专题(21)动能定理及其应用(原卷版)

合集下载

高考物理动能定理的综合应用题20套(带答案)含解析

高考物理动能定理的综合应用题20套(带答案)含解析

高考物理动能定理的综合应用题20套(带答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.一辆汽车发动机的额定功率P =200kW ,若其总质量为m =103kg ,在水平路面上行驶时,汽车以加速度a 1=5m/s 2从静止开始匀加速运动能够持续的最大时间为t 1=4s ,然后保持恒定的功率继续加速t 2=14s 达到最大速度。

设汽车行驶过程中受到的阻力恒定,取g =10m/s 2.求:(1)汽车所能达到的最大速度;(2)汽车从启动至到达最大速度的过程中运动的位移。

【答案】(1)40m/s ;(2)480m 【解析】 【分析】 【详解】(1)汽车匀加速结束时的速度11120m /s v a t ==由P=Fv 可知,匀加速结束时汽车的牵引力11F Pv ==1×104N 由牛顿第二定律得11F f ma -=解得f =5000N汽车速度最大时做匀速直线运动,处于平衡状态,由平衡条件可知, 此时汽车的牵引力F=f =5000N由P Fv =可知,汽车的最大速度:v=P PF f==40m/s (2)汽车匀加速运动的位移x 1=1140m 2v t = 对汽车,由动能定理得2112102F x Pt fs mv =--+解得s =480m2.如图所示,倾角为37°的粗糙斜面AB 底端与半径R=0.4 m 的光滑半圆轨道BC 平滑相连,O 点为轨道圆心,BC 为圆轨道直径且处于竖直方向,A 、C 两点等高.质量m=1 kg 的滑块从A点由静止开始下滑,恰能滑到与O 点等高的D 点,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)求滑块与斜面间的动摩擦因数μ;(2)要使滑块能到达C 点,求滑块从A 点沿斜面滑下时初速度v 0的最小值;(3)若滑块离开C 点的速度为4 m/s ,求滑块从C 点飞出至落到斜面上所经历的时间. 【答案】(1)0.375(2)3/m s (3)0.2s 【解析】试题分析:⑴滑块在整个运动过程中,受重力mg 、接触面的弹力N 和斜面的摩擦力f 作用,弹力始终不做功,因此在滑块由A 运动至D 的过程中,根据动能定理有:mgR -μmgcos37°2sin 37R︒=0-0 解得:μ=0.375⑵滑块要能通过最高点C ,则在C 点所受圆轨道的弹力N 需满足:N≥0 ①在C 点时,根据牛顿第二定律有:mg +N =2Cv m R② 在滑块由A 运动至C 的过程中,根据动能定理有:-μmgcos37°2sin 37R ︒=212C mv -2012mv ③ 由①②③式联立解得滑块从A 点沿斜面滑下时的初速度v 0需满足:v 03gR =23 即v 0的最小值为:v 0min =3⑶滑块从C 点离开后将做平抛运动,根据平抛运动规律可知,在水平方向上的位移为:x =vt ④在竖直方向的位移为:y =212gt ⑤ 根据图中几何关系有:tan37°=2R yx-⑥ 由④⑤⑥式联立解得:t =0.2s考点:本题主要考查了牛顿第二定律、平抛运动规律、动能定理的应用问题,属于中档题.3.如图所示,光滑曲面与光滑水平导轨MN 相切,导轨右端N 处于水平传送带理想连接,传送带长度L =4m ,皮带轮沿顺时针方向转动,带动皮带以恒定速率v =4.0m/s 运动.滑块B 、C 之间用细绳相连,其间有一压缩的轻弹簧,B 、C 与细绳、弹簧一起静止在导轨MN 上.一可视为质点的滑块A 从h =0.2m 高处由静止滑下,已知滑块A 、B 、C 质量均为m =2.0kg ,滑块A 与B 碰撞后粘合在一起,碰撞时间极短.因碰撞使连接B 、C 的细绳受扰动而突然断开,弹簧伸展,从而使C 与A 、B 分离.滑块C 脱离弹簧后以速度v C =2.0m/s 滑上传送带,并从右端滑出落至地面上的P 点.已知滑块C 与传送带之间的动摩擦因数μ=0.2,重力加速度g 取10m/s 2.(1)求滑块C 从传送带右端滑出时的速度大小; (2)求滑块B 、C 与细绳相连时弹簧的弹性势能E P ;(3)若每次实验开始时弹簧的压缩情况相同,要使滑块C 总能落至P 点,则滑块A 与滑块B 碰撞前速度的最大值v m 是多少? 【答案】(1) 4.0m/s (2) 2.0J (3) 8.1m/s 【解析】 【分析】 【详解】(1)滑块C 滑上传送带到速度达到传送带的速度v =4m/s 所用的时间为t ,加速度大小为a ,在时间t 内滑块C 的位移为x ,有mg ma μ=C v v at =+212C x v t at =+代入数据可得3m x = 3m x L =<滑块C 在传送带上先加速,达到传送带的速度v 后随传送带匀速运动,并从右端滑出,则滑块C 从传送带右端滑出时的速度为v=4.0m/s(2)设A 、B 碰撞前A 的速度为v 0,A 、B 碰撞后的速度为v 1,A 、B 与C 分离时的速度为v 2,有2012A A m gh m v =01()A A B m v m m v =+ 12()()A B A B C C m m v m m v m v +=++A 、B 碰撞后,弹簧伸开的过程系统能量守恒222A 1A 2111()()222P B B C C E m m v m m v m v ++=++代入数据可解得2.0J P E =(3)在题设条件下,若滑块A 在碰撞前速度有最大值,则碰撞后滑块C 的速度有最大值,它减速运动到传送带右端时,速度应当恰好等于传送带的速度v .设A 与B 碰撞后的速度为1v ',分离后A 与B 的速度为2v ',滑块C 的速度为'C v ,C 在传送带上做匀减速运动的末速度为v =4m/s ,加速度大小为2m/s 2,有22()Cv v a L '-=- 解得42m/s Cv '= 以向右为正方向,A 、B 碰撞过程1()A m A B m v m m v '=+弹簧伸开过程12()()A B C C A B m m v m v m m v '''+=++22212111+()()+222p A B A B C C E m m v m m v m v '''+=+代入数据解得74228.14m v =+≈m/s .4.一个平板小车置于光滑水平面上,其右端恰好和一个光滑圆弧轨道AB 的底端等高对接,如图所示.已知小车质量M=3.0kg ,长L=2.06m ,圆弧轨道半径R=0.8m .现将一质量m=1.0kg 的小滑块,由轨道顶端A 点无初速释放,滑块滑到B 端后冲上小车.滑块与小车上表面间的动摩擦因数.(取g=10m/s 2)试求:(1)滑块到达B 端时,轨道对它支持力的大小; (2)小车运动1.5s 时,车右端距轨道B 端的距离;(3)滑块与车面间由于摩擦而产生的内能.【答案】(1)30 N (2)1 m (3)6 J 【解析】(1)滑块从A 端下滑到B 端,由动能定理得(1分)在B 点由牛顿第二定律得(2分) 解得轨道对滑块的支持力N (1分)(2)滑块滑上小车后,由牛顿第二定律对滑块:,得m/s2 (1分)对小车:,得m/s2 (1分)设经时间t后两者达到共同速度,则有(1分)解得s (1分)由于s<1.5s,故1s后小车和滑块一起匀速运动,速度v="1" m/s (1分)因此,1.5s时小车右端距轨道B端的距离为m (1分)(3)滑块相对小车滑动的距离为m (2分)所以产生的内能J (1分)5.某电视娱乐节目装置可简化为如图所示模型.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC长L=6m,始终以v0=6m/s的速度顺时针运动.将一个质量m=1kg 的物块由距斜面底端高度h1=5.4m的A点静止滑下,物块通过B点时速度的大小不变.物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面距地面的高度H=5m,g取10m/s2,sin37°=0.6,cos37°=0.8.⑴求物块由A点运动到C点的时间;⑵若把物块从距斜面底端高度h2=2.4m处静止释放,求物块落地点到C点的水平距离;⑶求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D.【答案】⑴4s;⑵6m;⑶1.8m≤h≤9.0m【解析】试题分析:(1)A到B过程:根据牛顿第二定律mgsinθ﹣μ1mgcosθ=ma1,代入数据解得,t 1=3s.所以滑到B点的速度:v B=a1t1=2×3m/s=6m/s,物块在传送带上匀速运动到C,所以物块由A到C的时间:t=t1+t2=3s+1s=4s(2)斜面上由根据动能定理.解得v=4m/s<6m/s,设物块在传送带先做匀加速运动达v0,运动位移为x,则:,,x=5m<6m所以物体先做匀加速直线运动后和皮带一起匀速运动,离开C点做平抛运动s=v 0t0,H=解得 s=6m.(3)因物块每次均抛到同一点D,由平抛知识知:物块到达C点时速度必须有v C=v0①当离传送带高度为h3时物块进入传送带后一直匀加速运动,则:,解得h3=1.8m②当离传送带高度为h4时物块进入传送带后一直匀减速运动,h4=9.0m所以当离传送带高度在1.8m~9.0m的范围内均能满足要求即1.8m≤h≤9.0m6.一质量为0.5kg的小物块放在水平地面上的A点,距离A点5m的位置B处是一面墙,如图所示,物块以v0=9m/s的初速度从A点沿AB方向运动,在与墙壁碰撞前瞬间的速度为7m/s,碰后以6m/s的速度反向运动直至静止.g取10m/s2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s,求碰撞过程中墙面对物块平均作用力的大小F.【答案】(1)0.32μ=(2)F=130N【解析】试题分析:(1)对A到墙壁过程,运用动能定理得:,代入数据解得:μ=0.32.(2)规定向左为正方向,对碰墙的过程运用动量定理得:F△t=mv′﹣mv,代入数据解得:F=130N.7.如图所示,BC 225竖直放置的光滑细圆管,O为细圆管的圆心,在圆管的末端C连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m=0.5kg的小球从O点正上方某处A点以v0水平抛出,恰好能垂直OB从B点进入细圆管,小球从进入圆管开始受到始终竖直向上的力F=5N的作用,当小球运动到圆管的末端C时作用力F立即消失,小球能平滑地冲上粗糙斜面.(g=10m/s2)求:(1)小球从O点的正上方某处A点水平抛出的初速度v0为多少?(2)小球在圆管中运动时对圆管的压力是多少?(3)小球在CD斜面上运动的最大位移是多少?【答案】(1)2m/s ;(2)7.1N ;(3)0.35m. 【解析】 【详解】(1)小球从A 运动到B 为平抛运动, 水平方向:r sin45°=v 0t ,在B 点:tan45°=y v gt v v =, 解得:v 0=2m/s ;(2)小球到达在B 点的速度:22m/s cos 45v v ︒==,由题意可知:mg =0.5×10=5N=F ,重力与F 的合力为零,小球所受合力为圆管的外壁对它的弹力,该力不做功, 小球在管中做匀速圆周运动,管壁的弹力提供向心力,22(22)0.5N 7.1N225v F m r ==⨯= 由牛顿第三定律可知,小球对圆管的压力大小:7.1N F '=; (3)小球在CD 上滑行到最高点过程,由动能定理得:21sin 45?cos 45?02mg s mg s mv μ︒︒--=-解得:s ≈0.35m ;8.如图,与水平面夹角θ=37°的斜面和半径R =1.0m 的光滑圆轨道相切于B 点,且固定于竖直平面内。

动能定理及其应用--高中物理模块典型题归纳(含详细答案)

动能定理及其应用--高中物理模块典型题归纳(含详细答案)

动能定理及其应用--高中物理模块典型题归纳(含详细答案)一、单选题1.一个物体速度由0增加到v,再从v增加到2v,外力做功分别为W1和W2,则W1和W2关系正确的是-()A.W2=W1B.W2 =2W1C.W2 =3W1D.W2 =4W12.质量m=2㎏的物块放在粗糙水平面上,在水平拉力的作用下由静止开始运动,物块动能E K与其发生位移x之间的关系如图所示。

已知物块与水平面间的动摩擦因数μ=0.2,重力加速度g取10m/s2,则下列说法正确的是()A.x=1m时物块的速度大小为2m/sB.x=3m时物块的加速度大小为C.在前4m位移过程中拉力对物块做的功为9JD.在前4m位移过程中物块所经历的时间为2.8s3.如图所示,小球从倾斜轨道上由静止释放,经平直部分冲上圆弧部分的最高点A时,对圆弧的压力大小为mg,已知圆弧的半径为R,整个轨道光滑.则()A.在最高点A,小球受重力和向心力的作用B.在最高点A,小球的速度为C.在最高点A,小球的向心加速度为gD.小球的释放点比A点高为R4.如图所示,木板可绕固定水平轴O转动.木板从水平位置OA缓慢转到OB位置,木板上的物块始终相对于木板静止.在这一过程中,物块的重力势能增加了2J.用F N表示物块受到的支持力,用F f表示物块受到的摩擦力.在此过程中,以下判断正确的是()A.F N和F f对物块都不做功B.F N对物块做功为2 J,F f对物块不做功C.F N对物块不做功,F f对物块做功为2 JD.F N和F f对物块所做功的代数和为05.如图所示,水平传送带长为x,以速度v始终保持匀速运动,把质量为m的货物放到A点,货物与皮带间的动摩擦因数为μ,当货物从A点运动到B点的过程中,摩擦力对货物做的功不可能()A.等于mv2B.小于mv2C.大于μmgxD.小于μmgx6.如图所示,足够长的传送带与水平面夹角为θ=37o,以速度v0逆时针匀速转动.在传送带的上端轻轻放置一个质量为m的小木块,小木块与传送带间的动摩擦因数,则图中能客观地反映小木块的速度随时间变化关系的是()A. B. C. D.7.如图所示,在轻弹簧的下端悬挂一个质量为m的小球A,若将小球A从弹簧原长位置由静止释放,小球A能够下降的最大高度为h.若将小球A换为质量为2m的小球B,仍从弹簧原长位置由静止释放,则小球B下降h时的速度为(重力加速度为g,不计空气阻力)()A. B. C. D.08.电磁轨道炮射程远、精度高、威力大.假设一款电磁轨道炮的弹丸(含推进器)质量为20.0kg,从静止开始在电磁驱动下速度达到2.50×103m/s.则此过程中弹丸所受合力做的功是()A.2.50×104JB.5.00×104JC.6.25×107JD.1.25×108J9.如图,一半径为R的半圆形轨道竖直固定放置,轨道两端等高;质量为m的质点自轨道端点P由静止开始滑下,滑到最低点Q时,对轨道的正压力为2mg,重力加速度大小为g.质点自P滑到Q的过程中,克服摩擦力所做的功为()A.mgRB.mgRC.mgRD.mgR10.物体A和B质量相等,A置于光滑的水平面上,B置于粗糙水平面上,开始时都处于静止状态.在相同的水平力作用下移动相同的距离,则()A.力F对A做功较多,A的动能较大B.力F对B做功较多,B的动能较大C.力F对A和B做功相同,A和B的动能相同D.力F对A和B做功相同,但A的动能较大二、多选题11.如图所示,有两固定且竖直放置的光滑半圆环,半径分别为R和2R,它们的上端在同一水平面上,有两质量相等的小球分别从两半圆环的最高点处(如图所示)由静止开始下滑,以半圆环的最高点为零势点,则下列说法正确的是()A.两球到达最低点时的机械能相等B.A球在最低点时的速度比B球在最低点时的速度小C.A球在最低点时的速度比B球在最低点时的速度大D.两球到达最低点时的向心加速度大小相等12.某足球运动员罚点球直接射门,球恰好从横梁下边缘A点踢进,球经过A点时的速度为v,A点离地面的高度为h,球的质量为m,运动员对球做的功为,球从踢飞到A点过程中克服空气阻力做的功为,选地面为零势能面,下列说法正确的是()A.运动员对球做的功B.从球静止到A点的过程中,球的机械能变化量为-C.球刚离开运动员脚面的瞬间,球的动能为D.从球刚离开运动员脚面的瞬间到A点的过程中,球的动能变化量为-mgh13.如图所示,三角形传送带以1m/s的速度逆时针匀速转动,两边的传送带长都是2m且与水平方向的夹角均为37°.现有两个小物块A,B同时从传送带顶端都以1m/s的初速度沿传送带下滑,已知物块与传送带间的动摩擦因数都是0.5,sin37°=0.6,cos37°=0.8,重力加速度g=10m/s2.下列说法正确的是()A.物块A,B运动的加速度大小不同B.物块A,先到达传送带底端C.物块A,B运动到传送带底端时重力的功率相等D.物块A,B在传送带上的划痕长度之比为1:314.如图所示,现有一端固定在地面上的两根长度相同竖直弹簧(K1>K2),两个质量相同的小球分别由两弹簧的正上方高为H处自由下落,落到轻弹簧上将弹簧压缩,小球落到弹簧上将弹簧压缩的过程中获得的最大弹性势能分别是E1和E2,在具有最大动能时刻的重力势能分别是E P1和E P2(以地面为重力势能的零势能),则()A.E1<E2B.E1>E2C.E P1=E P2D.E P1>E P215.如图所示,在a点由静止释放一个质量为m,电荷量为q的带电粒子,粒子到达b点时速度恰好为零,设ab所在的电场线竖直向下,a、b间的高度差为h,则()A.带电粒子带负电B.a、b两点间的电势差U ab=C.b点场强大于a点场强D.a点场强大于b点场强16.如图所示,光滑杆O′A的O′端固定一根劲度系数为k=10N/m,原长为l0=1m的轻弹簧,质量为m=1kg的小球套在光滑杆上并与弹簧的上端连接,OO′为过O点的竖直轴,杆与水平面间的夹角始终为θ=30°,开始杆是静止的,当杆以OO′为轴转动时,角速度从零开始缓慢增加,直至弹簧伸长量为0.5m,下列说法正确的是()A.杆保持静止状态,弹簧的长度为0.5mB.当弹簧伸长量为0.5m时,杆转动的角速度为rad/sC.当弹簧恢复原长时,杆转动的角速度为rad/sD.在此过程中,杆对小球做功为12.5J17.如图所示,在竖直平面内有一半径为R的圆弧轨道,半径OA水平、OB竖直,一个质量为m的小球自A的正上方P点由静止开始自由下落,小球沿轨道到达最高点B时,对轨道的压力为其重力的一半.已知AP=2R,重力加速度为g,则小球从P到B的运动过程中()A.机械能减少mgRB.动能增加mgRC.克服摩擦力做功mgRD.合外力做功mgR18.在水平向右的匀强电场中有一绝缘斜面,斜面上有一带电金属块沿斜面滑下,已知在金属块滑下的过程中动能增加了14J,金属块克服摩擦力做功10J,重力做功22J,则以下判断正确的是()A.金属块带正电荷B.金属块克服电场力做功8 JC.金属块的电势能减少2 JD.金属块的机械能减少8 J三、实验探究题19.某兴趣小组准备探究“合外力做功和物体速度变化的关系”,实验前组员们对初速为O的物体提出了以下几种猜想:①W∝v;②W∝v2;③W∝为了验证猜想,他们设计了如图甲所示的实验装置.PQ 为一块倾斜放置的木板,在Q处固定一个光电计时器(用来测量物体上的遮光片通过光电门时的挡光时间).(1)如果物体上的遮光片宽度为d,某次物体通过光电计时器挡光时间为△t,则物体通过光电计时器时的速度v=________.(2)实验过程中,让物体分别从不同高度无初速释放,测出物体初始位置到光电计时器的距离L1、L2、L3、L4…,读出物体每次通过光电计时器的挡光时间,从而计算出物体通过光电计时器时的速度v1、v2、v3、v4…,并绘制了如图乙所示的L﹣v图象.为了更直观地看出L 和v的变化关系,他们下一步应该作出:____________A.L﹣v2图象B.L﹣图象C.L﹣图象D.L﹣图象(3)实验中,物体与木板间摩擦力________(选填“会”或“不会”)影响探究的结果.四、综合题20.一质量为m=2kg的小滑块,从半径R=1.25m的1/4光滑圆弧轨道上的A点由静止滑下,圆弧轨道竖直固定,其末端B切线水平。

2025届高考物理复习:经典好题专项(动能定理及其应用)练习(附答案)

2025届高考物理复习:经典好题专项(动能定理及其应用)练习(附答案)

2025届高考物理复习:经典好题专项(动能定理及其应用)练习1.(2023ꞏ北京市东城区模拟)复兴号动车在世界上首次实现速度350 km/h 自动驾驶功能,成为我国高铁自主创新的又一重大标志性成果。

一列质量为m 的动车,初速度为v 0,以恒定功率P 在平直轨道上运动,经时间t 达到该功率下的最大速度v m ,设动车行驶过程所受到的阻力F 保持不变。

下列关于列车在整个过程中的说法正确的是( )A .做匀加速直线运动B .牵引力的功率P =F v mC .当动车速度为v m 3时,其加速度为3F mD .牵引力做的功等于12m v m 2-12m v 022. 如图所示,竖直平面内有一半径为R 的14B 。

一质量为m的小物块从A 处由静止滑下,沿轨道运动至C 处停下,B 、C 两点间的距离为R ,物块与圆轨道和水平轨道之间的动摩擦因数相同。

现用始终平行于轨道或轨道切线方向的力推动物块,使物块从C 处缓慢返回A 处,重力加速度为g ,设推力做的功至少为W ,则( )A .W =mgRB .mgR <W <2mgRC .W =2mgRD .W >2mgR3. 如图所示,AB 是带有半径为R 的竖直圆轨道的光滑轨道,它的质量为M ,置于左右固定的水平地面上,紧挨轨道的B 点有一倾角为θ的斜面,一质量为m 的小球从光滑斜面上距B 点4R 处由静止释放,当小球通过圆轨道最高点时轨道恰好能离开地面,已知斜面倾角θ=53°,sin 53°=0.8,不计小球经过B 点时的能量损失,则轨道质量M 与小球质量m 之间的关系为( )A .M =0.8mB .M =1.2mC .M =1.4mD .M =2.0m4. 如图,半圆形光滑轨道固定在水平地面上,半圆的直径与地面垂直,一小球以速度v 从轨道下端滑入轨道,并保证从轨道上端水平飞出,则关于小球落地点到轨道下端的水平距离x 与轨道半径R 的关系,下列说法正确的是( )A .R 越大,则x 越大B .R 越小,则x 越大C .当R 为某一定值时,x 才有最大值D .当R 为某一定值时,x 才有最小值5. (2023ꞏ四川绵阳市诊断)如图所示,有一倾角θ=45°的粗糙斜面固定于空中的某位置。

易错点12 动能定理及其应用(原卷版)-备战2023年高考物理易错题

易错点12 动能定理及其应用(原卷版)-备战2023年高考物理易错题

易错点12 动能定理及其应用例题1. (2022·江苏·高考真题)某滑雪赛道如图所示,滑雪运动员从静止开始沿斜面下滑,经圆弧滑道起跳。

将运动员视为质点,不计摩擦力及空气阻力,此过程中,运动员的动能k E 与水平位移x 的关系图像正确的是( )A .B .C .D .例题2. (2022·浙江·模拟预测)如图所示,同一竖直平面内有三段半径均为R 的光滑圆弧轨道,质量为m 的物体从OA 圆弧某处静止释放,经过A 出后小球沿第二段BC 圆弧轨道运动,经过粗糙水平面CD 后,小球从D 进入第三段圆弧后最终从E 点飞出。

已知C 、D 是圆弧轨道最低点,A 、B 是圆弧轨道最高点,物体与粗糙水平面间的动摩擦因数0.52CD R μ==,,求:(1)物体从斜面下滑的角度θ满足什么条件,物体才不会从B 点脱离轨道。

(2)如果物体从O 点静止下滑,下滑到轨道D 处,物体对轨道的压力N F 。

(3)在上一问中,物体从E 点飞出后,当物体到达最高点时,最高点与D 点的水平距离s 。

1.动能定理适用条件(1)动能定理既适用于直线运动,也适用于曲线运动.(2)动能定理既适用于恒力做功,也适用于变力做功.(3)力可以是各种性质的力,既可以同时作用,也可以分阶段作用.2.动能定理解题流程3.动能定理的优越性应用牛顿第二定律和运动学规律解题时,涉及到的有关物理量比较多,对运动过程的细节也要仔细研究,而应用动能定理解题只需考虑外力做功和初、末两个状态的动能,并且可以把不同的运动过程合并为一个全过程来处理.一般情况下,由牛顿第二定律和运动学规律能够解决的问题,用动能定理也可以求解,并且更为简捷.4.动能定理解决图像问题的基本步骤(1)观察题目给出的图像,弄清纵坐标、横坐标所对应的物理量及图线所表示的物理意义.(2)根据物理规律推导出纵坐标与横坐标所对应的物理量间的函数关系式.(3)将推导出的物理规律与数学上与之相对应的标准函数关系式相对比,找出图线的斜率、截距、图线的交点、图与坐标轴围成的面积等所表示的物理意义,分析解答问题,或者利用函数图线上的特定值代入函数关系式求物理量.5.不同图像所围“面积”和图像斜率的含义易混点:(1)动能定理中的位移和速度必须是相对于同一个参考系的,一般以地面或相对地面静止的物体为参考系.(2)当物体的运动包含多个不同过程时,可分段应用动能定理求解;也可以全过程应用动能定理求解.(3)动能是标量,动能定理是标量式,解题时不能分解动能.(4)在一个有变力做功的过程中,当变力做功无法直接通过功的公式求解时,可用动能定理,W 变+W 恒=12m v 22-12m v 12,物体初、末速度已知,恒力做功W 恒可根据功的公式求出,这样就可以得到W 变=12m v 22-12m v 12-W 恒,就可以求变力做的功了.1. (2022·黑龙江·佳木斯一中二模)轻质弹簧右端固定在墙上,左端与一质量m =0.5 kg 的物块相连,如图甲所示,弹簧处于原长状态,物块静止且与水平面间的动摩擦因数μ=0.2,以物块所在处为原点,水平向右为正方向建立x 轴。

高考物理动能定理的综合应用题20套(带答案)含解析(1)

高考物理动能定理的综合应用题20套(带答案)含解析(1)

高考物理动能定理的综合应用题20套(带答案)含解析(1)一、高中物理精讲专题测试动能定理的综合应用1.如图所示,半径为R =1 m ,内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m =1 kg 的小球,在水平恒力F =25017N 的作用下由静止沿光滑水平面从A 点运动到B 点,A 、B 间的距离x =175m ,当小球运动到B 点时撤去外力F ,小球经半圆管道运动到最高点C ,此时球对外轨的压力F N =2.6mg ,然后垂直打在倾角为θ=45°的斜面上(g =10 m/s 2).求:(1)小球在B 点时的速度的大小; (2)小球在C 点时的速度的大小;(3)小球由B 到C 的过程中克服摩擦力做的功; (4)D 点距地面的高度.【答案】(1)10 m/s (2)6 m/s (3)12 J (4)0.2 m 【解析】 【分析】对AB 段,运用动能定理求小球在B 点的速度的大小;小球在C 点时,由重力和轨道对球的压力的合力提供向心力,由牛顿第二定律求小球在C 点的速度的大小;小球由B 到C 的过程,运用动能定理求克服摩擦力做的功;小球离开C 点后做平抛运动,由平抛运动的规律和几何知识结合求D 点距地面的高度. 【详解】(1)小球从A 到B 过程,由动能定理得:212B Fx mv = 解得:v B =10 m/s(2)在C 点,由牛顿第二定律得mg +F N =2c v m R又据题有:F N =2.6mg 解得:v C =6 m/s.(3)由B 到C 的过程,由动能定理得:-mg ·2R -W f =221122c B mv mv - 解得克服摩擦力做的功:W f =12 J(4)设小球从C 点到打在斜面上经历的时间为t ,D 点距地面的高度为h , 则在竖直方向上有:2R -h =12gt 2由小球垂直打在斜面上可知:cgtv=tan 45° 联立解得:h =0.2 m 【点睛】本题关键是对小球在最高点处时受力分析,然后根据向心力公式和牛顿第二定律求出平抛的初速度,最后根据平抛运动的分位移公式列式求解.2.为了研究过山车的原理,某物理小组提出了下列设想:取一个与水平方向夹角为θ=60°、长为L 1=23m 的倾斜轨道AB ,通过微小圆弧与长为L 2=3m 的水平轨道BC 相连,然后在C 处设计一个竖直完整的光滑圆轨道,出口为水平轨道上D 处,如图所示.现将一个小球从距A 点高为h =0.9m 的水平台面上以一定的初速度v 0水平弹出,到A 点时小球的速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小球与AB 和BC 间的动摩擦因数均为μ=33,g 取10m/s 2.(1)求小球初速度v 0的大小; (2)求小球滑过C 点时的速率v C ;(3)要使小球不离开轨道,则竖直圆弧轨道的半径R 应该满足什么条件? 【答案】(16m/s (2)6m/s (3)0<R ≤1.08m 【解析】试题分析:(1)小球开始时做平抛运动:v y 2=2gh代入数据解得:22100.932/y v gh m s =⨯⨯==A 点:60y x v tan v ︒=得:032/6/603yx v v v s m s tan ==︒== (2)从水平抛出到C 点的过程中,由动能定理得:()2211201122C mg h L sin mgL cos mgL mv mv θμθμ+---=代入数据解得:36/C v m s =(3)小球刚刚过最高点时,重力提供向心力,则:21mv mg R =22111 222C mv mgR mv += 代入数据解得R 1=1.08 m当小球刚能到达与圆心等高时2212C mv mgR = 代入数据解得R 2=2.7 m当圆轨道与AB 相切时R 3=BC•tan 60°=1.5 m 即圆轨道的半径不能超过1.5 m综上所述,要使小球不离开轨道,R 应该满足的条件是 0<R≤1.08 m . 考点:平抛运动;动能定理3.如图所示,竖直平面内的轨道由直轨道AB 和圆弧轨道BC 组成,直轨道AB 和圆弧轨道BC 平滑连接,小球从斜面上A 点由静止开始滑下,滑到斜面底端后又滑上一个半径为=0.4m R 的圆轨道;(1)若接触面均光滑,小球刚好能滑到圆轨道的最高点C ,求斜面高h ;(2)若已知小球质量m =0.1kg ,斜面高h =2m ,小球运动到C 点时对轨道压力为mg ,求全过程中摩擦阻力做的功.【答案】(1)1m ;(2) -0.8J ; 【解析】 【详解】(1)小球刚好到达C 点,重力提供向心力,由牛顿第二定律得:2v mg m R=从A 到C 过程机械能守恒,由机械能守恒定律得:()2122mg h R mv -=, 解得:2.5 2.50.4m 1m h R ==⨯=;(2)在C 点,由牛顿第二定律得:2Cv mg mg m R+=,从A 到C 过程,由动能定理得:()21202f C mgh R W mv -+=-, 解得:0.8J f W =-;4.如图甲所示,倾斜的传送带以恒定的速率逆时针运行.在t =0时刻,将质量为1.0 kg 的物块(可视为质点)无初速度地放在传送带的最上端A 点,经过1.0 s ,物块从最下端的B 点离开传送带.取沿传送带向下为速度的正方向,则物块的对地速度随时间变化的图象如图乙所示(g =10 m/s 2),求:(1)物块与传送带间的动摩擦因数;(2)物块从A 到B 的过程中,传送带对物块做的功. 【答案】3-3.75 J 【解析】解:(1)由图象可知,物块在前0.5 s 的加速度为:2111a =8?m/s v t = 后0.5 s 的加速度为:222222?/v v a m s t -== 物块在前0.5 s 受到的滑动摩擦力沿传送带向下,由牛顿第二定律得:1mgsin mgcos ma θμθ+=物块在后0.5 s 受到的滑动摩擦力沿传送带向上,由牛顿第二定律得:2mgsin mgcos ma θμθ-=联立解得:3μ=(2)由v -t 图象面积意义可知,在前0.5 s ,物块对地位移为:1112v t x =则摩擦力对物块做功:11·W mgcos x μθ= 在后0.5 s ,物块对地位移为:12122v v x t +=则摩擦力对物块做功22·W mgcos x μθ=- 所以传送带对物块做的总功:12W W W =+ 联立解得:W =-3.75 J5.在某电视台举办的冲关游戏中,AB 是处于竖直平面内的光滑圆弧轨道,半径R=1.6m ,BC 是长度为L 1=3m 的水平传送带,CD 是长度为L 2=3.6m 水平粗糙轨道,AB 、CD 轨道与传送带平滑连接,参赛者抱紧滑板从A 处由静止下滑,参赛者和滑板可视为质点,参赛者质量m=60kg ,滑板质量可忽略.已知滑板与传送带、水平轨道的动摩擦因数分别为μ1=0.4、μ2=0.5,g 取10m/s 2.求:(1)参赛者运动到圆弧轨道B 处对轨道的压力;(2)若参赛者恰好能运动至D 点,求传送带运转速率及方向; (3)在第(2)问中,传送带由于传送参赛者多消耗的电能.【答案】(1)1200N ,方向竖直向下(2)顺时针运转,v=6m/s (3)720J 【解析】(1) 对参赛者:A 到B 过程,由动能定理 mgR(1-cos 60°)=12m 2B v 解得v B =4m /s在B 处,由牛顿第二定律N B -mg =m 2Bv R解得N B =2mg =1 200N根据牛顿第三定律:参赛者对轨道的压力 N′B =N B =1 200N ,方向竖直向下. (2) C 到D 过程,由动能定理-μ2mgL 2=0-12m 2C v 解得v C =6m /sB 到C 过程,由牛顿第二定律μ1mg =ma 解得a =4m /s 2(2分) 参赛者加速至v C 历时t =C Bv v a-=0.5s 位移x 1=2B Cv v +t =2.5m <L 1 参赛者从B 到C 先匀加速后匀速,传送带顺时针运转,速率v =6m /s . (3) 0.5s 内传送带位移x 2=vt =3m参赛者与传送带的相对位移Δx =x 2-x 1=0.5m 传送带由于传送参赛者多消耗的电能 E =μ1mg Δx +12m 2C v -12m 2B v =720J .6.如图所示,小物体沿光滑弧形轨道从高为h 处由静止下滑,它在水平粗糙轨道上滑行的最远距离为s ,重力加速度用g 表示,小物体可视为质点,求:(1)求小物体刚刚滑到弧形轨道底端时的速度大小v ; (2)水平轨道与物体间的动摩擦因数均为μ。

动能定理(原卷版)

动能定理(原卷版)

专题6.2动能定理【考纲解读与考频分析】动能定理是高中物理重要知识点,也是高考命题考查热点。

【高频考点定位】:动能定理考点一:动能定理【3年真题链接】1.(2019高考江苏卷物理8)如图所示,轻质弹簧的左端固定,并处于自然状态.小物块的质量为m,从A 点向左沿水平地面运动,压缩弹簧后被弹回,运动到A点恰好静止.物块向左运动的最大距离为s,与地面间的动摩擦因数为μ,重力加速度为g,弹簧未超出弹性限度.在上述过程中()(A)弹簧的最大弹力为μmg(B)物块克服摩擦力做的功为2μmgs(C)弹簧的最大弹性势能为μmgs(D)物块在A2.(2018•江苏)如图所示,轻质弹簧一端固定,另一端连接一小物块,O点为弹簧在原长时物块的位置.物块由A点静止释放,沿粗糙程度相同的水平面向右运动,最远到达B点.在从A到B的过程中,物块()A.加速度先减小后增大B.经过O点时的速度最大C.所受弹簧弹力始终做正功D.所受弹簧弹力做的功等于克服摩擦力做的功【分析】先明确从A到O的过程,弹簧压缩量先变小后伸长量变大,可知对物体先做正功后做负功,然后对物体进行受力分析,结合牛顿第二定律可确定加速度的变化情况,有动能定理可知从A到B的过程中弹簧弹力做功与克服摩擦力做功的关系。

3.(2019年4月浙江选考)小明以初速度v 0=10m/s 竖直向上抛出一个质量m=0.1kg 的小皮球,最后在抛出点接住。

假设小皮球在空气中所受阻力大小为重力的0.1倍。

求小皮球(1)上升的最大高度;(2)从抛出到接住的过程中重力和空气阻力所做的功(3)上升和下降的时间。

4、(12分)(2017年4月浙江选考)如图1所示是游乐园的过山车,其局部可简化为如图2所示的示意图,倾角θ=370的两平行倾斜轨道BC 、DE 的下端与水平半圆形轨道CD 顺滑连接,倾斜轨道BC 的B 端高度h=24m ,倾斜轨道DE 与圆弧EF 相切于E 点,圆弧EF 的圆心O 1,水平半圆轨道CD 的圆心O 2与A 点在同一水平面上,D O 1的距离L =20m ,质量m =1000kg 的过山车(包括乘客)从B 点自静止滑下,经过水平半圆轨道后,滑上另一倾斜轨道,到达圆弧顶端F 时,乘客对座椅的压力为自身重力的0.25倍。

高一物理动能定理的综合应用试题

高一物理动能定理的综合应用试题

高一物理动能定理的综合应用试题1.如图所示,在地面上以速度抛出质量为m的物体,抛出后物体落在比地面低h的海平面上,若以地面为零势能参考面,且不计空气阻力。

则:A.物体在海平面的重力势能为mghB.重力对物体做的功为mghC.物体在海平面上的动能为D.物体在海平面上的机械能为【答案】BC【解析】以地面为零势能面,海平面低于地面h,所以物体在海平面上时的重力势能为,选项A错误;重力做功与路径无关,至于始末位置的高度差有关,抛出点与海平面的高度差为h,并且重力做正功,所以整个过程重力对物体做功为mgh,选项B正确;由动能定理,有,选项C正确;整个过程机械能守恒,即初末状态的机械能相等,以地面为零势能面,抛出时的机械能为,所以物体在海平面时的机械能也为,选项D错误。

【考点】考查了动能定理,机械能守恒2.在国际泳联大奖赛罗斯托克站中,中国选手彭健烽在男子3米板预赛中总成绩排名第一,晋级半决赛。

若彭健烽的质量为m,他入水后做减速运动,加速度大小为a,设水对他的作用力大小恒为f,当地重力加速度为g,他在水中重心下降高度h的过程中()A.重力势能增加了 mgh B.机械能减少了fhC.机械能减少了 mah D.动能减少了m(g+a)h【答案】B【解析】运动员在水中重心下降高度h的过程中,重力势能减少了 mgh,选项A 错误;机械能减少量等于除重力以外的其它力做功,即克服阻力做功fh,选项B正确,C错误;根据动能定理,动能减少量等于合外力做功,即mah,选项D 错误。

【考点】动能定理;能量转化规律。

=22m/s的初速度竖直向上抛出一质量m=0.5kg的物3.(12分)在距沙坑表面高h=8m处,以v体,物体落到沙坑并陷入沙坑d=0.3m深处停下。

若物体在空中运动时的平均阻力是重力的0.1倍(g=10m/s2)。

求:(1)物体上升到最高点时离开沙坑表面的高度H;(2)物体在沙坑中受到的平均阻力F是多少?【答案】(1)H=30m (2)F=455N【解析】(1)物体上升到最高点时离抛出点h,由动能定理得2/2 ①-(mg+f)h=0-mvf=0.1mg ②由①②并代入数据得h=22m离开沙坑的高度H=8+h=30m(2)物体在沙坑中受到的平均阻力为F,从最高点到最低点的全过程中:mg(H+d)—fH—Fd=0代入数据得F=455N【考点】本题考查动能定理的应用。

第二讲动能定理(原卷版)

第二讲动能定理(原卷版)

第二讲 动能定理➢ 知识梳理一、动能1.定义:物体由于运动而具有的能. 2.公式:E k =12mv 2.3.矢标性:动能是标量,只有正值,动能与速度方向无关. 4.状态量:动能是状态量,因为v 是瞬时速度.5.相对性:由于速度具有相对性,所以动能也具有相对性.6.动能的变化:物体末动能与初动能之差,即ΔE k =12m 22v -12m 21v .动能的变化是过程量.二、动能定理1.内容:合外力对物体所做的功,等于物体在这个过程中动能的变化. 2.表达式 (1)W =ΔE k . (2)W =E k2-E k1. (3)W =12m 22v -12m 21v .3.物理意义:合外力的功是物体动能变化的量度. 4.适用范围广泛(1)既适用于直线运动,也适用于曲线运动. (2)既适用于恒力做功,也适用于变力做功.(3)力可以是各种性质的力,既可以同时作用,也可以不同时作用.➢ 知识训练考点一、动能定理的理解和基本应用 1.适用条件(1)动能定理既适用于直线运动,也适用于曲线运动. (2)动能定理既适用于恒力做功,也适用于变力做功.(3)力可以是各种性质的力,既可以同时作用,也可以分阶段作用. 2.解题流程3.注意事项(1)动能定理中的位移和速度必须是相对于同一个参考系的,一般以地面或相对地面静止的物体为参考系.(2)当物体的运动包含多个不同过程时,可分段应用动能定理求解;也可以全过程应用动能定理求解.(3)动能是标量,动能定理是标量式,解题时不能分解动能.例1、(2021·山东高考)如图所示,粗糙程度处处相同的水平桌面上有一长为L的轻质细杆,一端可绕竖直光滑轴O转动,另一端与质量为m的小木块相连。

木块以水平初速度v0出发,恰好能完成一个完整的圆周运动。

在运动过程中,木块所受摩擦力的大小为()A.mv202πL B.mv204πLC.mv208πL D.mv2016πL例2、随着高铁时代的到来,人们出行也是越来越方便,高铁列车在启动阶段的运动可看作初速度为零的匀加速直线运动.在启动阶段,列车的动能()A.与它所经历的时间成正比B.与它的位移成正比C.与它的速度成正比D.与它的加速度成正比例3、(2018·全国卷Ⅱ·14)如图,某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度.木箱获得的动能一定()A.小于拉力所做的功B.等于拉力所做的功C.等于克服摩擦力所做的功D.大于克服摩擦力所做的功例4、如图所示,粗糙水平地面AB与半径R=0.4 m的光滑半圆轨道BCD相连接,且在同一竖直平面内,O是BCD的圆心,BOD在同一竖直线上.质量m=1 kg的小物块在9 N的水平恒力F的作用下,从A点由静止开始做匀加速直线运动.已知x AB=5 m,小物块与水平地面间的动摩擦因数为μ=0.1,当小物块运动到B点时撤去力F,取重力加速度g=10 m/s2,求:(1)小物块到达B点时速度的大小;(2)小物块运动到D点时,轨道对小物块作用力的大小.课堂随练训练1、(2021·高考河北卷,T6)一半径为R 的圆柱体水平固定,横截面如图所示。

高考物理总复习--动能定理的综合应用及解析

高考物理总复习--动能定理的综合应用及解析

高考物理总复习--动能定理的综合应用及解析一、高中物理精讲专题测试动能定理的综合应用1.如图所示,轨道ABC 被竖直地固定在水平桌面上,A 距水平地面高H =0.75m ,C 距水平地面高h =0.45m 。

一个质量m =0.1kg 的小物块自A 点从静止开始下滑,从C 点以水平速度飞出后落在地面上的D 点。

现测得C 、D 两点的水平距离为x =0.6m 。

不计空气阻力,取g =10m/s 2。

求(1)小物块从C 点运动到D 点经历的时间t ; (2)小物块从C 点飞出时速度的大小v C ;(3)小物块从A 点运动到C 点的过程中克服摩擦力做的功。

【答案】(1) t=0.3s (2) v C =2.0m/s (3)0.1J 【解析】 【详解】(1)小物块从C 水平飞出后做平抛运动,由212h gt = 得小物块从C 点运动到D 点经历的时间20.3ht g==s (2)小物块从C 点运动到D ,由C x v t = 得小物块从C 点飞出时速度的大小C xv t==2.0m/s (3)小物块从A 点运动到C 点的过程中,根据动能定理 得()2102f C mg Hh W mv -+=- ()212f C W mv mg Hh =--= -0.1J 此过程中克服摩擦力做的功f f W W '=-=0.1J2.如图,I 、II 为极限运动中的两部分赛道,其中I 的AB 部分为竖直平面内半径为R 的14光滑圆弧赛道,最低点B 的切线水平; II 上CD 为倾角为30°的斜面,最低点C 处于B 点的正下方,B 、C 两点距离也等于R.质量为m 的极限运动员(可视为质点)从AB 上P 点处由静止开始滑下,恰好垂直CD 落到斜面上.求:(1) 极限运动员落到CD 上的位置与C 的距离; (2)极限运动员通过B 点时对圆弧轨道的压力; (3)P 点与B 点的高度差.【答案】(1)45R (2)75mg ,竖直向下(3)15R【解析】 【详解】(1)设极限运动员在B 点的速度为v 0,落在CD 上的位置与C 的距离为x ,速度大小为v ,在空中运动的时间为t ,则xcos300=v 0t R-xsin300=12gt 2 0tan 30v gt = 解得x=0.8R(2)由(1)可得:025v gR =通过B 点时轨道对极限运动员的支持力大小为F N20N v F mg m R-=极限运动员对轨道的压力大小为F N ′,则F N ′=F N , 解得'75N F mg =,方向竖直向下; (3) P 点与B 点的高度差为h,则mgh=12mv 02 解得h=R/53.如图所示,倾斜轨道AB 的倾角为37°,CD 、EF 轨道水平,AB 与CD 通过光滑圆弧管道BC 连接,CD 右端与竖直光滑圆周轨道相连.小球可以从D 进入该轨道,沿轨道内侧运动,从E 滑出该轨道进入EF 水平轨道.小球由静止从A 点释放,已知AB 长为5R ,CD 长为R ,重力加速度为g ,小球与斜轨AB 及水平轨道CD 、EF 的动摩擦因数均为0.5,sin37°=0.6,cos37°=0.8,圆弧管道BC 入口B 与出口C 的高度差为l.8R .求:(在运算中,根号中的数值无需算出)(1)小球滑到斜面底端C 时速度的大小. (2)小球刚到C 时对轨道的作用力.(3)要使小球在运动过程中不脱离轨道,竖直圆周轨道的半径R /应该满足什么条件? 【答案】(1285gR(2)6.6mg ,竖直向下(3)0.92R R '≤ 【解析】试题分析:(1)设小球到达C 点时速度为v ,a 球从A 运动至C 过程,由动能定理有0021(5sin 37 1.8)cos3752c mg R R mg R mv μ+-⋅=(2分) 可得 5.6c v gR 1分)(2)小球沿BC 轨道做圆周运动,设在C 点时轨道对球的作用力为N ,由牛顿第二定律2c v N mg m r-=, (2分) 其中r 满足 r+r·sin530=1.8R (1分) 联立上式可得:N=6.6mg (1分)由牛顿第三定律可得,球对轨道的作用力为6.6mg ,方向竖直向下. (1分) (3)要使小球不脱离轨道,有两种情况:情况一:小球能滑过圆周轨道最高点,进入EF 轨道.则小球b 在最高点P 应满足2P v m mg R '≥(1分) 小球从C 直到P 点过程,由动能定理,有2211222P c mgR mg R mv mv μ--'⋅=-(1分) 可得230.9225R R R ='≤(1分) 情况二:小球上滑至四分之一圆轨道的Q 点时,速度减为零,然后滑回D .则由动能定理有2102c mgR mg R mv μ--⋅='-(1分)2.3R R '≥(1分)若 2.5R R '=,由上面分析可知,小球必定滑回D ,设其能向左滑过DC 轨道,并沿CB 运动到达B 点,在B 点的速度为v B ,,则由能量守恒定律有22111.8222c B mv mv mg R mgR μ=+⋅+(1分)由⑤⑨式,可得0B v =(1分)故知,小球不能滑回倾斜轨道AB ,小球将在两圆轨道之间做往返运动,小球将停在CD 轨道上的某处.设小球在CD 轨道上运动的总路程为S ,则由能量守恒定律,有212c mv mgS μ=(1分) 由⑤⑩两式,可得 S=5.6R (1分)所以知,b 球将停在D 点左侧,距D 点0.6R 处. (1分)考点:本题考查圆周运动、动能定理的应用,意在考查学生的综合能力.4.如图所示,一质量为m 的小球从半径为R 的竖直四分之一圆弧轨道的顶端无初速释放,圆弧轨道的底端水平,离地面高度为R 。

【物理】物理动能定理的综合应用题20套(带答案)及解析

【物理】物理动能定理的综合应用题20套(带答案)及解析
解得:μ=0.375
⑵滑块要能通过最高点C,则在C点所受圆轨道的弹力N需满足:N≥0 ①
在C点时,根据牛顿第二定律有:mg+N= ②
在滑块由A运动至C的过程中,根据动能定理有:-μmgcos37° = - ③
由①②③式联立解得滑块从A点沿斜面滑下时的初速度v0需满足:v0≥ = m/s
即v0的最小值为:v0min= m/s
(1)人和车到达顶部平台的速度v;
(2)从平台飞出到A点,人和车运动的水平距离x;
(3)圆弧对应圆心角 ;
(4)人和车运动到圆弧轨道最低点O时对轨道的压力.
【答案】(1)3m/s(2)1.2m(3)106°(4)7.74×103N
【解析】
【分析】
【详解】
(1)由动能定理可知:
v=3m/s
(2)由 可得:
(3)摩托车落至A点时,其竖直方向的分速度
设摩托车落地时速度方向与水平方向的夹角为α,则
,即α=53°
所以θ=2α=106°
(4)在摩托车由最高点飞出落至O点的过程中,由机械能守恒定律可得:
在O点:
所以N=7740N
由牛顿第三定律可知,人和车在最低点O时对轨道的压力为7740N
2.如图所示,倾角为37°的粗糙斜面AB底端与半径R=0.4m的光滑半圆轨道BC平滑相连,O点为轨道圆心,BC为圆轨道直径且处于竖直方向,A、C两点等高.质量m=1kg的滑块从A点由静止开始下滑,恰能滑到与O点等高的D点,g取10m/s2,sin37°=0.6,cos37°=0.8.求:
⑶滑块从C点离开后将做平抛运动,根据平抛运动规律可知,在水平方向上的位移为:x=vt ④
在竖直方向的位移为:y= ⑤
根据图中几何关系有:tan37°= ⑥

【物理】物理动能定理的综合应用题20套(带答案)

【物理】物理动能定理的综合应用题20套(带答案)

【物理】物理动能定理的综合应用题20套(带答案)一、高中物理精讲专题测试动能定理的综合应用1.如图所示,光滑曲面与光滑水平导轨MN 相切,导轨右端N 处于水平传送带理想连接,传送带长度L =4m ,皮带轮沿顺时针方向转动,带动皮带以恒定速率v =4.0m/s 运动.滑块B 、C 之间用细绳相连,其间有一压缩的轻弹簧,B 、C 与细绳、弹簧一起静止在导轨MN 上.一可视为质点的滑块A 从h =0.2m 高处由静止滑下,已知滑块A 、B 、C 质量均为m =2.0kg ,滑块A 与B 碰撞后粘合在一起,碰撞时间极短.因碰撞使连接B 、C 的细绳受扰动而突然断开,弹簧伸展,从而使C 与A 、B 分离.滑块C 脱离弹簧后以速度v C =2.0m/s 滑上传送带,并从右端滑出落至地面上的P 点.已知滑块C 与传送带之间的动摩擦因数μ=0.2,重力加速度g 取10m/s 2.(1)求滑块C 从传送带右端滑出时的速度大小; (2)求滑块B 、C 与细绳相连时弹簧的弹性势能E P ;(3)若每次实验开始时弹簧的压缩情况相同,要使滑块C 总能落至P 点,则滑块A 与滑块B 碰撞前速度的最大值v m 是多少? 【答案】(1) 4.0m/s (2) 2.0J (3) 8.1m/s 【解析】 【分析】 【详解】(1)滑块C 滑上传送带到速度达到传送带的速度v =4m/s 所用的时间为t ,加速度大小为a ,在时间t 内滑块C 的位移为x ,有mg ma μ=C v v at =+212C x v t at =+代入数据可得3m x = 3m x L =<滑块C 在传送带上先加速,达到传送带的速度v 后随传送带匀速运动,并从右端滑出,则滑块C 从传送带右端滑出时的速度为v=4.0m/s(2)设A 、B 碰撞前A 的速度为v 0,A 、B 碰撞后的速度为v 1,A 、B 与C 分离时的速度为v 2,有2012A A m gh m v =01()A A B m v m m v =+ 12()()A B A B C C m m v m m v m v +=++A 、B 碰撞后,弹簧伸开的过程系统能量守恒222A 1A 2111()()222P B B C C E m m v m m v m v ++=++代入数据可解得2.0J P E =(3)在题设条件下,若滑块A 在碰撞前速度有最大值,则碰撞后滑块C 的速度有最大值,它减速运动到传送带右端时,速度应当恰好等于传送带的速度v .设A 与B 碰撞后的速度为1v ',分离后A 与B 的速度为2v ',滑块C 的速度为'C v ,C 在传送带上做匀减速运动的末速度为v =4m/s ,加速度大小为2m/s 2,有22()Cv v a L '-=- 解得42m/s Cv '= 以向右为正方向,A 、B 碰撞过程1()A m A B m v m m v '=+弹簧伸开过程12()()A B C C A B m m v m v m m v '''+=++22212111+()()+222p A B A B C C E m m v m m v m v '''+=+代入数据解得74228.14m v =+≈m/s .2.如图所示,小物体沿光滑弧形轨道从高为h 处由静止下滑,它在水平粗糙轨道上滑行的最远距离为s ,重力加速度用g 表示,小物体可视为质点,求:(1)求小物体刚刚滑到弧形轨道底端时的速度大小v ; (2)水平轨道与物体间的动摩擦因数均为μ。

物理动能定理的综合应用题20套(带答案)

物理动能定理的综合应用题20套(带答案)
(1)小车所受的阻力Ff是多大?
(2)在2~10 s内小车牵引力的功率P是多大?
(3)小车在加速运动过程中的总位移x是多少?
【答案】(1)2 N;(2)12W (3)28.5 m;
【解析】
(1)在10s撤去牵引力后,小车只在阻力 作用下做匀减速运动,
设加速度大小为a,则 ,根据 ,
由图像可知 ,解得 ;
【解析】
试题分析:(1)根据动能定理有
解得:
(2)在与飞船运动方向垂直方向上,根据动量守恒有:MΔv=Nmv
(1)小球通过C点时的速度 ;
(2)小球从A点运动到C点的过程中,损失的机械能
【答案】(1) (2)1.5mgR
【解析】
【详解】
(1)小球恰能通过C点时,由重力提供向心力,由牛顿第二定律得:
则得:
(2)小球从A点运动到C点的过程中,根据动能定理得:
解得:
Wf=1.5mgR
则小球从A点运动到C点的过程中,损失的机械能
(2)小车的匀速阶段即7s~10s内,设牵引力为F,则
由图像可知 ,且 ;
(3)小车的加速运动过程可以分为0~1.5s和1.5s~7s两段,
设对应的位移分别为 和 ,在0~2s内的加速度大小为 ,
则由图像可得 , ,
在1.5s~7s内由动能定理可得 , ,
解得 ,

9.如图所示,半圆轨道的半径为R=10m,AB的距离为S=40m,滑块质量m=1kg,滑块在恒定外力F的作用下从光滑水平轨道上的A点由静止开始运动到B点,然后撤去外力,又沿竖直面内的光滑半圆形轨道运动,且滑块通过最高点C后又刚好落到原出发点A;g=滑块B从传送带右端滑出时的速度大小;
(3)滑块B落至P点距传送带右端的水平距离.

物理动能定理的综合应用题20套(带答案)

物理动能定理的综合应用题20套(带答案)
【详解】
(1)设小物块在C点的速度为 ,则在D点有:
设弹簧最初具有的弹性势能为 ,则:
代入数据联立解得: ;
设小物块在E点的速度为 ,则从D到E的过程中有:
设在E点,圆轨道对小物块的支持力为N,则有:
代入数据解得: ,
由牛顿第三定律可知,小物块到达圆轨道的E点时对圆轨道的压力为30
设小物体沿斜面FG上滑的最大距离为x,从E到最大距离的过程中有:
小物块第一次到达圆弧轨道的E点时对圆弧轨道的压力大小是30 N;
小物块沿斜面FG第一次返回圆弧轨道后不能回到圆弧轨道的D点 经过足够长的时间后小物块通过圆弧轨道最低点E的速度大小为2 .
【点睛】
(1)物块离开C点后做平抛运动,由D点沿圆轨道切线方向进入圆轨道,知道了到达D点的速度方向,将D点的速度分解为水平方向和竖直方向,根据角度关系求出水平分速度,即离开C点时的速度,再研究弹簧释放的过程,由机械能守恒定律求弹簧最初具有的弹性势能;
⑴求物块由A点运动到C点的时间;
⑵若把物块从距斜面底端高度h2=2.4m处静止释放,求物块落地点到C点的水平距离;
⑶求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D.
【答案】⑴4s;⑵6m;⑶1.8m≤h≤9.0m
【解析】
试题分析:(1)A到B过程:根据牛顿第二定律mgsinθ﹣μ1mgcosθ=ma1
所以物体先做匀加速直线运动后和皮带一起匀速运动,离开C点做平抛运动
s=v0t0,H=
解得s=6m.
(3)因物块每次均抛到同一点D,由平抛知识知:物块到达C点时速度必须有vC=v0
①当离传送带高度为h3时物块进入传送带后一直匀加速运动,则:

解得h3=1.8m

高中物理动能定理的综合应用题20套(带答案)含解析

高中物理动能定理的综合应用题20套(带答案)含解析

高中物理动能定理的综合应用题20套(带答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.如图所示,倾角为37°的粗糙斜面AB 底端与半径R=0.4 m 的光滑半圆轨道BC 平滑相连,O 点为轨道圆心,BC 为圆轨道直径且处于竖直方向,A 、C 两点等高.质量m=1 kg 的滑块从A 点由静止开始下滑,恰能滑到与O 点等高的D 点,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)求滑块与斜面间的动摩擦因数μ;(2)要使滑块能到达C 点,求滑块从A 点沿斜面滑下时初速度v 0的最小值;(3)若滑块离开C 点的速度为4 m/s ,求滑块从C 点飞出至落到斜面上所经历的时间. 【答案】(1)0.375(2)3/m s (3)0.2s 【解析】试题分析:⑴滑块在整个运动过程中,受重力mg 、接触面的弹力N 和斜面的摩擦力f 作用,弹力始终不做功,因此在滑块由A 运动至D 的过程中,根据动能定理有:mgR -μmgcos37°2sin 37R︒=0-0 解得:μ=0.375⑵滑块要能通过最高点C ,则在C 点所受圆轨道的弹力N 需满足:N≥0 ①在C 点时,根据牛顿第二定律有:mg +N =2Cv m R② 在滑块由A 运动至C 的过程中,根据动能定理有:-μmgcos37°2sin 37R ︒=212C mv -2012mv ③ 由①②③式联立解得滑块从A 点沿斜面滑下时的初速度v 0需满足:v 03gR =23 即v 0的最小值为:v 0min =3⑶滑块从C 点离开后将做平抛运动,根据平抛运动规律可知,在水平方向上的位移为:x =vt ④在竖直方向的位移为:y =212gt ⑤ 根据图中几何关系有:tan37°=2R yx-⑥ 由④⑤⑥式联立解得:t =0.2s考点:本题主要考查了牛顿第二定律、平抛运动规律、动能定理的应用问题,属于中档题.2.为了备战2022年北京冬奥会,一名滑雪运动员在倾角θ=30°的山坡滑道上进行训练,运动员及装备的总质量m=70 kg .滑道与水平地面平滑连接,如图所示.他从滑道上由静止开始匀加速下滑,经过t=5s 到达坡底,滑下的路程 x=50 m .滑雪运动员到达坡底后又在水平面上滑行了一段距离后静止.运动员视为质点,重力加速度g=10m/s2,求:(1)滑雪运动员沿山坡下滑时的加速度大小a ; (2)滑雪运动员沿山坡下滑过程中受到的阻力大小f ; (3)滑雪运动员在全过程中克服阻力做的功W f . 【答案】(1)4m/s 2(2)f = 70N (3)1.75×104J 【解析】 【分析】(1)运动员沿山坡下滑时做初速度为零的匀加速直线运动,已知时间和位移,根据匀变速直线运动的位移时间公式求出下滑的加速度.(2)对运动员进行受力分析,根据牛顿第二定律求出下滑过程中受到的阻力大小. (3)对全过程,根据动能定理求滑雪运动员克服阻力做的功. 【详解】(1)根据匀变速直线运动规律得:x=12at 2 解得:a=4m/s 2(2)运动员受力如图,根据牛顿第二定律得:mgsinθ-f=ma解得:f=70N(3)全程应用动能定理,得:mgxsinθ-W f =0 解得:W f =1.75×104J 【点睛】解决本题的关键要掌握两种求功的方法,对于恒力可运用功的计算公式求.对于变力可根据动能定理求功.3.如图所示,AC 为光滑的水平桌面,轻弹簧的一端固定在A 端的竖直墙壁上.质量1m kg =的小物块将弹簧的另一端压缩到B 点,之后由静止释放,离开弹簧后从C 点水平飞出,恰好从D 点以10/D v m s =的速度沿切线方向进入竖直面内的光滑圆弧轨道(DEF 小物体与轨道间无碰撞).O 为圆弧轨道的圆心,E 为圆弧轨道的最低点,圆弧轨道的半径1R m =,60DOE ∠=o ,37.EOF ∠=o小物块运动到F 点后,冲上足够长的斜面FG ,斜面FG 与圆轨道相切于F 点,小物体与斜面间的动摩擦因数0.5.sin370.6μ==o ,cos370.8=o ,取210/.g m s =不计空气阻力.求:(1)弹簧最初具有的弹性势能;(2)小物块第一次到达圆弧轨道的E 点时对圆弧轨道的压力大小;(3)判断小物块沿斜面FG 第一次返回圆弧轨道后能否回到圆弧轨道的D 点?若能,求解小物块回到D 点的速度;若不能,求解经过足够长的时间后小物块通过圆弧轨道最低点E 的速度大小.【答案】()11?.25J ;()2 30N ;()3 2/m s . 【解析】 【分析】 【详解】(1)设小物块在C 点的速度为C v ,则在D 点有:C D v v cos60o=设弹簧最初具有的弹性势能为p E ,则:2P C 1E mv 2= 代入数据联立解得:p E 1.25J =;()2设小物块在E 点的速度为E v ,则从D 到E 的过程中有:()22E D 11mgR 1cos60mv mv 22-=-o 设在E 点,圆轨道对小物块的支持力为N ,则有:2E v N mg R-=代入数据解得:E v 25m /s =,N 30N =由牛顿第三定律可知,小物块到达圆轨道的E 点时对圆轨道的压力为30 N ;()3设小物体沿斜面FG 上滑的最大距离为x ,从E 到最大距离的过程中有:()()2E 1mgR 1cos37mgsin37μmgcos37x 0mv 2o o o ---+=-小物体第一次沿斜面上滑并返回F 的过程克服摩擦力做的功为f W ,则f W 2x μmgcos37=o小物体在D 点的动能为KD E ,则:2KD D 1E mv 2=代入数据解得:x 0.8m =,f W 6.4J =,KD E 5J =因为KD f E W <,故小物体不能返回D 点.小物体最终将在F 点与关于过圆轨道圆心的竖直线对称的点之间做往复运动,小物体的机械能守恒,设最终在最低点的速度为Em v ,则有:()2Em 1mgR 1cos37mv 2-=o 代入数据解得:Em v 2m /s =答:()1弹簧最初具有的弹性势能为1.25J ;()2小物块第一次到达圆弧轨道的E 点时对圆弧轨道的压力大小是30 N ;()3小物块沿斜面FG 第一次返回圆弧轨道后不能回到圆弧轨道的D 点.经过足够长的时间后小物块通过圆弧轨道最低点E 的速度大小为2 m /s . 【点睛】(1)物块离开C 点后做平抛运动,由D 点沿圆轨道切线方向进入圆轨道,知道了到达D 点的速度方向,将D 点的速度分解为水平方向和竖直方向,根据角度关系求出水平分速度,即离开C 点时的速度,再研究弹簧释放的过程,由机械能守恒定律求弹簧最初具有的弹性势能;()2物块从D 到E ,运用机械能守恒定律求出通过E 点的速度,在E 点,由牛顿定律和向心力知识结合求物块对轨道的压力;()3假设物块能回到D 点,对物块从A 到返回D 点的整个过程,运用动能定理求出D 点的速度,再作出判断,最后由机械能守恒定律求出最低点的速度.4.某物理小组为了研究过山车的原理提出了下列的设想:取一个与水平方向夹角为θ=53°,长为L 1=7.5m 的倾斜轨道AB ,通过微小圆弧与足够长的光滑水平轨道BC 相连,然后在C 处连接一个竖直的光滑圆轨道.如图所示.高为h =0.8m 光滑的平台上有一根轻质弹簧,一端被固定在左面的墙上,另一端通过一个可视为质点的质量m =1kg 的小球压紧弹簧,现由静止释放小球,小球离开台面时已离开弹簧,到达A 点时速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小物块与AB 间的动摩擦因数为μ=0.5,g 取10m/s 2,sin53°=0.8.求:(1)弹簧被压缩时的弹性势能; (2)小球到达C 点时速度v C 的大小;(3)小球进入圆轨道后,要使其不脱离轨道,则竖直圆弧轨道的半径R 应该满足什么条件. 【答案】(1)4.5J ;(2)10m/s ;(3)R ≥5m 或0<R ≤2m 。

高考物理动能定理的综合应用题20套(带答案)含解析

高考物理动能定理的综合应用题20套(带答案)含解析

高考物理动能定理的综合应用题20套(带答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.如图所示,半径2R m =的四分之一粗糙圆弧轨道AB 置于竖直平面内,轨道的B 端切线水平,且距水平地面高度为h =1.25m ,现将一质量m =0.2kg 的小滑块从A 点由静止释放,滑块沿圆弧轨道运动至B 点以5/v m s =的速度水平飞出(g 取210/m s ).求:(1)小滑块沿圆弧轨道运动过程中所受摩擦力做的功; (2)小滑块经过B 点时对圆轨道的压力大小; (3)小滑块着地时的速度大小.【答案】(1) 1.5f W J = (2) 4.5N F N = (3)152/v m s = 【解析】 【分析】 【详解】(1)滑块在圆弧轨道受重力、支持力和摩擦力作用,由动能定理mgR -W f =12mv 2W f =1.5J(2)由牛顿第二定律可知:2N v F mg m R-=解得:4.5N F N =(3)小球离开圆弧后做平抛运动根据动能定理可知:22111m m 22mgh v v =-解得:152m/s v =2.如图所示,竖直平面内的轨道由直轨道AB 和圆弧轨道BC 组成,直轨道AB 和圆弧轨道BC 平滑连接,小球从斜面上A 点由静止开始滑下,滑到斜面底端后又滑上一个半径为=0.4m R 的圆轨道;(1)若接触面均光滑,小球刚好能滑到圆轨道的最高点C ,求斜面高h ;(2)若已知小球质量m =0.1kg ,斜面高h =2m ,小球运动到C 点时对轨道压力为mg ,求全过程中摩擦阻力做的功.【答案】(1)1m ;(2) -0.8J ; 【解析】 【详解】(1)小球刚好到达C 点,重力提供向心力,由牛顿第二定律得:2v mg m R=从A 到C 过程机械能守恒,由机械能守恒定律得:()2122mg h R mv -=, 解得:2.5 2.50.4m 1m h R ==⨯=;(2)在C 点,由牛顿第二定律得:2Cv mg mg m R+=,从A 到C 过程,由动能定理得:()21202f C mgh R W mv -+=-, 解得:0.8J f W =-;3.某电视娱乐节目装置可简化为如图所示模型.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC 长L =6m ,始终以v 0=6m/s 的速度顺时针运动.将一个质量m =1kg 的物块由距斜面底端高度h 1=5.4m 的A 点静止滑下,物块通过B 点时速度的大小不变.物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面距地面的高度H =5m ,g 取10m/s 2,sin37°=0.6,cos37°=0.8.⑴求物块由A点运动到C点的时间;⑵若把物块从距斜面底端高度h2=2.4m处静止释放,求物块落地点到C点的水平距离;⑶求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D.【答案】⑴4s;⑵6m;⑶1.8m≤h≤9.0m【解析】试题分析:(1)A到B过程:根据牛顿第二定律mgsinθ﹣μ1mgcosθ=ma1,代入数据解得,t 1=3s.所以滑到B点的速度:v B=a1t1=2×3m/s=6m/s,物块在传送带上匀速运动到C,所以物块由A到C的时间:t=t1+t2=3s+1s=4s(2)斜面上由根据动能定理.解得v=4m/s<6m/s,设物块在传送带先做匀加速运动达v0,运动位移为x,则:,,x=5m<6m所以物体先做匀加速直线运动后和皮带一起匀速运动,离开C点做平抛运动s=v 0t0,H=解得 s=6m.(3)因物块每次均抛到同一点D,由平抛知识知:物块到达C点时速度必须有v C=v0①当离传送带高度为h3时物块进入传送带后一直匀加速运动,则:,解得h3=1.8m②当离传送带高度为h4时物块进入传送带后一直匀减速运动,h4=9.0m所以当离传送带高度在1.8m~9.0m的范围内均能满足要求即1.8m≤h≤9.0m4.如图所示,半径为R的圆管BCD竖直放置,一可视为质点的质量为m的小球以某一初速度从A点水平抛出,恰好从B点沿切线方向进入圆管,到达圆管最高点D后水平射出.已知小球在D点对管下壁压力大小为12mg,且A、D两点在同一水平线上,BC弧对应的圆心角θ=60°,不计空气阻力.求:(1)小球在A 点初速度的大小; (2)小球在D 点角速度的大小;(3)小球在圆管内运动过程中克服阻力做的功.【答案】(3)14mgR【解析】 【分析】(1)根据几何关系求出平抛运动下降的高度,从而求出竖直方向上的分速度,根据运动的合成和分解求出初速度的大小.(2)根据向心力公式求出小球在D 点的速度,从而求解小球在D 点角速度. (3)对A 到D 全程运用动能定理,求出小球在圆管中运动时克服阻力做的功. 【详解】(1)小球从A 到B ,竖直方向: v y 2=2gR(1+cos 60°)解得v y在B 点:v 0=60y v tan(2)在D 点,由向心力公式得mg-12mg =2Dmv R解得v Dω=D v R (3)从A 到D 全过程由动能定理:-W 克=12mv D 2-12mv 02 解得W 克=14mgR. 【点睛】本题综合考查了平抛运动和圆周运动的基础知识,难度不大,关键搞清平抛运动在水平方向和竖直方向上的运动规律,以及圆周运动向心力的来源.5.如图,图象所反映的物理情景是:物体以大小不变的初速度v 0沿木板滑动,若木板倾角θ不同,物体沿木板上滑的距离S 也不同,便可得出图示的S -θ图象.问: (1)物体初速度v 0的大小.(2)木板是否粗糙?若粗糙,则动摩擦因数μ为多少? (3)物体运动中有否最大加速度以及它发生在什么地方?【答案】(1)017.3m /s v = (2)0.75μ= (3)最大加速度点坐标()53,12m sθ︒'==【解析】 【分析】 【详解】(1)当θ=90º时,物体做竖直上抛运动,根据速度位移公式可知:01210317.3m /s v gs ===(2)当θ=0º时,根据动能定理得,201mg 2s mv μ=,解得:203000.75221020v gs μ===⨯⨯(3)加速度cos sin 3cos sin cos sin 4mg mg a g g g mμθθμθθθθ+⎛⎫==+=+ ⎪⎝⎭得到,当θ=53º时,α有极大值2m 12.5m /s a = ,由动能定理得,20102mv mas '-= ,所以12m s '= 所以最大加速度点坐标()53,12m s θ︒'==6.质量为2kg 的物体,在竖直平面内高h = 1m 的光滑弧形轨道A 点,以v =4m/s 的初速度沿轨道滑下,并进入BC 轨道,如图所示。

高中物理 必修2【动能定理及其应用】典型题(带解析)

高中物理 必修2【动能定理及其应用】典型题(带解析)

高中物理 必修2 【动能定理及其应用】典型题1.滑雪运动深受人民群众喜爱.某滑雪运动员(可视为质点)由坡道进入竖直面内的圆弧形滑道AB ,从滑道的A 点滑行到最低点B 的过程中,由于摩擦力的存在,运动员的速率不变,则运动员沿AB 下滑过程中( )A .所受合外力始终为零B .所受摩擦力大小不变C .合外力做功一定为零D .机械能始终保持不变解析:选C .运动员做的是匀速圆周运动,具有向心加速度,所以其所受的合外力不为零,A 错误;运动员在匀速下滑的过程中,所受的摩擦力始终与重力沿滑道切线方向的分力大小相等,由于该分力大小一直在改变,所以摩擦力大小也一直在改变,B 错误;运动员的动能没有改变,根据动能定理,合外力做功为零,C 正确;整个过程中存在摩擦力做功,所以机械能不守恒,D 错误.2.如图所示,已知物体与三块材料不同的地毯间的动摩擦因数分别为μ、2μ和3μ,三块材料不同的地毯长度均为l ,并排铺在水平地面上,该物体以一定的初速度v 0从a 点滑上第一块,则物体恰好滑到第三块的末尾d 点停下来,物体在运动中地毯保持静止,若让物体从d 点以相同的初速度水平向左运动,则物体运动到某一点时的速度大小与该物体向右运动到该位置的速度大小相等,则这一点是( )A .a 点B .b 点C .c 点D .d 点解析:选C .对物体从a 运动到c ,由动能定理,-μmgl -2μmgl =12m v 21-12m v 20,对物体从d 运动到c ,由动能定理,-3μmgl =12m v 22-12m v 20,解得v 2=v 1,选项C 正确. 3.从地面竖直向上抛出一只小球,小球运动一段时间后落回地面.忽略空气阻力,该过程中小球的动能E k 与时间t 的关系图象是( )解析:选A .竖直上抛运动的速度v 与时间t 的关系为v =v 0-gt ,由于E k =12m v 2=12m (v 0-gt )2,故E k ­t 图象应是A .4.打桩机是利用冲击力将桩贯入地层的桩工机械.某同学对打桩机的工作原理产生了兴趣.他构建了一个打桩机的简易模型,如图甲所示.他设想,用恒定大小的拉力F 拉动绳端B ,使物体从A 点(与钉子接触处)由静止开始运动,上升一段高度后撤去F ,物体运动到最高点后自由下落并撞击钉子,将钉子打入一定深度.按此模型分析,若物体质量m =1 kg ,上升了1 m 高度时撤去拉力,撤去拉力前物体的动能E k 与上升高度h 的关系图象如图乙所示.(g 取10 m/s 2,不计空气阻力)(1)求物体上升到0.4 m 高度处F 的瞬时功率;(2)若物体撞击钉子后瞬间弹起,且使其不再落下,钉子获得20 J 的动能向下运动.钉子总长为10 cm.撞击前插入部分可以忽略,不计钉子重力.已知钉子在插入过程中所受阻力F f 与深度x 的关系图象如图丙所示,求钉子能够插入的最大深度.解析:(1)撤去F 前,根据动能定理,有 (F -mg )h =E k -0由题图乙得,斜率为k =F -mg =20 N ,得F =30 N 又由题图乙得,h =0.4 m 时,E k =8 J 则v =4 m/s ,P =F v =120 W.(2)碰撞后,对钉子,有-F -f x ′=0-E k ′已知E k ′=20 J ,F -f =k ′x ′2又由题图丙得k ′=105 N/m ,解得:x ′=0.02 m. 答案:(1)120 W (2)0.02 m5.如图所示,光滑的轨道ABO 的AB 部分与水平部分BO 相切,轨道右侧是一个半径为R 的四分之一的圆弧轨道,O 点为圆心,C 为圆弧上的一点,OC 与水平方向的夹角为37°.现将一质量为m 的小球从轨道AB 上某点由静止释放.已知重力加速度为g ,不计空气阻力.⎝⎛⎭⎫sin 37°=35,cos 37°=45(1)若小球恰能击中C 点,求刚释放小球的位置距离BO 平面的高度; (2)改变释放点的位置,求小球落到轨道时动能的最小值.解析:(1)设小球经过O 点的速度为v 0,从O 点到C 点做平抛运动,则有 R cos 37°=v 0t ,R sin 37°=12gt 2从A 点到O 点,由动能定理得 mgh =12m v 2联立可得,刚释放小球的位置距离BO 平面的高度 h =415R .(2)设小球落到轨道上的点与O 点的连线与水平方向的夹角为θ,小球做平抛运动, R cos θ=v 0′t ′ R sin θ=12gt ′2对此过程,由动能定理得mgR sin θ=E k -12m v 0′2解得E k =mgR ⎝⎛⎭⎫34sin θ+14sin θ 当sin θ=33时,小球落到轨道时的动能最小,最小值为E k =32mgR . 答案:(1)4R 15 (2)3mgR26.一个质量为m 的物体静止放在光滑水平面上,在互成60°角的大小相等的两个水平恒力作用下,经过一段时间,物体获得的速度为v ,在力的方向上获得的速度分别为v 1、v 2,如图所示,那么在这段时间内,其中一个力做的功为( )A .16m v 2B .14m v 2C .13m v 2D .12m v 2解析:选B .在合力F 的方向上,由动能定理得W =Fl =12m v 2,某个分力的功为W 1=12W =14m v 2,B 正确. 7.(多选)如图所示,某人通过光滑滑轮将质量为m 的物体,沿光滑斜面由静止开始匀加速地由底端拉上斜面.物体上升的高度为h ,到达斜面顶端的速度为v ,则在此过程中( )A .物体所受的合力做功为mgh +12m v 2B .物体所受的合力做功为12m v 2C .人对物体做的功为mghD .人对物体做的功大于mgh解析:选BD .对物体应用动能定理可得W 合=W 人-mgh =12m v 2,故W 人=mgh +12m v 2,B 、D 选项正确.8.质量为m 的小球在竖直向上的拉力作用下从静止开始运动,其v -t 图象如图所示(竖直向上为正方向,DE 段为直线).已知重力加速度大小为g ,下列说法正确的是( )A .t 3~t 4时间内,小球竖直向下做匀减速直线运动B .t 0~t 2时间内,合力对小球先做正功后做负功C .0~t 2时间内,小球的平均速度一定为v 22D .t 3~t 4时间内,拉力做的功为m v 3+v 42[(v 4-v 3)+g (t 4-t 3)]解析:选D .根据题意,竖直向上为正方向,故在t 3~t 4时间内,小球竖直向上做匀减速直线运动,故选项A 错误;t 0~t 2时间内,小球速度一直增大,根据动能定理可知,合力对小球一直做正功,故选项B 错误;0~t 2时间内,小球的平均速度等于位移与时间的比值,不一定为v 22,故选项C 错误;根据动能定理,在t 3~t 4时间内:W F -mg v 3+v 42·(t 4-t 3)=12m v 24-12m v 23,整理可得:W F=m v 3+v 42[(v 4-v 3)+g (t 4-t 3)],故选项D 正确. 9.如图所示,轻质弹簧一端固定在墙壁上的O 点,另一端自由伸长到A 点,OA 之间的水平面光滑,固定曲面在B 处与水平面平滑连接.AB 之间的距离s =1 m .质量m =0.2 kg 的小物块开始时静置于水平面上的B 点,物块与水平面间的动摩擦因数μ=0.4.现给物块一个水平向左的初速度v 0=5 m/s ,g 取10 m/s 2.(1)求弹簧被压缩到最短时所具有的弹性势能E p ; (2)求物块返回B 点时的速度大小;(3)若物块能冲上曲面的最大高度h =0.2 m ,求物块沿曲面上滑过程所产生的热量. 解析:(1)对小物块从B 点至压缩弹簧最短的过程,由动能定理得, -μmgs -W 克弹=0-12m v 20W 克弹=E p代入数据解得E p =1.7 J.(2)对小物块从B 点开始运动至返回B 点的过程,由动能定理得, -μmg ·2s =12m v 2B -12m v 20 代入数据解得v B =3 m/s. (3)对小物块沿曲面的上滑过程, 由动能定理得-W 克f -mgh =0-12m v 2B产生的热量Q =W 克f =0.5 J.答案:(1)1.7 J (2)3 m/s (3)0.5 J10.如图甲所示,轻弹簧左端固定在竖直墙上,右端点在O 点位置.质量为m 的物块A (可视为质点)以初速度v 0从距O 点右方x 0的P 点处向左运动,与弹簧接触后压缩弹簧,将弹簧右端压到O ′点位置后,A 又被弹簧弹回.A 离开弹簧后,恰好回到P 点.物块A 与水平面间的动摩擦因数为μ.求:(1)物块A 从P 点出发又回到P 点的过程,克服摩擦力所做的功; (2)O 点和O ′点间的距离x 1;(3)如图乙所示,若将另一个与A 完全相同的物块B (可视为质点)与弹簧右端拴接,将A 放在B 右边,向左推A 、B ,使弹簧右端压缩到O ′点位置,然后从静止释放,A 、B 共同滑行一段距离后分离.分离后物块A 向右滑行的最大距离x 2是多少?解析:(1)物块A 从P 点出发又回到P 点的过程,根据动能定理得 克服摩擦力所做的功为W f =12m v 20.(2)物块A 从P 点出发又回到P 点的过程,根据动能定理得 -2μmg (x 1+x 0)=0-12m v 20解得x 1=v 204μg -x 0.(3)A 、B 在弹簧处于原长处分离,设此时它们的共同速度是v 1,弹出过程弹力做功为W F只有物块A 时,从O ′到P 有 W F -μmg (x 1+x 0)=0-0 A 、B 共同从O ′到O 有 W F -2μmgx 1=12×2m v 21 分离后对A 有12m v 21=μmgx 2联立以上各式可得x 2=x 0-v 208μg.答案:(1)12m v 20 (2)v 204μg -x 0 (3)x 0-v 208μg。

高中物理动能定理的综合应用试题(有答案和解析)(1)

高中物理动能定理的综合应用试题(有答案和解析)(1)

高中物理动能定理的综合应用试题(有答案和解析)(1)一、高中物理精讲专题测试动能定理的综合应用1.如图所示,一条带有竖直圆轨道的长轨道水平固定,底端分别与两侧的直轨道相切,半径R =0.5m 。

物块A 以v 0=10m/s 的速度滑入圆轨道,滑过最高点N ,再沿圆轨道滑出,P 点左侧轨道光滑,右侧轨道与物块间的动摩擦因数都为μ=0.4,A 的质量为m =1kg (A 可视为质点) ,求:(1)物块经过N 点时的速度大小; (2)物块经过N 点时对竖直轨道的作用力; (3)物块最终停止的位置。

【答案】(1)5m/s v =;(2)150N ,作用力方向竖直向上;(3)12.5m x = 【解析】 【分析】 【详解】(1)物块A 从出发至N 点过程,机械能守恒,有22011222mv mg R mv =⋅+ 得20445m /s v v gR =-=(2)假设物块在N 点受到的弹力方向竖直向下为F N ,由牛顿第二定律有2N v mg F m R+=得物块A 受到的弹力为2N 150N v F m mg R=-=由牛顿第三定律可得,物块对轨道的作用力为N N 150N F F '==作用力方向竖直向上(3)物块A 经竖直圆轨道后滑上水平轨道,在粗糙路段有摩擦力做负功,动能损失,由动能定理,有20102mgx mv μ-=-得12.5m x =2.如图所示,倾角为37°的粗糙斜面AB 底端与半径R=0.4 m 的光滑半圆轨道BC 平滑相连,O 点为轨道圆心,BC 为圆轨道直径且处于竖直方向,A 、C 两点等高.质量m=1 kg 的滑块从A 点由静止开始下滑,恰能滑到与O 点等高的D 点,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)求滑块与斜面间的动摩擦因数μ;(2)要使滑块能到达C 点,求滑块从A 点沿斜面滑下时初速度v 0的最小值;(3)若滑块离开C 点的速度为4 m/s ,求滑块从C 点飞出至落到斜面上所经历的时间. 【答案】(1)0.375(2)3/m s (3)0.2s 【解析】试题分析:⑴滑块在整个运动过程中,受重力mg 、接触面的弹力N 和斜面的摩擦力f 作用,弹力始终不做功,因此在滑块由A 运动至D 的过程中,根据动能定理有:mgR -μmgcos37°2sin 37R︒=0-0 解得:μ=0.375⑵滑块要能通过最高点C ,则在C 点所受圆轨道的弹力N 需满足:N≥0 ①在C 点时,根据牛顿第二定律有:mg +N =2Cv m R② 在滑块由A 运动至C 的过程中,根据动能定理有:-μmgcos37°2sin 37R ︒=212C mv -2012mv ③ 由①②③式联立解得滑块从A 点沿斜面滑下时的初速度v 0需满足:v 03gR =23 即v 0的最小值为:v 0min =3⑶滑块从C 点离开后将做平抛运动,根据平抛运动规律可知,在水平方向上的位移为:x =vt ④在竖直方向的位移为:y =212gt ⑤ 根据图中几何关系有:tan37°=2R yx-⑥ 由④⑤⑥式联立解得:t =0.2s考点:本题主要考查了牛顿第二定律、平抛运动规律、动能定理的应用问题,属于中档题.3.为了研究过山车的原理,某物理小组提出了下列设想:取一个与水平方向夹角为θ=60°、长为L 1=23m 的倾斜轨道AB ,通过微小圆弧与长为L 2=32m 的水平轨道BC 相连,然后在C 处设计一个竖直完整的光滑圆轨道,出口为水平轨道上D 处,如图所示.现将一个小球从距A 点高为h =0.9m 的水平台面上以一定的初速度v 0水平弹出,到A 点时小球的速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小球与AB 和BC 间的动摩擦因数均为μ=3,g 取10m/s 2.(1)求小球初速度v 0的大小; (2)求小球滑过C 点时的速率v C ;(3)要使小球不离开轨道,则竖直圆弧轨道的半径R 应该满足什么条件? 【答案】(16m/s (2)6m/s (3)0<R ≤1.08m 【解析】试题分析:(1)小球开始时做平抛运动:v y 2=2gh代入数据解得:22100.932/y v gh m s =⨯⨯==A 点:60y x v tan v ︒=得:032/6/603yx v v v s m s tan ==︒== (2)从水平抛出到C 点的过程中,由动能定理得:()2211201122C mg h L sin mgL cos mgL mv mv θμθμ+---=代入数据解得:36/C v m s =(3)小球刚刚过最高点时,重力提供向心力,则:21mv mg R =22111 222C mv mgR mv += 代入数据解得R 1=1.08 m当小球刚能到达与圆心等高时2212C mv mgR = 代入数据解得R 2=2.7 m当圆轨道与AB 相切时R 3=BC•tan 60°=1.5 m 即圆轨道的半径不能超过1.5 m综上所述,要使小球不离开轨道,R 应该满足的条件是 0<R≤1.08 m . 考点:平抛运动;动能定理4.如图所示,AB是竖直面内的四分之一圆弧形光滑轨道,下端B点与水平直轨道相切.一个小物块自A点由静止开始沿轨道下滑,已知轨道半径为R=0.2m,小物块的质量为m=0.1kg,小物块与水平面间的动摩擦因数μ=0.5,g取10m/s2.求:(1)小物块在B点时受到的圆弧轨道的支持力大小;(2)小物块在水平面上滑动的最大距离.【答案】(1)3N (2)0.4m【解析】(1)由机械能守恒定律,得在B点联立以上两式得F N=3mg=3×0.1×10N=3N.(2)设小物块在水平面上滑动的最大距离为l,对小物块运动的整个过程由动能定理得mgR-μmgl=0,代入数据得【点睛】解决本题的关键知道只有重力做功,机械能守恒,掌握运用机械能守恒定律以及动能定理进行解题.5.某物理小组为了研究过山车的原理提出了下列的设想:取一个与水平方向夹角为θ=53°,长为L1=7.5m的倾斜轨道AB,通过微小圆弧与足够长的光滑水平轨道BC相连,然后在C处连接一个竖直的光滑圆轨道.如图所示.高为h=0.8m光滑的平台上有一根轻质弹簧,一端被固定在左面的墙上,另一端通过一个可视为质点的质量m=1kg的小球压紧弹簧,现由静止释放小球,小球离开台面时已离开弹簧,到达A点时速度方向恰沿AB方向,并沿倾斜轨道滑下.已知小物块与AB间的动摩擦因数为μ=0.5,g取10m/s2,sin53°=0.8.求:(1)弹簧被压缩时的弹性势能;(2)小球到达C点时速度v C的大小;(3)小球进入圆轨道后,要使其不脱离轨道,则竖直圆弧轨道的半径R 应该满足什么条件. 【答案】(1)4.5J ;(2)10m/s ;(3)R ≥5m 或0<R ≤2m 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年高考物理一轮复习必热考点整合回扣练
专题(21)动能定理及其应用(原卷版)
考点一 对动能定理的理解
做功的过程就是能量转化的过程,动能定理表达式中的“=”既表示一种因果关系,又表示在数值上相等.
1、(多选)如图所示,一块长木板B 放在光滑的水平面上,在B 上放一物体A ,现以恒定的外力F 拉B ,由于A 、B 间摩擦力的作用,A 将在B 上滑动,以地面为参考系,A 、B 都向前移动一段距离,在此过程中( )
A .外力F 做的功等于A 和
B 动能的增量
B .B 对A 的摩擦力所做的功,等于A 的动能增量
C .A 对B 的摩擦力所做的功,等于B 对A 的摩擦力所做的功
D .外力F 对B 做的功等于B 的动能的增量与B 克服摩擦力所做的功之和
2、如图,一半径为R 、粗糙程度处处相同的半圆形轨道竖直固定放置,直径PQ 水平.一质量为m 的质点自P 点上方高度R 处由静止开始下落,恰好从P 点进入轨道.质点滑到轨道最低点N 时,对轨道的压力为4mg ,g 为重力加速度的大小.用W 表示质点从P 点运动到N 点的过程中克服摩擦力所做的功.则( )
A .W =12
mgR ,质点恰好可以到达Q 点 B .W >12
mgR ,质点不能到达Q 点 C .W =12
mgR ,质点到达Q 点后,继续上升一段距离 D .W <12
mgR ,质点到达Q 点后,继续上升一段距离 3、在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为v ,用g 表示重
力加速度,则在此过程中物块克服空气阻力所做的功等于( )
A .mgh -12mv 2-12mv 20
B .-12mv 2-12
mv 20-mgh C .mgh +12mv 20-12mv 2 D .mgh +12mv 2-12
mv 20 【提 分 笔 记】
应用动能定理求变力做功时应注意的问题
(1)所求的变力做的功不一定为总功,故所求的变力做的功不一定等于ΔE k .
(2)合外力对物体所做的功对应物体动能的变化,而不是对应物体的动能.
(3)若有多个力做功时,必须明确各力做功的正负,待求的变力做的功若为负功,可以设克服该力做的功为W ,则表达式中用-W 表示;也可以设变力做的功为W ,则字母W 本身含有符号.
考点二 动能定理的基本应用
应用动能定理的流程
4、(多选)如图所示为一滑草场.某条滑道由上下两段高均为h ,与水平面倾角分别为45°和37°的滑道组成,滑草车与草地之间的动摩擦因数为μ.质量为m 的载人滑草车从坡顶由静止开始自由下滑,经过上、下两段滑道后,最后恰好静止于滑道的底端(不计滑草车在两段滑道交接处的能量损失,sin 37°=0.6,cos 37°=0.8).则( )
A .动摩擦因数μ=67
B .载人滑草车最大速度为 2gh 7
C .载人滑草车克服摩擦力做功为mgh
D .载人滑草车在下段滑道上的加速度大小为35
g 5、如图所示,与水平面夹角θ=37°的斜面和半径R =0.4 m 的光滑圆轨道相切于B 点,且固定于竖直平面内.滑块从斜面上的A 点由静止释放,经B 点后沿圆轨道运动,通过最高点C 时轨道对滑块的弹力为零,已知滑块与斜面间动摩擦因数μ=0.25.(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:
(1)滑块在C 点的速度大小v C ;
(2)滑块在B 点的速度大小v B ;
(3)A 、B 两点间的高度差h .
6、坐落在镇江新区的摩天轮高88 m ,假设乘客随座舱在竖直面内做匀速圆周运动。

下列说法正确的是
( )
A.在摩天轮转动的过程中,乘客速度始终保持不变
B.在最低点时,乘客所受重力大于座椅对他的支持力
C.在摩天轮转动一周的过程中,合力对乘客做功为零
D.在摩天轮转动的过程中,乘客重力的功率保持不变
考点三 动能定理与图象问题结合
1.“三步走”分析动能定理与图象结合的问题
2.四类力学图象所围“面积”的意义
7、如图,质量为m的小球从A点由静止开始沿半径为R的光滑圆轨道AB滑下,在B点沿水平方向飞出后,落在一个与地面成37°角的斜面上的C点(图中未画出)。

已知重力加速度为g,sin37°=0.6,则从A点到C点的过程中小球重力所做的功为()
A. B. C.mgR D.2mgR
8、如图甲所示,在倾角为30°的足够长的光滑斜面AB的A处连接一粗糙水平面OA,OA长为4 m.有一质量为m的滑块,从O处由静止开始受一水平向右的力F作用.F只在水平面上按图乙所示的规律变化.滑块与OA间的动摩擦因数μ=0.25,取g=10 m/s2,试求:
(1)滑块运动到A处的速度大小;
(2)不计滑块在A处的速率变化,滑块冲上斜面AB的长度是多少?
9、如图所示,上表面水平的圆盘固定在水平地面上,一小物块从圆盘边缘上的P点,以大小恒定的初速度v0,在圆盘上沿与直径PQ成不同夹角θ的方向开始滑动,小物块运动到圆盘另一边缘时的速度大小为v,则v2-cos θ图象应为()
10、质量为1 kg的物体静止在水平粗糙的地面上,受到一水平外力F作用运动,如图甲所示,外力F和物体克服摩擦力F f,做的功W与物体位移x的关系如图乙所示,重力加速度g取10 m/s2。

下列分析正确的是()
A.物体与地面之间的动摩擦因数为0.2
B.物体运动的位移为13 m
C.前3 m运动过程中物体的加速度为3 m/s2
D.x=9 m时,物体速度为3 m/s
考点四动能定理在多过程问题中的应用
应用动能定理的注意事项
11、(多选)如图所示,质量为2m的光滑环悬挂在轻绳的一端,轻绳的另一端系一质量为m的重物.环套在竖直面内倾斜固定的光滑直杆上,且杆与水平面的夹角为45°,AD水平且距离为d,BD垂直于杆,C点在D点正下方,重力加速度为g.则环从A点静止释放后沿杆下滑的过程中,下列说法正确的是()
A.重物先向下加速后向下减速B.环先向下加速后向下减速
C.环到达B点时速度满足v2B=2-
2
2gd D.环到达C点时速度满足v
2
C

4
3gd
12、如图所示,用一块长L1=1.0 m的木板在墙和桌面间架设斜面,桌子高H=0.8 m,长L2=1.5 m.斜面与水平桌面的倾角θ可在0°~60°间调节后固定.将质量m=0.2 kg的小物块从斜面顶端静止释放,物块与斜面间的动摩擦因数μ1=0.05,物块与桌面间的动摩擦因数为μ2,忽略物块在斜面与桌面交接处的能量损失.(重力加速度取g=10 m/s2,最大静摩擦力等于滑动摩擦力)
(1)当θ角增大到多少时,物块能从斜面开始下滑;(用正切值表示)
(2)当θ角增大到37°时,物块恰能停在桌面边缘,求物块与桌面间的动摩擦因数μ2;(已知sin 37°=0.6,cos 37°=0.8)
(3)继续增大θ角,发现θ=53°时物块落地点与墙面的距离最大,求此最大距离x m.
考点五应用动能定理巧解往复运动问题
在有些问题中物体的运动过程具有重复性、往返性,而在这一过程中,描述运动的物理量多数是变化的,而且重复的次数又往往是无限的或者难以确定,求解这类问题时若运用牛顿运动定律及运动学公式将非常繁琐,甚至无法解出.由于动能定理只关心物体的初、末状态而不计运动过程的细节,所以用动能定理分析这类问题可使解题过程简化.
13、如图所示,一质量m=0.4 kg的滑块(可视为质点)静止于水平轨道上的A点,滑块与轨道间的动摩擦因数
μ=0.1。

现对滑块施加一水平外力,使其向右运动,外力的功率恒为P=10 W。

经过一段时间后撤去外力,滑块继续滑行至B点后水平飞出,恰好在C点沿切线方向进入固定在竖直平面内的光滑圆弧形轨道,轨道的最低点D处装有压力传感器,当滑块到达传感器上方时,传感器的示数为25.6 N。

已知轨道AB的长度L=2 m,圆弧形轨道的半径R=0.5 m;半径OC和竖直方向的夹角α=37°。

(空气阻力可忽略,重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求:
(1)滑块运动到C点时速度的大小v C;
(2)B、C两点的高度差h及水平距离x;
(3)水平外力作用在滑块上的时间t。

14、如图所示,水平轨道BC的左端与固定的光滑竖直四分之一圆轨道相切于B点,右端与一倾角为30°的固定光滑斜面轨道在C点平滑连接(即物体经过C点时速度的大小不变),斜面顶端固定一轻质弹簧,一质量为2 kg 的滑块从圆弧轨道的顶端A点由静止释放,经水平轨道后滑上斜面并压缩弹簧,第一次可将弹簧压缩至D点,已知光滑圆轨道的半径R=0.45 m,水平轨道BC长为0.4 m,其动摩擦因数μ=0.2,光滑斜面轨道上CD长为0.6 m,g取10 m/s2,求:
(1)滑块第一次经过B点时对圆轨道的压力大小;
(2)整个过程中弹簧具有的最大弹性势能;
(3)滑块在BC上通过的总路程.。

相关文档
最新文档