膜微型膜组件 最大到200毫升/分钟X
–1升/分钟
布水管中空纤维
液体出口膜丝滤芯外壳封闭端盖真空单个Liqui-Cel 6 x 28 NBTM膜元件处理容量:5-50加仑/分钟(1.1-11.4 立方米/小时)。
主要应用领域:只用于真空抽吸去除溶解氧。
Liqui-Cel NBTM设计是采用中空纤维膜的辐射流装置。
Liqui-Cel NBTM膜组件没有中间挡板。
而是由一个封闭端盖起导流挡板作用。
Liqui-Cel NBTM膜组件液体出口端在膜组件的侧面,液体辐射状流经中空纤维。
NB(无中间挡板)设计在没有吹扫气体只能采用真空抽吸操作模式的领域中具MiniModule ® 小型膜组件设计MiniModule ® 小型膜组件没有采用中间挡板导流设计。
这种膜组件采用液体从膜丝内壁流过,而膜丝外壁采用真空抽吸。
这些小型膜组件是为小流量而设计。
这些装置是专门用于生化技术和分析仪器的水中气体脱除。
模块化设计能够灵活地实现您的系统未来快速平衡方式保证了设备迅速启动。
单位体积内的膜面积最大化保证了产品的优秀性能和空间的使用效率。
不同的膜组件尺寸和材料选择适合于各种系统设计反渗透锅炉Liqui-Cel ®膜组件广泛用于各行各业。
在高纯和工业领域使用Liqui-Cel ®膜组件以提高产能和实现腐蚀控制已成为行业的标准。
下面图示当今Liqui-Cel ®膜组件的一些应用。
电脱盐/连续电脱盐反渗透离子交换
反渗透反渗透在反渗透后离子交换或电脱盐(EDI)前去除CO2, 不仅减少化学消耗而且能使EDI达到最佳的运行状态。
低CO2负荷更够提高EDI的硅和硼的去除率在锅炉补给水中去除CO2 和 O2能够使锅炉和管道免于腐蚀,同时没有或很少的化学品消耗从而降低运行费用在锅炉补给水中去除CO2 和 O2能够使锅炉和管道免于腐蚀, 同时没有或很少的化学品消耗从而降低运行费用集水管
中空纤维的电镜扫描
应用脱氧脱二氧化碳
加二氧化碳加入氮气加入氢气脱气消泡
脱除硫化氢(H2S)
脱除易挥发性有机物
渗透提取液/液萃取
气体加湿
脱醇
脱除氨(NH3 )
更多的应用MicroModule ®微型膜组件设计MicroModule ®微型膜组件是产品家族中最小的气体脱除装置。
微型膜组件将很多膜面积装在一个很小的装置,使之能够在线地装在任何小系统里。
它适合于分析仪器,实验室和生化技术等应用领域。
该装置不需设置导流板,液体穿过膜从一端到另一端。
三个端口的设计仅适用于真空抽吸操作模式,四个端口的设计仅适用气体吹扫和真操作简便降低了对仪表和维护的需要无化学品消耗充分体现了环保概念同时操作者无需和化学品接触高进水压力和低压降无需增压泵。
非分散性的特点使膜组件有很大的处
理流量范围可保证出水溶氧达到1ppb和出水CO2 达到1ppm 反渗透 锅炉。