初三数学中考试题精选
四川初三初中数学中考真卷带答案解析
![四川初三初中数学中考真卷带答案解析](https://img.taocdn.com/s3/m/6a81fc8b27284b73f342509b.png)
四川初三初中数学中考真卷班级:___________ 姓名:___________ 分数:___________一、选择题1.下列各式计算正确的是()A.B.C.D.2.已知,则代数式的值为()A.0B.1C.2D.33.已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC平移后顶点A的对应点A的1的坐标为()坐标是(4,10),则点B的对应点B1A.(7,1)B.B(1,7)C.(1,1)D.(2,1)4.将如图绕AB边旋转一周,所得几何体的俯视图为()A.B.C.D.5.某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是()A.30,40B.45,60C.30,60D.45,406.已知关于x的一元二次方程的一个实数根为2,则另一实数根及m的值分别为()A.4,﹣2B.﹣4,﹣2C.4,2D.﹣4,27.如图所示,底边BC为,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.B.C.4D.8.如图,四边形ABCD的四边相等,且面积为120cm2,对角线AC=24cm,则四边形ABCD的周长为()A.52cm B.40cm C.39cm D.26cm9.“一方有难,八方支援”,雅安芦山420地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为()A.60B.70C.80D.9010.若式子有意义,则一次函数y=(1﹣k)x+k﹣1的图象可能是()A.B.C.D.11.如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ的最小值为()A.B.C.D.二、填空题1.1.45°= ′.2.P为正整数,现规定P!=P(P﹣1)(P﹣2)…×2×1.若m!=24,则正整数m= .3.一书架有上下两层,其中上层有2本语文1本数学,下层有2本语文2本数学,现从上下层随机各取1本,则抽到的2本都是数学书的概率为.4.如图,在△ABC中,AB=AC=10,以AB为直径的⊙O与BC交于点D,与AC交于点E,连OD交BE于点M,且MD=2,则BE长为.三、解答题1.(1)计算:;(2)先化简,再求值:,其中x=﹣2.2.解下列不等式组,并将它的解集在数轴上表示出来..3.甲乙两人进行射击训练,两人分别射击12次,如图分别统计了两人的射击成绩,已知甲射击成绩的方差=,平均成绩=8.5.(1)根据图上信息,估计乙射击成绩不少于9环的概率是多少?(2)求乙射击的平均成绩的方差,并据此比较甲乙的射击“水平”.S2=.4.我们规定:若=(a,b),=(c,d),则=ac+bd.如=(1,2),=(3,5),则=1×3+2×5=13.(1)已知=(2,4),=(2,﹣3),求;(2)已知=(x﹣a,1),=(x﹣a,x+1),求y=,问y=的函数图象与一次函数y=x﹣1的图象是否相交,请说明理由.5.已知Rt△ABC中,∠B=90°,AC=20,AB=10,P是边AC上一点(不包括端点A、C),过点P作PE⊥BC于点E,过点E作EF∥AC,交AB于点F.设PC=x,PE=y.(1)求y与x的函数关系式;(2)是否存在点P使△PEF是Rt△?若存在,求此时的x的值;若不存在,请说明理由.6.已知直线l1:y=x+3与x轴交于点A,与y轴交于点B,且与双曲线交于点C(1,a).(1)试确定双曲线的函数表达式;(2)将l1沿y轴翻折后,得到l2,画出l2的图象,并求出l2的函数表达式;(3)在(2)的条件下,点P是线段AC上点(不包括端点),过点P作x轴的平行线,分别交l2于点M,交双曲线于点N,求S△AMN的取值范围.7.如图1,AB是⊙O的直径,E是AB延长线上一点,EC切⊙O于点C,OP⊥AO交AC于点P,交EC的延长线于点D.(1)求证:△PCD是等腰三角形;(2)CG⊥AB于H点,交⊙O于G点,过B点作BF∥EC,交⊙O于点F,交CG于Q点,连接AF,如图2,若sinE=,CQ=5,求AF的值.四川初三初中数学中考真卷答案及解析一、选择题1.下列各式计算正确的是()A.B.C.D.【答案】D.【解析】A.,故本选项错误;B.,故本选项错误;C.与不是同类项,不能合并,故本选项错误;D.,故本选项正确;故选D.【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式.2.已知,则代数式的值为()A.0B.1C.2D.3【答案】B.【解析】∵,∴==2×1﹣1=1.故选B.【考点】代数式求值;条件求值;整体代入.的3.已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC平移后顶点A的对应点A1的坐标为()坐标是(4,10),则点B的对应点B1A.(7,1)B.B(1,7)C.(1,1)D.(2,1)【答案】C.【解析】∵点A(0,6)平移后的对应点A为(4,10),4﹣0=4,10﹣6=4,∴△ABC向右平移了4个单位长1度,向上平移了4个单位长度,∴点B的对应点B的坐标为(﹣3+4,﹣3+4),即(1,1).故选C.1【考点】坐标与图形变化-平移.4.将如图绕AB边旋转一周,所得几何体的俯视图为()A.B.C.D.【答案】B.【解析】将该图形绕AB旋转一周后是由上面一个圆锥体、下面一个圆柱体的组合而成的几何体,从上往下看其俯视图是外面一个实线的大圆(包括圆心),里面一个虚线的小圆,故选B.【考点】简单组合体的三视图;点、线、面、体.5.某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是()A.30,40B.45,60C.30,60D.45,40【答案】B.【解析】由题意得,打羽毛球学生的比例为:1﹣20%﹣10%﹣30%=40%,则跑步的人数为:150×30%=45,打羽毛球的人数为:150×40%=60.故选B.【考点】扇形统计图.6.已知关于x的一元二次方程的一个实数根为2,则另一实数根及m的值分别为()A.4,﹣2B.﹣4,﹣2C.4,2D.﹣4,2【答案】D.【解析】由根与系数的关系式得:,=﹣2,解得:=﹣4,m=2,则另一实数根及m的值分别为﹣4,2,故选D.【考点】根与系数的关系.7.如图所示,底边BC为,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.B.C.4D.【答案】A.【解析】过A作AF⊥BC于F,∵AB=AC,∠A=120°,∴∠B=∠C=30°,∴AB=AC=2,∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=,∴△ACE的周长=AC+AE+CE=AC+BC=,故选A.【考点】等腰三角形的性质;线段垂直平分线的性质.8.如图,四边形ABCD的四边相等,且面积为120cm2,对角线AC=24cm,则四边形ABCD的周长为()A.52cm B.40cm C.39cm D.26cm【答案】A.【解析】如图,连接AC、BD相交于点O,∵四边形ABCD的四边相等,∴四边形ABCD为菱形,∴AC⊥BD,S四边形=AC•BD,∴×24BD=120,解得BD=10cm,∴OA=12cm,OB=5cm,在Rt△AOB中,由勾股定理可得ABCDAB==13(cm),∴四边形ABCD的周长=4×13=52(cm),故选A.【考点】菱形的判定与性质.9.“一方有难,八方支援”,雅安芦山420地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为()A.60B.70C.80D.90【答案】C.【解析】设可搬桌椅x套,即桌子x张、椅子x把,则搬桌子需2x人,搬椅子需人,根据题意,得:2x+≤200,解得:x≤80,∴最多可搬桌椅80套,故选C.【考点】一元一次不等式的应用.10.若式子有意义,则一次函数y=(1﹣k)x+k﹣1的图象可能是()A.B.C.D.【答案】C.【解析】∵式子有意义,∴,解得k>1,∴1﹣k<0,k﹣1>0,∴一次函数y=(1﹣k)x+k﹣1的图象过一、二、四象限.故选C.【考点】一次函数的图象;零指数幂;二次根式有意义的条件.11.如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ的最小值为()A.B.C.D.【答案】D.【解析】设BE=x,则DE=3x,∵四边形ABCD为矩形,且AE⊥BD,∴△ABE∽△DAE,∴=BE•DE,即,∴AE=x,在Rt△ADE中,由勾股定理可得,即,解得x=,∴AE=3,DE=,如图,设A点关于BD的对称点为A′,连接A′D,PA′,则A′A=2AE=6=AD,AD=A′D=6,∴△AA′D是等边三角形,∵PA=PA′,∴当A′、P、Q三点在一条线上时,A′P+PQ最小,又垂线段最短可知当PQ⊥AD时,A′P+PQ最小,∴AP+PQ=A′P+PQ=A′Q=DE=,故选D.【考点】矩形的性质;轴对称-最短路线问题;最值问题.二、填空题1.1.45°= ′.【答案】87′.【解析】1.45°=60′+0.45×60′=87′.故答案为:87′.【考点】度分秒的换算.2.P为正整数,现规定P!=P(P﹣1)(P﹣2)…×2×1.若m!=24,则正整数m= .【答案】4.【解析】∵P!=P(P﹣1)(P﹣2)…×2×1=1×2×3×4××(p﹣2)(p﹣1),∴m!=1×2×3×4×…×(m﹣1)m=24,∴m=4,故答案为:4.【考点】有理数的乘法;新定义.3.一书架有上下两层,其中上层有2本语文1本数学,下层有2本语文2本数学,现从上下层随机各取1本,则抽到的2本都是数学书的概率为.【答案】.【解析】列表如下图:由表格可知,现从上下层随机各取1本,共有12种等可能结果,其中抽到的2本都是数学书的有2种结果,∴抽到的2本都是数学书的概率为=,故答案为:.【考点】列表法与树状图法.4.如图,在△ABC中,AB=AC=10,以AB为直径的⊙O与BC交于点D,与AC交于点E,连OD交BE于点M,且MD=2,则BE长为.【答案】8.【解析】连接AD,如图所示:∵以AB为直径的⊙O与BC交于点D,∴∠AEB=∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∴BM=EM,∴CE=2MD=4,∴AE=AC﹣CE=6,∴BE===8;故答案为:8.【考点】圆周角定理;等腰三角形的性质.三、解答题1.(1)计算:;(2)先化简,再求值:,其中x=﹣2.【答案】(1)﹣6;(2)2﹣x,4.【解析】(1)分别根据有理数乘方的法则、负整数指数幂的运算法则、特殊角的三角函数值及绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可;(2)先算括号里面的,再算除法,最后把x=﹣2代入进行计算即可.试题解析:(1)原式===﹣6.(2)原式===1﹣(x﹣1)=1﹣x+1=2﹣x.当x=﹣2时,原式=2+2=4.【考点】分式的化简求值;实数的运算;负整数指数幂;特殊角的三角函数值.2.解下列不等式组,并将它的解集在数轴上表示出来..【答案】x<﹣1.【解析】先分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.试题解析:,由①得,x<﹣1,由②得,x≤2,故此不等式组的解集为:x<﹣1.在数轴上表示为:【考点】解一元一次不等式组;在数轴上表示不等式的解集.3.甲乙两人进行射击训练,两人分别射击12次,如图分别统计了两人的射击成绩,已知甲射击成绩的方差=,平均成绩=8.5.(1)根据图上信息,估计乙射击成绩不少于9环的概率是多少?(2)求乙射击的平均成绩的方差,并据此比较甲乙的射击“水平”.S2=.【答案】(1);(2)甲的射击成绩更稳定.【解析】(1)根据条形统计图求出乙的射击总数与不少于9环的次数,根据概率公式即可得出结论;(2)求出乙的平均成绩及方差,再与甲的平均成绩及方差进行比较即可.试题解析:(1)∵由图可知,乙射击的总次数是12次,不少于9环的有7次,∴乙射击成绩不少于9环的概率=;(2)=(2×7+3×8+6×9+1×10)÷12=8.5(环);===.∵=,<,∴甲的射击成绩更稳定.【考点】概率公式;方差.4.我们规定:若=(a,b),=(c,d),则=ac+bd.如=(1,2),=(3,5),则=1×3+2×5=13.(1)已知=(2,4),=(2,﹣3),求;(2)已知=(x﹣a,1),=(x﹣a,x+1),求y=,问y=的函数图象与一次函数y=x﹣1的图象是否相交,请说明理由.【答案】(1)﹣8;(2)不相交.【解析】(1)直接利用=(a,b),=(c,d),则=ac+bd,进而得出答案;(2)利用已知的出y与x之间的函数关系式,再联立方程,结合根的判别式求出答案.试题解析:(1)∵=(2,4),=(2,﹣3),∴=2×2+4×(﹣3)=﹣8;(2)∵=(x﹣a,1),=(x﹣a,x+1),∴y===,∴,联立方程:,化简得:,∵△= =﹣8<0,∴方程无实数根,两函数图象无交点.【考点】二次函数的性质;根的判别式;一次函数的性质;新定义.5.已知Rt△ABC中,∠B=90°,AC=20,AB=10,P是边AC上一点(不包括端点A、C),过点P作PE⊥BC于点E,过点E作EF∥AC,交AB于点F.设PC=x,PE=y.(1)求y与x的函数关系式;(2)是否存在点P使△PEF是Rt△?若存在,求此时的x的值;若不存在,请说明理由.【答案】(1)(0<x<20);(2)当x=10或x=16,存在点P使△PEF是Rt△.【解析】(1)在Rt△ABC中,根据三角函数可求y与x的函数关系式;(2)分三种情况:①如图1,当∠FPE=90°时,②如图2,当∠PFE=90°时,③当∠PEF=90°时,进行讨论可求x的值.试题解析:(1)在Rt△ABC中,∠B=90°,AC=20,AB=10,∴sinC=,∵PE⊥BC于点E,∴sinC==,∵PC=x,PE=y,∴(0<x<20);(2)存在点P使△PEF是Rt△,①如图1,当∠FPE=90°时,四边形PEBF是矩形,BF=PE=x,四边形APEF是平行四边形,PE=AF=x,∵BF+AF=AB=10,∴x=10;②如图2,当∠PFE=90°时,Rt△APF∽Rt△ABC,∠ARP=∠C=30°,AF=40﹣2x,平行四边形AFEP中,AF=PE,即:40﹣2x=x,解得x=16;③当∠PEF=90°时,此时不存在符合条件的Rt△PEF.综上所述,当x=10或x=16,存在点P使△PEF是Rt△.【考点】相似三角形的判定与性质;平行四边形的性质;矩形的性质;解直角三角形;动点型;存在型;分类讨论.6.已知直线l1:y=x+3与x轴交于点A,与y轴交于点B,且与双曲线交于点C(1,a).(1)试确定双曲线的函数表达式;(2)将l1沿y轴翻折后,得到l2,画出l2的图象,并求出l2的函数表达式;(3)在(2)的条件下,点P是线段AC上点(不包括端点),过点P作x轴的平行线,分别交l2于点M,交双曲线于点N,求S△AMN的取值范围.【答案】(1);(2)y=﹣x+3;(3)≤S△AMN<4.【解析】(1)令x=1代入一次函数y=x+3后求出C的坐标,然后把C代入反比例函数解析式中即可求出k的值;(2)设直线l2与x轴交于D,由题意知,A与D关于y轴对称,所以可以求出D的坐标,再把B点坐标代入y=ax+b即可求出直线l2的解析式;(3)设M的纵坐标为t,由题意可得M的坐标为(3﹣t,t),N的坐标为(,t),进而得MN=+t﹣3,又可知在△ABM中,MN边上的高为t,所以可以求出S△AMN与t的关系式.试题解析:(1)令x=1代入y=x+3,∴y=1+3=4,∴C(1,4),把C(1,4)代入中,∴k=4,∴双曲线的解析式为:;(2)如图所示,设直线l2与x轴交于点D,由题意知:A与D关于y轴对称,∴D的坐标为(3,0),设直线l2的解析式为:y=ax+b,把D与B的坐标代入上式,得:,∴解得:,∴直线l2的解析式为:y=﹣x+3;(3)设M(3﹣t,t),∵点P在线段AC上移动(不包括端点),∴0<t<4,∴PN∥x轴,∴N的纵坐标为t,把y=t代入,∴x=,∴N的坐标为(,t),∴MN=﹣(3﹣t)=+t﹣3,过点A作AE⊥PN于点E,∴AE=t,∴S△AMN=AE•MN=t(+t﹣3)==.由二次函数性质可知,当0≤t≤时,S△AMN 随t的增大而减小,当<t≤4时,S△AMN随t的增大而增大,∴当t=时,S△AMN 可取得最小值为,当t=4时,S△AMN可取得最大值为4,∵0<t<4,∴≤S△AMN<4.【考点】反比例函数综合题;二次函数的最值;最值问题;动点型;综合题.7.如图1,AB是⊙O的直径,E是AB延长线上一点,EC切⊙O于点C,OP⊥AO交AC于点P,交EC的延长线于点D.(1)求证:△PCD是等腰三角形;(2)CG⊥AB于H点,交⊙O于G点,过B点作BF∥EC,交⊙O于点F,交CG于Q点,连接AF,如图2,若sinE=,CQ=5,求AF的值.【答案】(1)证明见解析;(2)12.【解析】(1)连接OC,由切线性质和垂直性质得∠1+∠3=90°、∠2+∠4=90°,继而可得∠3=∠5得证;(2)连接OC、BC,先根据切线性质和平行线性质及垂直性质证∠BCG=∠QBC得QC=QB=5,而sinE=sin∠ABF=,可知QH=3、BH=4,设圆的半径为r,在RT在△OCH中根据勾股定理可得r的值,在RT△ABF中根据三角函数可得答案.试题解析:(1)连接OC,∵EC切⊙O于点C,∴OC⊥DE,∴∠1+∠3=90°,又∵OP⊥OA,∴∠2+∠4=90°,∵OA=OC,∴∠1=∠2,∴∠3=∠4,又∵∠4=∠5,∴∠3=∠5,∴DP=DC,即△PCD为等腰三角形;(2)如图2,连接OC、BC.∵DE与⊙O相切于点E,∴∠OCB+∠BCE=90°,∵OC=OB,∴∠OCB=∠OBC,∴∠OBC+∠BCE=90°,又∵CG⊥AB,∴∠OBC+∠BCG=90°,∴∠BCE=∠BCG,∵BF∥DE,∴∠BCE=∠QBC,∴∠BCG=∠QBC,∴QC=QB=5,∵BF∥DE,∴∠ABF=∠E,∵sinE=,∴sin∠ABF=,∴QH=3、BH=4,设⊙O的半径为r,∴在△OCH中,,解得:r=10,又∵∠AFB=90°,sin∠ABF=,∴AF=12.【考点】切线的性质;垂径定理.。
初中数学九年级专项训练中考数学试题分类汇编(一次函数的几何应用,一次函数的实际问题)
![初中数学九年级专项训练中考数学试题分类汇编(一次函数的几何应用,一次函数的实际问题)](https://img.taocdn.com/s3/m/3fb4ee80caaedd3382c4d310.png)
一次函数的几何应用,一次函数的实际问题一、选择5、(陕西省)如图,直线对应的函数表达式是()答案: A9、( 江苏常州 ) 甲、乙两同学骑自行车从 A 地沿同一条路到 B 地, 已知乙比甲先出发 , 他们离出发地的距离 s(km) 和骑行时间 t(h) 之间的函数关系如图所示 , 给出下列说法 : 【】(1)他们都骑行了 20km;(2)乙在途中停留了 0.5h;(3)甲、乙两人同时到达目的地 ;(4)相遇后 , 甲的速度小于乙的速度 .根据图象信息 , 以上说法正确的有A.1 个B.2 个C.3 个D.4 个答案: B10、 ( 湖北仙桃等 ) 如图,三个大小相同的正方形拼成六边形,一动点从点出发沿着→→→→ 方向匀速运动,最后到达点. 运动过程中的面积()随时间( t )变化的图象大致是()答案: B11、( 黑龙江哈尔滨 )9 .小亮每天从家去学校上学行走的路程为900 米,某天他从家去上学时以每分 30 米的速度行走了 450 米,为了不迟到他加快了速度,以每分 45 米的速度行走完剩下的路程,那么小亮行走过的路程 S(米)与他行走的时间 t (分)之间的函数关系用图象表示正确的是().答案: D12、(黑龙江)5月23日8时40分,哈尔滨铁路局一列满载着2400 吨“爱心”大米的专列向四川灾区进发,途中除 3 次因更换车头等原因必须停车外,一路快速行驶,经过 80 小时到达成都.描述上述过程的大致图象是()答案: D13、(湖北天门)均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度 h 随时间 t 的变化规律如图所示 ( 图中 OABC为一折线 ) ,这个容器的形状是图中().答案: A14、( 湖南怀化 ) 如图 1,是张老师晚上出门散步时离家的距离与时间之间的函数图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是()答案:D15、(山东济南)济南市某储运部紧急调拨一批物资,调进物资共用 4 小时,调进物资 2 小时后开始调出物资(调进物资与调出物资的速度均保持不变). 储运部库存物资 S(吨)与时间 t (小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是()A.4 小时 B.4.4小时 C.4.8小时D.5 小时答案: B16、( 重庆 ) 如图,在直角梯形 ABCD中,DC∥AB,∠A=90°,AB=28cm,DC=24cm,AD=4cm,点 M从点 D 出发,以 1cm/s 的速度向点 C 运动,点 N 从点 B 同时出发,以 2cm/s 的速度向点 A 运动,当其中一个动点到达端点停止运动时,另一个动点2也随之停止运动 . 则四边形 AMND的面积 y(cm)与两动点运动的时间 t (s)的函数图象大致答案: D二、填空1、(江苏省南通市)将点A(, 0)绕着原点顺时针方向旋转45°角得到点B,则点 B 的坐标是 ________.答案:( 4,- 4)2、(江苏省无锡市)已知平面上四点,,,,直线将四边形分成面积相等的两部分,则的值为答案:.3、(江苏省苏州市) 6 月 1 日起,某超市开始有偿提供可重复使用的三种环保..购物袋,每只售价分别为 1 元、 2 元和 3 元,这三种环保购物袋每只最多分别能装大米 3 公斤、 5 公斤和 8 公斤. 6 月 7 日,小星和爸爸在该超市选购了 3 只环保购物袋用来装刚买的 20 公斤散装大米,他们选购的 3 只环保购物袋至少应付..给超市元.答案: 8、湖北荆门 ) 如图,l 1反映了某公司的销售收入与销量的关系, l 24 (反映了该公司产品的销售成本与销量的关系,当该公司赢利 ( 收入大于成本 )时,销售量必须 ____________.答案:大于 45、(山东烟台)如图是某工程队在“村村通”工程中,修筑的公路长度(米)与时间(天)之间的关系图象. 根据图象提供的信息,可知该公路的长度是______米.答案: 504三、解答题1、(湖北襄樊)我国是世界上严重缺水的国家之一. 为了增强居民的节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费 . 即一月用水 10 吨以内 ( 包括 10 吨 ) 用户 , 每吨收水费 a 元 ; 一月用水超过 10 吨的用户 ,10 吨水仍按每吨 a 元水费 , 超过的部分每吨按 b 元(b>a) 收费 . 设一户居民月用水 y 元 ,y 与 x 之间的函数关系如图所示 .(1) 求 a 的值 , 若某户居民上月用水8 吨 , 应收水费多少元 ?(2)求 b 的值 , 并写出当 x 大于 10 时 ,y 与 x 之间的函数关系 ;(3)已知居民甲上月比居民乙多用水 4 吨, 两家共收水费 46元 , 求他们上月分别用水多少吨 ?解:( 1)当 x≤ 10 时,有 y=ax.将x=10,y=15代入,得a=1.5用水 8 吨应收水费 8×1.5=12 (元)(2)当 x>10 时,有(3)将 x=20,y=35 代入,得 35=10b+15. b=2(4)故当 x>10 时, y=2x- 5(5)因 1.5 ×10+1.5 ×10+2×4<46.所以甲、乙两家上月用水均超过10 吨则解之,得故居民甲上月用水16 吨,居民乙上月用水12 吨2、(湖北孝感)某股份有限公司根据公司实际情况,对本公司职工实行内部医疗公积金制度,公司规定:(一)每位职工在年初需缴纳医疗公积金m元;(二)职工个人当年治病花费的医疗费年底按表 1 的办法分段处理:表 1分段方式处理办法不超过 150 元(含 150 元)全部由个人承担超过 150 元,不超过 10000 元(不含 150个人承担n%,剩余部分由公司承担元,含 10000 元)的部分超过 10000 元(不含 10000 元)的部分全部由公司承担设一职工当年治病花费的医疗费为x 元,他个人实际承担的费用(包括医疗费个人承担的部分和缴纳的医疗公积金m元)为 y 元( 1)由表 1 可知,当时,;那么,当时,y=;(用含 m、 n、x 的方式表示)(2)该公司职工小陈和大李 2007 年治病花费的医疗费和他们个人实际承担的费用如表 2:职工治病花费的医疗费 x(元)个人实际承担的费用 y(元)小陈300280大李500320请根据表 2 中的信息,求 m、n 的值,并求出当时, y 关于 x 函数解析式;(3)该公司职工个人一年因病实际承担费用最多只需要多少元?(直接写出结果)解: 1)(2)由表2 知,小陈和大李的医疗费超过150 元而小于10000 元,因此有:( 3)个人实际承担的费用最多只需2220 元。
初三历年中考真题数学试卷
![初三历年中考真题数学试卷](https://img.taocdn.com/s3/m/da067ec050e79b89680203d8ce2f0066f533649b.png)
一、选择题(每题3分,共30分)1. 下列数中,有理数是()A. √9B. √16 - √25C. πD. -π2. 已知a > 0,b < 0,则下列不等式中正确的是()A. a + b > 0B. a - b < 0C. ab > 0D. a/b > 03. 下列函数中,自变量x的取值范围是全体实数的是()A. y = 1/xB. y = √(x - 1)C. y = x²D. y = |x|4. 已知一次函数y = kx + b的图象经过点A(1,2),B(3,-4),则下列结论正确的是()A. k > 0,b > 0B. k < 0,b > 0C. k > 0,b < 0D. k < 0,b < 05. 在直角坐标系中,点P(2,3)关于y轴的对称点是()A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)6. 一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的周长是()A. 24cmB. 26cmC. 28cmD. 30cm7. 下列方程中,无解的是()A. 2x + 3 = 7B. 3x - 4 = 5C. 5x - 2 = 0D. 4x + 3 = 98. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数是()A. 75°B. 90°C. 105°D. 120°9. 已知一元二次方程x² - 5x + 6 = 0,则该方程的解为()A. x = 2,x = 3B. x = 1,x = 4C. x = 2,x = 2D. x = 3,x = 310. 下列函数中,奇函数是()A. y = x²B. y = |x|C. y = x³D. y = x + 1二、填空题(每题3分,共30分)11. 计算:-5 + 3 - 2 - (-1) = ________12. 化简:3x² - 5x + 2 - (2x² - 3x + 1) = ________13. 已知函数y = 2x - 1,当x = 3时,y的值为 ________14. 在直角坐标系中,点A(-2,3)关于x轴的对称点是 ________15. 一个等边三角形的边长为6cm,则该三角形的周长是 ________16. 解方程:2(x - 3) = 5 + 3(x + 2)17. 已知∠A = 30°,∠B = 45°,则∠C的度数是 ________18. 化简:√(9x²) = ________19. 计算下列函数的值:y = 3x - 2,当x = -1时,y = ________20. 解方程:2x² - 5x + 2 = 0三、解答题(每题10分,共40分)21. 已知一次函数y = kx + b的图象经过点A(1,-2),B(3,6),求该函数的解析式。
初三数学中考真题试卷
![初三数学中考真题试卷](https://img.taocdn.com/s3/m/b62f561f326c1eb91a37f111f18583d049640feb.png)
初三数学中考真题试卷一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.1416B. 0.3333...C. √2D. 22/72. 一个直角三角形的两条直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 83. 如果一个数的平方等于该数本身,那么这个数可能是:A. 1B. -1C. 0D. 1或-14. 下列哪个表达式的结果是一个正整数?A. √49B. √0.16C. -√4D. √(-1)5. 一个圆的半径为5,那么它的面积是:A. 25πC. 100πD. 125π6. 一个多项式P(x) = 2x^3 - 3x^2 + x - 5,它的导数P'(x)是:A. 6x^2 - 6x + 1B. 6x^2 - 6xC. 2x^2 - 3x + 1D. 2x^3 - 3x^27. 如果a和b是方程x^2 + 5x + 6 = 0的两个根,那么a + b的值是:A. -3B. -5C. -6D. 08. 一个数列1, 2, 3, ..., 10的和可以用以下哪个公式表示?A. (10 × 11) / 2B. 10 × 11C. 10^2D. 10^2 / 29. 下列哪个是等差数列5, 7, 9, 11, ...的第10项?A. 25B. 26C. 27D. 2810. 如果一个函数f(x) = 3x - 2,那么f(3)的值是:A. 7C. 9D. 10二、填空题(每题2分,共20分)11. 一个正数的平方根是4,那么这个数是________。
12. 一个数的相反数是-5,那么这个数是________。
13. 如果一个圆的直径是14cm,那么它的周长是________cm。
14. 一个直角三角形的两条直角边分别为6cm和8cm,那么它的面积是________cm²。
15. 一个等差数列的首项是2,公差是3,那么第5项是________。
中考数学试卷含答案初三九年级数学试题
![中考数学试卷含答案初三九年级数学试题](https://img.taocdn.com/s3/m/4743ae7a7f21af45b307e87101f69e314332fa46.png)
中考数学试卷一、选择题(每小题3分,共30分)每小题给出的四个选项中,只有一个是符合题意的.1.﹣3的绝对值是()A.±3B.﹣3C.3D.2.下列运算中正确的是()A.(a2)3=a5B.(2x+1)(2x﹣1)=2x2﹣1C.a8a2=a4D.(a﹣3)2=a2﹣6a+93.已知关于x的一元一次方程2(x﹣1)+3a=3的解为4,则a的值是()A.﹣1B.1C.﹣2D.﹣34.某小组长统计组内5人一天在课堂上的发言次数分別为3,3,0,4,5.关于这组数据,下列说法错误的是()A.众数是3B.中位数是0C.平均数3D.方差是2.85.如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上方小正方体的个数,这个立体图形的左视图是()A.B.C.D.6.一元一次不等式组的最大整数解是()A.﹣1B.0C.1D.27.如图,⊙O是正五边形ABCDE的外接圆,点P是的一点,则∠CPD的度数是()A.30°B.36°C.45°D.72°8.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中错误的是()A.小明吃早餐用时5分钟B.小华到学校的平均速度是240米/分C.小明跑步的平均速度是100米/分D.小华到学校的时间是7:559.如图为一次函数y=ax﹣2a与反比例函数y=﹣(a≠0)在同一坐标系中的大致图象,其中较准确的是()A.B.C.D.10.若用“*”表示一种运算规则,我们规定:a*b=ab﹣a+b,如:3*2=3×2﹣3+2=5.以下说法中错误的是()A.不等式(﹣2)*(3﹣x)<2的解集是x<3B.函数y=(x+2)*x的图象与x轴有两个交点C.在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数D.方程(x﹣2)*3=5的解是x=5二、填空题(每小题3分,共15分)把正确答案直接填写在答题卡对应题目的横线上.11.某物体质量为325000克,用科学记数法表示为克.12.一个多边形的每一个外角都是18°,这个多边形的边数为.13.如图,∠A=22°,∠E=30°,AC∥EF,则∠1的度数为.14.如图是一块测环形玉片的残片,作外圆的弦AB与内圆相切于点C,量得AB=8cm、点C与的中点D的距离CD=2cm.则此圆环形士片的外圆半径为cm.15.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,以点A为原点建立平面直角坐标系,使AB在x轴正半轴上,点D是AC边上的一个动点,DE∥AB交BC于E,DF⊥AB于F,EG⊥AB 于G.以下结论:①△AFD∽△DCE∽△EGB;②当D为AC的中点时,△AFD≌△DCE;③点C的坐标为(3.2,2.4);④将△ABC沿AC所在的直线翻折到原来的平面,点B的对应点B1的坐标为(1.6,4.8);⑤矩形DEGF的最大面积为3.在这此结论中正确的有(只填序号)三、解答题(共75分)要求写出必安的解答步骤或证明过程.16.(6分)计算:+(sin75°﹣2018)0﹣(﹣)﹣2﹣4cos30°.17.(7分)先化简,再求值:÷(﹣),其中a =+2.18.(7分)如图,在菱形ABCD中,过B作BE⊥AD于E,过B作BF⊥CD于F.求证:AE=CF.19.(8分)为了提高学生的身体素质,某班级决定开展球类活动,要求每个学生必须在篮球、足球、排球、兵乓球、羽毛球中选择一项参加训练(只选择一项),根据学生的报名情况制成如下统计表:项目篮球足球排球乒乓球羽毛球报名人数1284a1024%b 占总人数的百分比(1)该班学生的总人数为人;(2)由表中的数据可知:a=,b=;(3)报名参加排球训练的四个人为两男(分别记为A、B)两女(分别记为C、D),现要随机在这4人中选2人参加学校组织的校级训练,请用列表或树状图的方法求出刚好选中一男一女的概率.20.(8分)某报刊销售处从报社购进甲、乙两种报纸进行销售.已知从报社购进甲种报纸200份与乙种报纸300份共需360元,购进甲种报纸300份与乙种报纸200份共需340元(1)求购进甲、乙两种报纸的单价;(2)已知销售处卖出甲、乙两种报纸的售价分别为每份1元、1.5元.销售处每天从报社购进甲、乙两种报纸共600份,若每天能全部销售完并且销售这两种报纸的总利润不低于300元,问该销售处每天最多购进甲种报纸多少份?21.(8分)如图,雨后初睛,李老师在公园散步,看见积水水面上出现梯步上方树的倒影,于是想利用倒影与物体的对称性测量这颗树的高度,他的方法是:测得树顶的仰角∠1、测量点A到水面平台的垂直高度AB、看到倒影顶端的视线与水面交点C到AB的水半距离BC.再测得梯步斜坡的坡角∠2和长度EF,根据以下数据进行计算,如图,AB=2米,BC=1米,EF=4米,∠l=60°,∠2=45°.已知线段ON和线段OD关于直线OB对称.(以下结果保留根号)(1)求梯步的高度MO;(2)求树高MN.22.(9分)如图,矩形ABCD在平面直角坐标系的第一象限内,BC与x轴平行,AB=1,点C的坐标为(6,2),E是AD的中点;反比例函数y1=(x>0)图象经过点C和点E,过点B的直线y2=ax+b与反比例函数图象交于点F,点F的纵坐标为4.(1)求反比例函数的解析式和点E的坐标;(2)求直线BF的解析式;(3)直接写出y1>y2时,自变量x的取值范围.23.(10分)如图1,D是⊙O的直径BC上的一点,过D作DE⊥BC交⊙O于E、N,F是⊙O上的一点,过F的直线分别与CB、DE的延长线相交于A、P,连结CF交PD于M,∠C=P.(1)求证:PA是⊙O的切线;(2)若∠A=30°,⊙O的半径为4,DM=1,求PM的长;(3)如图2,在(2)的条件下,连结BF、BM;在线段DN上有一点H,并且以H、D、C为顶点的三角形与△BFM相似,求DH的长度.24.(12分)已知抛物线的顶点为(2,﹣4)并经过点(﹣2,4),点A在抛物线的对称轴上并且纵坐标为﹣,抛物线交y轴于点N.如图1.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的一点,△ANP为等腰三角形,求点P的坐标;(3)如图2,点B为直线y=﹣2上的一个动点,过点B的直线l与AB垂直①求证:直线l与抛物线总有两个交点;②设直线1与抛物线交于点C、D(点C在左侧),分别过点C、D作直线y=﹣2的垂线,垂足分别为E、F.求EF的长.中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)每小题给出的四个选项中,只有一个是符合题意的.1.﹣3的绝对值是()A.±3B.﹣3C.3D.【分析】根据绝对值的定义回答即可.【解答】解:﹣3的绝对值是3.故选:C.【点评】本题主要考查了绝对值得定义,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解答此题的关键.2.下列运算中正确的是()A.(a2)3=a5B.(2x+1)(2x﹣1)=2x2﹣1C.a8a2=a4D.(a﹣3)2=a2﹣6a+9【分析】根据幂的乘方、同底数幂的乘法、平方差公式和完全平方公式分别求出每个式子的值,再判断即可.【解答】解:A、结果是a6,故本选项不符合题意;B、结果是4x2﹣1,故本选项不符合题意;C、结果是a10,故本选项不符合题意;D、结果是a2﹣6a+9,故本选项符合题意;故选:D.【点评】本题考查了幂的乘方、同底数幂的乘法、平方差公式和完全平方公式等知识点,能正确求出每个式子的值是解此题的关键.3.已知关于x的一元一次方程2(x﹣1)+3a=3的解为4,则a的值是()A.﹣1B.1C.﹣2D.﹣3【分析】将x=4代入方程中即可求出a的值.【解答】解:将x=4代入2(x﹣1)+3a=3,∴2×3+3a=3,∴a=﹣1,故选:A.【点评】本题考查一元一次方程的解,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.4.某小组长统计组内5人一天在课堂上的发言次数分別为3,3,0,4,5.关于这组数据,下列说法错误的是()A.众数是3B.中位数是0C.平均数3D.方差是2.8【分析】根据方差、众数、平均数、中位数的含义和求法,逐一判断即可.【解答】解:将数据重新排列为0,3,3,4,5,则这组数的众数为3,中位数为3,平均数为=3,方差为×[(0﹣3)2+2×(3﹣3)2+(4﹣3)2+(5﹣3)2]=2.8,故选:B.【点评】本题考查了众数、中位数、平均数以及方差,解题的关键是牢记概念及公式.5.如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上方小正方体的个数,这个立体图形的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:根据该几何体中小正方体的分布知,其左视图共2列,第1列有1个正方形,第2列有3个正方形,故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.一元一次不等式组的最大整数解是()A.﹣1B.0C.1D.2【分析】求出不等式组的解集,即可求出正最大整数解;【解答】解:,由①得到:2x+6﹣4≥0,∴x≥﹣1,由②得到:x+1>3x﹣3,∴x<2,∴﹣1≤x<2,∴最大整数解是1,故选:C.【点评】本题考查一元一次不等式组的整数解,解题的关键是熟练掌握解不等式组的方法,属于中考常考题型.7.如图,⊙O是正五边形ABCDE的外接圆,点P是的一点,则∠CPD的度数是()A.30°B.36°C.45°D.72°【分析】连接OC,OD.求出∠COD的度数,再根据圆周角定理即可解决问题;【解答】解:如图,连接OC,OD.∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,故选:B.【点评】本题考查正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中错误的是()A.小明吃早餐用时5分钟B.小华到学校的平均速度是240米/分C.小明跑步的平均速度是100米/分D.小华到学校的时间是7:55【分析】根据函数图象中各拐点的实际意义求解可得.【解答】解:A、小明吃早餐用时13﹣8=5分钟,此选项正确;B、小华到学校的平均速度是1200÷(13﹣8)=240(米/分),此选项正确;C、小明跑步的平均速度是(1200﹣500)÷(20﹣13)=100(米/分),此选项正确;D、小华到学校的时间是7:53,此选项错误;故选:D.【点评】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键.9.如图为一次函数y=ax﹣2a与反比例函数y=﹣(a≠0)在同一坐标系中的大致图象,其中较准确的是()A.B.C.D.【分析】根据题意列出方程组,根据一元二次方程解的情况判断..【解答】解:ax﹣2a=﹣,则x﹣2=﹣,整理得,x2﹣2x+1=0,△=0,∴一次函数y=ax﹣2a与反比例函数y=﹣只有一个公共点,故选:B.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的图象和性质,函数图象的交点的求法是解题的关键.10.若用“*”表示一种运算规则,我们规定:a*b=ab﹣a+b,如:3*2=3×2﹣3+2=5.以下说法中错误的是()A.不等式(﹣2)*(3﹣x)<2的解集是x<3B.函数y=(x+2)*x的图象与x轴有两个交点C.在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数D.方程(x﹣2)*3=5的解是x=5【分析】根据题目中的新规定和二次函数的性质、不等式的性质,可以判断各个选项中的结论是否正确,本题得以解决.【解答】解:∵a*b=ab﹣a+b,∴(﹣2)*(3﹣x)=(﹣2)×(3﹣x)﹣(﹣2)+(3﹣x)=x﹣1,∵(﹣2)*(3﹣x)<2,∴x﹣1<2,解得x<3,故选项A正确;∵y=(x+2)*x=(x+2)x﹣(x+2)+x=x2+2x﹣2,∴当y=0时,x2+2x﹣2=0,解得,x1=﹣1+,x2=﹣1﹣,故选项B正确;∵a*(a+1)=a(a+1)﹣a+(a+1)=a2+a+1=(a+)2+>0,∴在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数,故选项C正确;∵(x﹣2)*3=5,∴(x﹣2)×3﹣(x﹣2)+3=5,解得,x=3,故选项D错误;故选:D.【点评】本题考查抛物线与x轴的交点、非负数的性质、解一元一次方程、解一元一次不等式,解答本题的关键是明确题意,可以判断各个选项中的说法是否正确.二、填空题(每小题3分,共15分)把正确答案直接填写在答题卡对应题目的横线上.11.某物体质量为325000克,用科学记数法表示为 3.25×105克.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:某物体质量为325000克,用科学记数法表示为3.25×105克.故答案为:3.25×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.一个多边形的每一个外角都是18°,这个多边形的边数为二十.【分析】根据多边形的外角和为360°,求出多边形的边数即可.【解答】解:设正多边形的边数为n,由题意得,n×18°=360°,解得:n=20.故答案为:二十.【点评】本题考查根据多边形的外角和求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.13.如图,∠A=22°,∠E=30°,AC∥EF,则∠1的度数为52°.【分析】依据∠E=30°,AC∥EF,即可得到∠AGH=∠E=30°,再根据∠1是△AGH的外角,即可得出∠1=∠A+∠AGH=52°.【解答】解:如图,∵∠E=30°,AC∥EF,∴∠AGH=∠E=30°,又∵∠1是△AGH的外角,∴∠1=∠A+∠AGH=22°+30°=52°,故答案为:52°.【点评】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.14.如图是一块测环形玉片的残片,作外圆的弦AB与内圆相切于点C,量得AB=8cm、点C与的中点D的距离CD=2cm.则此圆环形士片的外圆半径为5cm.【分析】根据垂径定理求得AC=4cm,然后根据勾股定理即可求得半径.【解答】解:如图,连接OA,∵CD=2cm,AB=8cm,∵CD⊥AB,∴OD⊥AB,∴AC=AB=4cm,∴设半径为r,则OD=r﹣2,根据题意得:r2=(r﹣2)2+42,解得:r=5.∴这个玉片的外圆半径长为5cm.故答案为:5.【点评】本题考查了垂径定理的应用以及勾股定理的应用,作出辅助线构建直角三角形是本题的关键.15.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,以点A为原点建立平面直角坐标系,使AB在x轴正半轴上,点D是AC边上的一个动点,DE∥AB交BC于E,DF⊥AB于F,EG⊥AB 于G.以下结论:①△AFD∽△DCE∽△EGB;②当D为AC的中点时,△AFD≌△DCE;③点C的坐标为(3.2,2.4);④将△ABC沿AC所在的直线翻折到原来的平面,点B的对应点B1的坐标为(1.6,4.8);⑤矩形DEGF的最大面积为3.在这此结论中正确的有①③⑤(只填序号)【分析】①正确,根据两角对应相等的两个三角形相似即可判断;②错误.根据斜边不相等即可判断;③正确.求出点C坐标即可判断;④错误.求出点B1即可判断;⑤正确.首先证明四边形DEGF是矩形,推出DF=EG,DE=FG,设DF=EG=x,构建二次函数,利用二次函数的性质即可判断;【解答】解:如图,作CH⊥AB于H.∵DF⊥AB于F,EG⊥AB于G,∴∠AFD=∠DCE=∠EGB=90°,∵DE∥AB,∴∠CDE=∠DAF,∠CED=∠EBG,∴△AFD∽△DCE∽△EGB;故①正确;当AD=CD时,∵DE>CD,∴DE>AD,∴△AFD与△DCE不全等,故②错误,在Rt△ACB中,∵AC=4,BC=3,∴AB=5,CH===2.4,∴AH==3.2,∴C(3.2,2.4),故③正确,将△ABC沿AC所在的直线翻折到原来的平面,点B的对应点B1,设B1为(m,n),则有=3.2,m=1.4,=2.4,n=4.8,∴B1(1.4,4.8),故④错误;∵DF⊥AB于F,EG⊥AB于G,∴DF∥EG,∵DE∥AB,∴四边形DEGF是平行四边形,∵∠DFG=90°,∴四边形DEGF是矩形,∴DF=EG,DE=FG,设DF=EG=x,则AF x,BG=x,∴DE=FG=5﹣x﹣x=5﹣x,∵S矩形DEGF=x(5﹣x)=﹣x2+5x,∵﹣<0,∴S的最大值==3,故⑤正确,综上所述,正确的有:①③⑤,故答案为①③⑤.【点评】本题考查相似三角形综合题、全等三角形的判定和性质、矩形的判定和性质、二次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建二次函数,解决最值问题,属于中考压轴题.三、解答题(共75分)要求写出必安的解答步骤或证明过程.16.(6分)计算:+(sin75°﹣2018)0﹣(﹣)﹣2﹣4cos30°.【分析】根据零指数幂的意义、负整数指数幂的意义以及特殊角锐角三角函数的值即可求出答案.【解答】解:原式=2+1﹣(﹣3)2﹣4×=2+1﹣9﹣2=﹣8【点评】本题考查实数的运算,解题的关键是熟练运用有关运算性质,本题属于基础题型.17.(7分)先化简,再求值:÷(﹣),其中a=+2.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将a的值代入计算即可求出值.【解答】解:÷(﹣),=÷,=÷,=•,=.当a =+2时,原式==1+2.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.(7分)如图,在菱形ABCD中,过B作BE⊥AD于E,过B作BF⊥CD于F.求证:AE=CF.【分析】根据菱形的性质和全等三角形的判定和性质解答即可.【解答】证明:∵菱形ABCD,∴BA=BC,∠A=∠C,∵BE⊥AD,BF⊥CD,∴∠BEA=∠BFC=90°,在△ABE与△CBF中,∴△ABE≌△CBF(AAS),∴AE=CF.【点评】此题考查菱形的性质,关键是根据菱形的性质和全等三角形的判定和性质解答.19.(8分)为了提高学生的身体素质,某班级决定开展球类活动,要求每个学生必须在篮球、足球、排球、兵乓球、羽毛球中选择一项参加训练(只选择一项),根据学生的报名情况制成如下统计表:项目篮球足球排球乒乓球羽毛球报名人数1284a1024%b 占总人数的百分比(1)该班学生的总人数为50人;(2)由表中的数据可知:a=16,b=24%;(3)报名参加排球训练的四个人为两男(分别记为A、B)两女(分别记为C、D),现要随机在这4人中选2人参加学校组织的校级训练,请用列表或树状图的方法求出刚好选中一男一女的概率.【分析】(1)用篮球的人数除以其所占百分比即可得总人数;(2)根据各项目的人数之和等于总人数可求得a的值,用羽毛球的人数除以总人数可得b的值;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选中一男一女的情况,再利用概率公式即可求得答案.【解答】解:(1)该班学生的总人数为12÷24%=50(人),故答案为:50;(2)a=50﹣(12+8+4+10)=16,则b=×100%=20%,故答案为:16,24%;(3)画树状图如下:由树状图知,共有12种等可能结果,其中刚好选中一男一女的有8种结果,∴刚好选中一男一女的概率为=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)某报刊销售处从报社购进甲、乙两种报纸进行销售.已知从报社购进甲种报纸200份与乙种报纸300份共需360元,购进甲种报纸300份与乙种报纸200份共需340元(1)求购进甲、乙两种报纸的单价;(2)已知销售处卖出甲、乙两种报纸的售价分别为每份1元、1.5元.销售处每天从报社购进甲、乙两种报纸共600份,若每天能全部销售完并且销售这两种报纸的总利润不低于300元,问该销售处每天最多购进甲种报纸多少份?【分析】(1)设甲、乙两种报纸的单价分别是x元、y元,根据购进甲种报纸200份与乙种报纸300份共需360元,购进甲种报纸300份与乙种报纸200份共需340元列出方程组,解方程组即可;(2)设该销售处每天购进甲种报纸a份,根据销售这两种报纸的总利润不低于300元列出不等式,求解即可.【解答】解:(1)设甲、乙两种报纸的单价分别是x元、y元,根据题意得,解得.答:甲、乙两种报纸的单价分别是0.6元、0.8元;(2)设该销售处每天购进甲种报纸a份,根据题意,得(1﹣0.6)a+(1.5﹣0.8)(600﹣a)≥300,解得a≤400.答:该销售处每天最多购进甲种报纸400份.【点评】本题考查了二元一次方程组的应用,一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系与不等关系.21.(8分)如图,雨后初睛,李老师在公园散步,看见积水水面上出现梯步上方树的倒影,于是想利用倒影与物体的对称性测量这颗树的高度,他的方法是:测得树顶的仰角∠1、测量点A到水面平台的垂直高度AB、看到倒影顶端的视线与水面交点C到AB的水半距离BC.再测得梯步斜坡的坡角∠2和长度EF,根据以下数据进行计算,如图,AB=2米,BC=1米,EF=4米,∠l=60°,∠2=45°.已知线段ON和线段OD关于直线OB对称.(以下结果保留根号)(1)求梯步的高度MO;(2)求树高MN.【分析】(1)如图,作EH⊥OB于H.则四边形MOHE是矩形.解Rt△EHF求出EH即可解决问题;(2)设ON=OD=m.作AK⊥ON于K.则四边形AKOB是矩形,AK=BO,OK=AB=2,想办法构建方程求出m即可解决问题;【解答】解:(1)如图,作EH⊥OB于H.则四边形MOHE是矩形.∴OM=EH,∵∠EHF=90°,EF=4,∠2=45°,∴EH=FH=OM=4米.(2)设ON=OD=m.作AK⊥ON于K.则四边形AKOB是矩形,AK=BO,OK=AB=2∵AB∥OD,∴=,∴=,∴OC=,∴AK=OB=+1,NK=m﹣2,在Rt△AKN中,∵∠1=60°,∴NK=AK,∴m﹣2=(+1),∴m=(14+8)米,∴MN=ON﹣OM=14+8﹣4=(14+4)米.【点评】本题考查解直角三角形的应用,轴对称的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数解决问题,属于中考常考题型.22.(9分)如图,矩形ABCD在平面直角坐标系的第一象限内,BC与x轴平行,AB=1,点C的坐标为(6,2),E是AD的中点;反比例函数y1=(x>0)图象经过点C和点E,过点B的直线y2=ax+b与反比例函数图象交于点F,点F的纵坐标为4.(1)求反比例函数的解析式和点E的坐标;(2)求直线BF的解析式;(3)直接写出y1>y2时,自变量x的取值范围.【分析】(1)把C点的坐标代入,即可求出反比例函数的解析式,再求出E点的坐标即可;(2)求出B、F的坐标,再求出解析式即可;(3)先求出两函数的交点坐标,即可得出答案.)【解答】解:(1)∵反比例函数y1=(x>0)图象经过点C,C点的坐标为(6,2),∴k=6×2=12,即反比例函数的解析式是y1=,∵矩形ABCD在平面直角坐标系的第一象限内,BC与x轴平行,AB=1,点C的坐标为(6,2),∴点E的纵坐标是2+1=3,把y=3代入y1=得:x=4,即点E的坐标为(4,3);(2)∵过点B的直线y2=ax+b与反比例函数图象交于点F,点F的纵坐标为4,把y=4代入y1=得:4=,解得:x=3,即F点的坐标为(3,4),∵E(4,3),C(6,2),E为矩形ABCD的边AD的中点,∴AE=DE=6﹣4=2,∴B点的横坐标为4﹣2=2,即点B的坐标为(2,2),把B、F点的坐标代入直线y2=ax+b得:,解得:a=2,b=﹣2,即直线BF的解析式是y=2x﹣2;(3)∵反比例函数在第一象限,F(3,4),∴当y1>y2时,自变量x的取值范围是0<x<3.【点评】本题考查了一次函数与反比例函数的交点问题、函数的图象、用待定系数法求出一次函数与反比例函数的解析式、矩形的性质等知识点,能正确求出两函数的解析式是解此题的关键.23.(10分)如图1,D是⊙O的直径BC上的一点,过D作DE⊥BC交⊙O于E、N,F是⊙O上的一点,过F的直线分别与CB、DE的延长线相交于A、P,连结CF交PD于M,∠C=P.(1)求证:PA是⊙O的切线;(2)若∠A=30°,⊙O的半径为4,DM=1,求PM的长;(3)如图2,在(2)的条件下,连结BF、BM;在线段DN上有一点H,并且以H、D、C为顶点的三角形与△BFM相似,求DH的长度.【分析】(1)如图1中,作PH⊥FM于H.想办法证明∠PFH=∠PMH,∠C=∠OFC,再根据等角的余角相等即可解决问题;(2)解直角三角形求出AD,PD即可解决问题;(3)分两种情形①当△CDH∽△BFM时,=.②当△CDH∽△MFB时,=,分别构建方程即可解决问题;【解答】(1)证明:如图1中,作PH⊥FM于H.∵PD⊥AC,∴∠PHM=∠CDM=90°,∵∠PMH=∠DMC,∴∠C=∠MPH,∵∠C=∠FPM,∴∠HPF=∠HPM,∵∠HFP+∠HPF=90°,∠HMP+∠HPM=90°,∴∠PFH=∠PMH,∵OF=OC,∴∠C=∠OFC,∵∠C+∠CDM=∠C+∠PMF=∠C+∠PFH=90°,∴∠OFC+∠PFC=90°,∴∠OFP=90°,∴直线PA是⊙O的切线.(2)解:如图1中,∵∠A=30°,∠AFO=90°,∴∠AOF=60°,∵∠AOF=∠OFC+∠OCF,∠OFC=∠OCF,∴∠C=30°,∵⊙O的半径为4,DM=1,∴OA=2OF=8,CD=DM=,∴OD=OC﹣CD=4﹣,∴AD=OA+OD=8+4﹣=12﹣,在Rt△ADP中,DP=AD•tan30°=(12﹣)×=4﹣1,∴PM=PD﹣DM=4﹣2.(3)如图2中,由(2)可知:BF=BC=4,FM=BF=4,CM=2DM=2,CD=,∴FM=FC﹣CM=4﹣2,①当△CDH∽△BFM时,=,∴=,∴DH=②当△CDH∽△MFB时,=,∴=,∴DH=,∵DN==,∴DH<DN,符合题意,综上所述,满足条件的DH的值为或.【点评】本题考查圆综合题、切线的判定、解直角三角形、相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题,属于中考压轴题.24.(12分)已知抛物线的顶点为(2,﹣4)并经过点(﹣2,4),点A在抛物线的对称轴上并且纵坐标为﹣,抛物线交y轴于点N.如图1.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的一点,△ANP为等腰三角形,求点P的坐标;(3)如图2,点B为直线y=﹣2上的一个动点,过点B的直线l与AB垂直①求证:直线l与抛物线总有两个交点;②设直线1与抛物线交于点C、D(点C在左侧),分别过点C、D作直线y=﹣2的垂线,垂足分别为E、F.求EF的长.【分析】(1)由题意设抛物线的解析式为y=a(x﹣2)2﹣4,把(﹣2,4)代入求出a即可解决问题;(2)利用勾股定理求出AN的长,分三种情形分别求解即可解决问题;(3)①设B(m,﹣2),则直线AB的解析式为y=x+,由直线l⊥AB,推出直线l 的解析式为y=(2m﹣4)x﹣2m2+4m﹣2,由,消去y得到:∴x2+4(1﹣m)x+4(m2﹣2m)=0,只要证明△>0即可;②设C(x1,y1),D(x2,y2),由①可知:EF=x2﹣x1,求出方程的两根即可解决问题;【解答】(1)解:由题意设抛物线的解析式为y=a(x﹣2)2﹣4,把(﹣2,4)代入得到a=,∴抛物线的解析式为y=(x﹣2)2﹣4,即y=x2﹣2x﹣2.(2)解:由题意:A(2,﹣1.5),N(0,﹣2).∴AN==,当PA=AN时,可得P1(2,﹣),P3(2,﹣﹣).当NA=NP时,可得P2(2,﹣),当PN=PA时,设P4(2,a),则有(a+)2=22+(a+2)2,解得a=﹣,∴P4(2,﹣),综上所述,满足条件的点OP坐标为P1(2,﹣),P2(2,﹣),P3(2,﹣﹣),P4(2,﹣);(3)①证明:如图2中,设B(m,﹣2),则直线AB的解析式为y=x+,∵直线l⊥AB,∴直线l的解析式为y=(2m﹣4)x﹣2m2+4m﹣2,由,消去y得到:∴x2+4(1﹣m)x+4(m2﹣2m)=0,∴△=[4(1﹣m)]2﹣4•1•4(m2﹣2m)=16>0,∴直线l与抛物线有两个交点.②设C(x1,y1),D(x2,y2),由①可知:EF=x2﹣x1,∵x2+4(1﹣m)x+4(m2﹣2m)=0,∴x==,∴x2=,x1=,∴EF=x2﹣x1=4.【点评】本题考查二次函数综合题、一次函数的应用、等腰三角形的判定和性质、一元二次方程的根判别式等知识,解题的关键是学会利用参数解决问题,学会构建一次函数,利用方程组解决问题,属于中考压轴题.中考数学二模试卷一.选择题(共10小题,满分30分,每小题3分)1.给出四个数0,,1,﹣2,其中最大的数是()A.0B.C.1D.﹣22.下列各数中,能使有意义的是()A.0B.2C.4D.63.共享单车的投放使用为人们的工作和生活带来了极大的便利,不仅有效缓解了出行“最后一公里”问题,而且经济环保,据相关部门2018年11月统计数据显示,郑州市互联网租赁自行车累计投放超过49万辆,将49万用科学记数法表示正确的是()A.4.9×104B.4.9×105C.0.49×104D.49×1044.如图,由五个完全相同的小正方体组合搭成一个几何体,把正方体A向右平移到正方体P前面,其“三视图”中发生变化的是()A.主视图B.左视图C.俯视图D.主视图和左视图5.下列各式计算正确的是()A.a3+2a2=3a5B.3+4=7C.(a6)2÷(a4)3=0D.(a3)2•a4=a96.下列说法正确的是()A.周长相等的两个三角形全等B.面积相等的两个三角形全等C.三个角对应相等的两个三角形全等D.三条边对应相等的两个三角形全等7.在下列函数中,其图象与x轴没有交点的是()A.y=2x B.y=﹣3x+1C.y=x2D.y=8.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分9.下列图形中,属于轴对称图形的是()A.B.C.D.。
中考初三数学试题及答案
![中考初三数学试题及答案](https://img.taocdn.com/s3/m/80c9816391c69ec3d5bbfd0a79563c1ec5dad78b.png)
中考初三数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14B. √2C. 0.33333…D. 1/3答案:B2. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 1/5答案:A3. 一个等腰三角形的顶角为40°,那么它的底角是:A. 70°B. 40°C. 50°D. 60°答案:D4. 下列哪个方程是一元二次方程?A. 2x + 3 = 0B. x² - 4x + 4 = 0C. 3x - 2 = 0D. x² - 2xy + y² = 0答案:B5. 一个数的平方根是2,那么这个数是:A. 4C. 2D. -2答案:A6. 一个数的立方是-8,那么这个数是:A. 2B. -2C. 8D. -8答案:B7. 一个直角三角形的两条直角边长分别是3和4,那么它的斜边长是:A. 5B. 7C. 6答案:A8. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 100πD. 125π答案:C9. 一个数的绝对值是5,那么这个数是:A. 5B. -5C. 5或-5D. 0答案:C10. 一个数的倒数是1/3,那么这个数是:A. 3B. 1/3C. -3D. -1/3答案:A二、填空题(每题3分,共30分)11. 一个数的绝对值是7,这个数是________。
答案:±712. 一个数的平方是16,这个数是________。
答案:±413. 一个数的立方根是-2,这个数是________。
答案:-814. 一个三角形的内角和是________。
答案:180°15. 一个等差数列的首项是2,公差是3,那么它的第5项是________。
答案:1716. 一个等比数列的首项是3,公比是2,那么它的第4项是________。
答案:4817. 一个二次函数y = ax² + bx + c的顶点坐标是(-2, 3),那么a 的值是________。
初三数学中考试题及答案
![初三数学中考试题及答案](https://img.taocdn.com/s3/m/1fefe5093d1ec5da50e2524de518964bce84d214.png)
初三数学中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0.33333...(循环)B. √4C. πD. √9答案:C2. 以下哪个方程是一元二次方程?A. x + 2 = 0B. x² + 2x + 1 = 0C. 2x - 3y = 0D. x³ - 2x² + 3 = 0答案:B3. 若一个角的补角是120°,则该角的度数为:A. 60°B. 30°C. 150°D. 90°答案:A4. 以下哪个函数是一次函数?A. y = 2x + 3B. y = x² + 1C. y = √xD. y = 1/x答案:A5. 在一个直角三角形中,若一个锐角为30°,则另一个锐角的度数为:A. 30°B. 45°C. 60°D. 90°答案:C6. 以下哪个图形是轴对称图形?A. 任意三角形B. 任意四边形C. 等腰梯形D. 任意五边形答案:C7. 已知一个等腰三角形的两边长分别为5和8,那么它的周长可能是:A. 18B. 21C. 26D. 30答案:C8. 以下哪个选项是反比例函数?A. y = 2/xB. y = x + 3C. y = x²D. y = √x答案:A9. 一个数的相反数是-3,那么这个数是:A. 3B. -3C. 0D. 6答案:A10. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 3D. 以上都是答案:D二、填空题(每题3分,共15分)11. 一个数的平方是16,这个数是______。
答案:±412. 一个圆的半径是3cm,那么它的直径是______。
答案:6cm13. 一个等腰三角形的底边长为6cm,腰长为5cm,那么它的周长是______。
答案:16cm14. 一个角的余角是40°,那么这个角的度数是______。
河北初三初中数学中考真卷带答案解析
![河北初三初中数学中考真卷带答案解析](https://img.taocdn.com/s3/m/dfb7f32f7f1922791788e8a6.png)
河北初三初中数学中考真卷班级:___________ 姓名:___________ 分数:___________一、选择题1.计算正确的是()A.(-5)0="0"B.x2+x3=x5C.(ab2)3=a2b5D.2a2·a-1=2a2.下列图形中,既是轴对称图形,又是中心对称图形的是()3.下列运算结果为x-1的是()A.B.C.D.4.若k≠0,b<0,则y=kx+b的图象可能是()5.关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=D.在数轴上可以找到表示的点6.图示为4×4的网格图,A,B,C,D,O均在格点上,点O是()A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心7.在求3x的倒数的值时,嘉淇同学将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是()A.B.C.D.8.a,b,c为常数,且(a-c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .有一根为09.如图,△ABC 中,∠A=78°,AB=4,AC=6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )10.如图,∠AOB=120°,OP 平分∠AOB ,且OP=2.若点M ,N 分别在OA ,OB 上,且△PMN 为等边三角形,则满足上述条件的△PMN 有( )A .1个B .2个C .3个D .3个以上二、填空题1.8的立方根为_______.2.若mn=m+3,则2mn+3m-5nm+10=_____.3.如图,已知∠AOB=7°,一条光线从点A 出发后射向OB 边.若光线与OB 边垂直,则光线沿原路返回到点A ,此时∠A=90°-7°=83°.当∠A <83°时,光线射到OB 边上的点A 1后,经OB 反射到线段AO 上的点A 2,易知∠1=∠2.若A 1A 2⊥AO ,光线又会沿A 2→A 1→A 原路返回到点A ,此时∠A=_____°. ……若光线从点A 发出后,经若干次反射能沿原路返回到点A ,则锐角∠A 的最小值=_______°.三、计算题请你参考黑板中老师的讲解,用运算律简便计算: (1)999×(-15); (2)999×+999×()-999×.四、解答题1.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.2.已知n边形的内角和θ=(n-2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.3.某商店能过调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单价x(元)满足一次函数关系,如下表:已知这n个玩具调整后的单价都大于2元.(1)求y与x的函数关系式,并确定x的取值范围;(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?(3)这n个玩具调整前、后的平均单价分别为,,猜想与的关系式,并写出推导出过.4.如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在AQ(弧)上且不与A点重合,但Q点可与B点重合.发现 AP(弧)的长与QB(弧)的长之和为定值l,求l;思考点M与AB的最大距离为_______,此时点P,A间的距离为_______;点M与AB的最小距离为________,此时半圆M的弧与AB所围成的封闭图形面积为________.探究当半圆M与AB相切时,求AP(弧)的长.(注:结果保留π,cos 35°=,cos 55°=)5.如图,抛物线L: (常数t>0)与x轴从左到右的交点为B,A,过线段OA的中点M作MP⊥x轴,交双曲线于点P,且OA·MP=12.(1)求k值;(2)当t=1时,求AB长,并求直线MP与L对称轴之间的距离;(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标;(4)设L 与双曲线有个交点的横坐标为x 0,且满足4≤x 0≤6,通过L 位置随t 变化的过程,直接写出t 的取值范围.河北初三初中数学中考真卷答案及解析一、选择题1.计算正确的是( )A .(-5)0="0"B .x 2+x 3=x 5C .(ab 2)3=a 2b 5D .2a 2·a -1=2a【答案】D.【解析】除0以外的任何数的0次幂都等于1,故A 项错误;x 2+x 3的结果不是指数相加,故B 项错误;(ab 2)3的结果是括号里的指数和外面的指数都相乘,结果是a 3b 6,故C 项错误;2a 2·a -1的结果是2a ,故答案选D. 【考点】整式的运算.2.下列图形中,既是轴对称图形,又是中心对称图形的是( )【答案】A.【解析】根据轴对称图形和中心对称图形的定义可得,只有选项A 符合要求,故答案选A. 【考点】轴对称图形和中心对称图形的定义.3.下列运算结果为x-1的是( ) A .B .C .D .【答案】B.【解析】选项A ,原式=;选项B ,原式=x-1;选项C ,原式=;选项D ,原式=x+1,故答案选B.【考点】分式的计算.4.若k≠0,b <0,则y=kx+b 的图象可能是( )【答案】B.【解析】一次函数y=kx+b ,k≠0,不可能与x 轴平行,排除D 选项;b <0,说明过3、4象限,排除A 、C 选项,故答案选B.【考点】一次函数图象与系数的关系.5.关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=D.在数轴上可以找到表示的点【答案】A.【解析】是无理数,A项错误,故答案选A.【考点】无理数.6.图示为4×4的网格图,A,B,C,D,O均在格点上,点O是()A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心【答案】B.【解析】点O在△ABC外,且到A、B、C三点距离相等,所以点O为△ABC的外心,故答案选B.【考点】三角形的外心.7.在求3x的倒数的值时,嘉淇同学将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是()A.B.C.D.【答案】B.【解析】根据题意,3X的倒数比8X的倒数大5,故答案选B.【考点】倒数.8.a,b,c为常数,且(a-c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.有一根为0【答案】B.【解析】由(a-c)2>a2+c2得出-2ac>0,因此△=b2-4ac>0,所以方程有两个不相等的实数根,故答案选B.【考点】根的判别式.9.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()【答案】C.【解析】只要三个角相等,或者一角相等,两边成比例即可。
2023年山东省临沂市中考数学真题(答案解析)
![2023年山东省临沂市中考数学真题(答案解析)](https://img.taocdn.com/s3/m/f5843118492fb4daa58da0116c175f0e7dd11948.png)
2023年临沂市初中学业水平考试试题数学一、选择题1.【答案】C【解析】解:2(7)(5)()57=----+=-;故选C .2.【答案】C【解析】解:由题意,可得130ABC ∠=︒,故选:C .3.【答案】B【解析】解:最符合视图特点的建筑物的图片是选项B 所示图片.故选:B .4.【答案】A【解析】解:由题意,得:点B 的坐标为(6,2);故选A .5.【答案】C【解析】解:∵在同一平面内,过直线l 外一点P 作l 的垂线m ,即l m ⊥,又∵过P 作m 的垂线n ,即n m ⊥,∴l n ∥,∴直线l 与n 的位置关系是平行,故选:C .6.【答案】D【解析】解:A 选项,32a a a -=,故选项错误,不符合题意;B 选项,222()2a b a ab b -=-+,故选项错误,不符合题意;C 选项,()2510a a =,故选项错误,不符合题意;D 选项,325326a a a ⋅=,故选项正确,符合题意;故选D .7.【答案】B【解析】解:正六边形的中心角的度数为:360606︒=︒,∴正六边形绕其中心旋转60︒或60︒的整数倍时,仍与原图形重合,∴旋转角的大小不可能是90︒;故选B .8.【答案】B【解析】解:m ====-∵=<<∴54-<-<-,即54m -<<-,故选:B .9.【答案】D【解析】解:设两名男生分别记为A ,B ,两名女生分别记为C ,D ,画树状图如下:共有12种等可能的结果,其中抽取的两名同学恰好是一名男生和一名女生的结果有8种,∴抽取的两名同学恰好是一名男生和一名女生的概率为82123=,故选:D .10.【答案】A【解析】解:由题意,得:105V t=,∴V 与t 满足反比例函数关系.故选A .11.【答案】C【解析】解:∵一次函数y kx b =+的图象不经过第二象限,∴00k b ><,,故选项A 正确,不符合题意;∴0kb <,故选项B 正确,不符合题意;∵一次函数y kx b =+的图象经过点()20,,∴20k b +=,则2b k =-,∴20k b k k k +=-=-<,故选项C 错误,符合题意;∵2b k =-,∴12k b =-,故选项D 正确,不符合题意;故选:C .12.【答案】A【解析】解:∵0a b +=∴a b =,故①错误,∵0,0a b b c c a +=->->∴b c a >>,又0a b +=∴0,0a b <>,故②③错误,∵0a b +=∴=-b a∵0b c c a ->->∴a c c a -->-∴c c->∴0c <,故④正确或借助数轴,如图所示,故选:A .二、填空题13.【答案】24【解析】解:根据菱形面积等于两条对角线乘积的一半可得:面积168242=⨯⨯=,故答案为:24.14.【答案】()()111n n -++【解析】解:∵21312⨯+=;22413⨯+=;23514⨯+=;……∴()()2211n n n ++=+,∴()()2111n n n -++=.故答案为:()()111n n -++15.【答案】14【解析】解:如图,由题意得13AD AB =,四边形DECF 是平行四边形,∴DF BC ∥,DE AC ∥,∴ ∽ADF ABC ,BDE BAC ∽△△,∴13DF AD BC AB ==,23DE BD AC AB ==,∵69AC BC ==,,∴3DF =,4DE =,∵四边形DECF 平行四边形,∴平行四边形DECF 纸片的周长是()23414+=,故答案为:14.16.【答案】②③④【解析】解:列表,x L 2.5-2-1-0.5-0.512L yL5.4531- 3.75- 4.2535L描点、连线,图象如下,根据图象知:①当1x <-时,x 越小,函数值越大,错误;②当10x -<<时,x 越大,函数值越小,正确;③当01x <<时,x 越小,函数值越大,正确;④当1x >时,x 越大,函数值越大,正确.故答案为:②③④.三、解答题17.【答案】(1)3x >(2)从第①步开始出错,过程见解析【解析】解:(1)1522xx --<,去分母,得:1041x x -<-,移项,合并,得:39x -<-,系数化1,得:3x >;(2)从第①步开始出错,正确的解题过程如下:()()22111111a a a a a a a a +---=----22111a a a a -=---11a =-.18.【答案】(1)见解析(2)①90.5;②测试成绩分布在9195 的较多(不唯一);(3)估计该校九年级学生在同等难度的信息技术操作考试中达到优秀等次的人数约为480人.【解析】(1)解:数据从小到大排列:81、82、83、85、86、87、87、88、89、90、91、92、92、92、93、94、95、96、99、100最大值是100,最小值为81,极差为1008119-=,若组距为5,则分为4组,频数分布表成绩分组8185 8690 9195 96100划记正一频数4673频数分布直方图,如图;;(2)解:①中位数是909190.52+=;故答案为90.5;②测试成绩分布在9195 的较多(不唯一);(3)解:67360048020++⨯=(人),答:估计该校九年级学生在同等难度的信息技术操作考试中达到优秀等次的人数约为480人.19.【答案】渔船没有触礁的危险【解析】解:过点A 作AD BC ⊥,由题意,得:905832ABC ∠=︒-︒=︒,45ACD ∠=︒,6BC =,设AD x =,在Rt ADC 中,45ACD ∠=︒,∴AD CD x ==,∴6BD x =+,在Rt ADB 中,tan 0.6256AD xABD BD x ∠==≈+,∴10x =,∴10AD =,∵109>,∴渔船没有触礁的危险.20.【答案】(1)这台M 型平板电脑的价值为2100元(2)她应获得120m 元的报酬【解析】(1)解:设这台M 型平板电脑的价值为x 元,由题意,得:15003003020x x ++=,解得:2100x =;∴这台M 型平板电脑的价值为2100元;(2)解:由题意,得:2100150012030m m +⋅=;答:她应获得120m 元的报酬.21.【答案】(1)见解析(2)43π【解析】(1)证明:连接AO 并延长交BC 于点F ,∵O 是ABC 的外接圆,∴点O 是ABC 三边中垂线的交点,∵AB AC =,∴AO BC ⊥,∵AE BC ∥,∴AO AE ⊥,∵AO 是O 的半径,∴AE 是O 的切线;(2)解:连接OC ,∵AB AC =,∴75ABC ACB ∠=∠=︒,∴18027530BAC ∠=︒-⨯︒=︒,∴260BOC BAC ∠=∠=︒,∵OB OC =,∴BOC 为等边三角形,∴2===OC OB BC ,∴180120COD BOC ∠=︒-∠=︒,∴ CD的长为120241803ππ⨯=.22.【答案】(1))21AB BD =,(2)见解析(3)见解析【解析】(1)解:∵90,A AB AC ∠=︒=∴2BC =,∵BC AB BD =+2AB BD =+即)21AB BD =;(2)证明:如图所示,∴90,A AB AC ∠=︒=∴=45ABC ∠︒,∵BD AB ⊥,∴45DBC ∠=︒∵CE BC =,12∠=∠,CF DC =∴CBD CEF ≌∴=45E DBC ∠=∠︒∴EF BD ∥∴AB EF⊥(3)证明:如图所示,延长,BA EF 交于点M ,延长CH 交ME 于点G ,∵EF AB ⊥,AC AB ⊥,∴ME AC ∥,∴CGE ACG∠=∠∵CH 是ACE ∠的角平分线,∴ACG ECG ∠=∠,∴CGE ECG ∠=∠∴EG EC =∵CBD CEF ≌,∴EF BD =,CE CB =,∴EG CB =,又∵BC AB BD =+,∴EG AB BD AC EF =+=+,即FG EF AC EF +=+,∴AC EG =,又AC FG ∥,则HAG HFG ∠=∠,在,AHC FHG 中,HAG HFG AHG FHG AC FG ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS AHC FHG ≌,∴AHHF=23.【答案】(1)见解析(2)售价每涨价2元,日销售量少卖4盆(3)①定价为每盆25元或每盆35元时,每天获得400元的利润;②售价定为30元时,每天能够获得最大利润【解析】(1)解:按照售价从低到高排列列出表格如下:售价(元/盆)1820222630日销售量(盆)5450463830【小问2详解】由表格可知,售价每涨价2元,日销售量少卖4盆;(3)①设:定价应为x 元,由题意,得:()()181********x x -⎡⎤--⨯=⎢⎥⎣⎦,整理得:2212017500x x -+-=,解得:1225,35x x ==,∴定价为每盆25元或每盆35元时,每天获得400元的利润;②设每天的利润为w ,由题意,得:()()22120135018155442x w x x x -⎡⎤=--⨯+⎣--=⎢⎥⎦,∴()2221201350230450w x x x -+---+==,∵20-<,∴当30x =时,w 有最大值为450元.答:售价定为30元时,每天能够获得最大利润.。
历年全国中考数学试题及答案(完整详细版)
![历年全国中考数学试题及答案(完整详细版)](https://img.taocdn.com/s3/m/0fcd26f80342a8956bec0975f46527d3240ca6b3.png)
班级 姓名 学号 成绩一、精心选一选1.下列运算正确的是( ) A.()11a a --=-- B.()23624aa -=C.()222a b a b -=-D.3252a a a +=2.如图,由几个小正方体组成的立体图形的左视图是( )3.下列事件中确定事件是( ) A.掷一枚均匀的硬币,正面朝上 B.买一注福利彩票一定会中奖C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上 4.如图,AB CD ∥,下列结论中正确的是( ) A.123180++=∠∠∠ B.123360++=∠∠∠C.1322+=∠∠∠D.132+=∠∠∠5.已知24221x y k x y k +=⎧⎨+=+⎩,且10x y -<-<,则k 的取值范围为( )A.112k -<<-B.102k <<C.01k <<D.112k << 6.顺次连接矩形各边中点所得的四边形( ) A.是轴对称图形而不是中心对称图形 B.是中心对称图形而不是轴对称图形 C.既是轴对称图形又是中心对称图形 D.没有对称性 7.已知点()3A a -,,()1B b -,,()3C c ,都在反比例函数4y x=的图象上,则a ,b ,c 的大小关系为( ) A.a b c >> B.c b a >>C.b c a >> D.c a b >>8.某款手机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率为x ,则下面列出的方程中正确的是( ) A.21185580x = B.()211851580x -= C.()211851580x-=D.()258011185x +=9.如图,P 是Rt ABC △斜边AB 上任意一点(A ,B 两点除外),过P 点作一直线,使截得的三角形与Rt ABC △相似,这样的直线可以作( ) A.1条 B.2条 C.3条 D.4A. B. C. D.A B DC32 1 第4题图10.某校为了了解学生课外阅读情况,随机调查了50名学生各自平均每天的课外阅读时间,并绘制成条形图(如图),据此可以估计出该校所有学生平均每人每天的课外阅读时间为( ) A.1小时 B.0.9小时 C.0.5小时 D.1.5小时11.如图,I 是ABC △的内切圆,D ,E ,F 为三个切点,若52DEF =∠,则A ∠的度数为( ) A.76B.68C.52D.38当输入数据是时,输出的数是( ) A.861B.865C.867D.869二、细心填一填 13.化简21111mm m ⎛⎫+÷ ⎪--⎝⎭的结果是_______________. 14.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式______________.第10题图第11题图 ab15.把一组数据中的每一个数据都减去80,得一组新数据,若求得新一组数据的平均数是1.2,方差是4.4,则原来一组数据的平均数和方差分别为_______________.16.在平面直角坐标系中,已知()24A ,,()22B -,,()62C -,,则过A ,B ,C 三点的圆的圆心坐标为_______________.17.实验中学要修建一座图书楼,为改善安全性能,把楼梯的倾斜角由原来设计的42改为36.已知原来设计的楼梯长为4.5m ,在楼梯高度不变的情况下,调整后的楼梯多占地面_____________m .(精确到0.01m )三、用心用一用18.用配方法解方程:2210x x --=.答案:二、填空题 13.1m + 14.()()22a b a b a b -=+-15.81.2,4.416.()41,17.0.80三、解答题18.解:两边都除以2,得211022x x --=. 移项,得21122x x -=. 配方,得221192416x x ⎛⎫-+= ⎪⎝⎭,第17题图219416x ⎛⎫-= ⎪⎝⎭. 1344x ∴-=或1344x -=-. 11x ∴=,212x =-数学试题库2注意事项:1.试卷分为第I 卷和第II 卷两部分,共6页,全卷 150分,考试时间120分钟. 2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需要改动,先用橡皮擦干净后,再选涂其它答案,答案写在本试卷上无效.3.答第II 卷时,用0.5毫米黑色墨水签字笔,将答案写在答题卡上指定的位置.答案写在试卷上火答题卡上规定的区域以外无效. 4.作图要用2B 铅笔,加黑加粗,描写清楚. 5.考试结束,将本试卷和答题卡一并交回.第I 卷 (选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置.......上) 1.﹣3的相反数是A .﹣3B .13- C .13D .3 2.地球与太阳的平均距离大约为150 000 000km ,将150 000 000用科学记数法表示应为 A .15×107B .1.5×108C .1.5×109D .0.15×1093.若一组数据3、4、5、x 、6、7的平均数是5,则x 的值是 A .4 B .5 C .6 D .7 4.若点A(﹣2,3)在反比例函数ky x=的图像上,则k 的值是 A .﹣6 B .﹣2 C .2 D .65.如图,三角板的直角顶点落在矩形纸片的一边上,若∠1=35°,则∠2的度数是 A .35° B .45° C .55° D .65°6.如图,菱形ABCD 的对角线AC 、BD 的长分别为6和8,则这个菱形的周长是A .20B .24C .40D .487.若关于x 的一元二次方程x 2﹣2x ﹣k +1=0有两个相等的实数根,则k 的值是 A .﹣1 B .0 C .1 D .2 8.如图,点A 、B 、C 都在⊙O 上,若∠AOC =140°,则∠B 的度数是 A .70° B .80° C .110° D .140°第II 卷 (选择题 共126分)二、填空题(本大题共8小题,每小题3分,本大题共24分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置.......上) 9.计算:23()a = .10.一元二次方程x 2﹣x =0的根是 .11.某射手在相同条件下进行射击训练,结果如下:该射手击中靶心的概率的估计值是 (明确到0.01).12.若关于x ,y 的二元一次方程3x ﹣ay =1有一个解是32x y =⎧⎨=⎩,则a = .13.若一个等腰三角形的顶角等于50°,则它的底角等于 .14.将二次函数21y x =-的图像向上平移3个单位长度,得到的图像所对应的函数表达式是 .15.如图,在Rt △ABC 中,∠C =90°,AC =3,BC =5,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则CD 的长是 .16.如图,在平面直角坐标系中,直线l 为正比例函数y =x 的图像,点A 1的坐标为(1,0),过点A 1作x 轴的垂线交直线l 于点D 1,以A 1D 1为边作正方形A 1B 1C 1D 1;过点C 1作直线l 的垂线,垂足为A 2,交x 轴于点B 2,以A 2B 2为边作正方形A 2B 2C 2D 2;过点C 2作x 轴的垂线,垂足为A 3,交直线l 于点D 3,以A 3D 3为边作正方形A 3B 3C 3D 3;…;按此规律操作下去,所得到的正方形A n B n C n D n 的面积是 .三、解答题(本大题共11小题,共102分.请在答题卡...指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题满分10分)(1)计算:02sin 45(1)1822π︒+--+-; (2)解不等式组:35131212x x x x -<+⎧⎪⎨--≥⎪⎩.18.(本题满分8分)先化简,再求值:212(1)11aa a -÷+-,其中a =﹣3.19.(本题满分8分)已知:如图,□ABCD 的对角线AC 、BD 相交于点O ,过点O 的直线分别与AD 、BC 相交于点E 、F ,求证:AE =CF .20.(本题满分8分)某学校为了解学生上学的交通方式,现从全校学生中随机抽取了部分学生进行“我上学的交通方式”问卷调查,规定每人必须并且只能在“乘车”、“步行”、“骑车”和“其他”四项中选择一项,并将统计结果绘制了如下两幅不完整的统计图.请解答下列问题:(1)在这次调查中,该学校一共抽样调查了 名学生; (2)补全条形统计图;(3)若该学校共有1500名学生,试估计该学校学生中选择“步行”方式的人数.21.(本题满分8分)一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、﹣2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A 的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A 的纵坐标.(1)用画树状图或列表等方法列出所有可能出现的结果; (2)求点A 落在第四象限的概率.22.(本题满分8分)如图,在平面直角坐标系中,一次函数y =kx +b 的图像经过点A(﹣2,6),且与x 轴相交于点B ,与正比例函数y =3x 的图像交于点C ,点C 的横坐标为1.(1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =13S △BOC ,求点D 的坐标.23.(本题满分8分)为了计算湖中小岛上凉亭P 到岸边公路l 的距离,某数学兴趣小组在公路l 上的点A 处,测得凉亭P 在北偏东60°的方向上;从A 处向正东方向行走200米,到达公路l 上的点B 处,再次测得凉亭P 在北偏东45°的方向上,如图所示.求凉亭P 到公路l 的距离.(结果保留整数,参考数据:2 1.414≈,3 1.732≈)24.(本题满分10分)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,切点为A ,BC 交⊙O 于点D ,点E 是AC 的中点.(1)试判断直线DE 与⊙O 的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.25.(本题满分10分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.26.(本题满分12分)+=90°,那么我们称这样的三角形为“准互如果三角形的两个内角α与β满足2αβ余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=°;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5,若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE 也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC 是“准互余三角形”.求对角线AC的长.27.(本题满分12分)如图,在平面直角坐标系中,一次函数243y x=-+的图像与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动.点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=13秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.参考答案三、解答题17.(1)1;(2)13x ≤<. 18.化简结果为12a -,计算结果为﹣2. 19.先证△AOE ≌△COF ,即可证出AE =CF .20.(1)50;(2)在条形统计图画出,并标数据15;(3)450名.21.(1)六种:(1,﹣2)、(1,3)、(﹣2,1)、(﹣2,3)、(3,1)、(3,﹣2); (2)点A 落在第四象限的概率为13. 22.(1)k 的值为﹣1,b 的值为4; (2)点D 坐标为(0,﹣4).23.凉亭P 到公路l 的距离是273米.24.(1)先根据“SSS ”证明△AEO ≌△DEO ,从而得到∠ODE =∠OAE =90°,即可判断出直线DE 与⊙O 相切; (2)阴影部分面积为:241059π-. 25.(1)180;(2)2[20010(50)](40)10(55)2250y x x x =---=--+,∴当每件的销售价为55元时,每天获得利润最大为2250元.26.(1)15°;(2)存在,BE 的长为95(思路:利用△CAE ∽△CBA 即可); (3)20,思路:作AE ⊥CB 于点E ,CF ⊥AB 于点F ,先根据△FCB ∽△FAC 计算出AF =16,最后运用勾股定理算出AC =20.27.(1)(4,0);(2)22233,01439418,1434312,23t t S t t t t t ⎧≤<⎪⎪⎪=-+≤≤⎨⎪⎪-+<≤⎪⎩;(3)OT +PT.。
浙教版初三数学中考试题(含答案)
![浙教版初三数学中考试题(含答案)](https://img.taocdn.com/s3/m/56fbc7c877a20029bd64783e0912a21614797fc5.png)
九年级数学中考试题一、选择题(本题有10小烟,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1. ﹣2022的相反数是( )A. ﹣2022B. 2022C. ﹣12022D. 12022 2. 小明家购买了一款新型吹风机.如图所示,吹风机的主体是由一个空心圆柱体构成,手柄可近似看作一个圆柱体,这个几何体的主视图为( )A. B. C. D.3. 2022年2月8日,在北京冬奥会自由式女子大跳台金牌决赛中,中国选手谷爱凌以188.25分夺得金牌.北京冬奥会大数据报告显示,这场比赛受到我国超过5650万人的关注,5650万这个数字用科学记数法表示为( )A. 75.610⨯B. 75.6510⨯C. 85.6510⨯D. 656.510⨯ 4. 下列运算正确的是( ) A. 2222+= B. 2243x y x y -= C. 222()a b a b +=+ D. 333()ab a b = 5. 不等式22x x -≤-+的解在数轴上的表示正确的是( )A.B. C.D. 6. 甲、乙、丙、丁四名射击运动员参加射击预选赛,他们射击成绩的平均数及方差如表所示,要选一个成绩较好且稳定的运动员去参赛,应选运动员( ) 统计量 甲 乙 丙 丁 x (环) 7 8 8 7S 2(环2)0.9 1.1 0.9 1A. 甲B. 乙C. 丙D. 丁7. 某书店分别用500元和700元两次购进一本小说,第二次数量比第一次多4套,且两次进价相同.若设该书店第一次购进x 套,根据题意,列方程正确的是( )A. 5007004x x =-B. 5007004x x =-C. 5007004x x =+D. 5007004x x =+ 8. 已知现有的12瓶饮料中有2瓶已过了保质期,从这12瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是( )A. 112B. 56C. 13D. 169. 现由边长为22ABCD 制作的一副如图1所示的七巧板,将这副七巧板在矩形EFGH 内拼成如图2所示的“老虎”造型,则矩形EFGH 与“老虎”的面积之比为( )A. 2B. 65C. 43D. 15810. 已知二次函数22y x mx m =++的图象与x 轴交于A (a ,0),B (b ,0)两点,且满足,46a b ≤+≤.当13x ≤≤时,该函数的最大值H 与m 满足的关系式是( )A. 31H m =+B. 54H m =+C. 79H m =+D. 2H m m =-+卷Ⅱ 二、填空题(本题有6小题,每小题4分,共24分)11. 分解因式:22a a +=_____.12. 二元一次方程组221x y x y +=⎧⎨-=⎩解是__________.13. 某仓储中心有一斜坡AB ,其坡比i =1:2,顶部A 处的高AC 为4米,B 、C 在同一水平面上.则斜坡AB 的水平宽度BC 为____米.14. 如图,已知四边形ABCD 内接于O ,68ABC ∠=︒,则ADC ∠的度数是_______.15. 如图,反比例函数(0)k y x x=>上有一点A ,经过点A 的直线AB ,交反比例函数于点C ,且12AC CB =,以O 为圆心,OA 为半径作圆,OAB ∠的角平分线交O 于点D ,若ABD △的面积为12,则k =_______.16. 在Rt ABC 中,点D 、E 分别为AC 、BC 上一点,已知7,90,3AC CB ACB CD ===︒∠=.连结DE ,分别取DE ,AB 上一点M 、N ,连结CM 、MN ,始终满足CM MN =,设ME BN m DM AN==.(1)如图1,当1m =时,连结DN 、NE ,过点N 作NG BC ⊥于G ,则线段EG 的长为__________; (2)如图2,当2m =时,则线段CE 长为__________.三、解答题(本题有8小题,共66分)17. 计算:2(2)122sin 60-+︒18. 化简:24a b a b a b a b-++++ 19. 为了解某学校疫情期向学生在家体有锻炼情况,从全体学生中机抽取若干名学生进行调查.以下是根据调查数据绘刺的统计图丧的一部分,根据信息回答下列问题. 组别 平均每日体育锻炼时间(分)人数 A015x ≤≤ 9 B1525x <≤ ___________ C2535x <≤ 21 D35x >12(1)本次调查共抽取__________名学生.(2)抽查结果中,B 组有__________人.(3)在抽查得到的数据中,中位数位于__________组(填组别).(4)若这所学校共有学生800人,则估计平均每日锻炼超过25分钟有多少人?21. 已知,如图,矩形ABCD ,延长AB 至点E ,使得BE =AB ,连接BD 、CE .(1)求证:∠ABD =∠BEC .(2)AD =2,AB =3,连接DE ,求sin ∠AED 的值.23. 图1是新冠疫情期间测温员用“额温枪”对居民张阿姨测温时的实景图,图2是其侧面示意图,其中枪柄CD 和手臂BC 始终在同一条直线上,枪身DE 与额头F 保持垂直.胳膊24cm AB =,40cm BD =,肘关节B 与枪身端点E 之间的水平宽度为28cm (即BH 的长度),枪身8cm DE =.(1)求EDC ∠的度数;(2)测温时规定枪身端点E 与额头规定范围为3cm 5cm .在图2中若75ABC ∠=︒,张阿姨与测温员之间的距离为48cm .问此时枪身端点E 与张阿姨额头F 的距离是否在规定范围内,并说明理由.(结果保2 1.414≈3 1.732≈)25. 某学校STEAM 社团在进行项目化学习时,根据古代的沙漏模型(图1)制作了一套“沙漏计时装置”,该装置由沙漏和精密电子秤组成,电子秤上放置盛沙容器.沙子缓慢匀速地从沙漏孔漏到精密电子称上的容器内,可以通过读取电子秤的读数计算时间(假设沙子足够).该实验小组从函数角度进行了如下实验探究:实验观察:实验小组通过观察,每两小时记录一次电子秤读数,得到表1.表1 沉沙时间(h)x 0 2 4 6 8电子秤读数y (克) 6 18 30 42 54探索发现:(1)建立平面直角坐标系,如图2,横轴表示漏沙时间x ,纵坐标表示精密电子称的读数y ,描出以表1中的数据为坐标的各点.(2)观察上述各点的分布规律,判断它们是否在同一条直线上,如果在同一条直线上,请你建立适当的函数模型,并求出函数表达式,如果不在同一条直线上,请说明理由.结论应用:应用上述发现的规律估算:(3)若漏沙时间为9小时,精密电子称的读数为多少?(4)若本次实验开始记录的时问是上午7:30,当精密电子秤的读数为72克时是几点钟?27. 如图已知二次函数2y x bx c =++(b ,c 为常数)的图像经过点(3,1)A -,点(0,4)C -,顶点为点M ,过点A 作AB x ∥轴,交y 轴于点D ,交二次函数2y x bx c =++的图象于点B ,连接BC .(1)求该二次函数的表达式及点M 的坐标;(2)若将该二次函数图象向上平移(0)m m >个单位,使平移后每到二次函数图象的顶点落在ABC 的内部(不包括ABC 的边界),求m 的取值范围;(3)若E 为y 轴上且位于点C 下方的一点,P 为直线AC 上一点,在第四象限的抛物线上是否存在一点Q ,使以C 、E 、P 、Q 为顶点的四边形是菱形?若存在,请求出点Q 的横坐标;若不存在,请说明理由. 29. 如图1,正方形ABCD 中,AC 对角线,点P 在线段AC 上运动,以PF 为边向右作正方形DPFE ,连接CE ;(1)则AP 与CE 的数量关系是___________,AP 与CE 的夹角度数为_________;(2)点P 在线段AC 及其延长线上运动时,探究线段DC ,PC 和CE 三者之问的数量关系,并说明理由;(3)当点P 在对角线AC 的延长线上时,连接AE ,若22,213AB AE ==,求四边形DCPE 的面积.九年级数学练习卷Ⅰ一、选择题(本题有10小烟,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)【1题答案】【答案】B【2题答案】【答案】C【3题答案】【答案】B【4题答案】【答案】D【5题答案】【答案】B【6题答案】【答案】C【7题答案】【答案】C【8题答案】【答案】D【9题答案】【答案】D【10题答案】【答案】A卷Ⅱ二、填空题(本题有6小题,每小题4分,共24分)【11题答案】【答案】22(2)a a a a +=+【12题答案】 【答案】10x y =⎧⎨=⎩【13题答案】【答案】8【14题答案】【答案】112︒【15题答案】 【答案】485【16题答案】 【答案】 ①.12 ①. 112 三、解答题(本题有8小题,共66分)【17题答案】 【答案】43+【18题答案】【答案】3【19题答案】【答案】(1)60 (2)18(3)C (4)440【20题答案】【答案】(1)见解析 (210 【21题答案】【答案】(1)120︒;(2)在规定范围内,理由见解析.【22题答案】【答案】(1)作图见解析(2)在同一直线上.函数表达式为:66y x =+ (3)漏沙时间为9小时,精密电子称的读数为60克 (4)下午6:30【23题答案】【答案】(1)二次函数解析式为224y x x =--,点M 的坐标为(1,-5)(2)24m <<(3)当点Q 的横坐标为32时,四边形CEQP 为顶点的四边形为菱形【24题答案】【答案】(1)AP =CE ;90°; (2)2CE CD CP =+,理由见解析; (3)12。
初三数学解直角三角形中考试题精选
![初三数学解直角三角形中考试题精选](https://img.taocdn.com/s3/m/67a36fe2aeaad1f346933f79.png)
tan48° = ,
则 ,
∴ .
∵AD+BD = AB,
∴ .
解得:x≈43.
【10答案】
【关键词】解直角三角形的公式(三角函数的运用)
【答案】解:建立如图所示的直角坐标系,
(1)设PQ⊥x轴,垂足为A,则∠POA= ,∠QOA= .……2分
∴∠OPQ= ,∠OQP= .…………4分
∠EDF=60°......................................2分
23(2010年安徽中考)若河岸的两边平行,河宽为900米,一只船由河岸的A处沿直线方向开往对岸的B处,AB与河岸的夹角是600,船的速度为5米/秒,求船从A到B处约需时间几分。(参考数据: )
【关键词】解直角三角形
【答案】⑴∵抛物线经过点D( )
∴
∴c=6.
⑵过点D、B点分别作AC的垂线,垂足分别为E、F,设AC与BD交点为M,
∵AC将四边形ABCD的面积二等分,即:S△ABC=S△ADC∴DE=BF
又∵∠DME=∠BMF,∠DEM=∠BFE
∴△DEM≌△BFM
∴DM=BM即AC平分BD
∵c=6.∵抛物线为
∴A( )、B( )
又∵∠BAE=∠BAE ∴△ABE∽△ABD......................3分
(2)∵△ABE∽△ABD ∴AB2=2×6=12 ∴AB=2
在Rt△ADB中,tan∠ADB= ......................3分
(3)连接CD,可得BF=8,BE=4,则EF=4,△DEF是正三角形,
(2)设货船的航行速度是x km/h,由(1)知,∠POQ= .……5分
∴cos∠OQP= .∴PQ= .…………7分
初三数学中考必考题(2020年8月整理).pdf
![初三数学中考必考题(2020年8月整理).pdf](https://img.taocdn.com/s3/m/7a9d6d37b9d528ea80c7798f.png)
初三数学中考必考题1.已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D.(1) 求该抛物线的解析式;(2) 若该抛物线与x 轴的另一个交点为E.求四边形ABDE 的面积;(3) △AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫ ⎝⎛−−abac a b 44,22)2.如图,在Rt ABC △中,90A ∠=,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =.(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P ,使PQR △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.3在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AMABC D ER P H Q=x .(1)用含x 的代数式表示△MNP 的面积S ; (2)当x 为何值时,⊙O 与直线BC 相切?(3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?4.如图1,在平面直角坐标系中,己知ΔAOB 是等边三角形,点A 的坐标是(0,4),点B 在第一象限,点P 是x 轴上的一个动点,连结AP ,并把ΔAOP 绕着点A 按逆时针方向旋转.使边AO 与AB 重合.得到ΔABD.(1)求直线AB 的解析式;(2)当点P 运动到点(3,0)时,求此时DP 的长及点D 的坐标;(3)是否存在点P ,使ΔOPD 的面积等于43,若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.5如图,菱形ABCD 的边长为2,BD=2,E 、F 分别是边AD ,CD 上的两个动点,且满足AE+CF=2.(1)求证:△BDE ≌△BCF ;(2)判断△BEF 的形状,并说明理由;(3)设△BEF 的面积为S ,求S 的取值范围.ABC MN图 3OABC MND 图 2OABMNP图 1O6如图,抛物线21:23L y x x =−−+交x 轴于A 、B 两点,交y 轴于M 点.抛物线1L 向右平移2个单位后得到抛物线2L ,2L 交x 轴于C 、D 两点. (1)求抛物线2L 对应的函数表达式;(2)抛物线1L 或2L 在x 轴上方的部分是否存在点N ,使以A ,C ,M ,N 为顶点的四边形是平行四边形.若存在,求出点N 的坐标;若不存在,请说明理由;(3)若点P 是抛物线1L 上的一个动点(P 不与点A 、B 重合),那么点P 关于原点的对称点Q 是否在抛物线2L 上,请说明理由.7.如图,在梯形ABCD 中,AB ∥CD ,AB =7,CD =1,AD =BC =5.点M ,N 分别在边AD ,BC 上运动,并保持MN ∥AB ,ME ⊥AB ,NF ⊥AB ,垂足分别为E ,F .(1)求梯形ABCD 的面积;(2)求四边形MEFN 面积的最大值.(3)试判断四边形MEFN 能否为正方形,若能, 求出正方形MEFN 的面积;若不能,请说明理由.8.如图,点A (m ,m +1),B (m +3,m -1)都在反比例函数xky =的图象上. C D A BE F NM(1)求m ,k 的值; (2)如果M 为x 轴上一点,N 为y 轴上一点, 以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式.(3)选做题:在平面直角坐标系中,点P 的坐标 为(5,0),点Q 的坐标为(0,3),把线段PQ 向右平 移4个单位,然后再向上平移2个单位,得到线段P 1Q 1, 则点P 1的坐标为 ,点Q 1的坐标为.9.如图16,在平面直角坐标系中,直线y =−x 轴交于点A ,与y 轴交于点C ,抛物线2(0)3y ax x c a =−+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由; (3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.10.如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,OB =,矩形ABOC 绕点O 按顺时针方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物x友情提示:本大题第(1)小题4分,第(2)小题7分.对完成第(2)小题有困难的同学可以做下面的(3)选做题.选做题2分,所得分数计入总分.但第(2)、(3)小题都做的,第(3)小题的得分不重复计入总分.线2y ax bx c =++过点A E D ,,. (1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.11.已知:如图14,抛物线2334y x =−+与x 轴交于点A ,点B ,与直线34y x b =−+相交于点B ,点C ,直线34y x b =−+与y 轴交于点E . (1)写出直线BC 的解析式. (2)求ABC △的面积.(3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积最大,最大面积是多少?12.在平面直角坐标系中△ABC 的边AB 在x 轴上,且OA>OB,以AB 为直径的圆过点C 若yxODEC FA BC 的坐标为(0,2),AB=5,A,B 两点的横坐标X A ,X B 是关于X 的方程2(2)10x m x n −++−=的两根:(1) 求m ,n 的值(2) 若∠ACB 的平分线所在的直线l 交x 轴于点D ,试求直线l 对应的一次函数的解析式 (3) 过点D 任作一直线`l 分别交射线CA ,CB (点C 除外)于点M ,N ,则11CMCN+的值是否为定值,若是,求出定值,若不是,请说明理由13.已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D.(1)求该抛物线的解析式;(2)若该抛物线与x 轴的另一个交点为E.求四边形ABDE 的面积;(3)△AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫ ⎝⎛−−abac a b 44,22)14.已知抛物线c bx ax y ++=232,ACO BNDML`(Ⅰ)若1==b a ,1−=c ,求该抛物线与x 轴公共点的坐标;(Ⅱ)若1==b a ,且当11<<−x 时,抛物线与x 轴有且只有一个公共点,求c 的取值范围;(Ⅲ)若0=++c b a ,且01=x 时,对应的01>y ;12=x 时,对应的02>y ,试判断当10<<x 时,抛物线与x 轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.15.已知:如图①,在Rt △ACB 中,∠C =90°,AC =4cm ,BC =3cm ,点P 由B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为t (s )(0<t <2),解答下列问题: (1)当t 为何值时,PQ ∥BC ?(2)设△AQP 的面积为y (2cm ),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使线段PQ 恰好把Rt △ACB 的周长和面积同时平分?若存在,求出此时t 的值;若不存在,说明理由;(4)如图②,连接PC ,并把△PQC 沿QC 翻折,得到四边形PQP ′C ,那么是否存在某一时刻t ,使四边形PQP ′C 为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.16.已知双曲线k y x =与直线14y x =相交于A 、B 两点.第一象限上的点M (m ,n )(在A 点左侧)是双曲线ky x=上的动点.过点B 作BD ∥y 轴于点D.过N (0,-n )作NC ∥x 轴交双曲线ky x=于点E ,交BD 于点C.(1)若点D 坐标是(-8,0),求A 、B 两点坐标及k 的值.(2)若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的解析式.(3)设直线AM 、BM 分别与y 轴相交于P 、Q 两点,且MA =pMP ,MB =qMQ ,求p -q 的值.P图①压轴题答案1.解:(1)由已知得:310c b c =⎧⎨−−+=⎩解得 c=3,b =2∴抛物线的线的解析式为223y x x =−++ (2)由顶点坐标公式得顶点坐标为(1,4)所以对称轴为x=1,A,E 关于x=1对称,所以设对称轴与x 轴的交点为F所以四边形ABDE 的面积=ABO BOFD S S S ∆++梯形=111()222AO BO BO DF OF EF DF ⋅++⋅+⋅=11113(34)124222⨯⨯++⨯+⨯⨯ =9(3)相似如图,======所以2220BD BE +=,220DE =即:222BD BE DE +=,所以BDE ∆是直角三角形 所以90AOB DBE ∠=∠=︒,且2AO BO BD BE ==,所以AOB DBE ∆∆.2解:(1)Rt A ∠=∠,6AB =,8AC =,10BC ∴=.点D 为AB 中点,132BD AB ∴==.90DHB A ∠=∠=,B B ∠=∠.BHD BAC ∴△∽△, DH BD AC BC ∴=,3128105BD DH AC BC ∴==⨯=.(2)QR AB ∥,90QRC A ∴∠=∠=.C C ∠=∠,RQC ABC ∴△∽△,RQ QC AB BC ∴=,10610y x−∴=, 即y 关于x 的函数关系式为:365y x =−+. (3)存在,分三种情况:①当PQ PR =时,过点P 作PM QR ⊥于M ,则QM RM =.1290∠+∠=,290C ∠+∠=,1C ∴∠=∠.84cos 1cos 105C ∴∠===,45QM QP ∴=, 1364251255x ⎛⎫−+ ⎪⎝⎭∴=,185x ∴=. ②当PQ RQ =时,312655x −+=, 6x ∴=.③当PR QR =时,则R 为PQ 中垂线上的点, 于是点R 为EC 的中点,11224CR CE AC ∴===.tan QR BAC CR CA ==, 366528x −+∴=,152x ∴=.ABCD ERP H QM21 HA BCD E R PHQ综上所述,当x 为185或6或152时,PQR △为等腰三角形. 3解:(1)∵MN ∥BC ,∴∠AMN =∠B ,∠ANM =∠C .∴△AMN ∽△ABC .∴AM AN AB AC=,即43x AN=.∴AN =43x .……………2分∴S =2133248MNP AMN S S x x x ∆∆==⋅⋅=.(0<x <4)……………3分 (2)如图2,设直线BC 与⊙O 相切于点D ,连结AO ,OD ,则AO =OD =21MN . 在Rt △ABC 中,BC. 由(1)知△AMN ∽△ABC .∴AM MN AB BC=,即45x MN=.∴54MN x =, ∴58OD x =.…………………5分过M 点作MQ ⊥BC 于Q ,则58MQ OD x ==. 在Rt △BMQ 与Rt △BCA 中,∠B 是公共角, ∴△BMQ ∽△BCA . ∴BM QM BC AC=. ∴55258324xBM x ⨯==,25424AB BM MA x x =+=+=. ∴x =4996. ∴当x =4996时,⊙O 与直线B C 相切.…………………………………7分(3)随点M 的运动,当P 点落在直线BC 上时,连结AP ,则O 点为AP 的中点.∵MN ∥BC ,∴∠AMN =∠B ,∠AOM =∠APC∴△AMO ∽△ABP .∴12AM AO AB AP ==.AM =MB =2. 故以下分两种情况讨论:①当0<x ≤2时,2Δ83x S y PMN ==.∴当x =2时,2332.82y =⨯=最大……………………………………8分 ②当2<x <4时,设PM ,PN 分别交BC 于E ,F .BD 图 2P 图 3∵四边形AMPN 是矩形, ∴PN ∥AM ,PN =AM =x . 又∵MN ∥BC ,∴四边形MBFN 是平行四边形. ∴FN =BM =4-x .∴()424PF x x x =−−=−. 又△PEF ∽△ACB .∴2PEF ABCS PF AB S ∆∆⎛⎫= ⎪⎝⎭. ∴()2322PEF S x ∆=−.………………………………………………9分 MNP PEF y S S ∆∆=−=()222339266828x x x x −−=−+−.……………………10分当2<x <4时,29668y x x =−+−298283x ⎛⎫=−−+ ⎪⎝⎭.∴当83x =时,满足2<x <4,2y =最大.……………………11分 综上所述,当83x =时,y 值最大,最大值是2.…………………………12分4解:(1)作BE ⊥OA ,∴ΔAOB 是等边三角形∴BE=OB ·sin60o=B(∵A(0,4),设AB 的解析式为4y kx =+,所以42+=,解得k =, 以直线AB的解析式为43y x =−+ (2)由旋转知,AP=AD,∠PAD=60o, ∴ΔAPD 是等边三角形,=如图,作B E ⊥AO,DH ⊥OA,GB ⊥DH,显然ΔGBD 中∠GBD=30°∴GD=12BD=, ∴GB=2BD=32,OH=OE+HE=OE+BG=37222+=∴D(532,72)(3)设OP=x,则由(2)可得D(323,2x x++)若ΔOPD的面积为:133(2)2x x+=解得:2321x−±=所以P(2321−±,0)567解:(1)分别过D ,C 两点作DG ⊥AB 于点G ,CH ⊥AB 于点H .……………1分 ∵AB ∥CD ,∴DG =CH ,DG ∥CH .∴四边形DGHC 为矩形,GH =CD =1.∵DG =CH ,AD =BC ,∠AGD =∠BHC =90°,∴△AGD ≌△BHC (HL ).∴AG =BH =2172−=−GH AB =3.………2分 ∵在Rt △AGD 中,AG =3,AD =5, ∴DG =4.∴()174162ABCD S +⨯==梯形.………………………………………………3分(2)∵MN ∥AB ,ME ⊥AB ,NF ⊥AB ,∴ME =NF ,ME ∥NF .∴四边形MEFN 为矩形. ∵AB ∥CD ,AD =BC , ∴∠A =∠B .∵ME =NF ,∠MEA =∠NFB =90°, ∴△MEA ≌△NFB (AAS ).∴AE =BF .……………………4分设AE =x ,则EF =7-2x .……………5分C DA B E FN M G H C DA B E F NM G H∵∠A =∠A ,∠MEA =∠DGA =90°, ∴△MEA ∽△DGA . ∴DGME AG AE =. ∴ME =x 34.…………………………………………………………6分∴6494738)2(7342+⎪⎭⎫ ⎝⎛−−=−=⋅=x x x EF ME S MEFN 矩形.……………………8分当x =47时,ME =37<4,∴四边形MEFN 面积的最大值为649.……………9分(3)能.……………………………………………………………………10分由(2)可知,设AE =x ,则EF =7-2x ,ME =x 34.若四边形MEFN 为正方形,则ME =EF . 即=34x 7-2x .解,得1021=x .……………………………………………11分∴EF =21147272105x −=−⨯=<4. ∴四边形MEFN 能为正方形,其面积为251965142=⎪⎭⎫ ⎝⎛=MEFN S 正方形.8解:(1)由题意可知,()()()131−+=+m m m m .解,得m =3.………………………………3分∴A (3,4),B (6,2); ∴k =4×3=12.……………………………4分 (2)存在两种情况,如图:①当M 点在x 轴的正半轴上,N 点在y 轴的正半轴上时,设M 1点坐标为(x 1,0),N 1点坐标为(0,y 1).∵四边形AN 1M 1B 为平行四边形,∴线段N 1M 1可看作由线段AB 向左平移3个单位, 再向下平移2个单位得到的(也可看作向下平移2由(1)知A 点坐标为(3,4),B 点坐标为(6,2),∴N 1点坐标为(0,4-2),即N 1(0,2);………………………………5分 M 1点坐标为(6-3,0),即M 1(3,0).………………………………6分设直线M 1N 1的函数表达式为21+=x k y ,把x =3,y =0代入,解得321−=k .∴直线M 1N 1的函数表达式为232+−=x y .……………………………………8分②当M 点在x 轴的负半轴上,N 点在y 轴的负半轴上时,设M 2点坐标为(x 2,0),N 2点坐标为(0,y 2).∵AB ∥N 1M 1,AB ∥M 2N 2,AB =N 1M 1,AB =M 2N 2, ∴N 1M 1∥M 2N 2,N 1M 1=M 2N 2.∴线段M 2N 2与线段N 1M 1关于原点O 成中心对称.∴M 2点坐标为(-3,0),N 2点坐标为(0,-2).………………………9分设直线M 2N 2的函数表达式为22−=x k y ,把x =-3,y =0代入,解得322−=k ,∴直线M 2N 2的函数表达式为232−−=x y .所以,直线MN 的函数表达式为232+−=x y 或232−−=x y .………………11分(3)选做题:(9,2),(4,5).………………………………………………2分9解:(1)直线y =−x 轴交于点A ,与y 轴交于点C .(10)A ∴−,,(0C ,·················································································· 1分 点A C ,都在抛物线上,0a c c ⎧=⎪∴⎨⎪=⎩a c ⎧=⎪∴⎨⎪=⎩∴抛物线的解析式为2y x x =− ······················································ 3分 ∴顶点13F ⎛⎫− ⎪ ⎪⎝⎭, ······················································································· 4分 (2)存在 ····································································································· 5分1(0P ··································································································· 7分2(2P ··································································································· 9分 (3)存在 ··································································································· 10分理由: 解法一:延长BC 到点B ',使B C BC '=,连接B F '交直线AC 于点M ,则点M 就是所求的点. ················································································································· 11分 过点B '作B H AB '⊥于点H .B点在抛物线233y x x =−(30)B ∴, 在Rt BOC △中,tan OBC ∠=,30OBC ∴∠=,BC =,在Rt BB H '△中,12B H BB ''==6BH H '==,3OH ∴=,(3B '∴−−, ············································· 12分设直线B F '的解析式为y kx b =+x3k bk b⎧−=−+⎪∴⎨=+⎪⎩解得6kb=⎪⎪⎨⎪=⎪⎩62y x∴=− ······················································································· 13分yy x⎧=−⎪∴⎨=−⎪⎩377xy⎧=⎪⎪⎨⎪=−⎪⎩37M⎛∴⎝⎭,∴在直线AC上存在点M,使得MBF△的周长最小,此时377M⎛⎫−⎪⎪⎝⎭,. ······· 14分解法二:过点F作AC的垂线交y轴于点H,则点H为点F关于直线AC的对称点.连接BH交AC于点M,则点M即为所求. ································ 11分过点F作FG y⊥轴于点G,则OB FG∥,BC FH∥.90BOC FGH∴∠=∠=,BCO FHG∠=∠HFG CBO∴∠=∠同方法一可求得(30)B,.在Rt BOC△中,tan3OBC∠=,30OBC∴∠=,可求得3GH GC==,GF∴为线段CH的垂直平分线,可证得CFH△为等边三角形,AC∴垂直平分FH.即点H为点F关于AC的对称点.0H⎛∴−⎝⎭, ··········································· 12分设直线BH的解析式为y kx b=+,由题意得03k bb=+⎧⎪⎨=⎪⎩kb⎧=⎪⎪⎨⎪=⎪⎩y∴=······················································································ 13分xy y ⎧=⎪∴⎨⎪=⎩77x y =⎪⎪⎨⎪=−⎪⎩377M ⎛∴− ⎝⎭, ∴在直线AC 上存在点M ,使得MBF △的周长最小,此时377M ⎛⎫− ⎪ ⎪⎝⎭,. 1 10解:(1)点E 在y 轴上 ··············································································· 1分 理由如下:连接AO ,如图所示,在Rt ABO △中,1AB =,BO =,2AO ∴=1sin 2AOB ∴∠=,30AOB ∴∠= 由题意可知:60AOE ∠=306090BOE AOB AOE ∴∠=∠+∠=+=点B 在x 轴上,∴点E 在y 轴上. ································································· 3分 (2)过点D 作DM x ⊥轴于点M1OD =,30DOM ∠=∴在Rt DOM △中,12DM =,2OM = 点D 在第一象限,∴点D的坐标为122⎛⎫ ⎪ ⎪⎝⎭, ················································································ 5分 由(1)知2EO AO ==,点E 在y 轴的正半轴上∴点E 的坐标为(02),∴点A的坐标为( ·················································································· 6分 抛物线2y ax bx c =++经过点E ,2c ∴=由题意,将(A,122D ⎛⎫ ⎪ ⎪⎝⎭,代入22y ax bx =++中得32131242a a ⎧+=⎪⎨++=⎪⎩解得99a b =−⎪⎪⎨⎪=−⎪⎩∴所求抛物线表达式为:28299y x x =−−+ ·················································· 9分 (3)存在符合条件的点P ,点Q . ································································· 10分 理由如下:矩形ABOC 的面积3AB BO ==∴以O B P Q ,,,为顶点的平行四边形面积为由题意可知OB 为此平行四边形一边, 又3OB =OB ∴边上的高为2 ······················································································· 11分 依题意设点P 的坐标为(2)m ,点P在抛物线28299y x x =−−+上28229m ∴−+=解得,10m =,2m = 1(02)P ∴,,22P ⎛⎫ ⎪ ⎪⎝⎭以O B P Q ,,,为顶点的四边形是平行四边形,PQ OB ∴∥,PQ OB ==, ∴当点1P 的坐标为(02),时, 点Q 的坐标分别为1(Q,22)Q ; 当点2P 的坐标为28⎛⎫−⎪ ⎪⎝⎭时,点Q的坐标分别为328Q ⎛⎫−⎪ ⎪⎝⎭,428Q ⎛⎫⎪ ⎪⎝⎭. ··········································· 14分 (以上答案仅供参考,如有其它做法,可参照给分) 11解:(1)在2334y x =−+中,令0y = 23304x ∴−+=12x ∴=,22x =−(20)A ∴−,,(20)B , (1)又点B 在34y x b =−+上 302b ∴=−+32b =BC ∴的解析式为3342y x =−+ ········································································ 2分 (2)由23343342y x y x ⎧=−+⎪⎪⎨⎪=−+⎪⎩,得11194x y =−⎧⎪⎨=⎪⎩2220x y =⎧⎨=⎩ ····················································· 4分 914C ⎛⎫∴− ⎪⎝⎭,,(20)B ,4AB ∴=,94CD =······················································································· 5分 1994242ABC S ∴=⨯⨯=△ ·················································································· 6分 (3)过点N 作NP MB ⊥于点P EO MB ⊥ NP EO ∴∥BNP BEO ∴△∽△ ······················································································· 7分 BN NPBE EO∴=································································································· 8分 由直线3342y x =−+可得:302E ⎛⎫ ⎪⎝⎭, ∴在BEO △中,2BO =,32EO =,则52BE =25322t NP ∴=,65NP t ∴= ················································································ 9分 16(4)25S t t ∴=−2312(04)55S t t t =−+<< ············································································· 10分 2312(2)55S t =−−+ ····················································································· 11分 此抛物线开口向下,∴当2t =时,125S =最大∴当点M 运动2秒时,MNB △的面积达到最大,最大为125.12解:(1)m=-5,n=-3 (2)y=43x+2 (3)是定值.因为点D 为∠ACB 的平分线,所以可设点D 到边AC,BC 的距离均为h , 设△ABCAB 边上的高为H, 则利用面积法可得:222CM h CN h MN H⋅⋅⋅+=(CM+CN )h=MN ﹒HCM CN MNH h +=又H=CM CN MN⋅化简可得(CM+CN)﹒1MN CM CN h=⋅故111CM CN h+=13解:(1)由已知得:310c b c =⎧⎨−−+=⎩解得c=3,b =2∴抛物线的线的解析式为223y x x =−++ (2)由顶点坐标公式得顶点坐标为(1,4)所以对称轴为x=1,A,E 关于x=1对称,所以E(3,0) 设对称轴与x 轴的交点为F所以四边形ABDE 的面积=ABO DFE BOFD S S S ∆∆++梯形=111()222AO BO BO DF OF EF DF ⋅++⋅+⋅ =11113(34)124222⨯⨯++⨯+⨯⨯ =9(3)相似如图,======所以2220BD BE +=,220DE =即:222BD BE DE +=,所以BDE ∆是直角三角形所以90AOB DBE ∠=∠=︒,且2AO BO BD BE ==, 所以AOBDBE ∆∆.14解(Ⅰ)当1==b a ,1−=c 时,抛物线为1232−+=x x y , 方程01232=−+x x 的两个根为11−=x ,312=x . ∴该抛物线与x 轴公共点的坐标是()10−,和103⎛⎫ ⎪⎝⎭,. ············································ 2分 (Ⅱ)当1==b a 时,抛物线为c x x y ++=232,且与x 轴有公共点.对于方程0232=++c x x ,判别式c 124−=∆≥0,有c ≤31. ···································· 3分①当31=c 时,由方程031232=++x x ,解得3121−==x x . 此时抛物线为31232++=x x y 与x 轴只有一个公共点103⎛⎫− ⎪⎝⎭,. ······························ 4分 ②当31<c 时, 11−=x 时,c c y +=+−=1231, 12=x 时,c c y +=++=5232.由已知11<<−x 时,该抛物线与x 轴有且只有一个公共点,考虑其对称轴为31−=x ,。
初三中考数学方程组练习题及答案
![初三中考数学方程组练习题及答案](https://img.taocdn.com/s3/m/72ab72ff998fcc22bcd10d9b.png)
1.(2011年安徽芜湖)方程组2x+3y=7,x-3y=8的解为________________.2.(2012年湖南长沙)若实数a,b满足|3a-1|+b2=0,则ab的值为______.3.已知x,y满足方程组2x+y=5,x+2y=4,则x-y的值为_____________.4.(2011年山东潍坊)方程组5x-2y-4=0,x+y-5=0的解是__________.5.(2012年贵州安顺)以方程组y=x+1,y=-x+2的解为坐标的点(x,y)在第____象限.6.(2012年江苏南通)甲种电影票每张20元,乙种电影票每张15元,若购买甲、乙两种电影票共40张,恰好用去700元,则甲种电影票买了____张.7.已知x=2,y=1是关于x,y的二元一次方程组ax+by=7,ax-by=1的解,则a-b 的值为()A.1 B.-1 C.2 D.38.(2012年山东临沂)关于x,y的方程组3x-y=m,x+my=n的解是x=1,y=1,则m -n的值是()A.5 B.3 C.2 D.19.(2012年四川凉山州)雅西高速公路于2012年4月29日正式通车,西昌到成都全长420千米,一辆小汽车和一辆客车同时从西昌、成都两地相向开出,经过2.5小时相遇.相遇时,小汽车比客车多行驶70千米,设小汽车和客车的平均速度分别为x千米/小时和y千米/小时,则下列方程组正确的是()A.x+y=70,2.5x+2.5y=420B.x-y=70,2.5x+2.5y=420C.x+y=70,2.5x-2.5y=420D.2.5x+2.5y=420,2.5x-2.5y=7010.(2010年山东日照)解方程组:x-2y=3,3x-8y=13.11.已知x=1,y=-2是关于x,y的二元一次方程组ax+by=1,x-by=3的解,求a,b的值.12.(2012年江苏苏州)我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的15,中、美两国人均淡水资源占有量之和为13 800 m3,问中、美两国人均淡水资源占有量各为多少(单位:m3)?13.(2011年湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18 000元,其中甲种蔬菜每亩获利2 000元,乙种蔬菜每亩获利1 500元,李大叔去年甲、乙两种蔬菜各种植了多少亩(注:亩为面积单位)?16.(2011年河北)已知x =2,y =3是关于x ,y 的二元一次方程3x =y +a 的解,求(a +1)(a -1)+7的值.17.若关于x ,y 的二元一次方程组x +y =5k ,x -y =9k 的解也是二元一次方程2x +3y =6的解,则k 的值为( ) A .-34 B.34 C.43 D .-43【北京市海淀区】当使用换元法解方程03)1(2)1(2=-+-+x x x x 时,若设1+=x x y ,则原方程可变形为( )A .y 2+2y +3=0B .y 2-2y +3=0C .y 2+2y -3=0D .y 2-2y -3=0(3)、用换元法解方程433322=-+-x x x x 时,设x x y 32-=,原方程可化为( )同.已知水流的速度是3千米/时,求轮船在静水中的速度.(提示:顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度) 解:②乙两辆汽车同时分别从A 、B 两城沿同一条高速公路驶向C 城.已知A 、C 两城的距离为450千米,B 、C 两城的距离为400千米,甲车比乙车的速度快10 千米/时,结果两辆车同时到达C 城.求两车的速度 解③某药品经两次降价,零售价降为原来的一半.已知两次降价的百分率一样,求每次降价的百分率.(精确到0.1%) 解④【05绵阳】已知等式 (2A -7B ) x +(3A -8B )=8x +10对一切实数x 都成立,求A 、B 的值解⑤【05南通】某校初三(2)班40名同学为“希望工程”捐款,共捐款100元.捐款情况如下表:捐款(元) 1 2 3 4 人 数67表格中捐款2元和3元的人数不小心被墨水污染已看不清楚.若设捐款2元的有x 名同学,捐款3元的有y 名同学,根据题意,可得方程组A 、272366x y x y +=⎧⎨+=⎩B 、2723100x y x y +=⎧⎨+=⎩C 、273266x y x y +=⎧⎨+=⎩D 、2732100x y x y +=⎧⎨+=⎩解⑥已知三个连续奇数的平方和是371,求这三个奇数.解⑦一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方米.求截去正方形的边长. 解:【05黄岗】不等式组()()⎪⎩⎪⎨⎧≤--+<--+-1213128313x x x x 的解集应为( )A 、2-<xB 、722≤<-x C 、12≤<-x D 、2-<x 或x ≥1 ④求不等式组2≤3x -7<8的整数解.解:1.x =5,y =-12.13.14.x =2,y =35.一6.20 7.B 8.D 9.D10.解:x -2y =3, ①3x -8y =13. ② ①×3,得3x -6y =9. ③③-②,得-6y -(-8y)=9-13,解得y =-2. 把y =-2代入①,得x =-1. ∴原方程组的解为x =-1,y =-2.11.解:将x =1,y =-2代入二元一次方程组,得a -2b =1, ①1+2b =3. ② 由②,得b =1. 将b =1代入①,得a -2=1.∴a =3. 即a =3,b =1.12.解:设中国人均淡水资源占有量为x m3,美国人均淡水资源占有量为y m3,依题意,得y =5x ,x +y =13 800, 解得x =2 300,y =11 500.答:中、美两国人均淡水资源占有量各为2 300 m3,11 500 m3.13.解:设李大叔去年种植了甲种蔬菜x 亩,种植了乙种蔬菜y 亩,则x +y =10,2 000x +1 500y =18 000. 解得x =6,y =4.答:李大叔去年甲种蔬菜种植了6亩,乙种蔬菜种植了4亩. 16.解:将x =2,y =3代入3x =y +a 中,得a =3. ∴(a +1)(a -1)+7=a2-1+7=3+6=9.17.B 解析:解关于x ,y 的二元一次方程组 得x =7k ,y =-2k ,将之代入方程2x +3y =6,得k =34.(3)判别式△=b ²-4ac 的三种情况与根的关系 当0>∆时 有两个不相等的实数根 ,当0=∆时 有两个相等的实数根当0<∆时 没有实数根.当△≥0时 有两个实数根【北京市海淀区】( D )(3)、( A ) 例题:①解:设船在静水中速度为x 千米/小时依题意得:80/(x +3)= 60/(x -3) 解得:x =21 答:(略) ②解:设乙车速度为x 千米/小时,则甲车的速度为(x +10)千米/小时依题意得:450/(x +10)=400/x 解得x =80 x +1=90 ③解:设原零售价为a 元,每次降价率为x依题意得:a (1-x )²=a /2 解得:x ≈0.292 答:(略) ④【05绵阳】解:A =6/5 B = -4/5 ⑤解:A⑥解:三个连续奇数依次为x -2、x 、x +2 依题意得:(x -2)² + x ² +(x +2)² =371 解得:x =±11当x =11时,三个数为9、11、13;当x = —11时,为 —13、—11、—9 ⑦解:设小正方形的边长为x cm 依题意:(60-2x )(40-2x )=800 解得x 1=40 (不合题意舍去) x 2=10 答(略)③【05黄岗】(C )④求不等式组2≤3x -7<8的整数解.解得:3≤x <5。
2023年四川省广元市初三毕业中考数学真题试卷含详解
![2023年四川省广元市初三毕业中考数学真题试卷含详解](https://img.taocdn.com/s3/m/b246ee644a73f242336c1eb91a37f111f1850dd9.png)
2023年四川省广元市中考数学试卷一、选择题(每小题给出的四个选项中,只有一个符合题意.每小题3分,共30分)1.12-的相反数是()A.2- B.2 C.12-D.122.下列计算正确的是()A.22ab a b -=B.236a a a ⋅=C.233ab a a÷= D.222()()4a a a +-=-3.某几何体是由四个大小相同的小立方块拼成,其俯视图如图所示,图中数字表示该位置上的小立方块个数,则这个几何体的左视图是()A.B.C.D.4.某中学开展“读书节活动”,该中学某语文老师随机抽样调查了本班10名学生平均每周的课外阅读时间,统计如表:每周课外阅读时间(小时)2468学生数(人)2341下列说法错误的是()A.众数是1B.平均数是4.8C.样本容量是10D.中位数是55.关于x 的一元二次方程232302x x -+=根的情况,下列说法中正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定6.如图,AB 是O 的直径,点C ,D 在O上,连接CD OD AC ,,,若124BOD ∠=︒,则ACD ∠的度数是()A.56︒B.33︒C.28︒D.23︒7.如图,半径为5的扇形AOB 中,90AOB ∠=︒,C 是 AB 上一点,CD OA ⊥,CE OB ⊥,垂足分别为D ,E ,若CD CE =,则图中阴影部分面积为()A.2516πB.258π C.256π D.254π8.向高为10的容器(形状如图)中注水,注满为止,则水深h 与注水量v 的函数关系的大致图象是()A. B. C. D.9.近年来,我市大力发展交通,建成多条快速通道,小张开车从家到单位有两条路线可选择,路线a 为全程10千米的普通道路,路线b 包含快速通道,全程7千米,走路线b 比路线a 平均速度提高40%,时间节省10分钟,求走路线a 和路线b 的平均速度分别是多少?设走路线a 的平均速度为x 千米/小时,依题意,可列方程为()A.()10710140%60x x -=+ B.()10710140%x x -=+C.()71010140%60x x -=+ D.()71010140%x x -=+10.已知抛物线2y ax bx c =++(a ,b ,c 是常数且a<0)过()1,0-和()0m ,两点,且34m <<,下列四个结论:0abc >①;30a c +>②;③若抛物线过点()1,4,则213a -<<-;④关于x 的方程()()13a x x m +-=有实数根,则其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(把正确答案直接写在答题卡对应题目的横线上.每小题4分,共24分)11.有意义,则实数x 的取值范围是______12.广元市聚焦“1345”发展战略和“十四五”规划,牢牢牵住重点项目建设“牛鼻子”,《2023年广元市重点项目名单》共编列项目300个,其中生态环保项目10个,计划总投资约45亿元,将45亿这个数据用科学记数法表示为____________.13.如图,a b ∥,直线l 与直线a ,b 分别交于B ,A 两点,分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧相交于点E ,F ,作直线EF ,分别交直线a ,b 于点C ,D ,连接AC ,若34CDA ∠=︒,则CAB ∠的度数为_____.14.在我国南宋数学家杨辉所著的《详解九章算术》(1261年)一书中,用如图的三角形解释二项和的乘方规律,因此我们称这个三角形为“杨辉三角”,根据规律第八行从左到右第三个数为_____.15.如图,在平面直角坐标系中,已知点()1,0A ,点()0,3B -,点C 在x 轴上,且点C 在点A 右方,连接AB ,BC ,若1tan 3ABC ∠=,则点C 的坐标为_____.16.如图,45ACB ∠=︒,半径为2的O 与角的两边相切,点P 是⊙O 上任意一点,过点P 向角的两边作垂线,垂足分别为E ,F ,设t PE =+,则t 的取值范围是_____.三、解答题(要求写出必要的解答步骤或证明过程,共96分)17.计算:()101822202313++--.18.先化简,再求值:222222322x y x x y y x x y xy ⎛⎫++÷⎪---⎝⎭,其中31x =+,3y =.19.如图,将边长为4的等边三角形纸片沿边BC 上的高AD 剪成两个三角形,用这两个三角形拼成一个平行四边形.(1)画出这个平行四边形(画出一种情况即可);(2)根据(1)中所画平行四边形求出两条对角线长.20.为进一步落实“德、智、体、美、劳”五育并举工作,某校开展以“文化、科技、体育、艺术、劳动”为主题的活动,其中体育活动有“一分钟跳绳”比赛项目,为了解学生“一分钟跳绳”的能力,体育老师随机抽取部分学生进行测试并将测试成绩作为样本,绘制出如图所示的频数分布直方图(从左到右依次为第一到第六小组,每小组含最小值,不含最大值)和扇形统计图,请根据统计图中提供的信息解答下列问题:(1)求第四小组的频数,并补全频数分布直方图;(2)若“一分钟跳绳”不低于160次的成绩为优秀,本校学生共有1260人,请估计该校学生“一分钟跳绳”成绩为优秀的人数;(3)若“一分钟跳绳”不低于180次的成绩为满分,经测试某班恰有3名男生1名女生成绩为满分,现要从这4人中随机抽取2人去参加学校组织的“一分钟跳绳”比赛,请用画树状图或列表的方法,求所选2人都是男生的概率.21.“一缕清风银叶转”,某市20台风机依次矗立在云遮雾绕的山脊之上,风叶转动,风能就能转换成电能,造福千家万户.某中学初三数学兴趣小组,为测量风叶的长度进行了实地测量.如图,三片风叶两两所成的角为120︒,当其中一片风叶OB 与塔干OD 叠合时,在与塔底D 水平距离为60米的E 处,测得塔顶部O 的仰角45OED ∠=︒,风叶OA 的视角30OEA ∠=︒.(1)已知α,β两角和的余弦公式为:()cos cos cos sin sin αβαβαβ+=-,请利用公式计算cos 75︒;(2)求风叶OA 的长度.22.某移动公司推出A ,B 两种电话计费方式.计费方式月使用费/元主叫限定时间/min主叫超时费/(元/min )被叫A 782000.25免费B1085000.19免费(1)设一个月内用移动电话主叫时间为t min ,根据上表,分别写出在不同时间范围内,方式A ,方式B 的计费金额关于t 的函数解析式;(2)若你预计每月主叫时间为350min ,你将选择A ,B 哪种计费方式,并说明理由;(3)请你根据月主叫时间t 的不同范围,直接写出最省钱的计费方式.23.如图,已知一次函数6y kx =+的图象与反比例函数()0my m x=>的图象交于()34A ,,B 两点,与x 轴交于点C ,将直线AB 沿y 轴向上平移3个单位长度后与反比例函数图象交于点D ,E .(1)求k ,m 的值及C 点坐标;(2)连接AD ,CD ,求ACD 的面积.24.如图,AB 为O 的直径,C 为O 上一点,连接AC BC ,,过点C 作O 的切线交AB 延长线于点D ,OF BC ⊥于点E ,交CD 于点F .(1)求证:BCD BOE ∠=∠;(2)若3sin 5CAB ∠=,10AB =,求BD 的长.25.如图1,已知线段AB ,AC ,线段AC 绕点A 在直线AB 上方旋转,连接BC ,以BC 为边在BC 上方作Rt BDC ,且30DBC ∠=︒.(1)若=90BDC ∠︒,以AB 为边在AB 上方作Rt BAE △,且90AEB ∠=︒,30EBA ∠=︒,连接DE ,用等式表示线段AC 与DE 的数量关系是;(2)如图2,在(1)的条件下,若DE AB ⊥,4AB =,2AC =,求BC 的长;(3)如图3,若90BCD ∠=︒,4AB =,2AC =,当AD 的值最大时,求此时tan CBA ∠的值.26.如图1,在平面直角坐标系中,已知二次函数24y ax bx =++的图象与x 轴交于点()2,0A -,()4,0B ,与y 轴交于点C .(1)求抛物线的解析式;(2)已知E 为抛物线上一点,F 为抛物线对称轴l 上一点,以B ,E ,F 为顶点的三角形是等腰直角三角形,且90BFE ∠=︒,求出点F 的坐标;(3)如图2,P 为第一象限内抛物线上一点,连接AP 交y 轴于点M ,连接BP 并延长交y 轴于点N ,在点P 运动过程中,12OM ON是否为定值?若是,求出这个定值;若不是,请说明理由.2023年四川省广元市中考数学试卷一、选择题(每小题给出的四个选项中,只有一个符合题意.每小题3分,共30分)1.12-的相反数是()A.2- B.2C.12-D.12【答案】D【分析】根据相反数的性质,互为相反数的两个数的和为0即可求解.【详解】解:因为-12+12=0,所以-12的相反数是12.故选:D .【点睛】本题考查求一个数的相反数,掌握相反数的性质是解题关键.2.下列计算正确的是()A.22ab a b -=B.236a a a ⋅=C.233ab a a ÷= D.222()()4a a a +-=-【答案】D【分析】根据合并同类项,同底数幂的乘法,同底数幂的除法,平方差公式进行计算即可求解.【详解】A.22ab a b -≠,故该选项不正确,不符合题意;B.235a a a ⋅=,故该选项不正确,不符合题意;C.233a b a ab ÷=,故该选项不正确,不符合题意;D.222()()4a a a +-=-,故该选项正确,符合题意;故选:D .【点睛】本题考查了合并同类项,同底数幂的乘法,同底数幂的除法,平方差公式,熟练掌握以上知识是解题的关键.3.某几何体是由四个大小相同的小立方块拼成,其俯视图如图所示,图中数字表示该位置上的小立方块个数,则这个几何体的左视图是()A.B.C.D.【分析】先细心观察原立体图形中正方体的位置关系,从左面看去,一共两排,左边底部有1个小正方形,右边有2个小正方形.结合四个选项选出答案.【详解】解:从左面看去,一共两排,左边底部有1个小正方形,右边有2个小正方形.故选:D .【点睛】本题考查了由三视图判断几何体,解题的关键是具有几何体的三视图及空间想象能力.4.某中学开展“读书节活动”,该中学某语文老师随机抽样调查了本班10名学生平均每周的课外阅读时间,统计如表:每周课外阅读时间(小时)2468学生数(人)2341下列说法错误的是()A.众数是1B.平均数是4.8C.样本容量是10D.中位数是5【答案】A【分析】根据众数、平均数、样本的容量、中位数的定义,逐项分析判断即可求解.【详解】解:A.6出现的次数最多,则众数是6,故该选项不正确,符合题意;B.平均数是224364814.810⨯+⨯+⨯+⨯=,故该选项正确,不符合题意;C.样本容量是234110+++=,故该选项正确,不符合题意;D.中位数是第5个和第6个数的平均数即46=2+5,故该选项正确,不符合题意;故选:A .【点睛】本题考查了众数、平均数、样本的容量、中位数,熟练掌握众数、平均数、样本的容量、中位数的定义是解题的关键.5.关于x 的一元二次方程232302x x -+=根的情况,下列说法中正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定【答案】C【分析】直接利用一元二次方程根的判别式即可得.【详解】解:232302x x -+=,其中2a =,3b =-,32c =,∴()23Δ342302=--⨯⨯=-<,∴方程没有实数根.【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=->,则方程有两个不相等的实数根,若240b ac ∆=-=,则方程有两个相等的实数根,若24<0b ac ∆=-,则方程没有实数根.6.如图,AB 是O 的直径,点C ,D 在O 上,连接CD OD AC ,,,若124BOD ∠=︒,则ACD ∠的度数是()A.56︒B.33︒C.28︒D.23︒【答案】C【分析】根据圆周角定理计算即可.【详解】解:∵124BOD ∠=︒,∴18012456AOD Ð=°-°=°,∴1282ACD AOD ∠=∠=︒,故选:C .【点睛】此题考查圆周角定理,熟知同弧所对的圆周角是圆心角的一半是解题的关键.7.如图,半径为5的扇形AOB 中,90AOB ∠=︒,C 是 AB 上一点,CD OA ⊥,CE OB ⊥,垂足分别为D ,E ,若CD CE =,则图中阴影部分面积为()A.2516π B.258π C.256π D.254π【答案】B【分析】连接OC ,证明四边形CDOE 是正方形,进而得出CDE OCE S S = ,45COE ∠=︒,然后根据扇形面积公式即可求解.【详解】解:如图所示,连接OC ,∵CD OA ⊥,CE OB ⊥,90AOB ∠=︒,∴四边形CDOE 是矩形,∵CD CE =,∴四边形CDOE 是正方形,∴CDE OCE S S = ,45COE ∠=︒,∴图中阴影部分面积24525π5π3608BOC S ==⨯=扇形,故选:B .【点睛】本题考查了正方形的性质与判定,求扇形面积,证明四边形CDOE 是正方形是解题的关键.8.向高为10的容器(形状如图)中注水,注满为止,则水深h 与注水量v 的函数关系的大致图象是()A. B. C. D.【答案】D【分析】从水瓶的构造形状上看,从底部到顶部的变化关系为:开始宽,逐渐细小,再变宽,再从函数的图象上看,选出答案.【详解】解:从水瓶的构造形状上看,从底部到顶部的变化关系为:开始宽,逐渐细小,再变宽.则注入的水量v 随水深h 的变化关系为:先慢再快,最后又变慢,那么从函数的图象上看,C 对应的图象变化为先快再慢,最后又变快,不符合;A 、B 对应的图象中间没有变化,只有D 符合条件.故选:D .【点睛】本题主要考查函数的定义及函数的图象的关系,抓住变量之间的变化关系是解题的关键.9.近年来,我市大力发展交通,建成多条快速通道,小张开车从家到单位有两条路线可选择,路线a 为全程10千米的普通道路,路线b 包含快速通道,全程7千米,走路线b 比路线a 平均速度提高40%,时间节省10分钟,求走路线a 和路线b 的平均速度分别是多少?设走路线a 的平均速度为x 千米/小时,依题意,可列方程为()A.()10710140%60x x -=+ B.()10710140%x x -=+ C.()71010140%60x x -=+ D.()71010140%x x-=+【答案】A 【分析】若设路线a 时的平均速度为x 千米/小时,则走路线b 时的平均速度为()140%x +千米/小时,根据路线b 的全程比路线a 少用10分钟可列出方程.【详解】解:由题意可得走路线b 时的平均速度为()140%x +千米/小时,∴()10710140%60x x -=+,故选:A .【点睛】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.10.已知抛物线2y ax bx c =++(a ,b ,c 是常数且a<0)过()1,0-和()0m ,两点,且34m <<,下列四个结论:0abc >①;30a c +>②;③若抛物线过点()1,4,则213a -<<-;④关于x 的方程()()13a x x m +-=有实数根,则其中正确的结论有()A.1个B.2个C.3个D.4个【答案】B 【分析】由抛物线过()1,0-和()0m ,两点得到对称轴为直线122b m x a -=-=,且34m <<,a<0所以得到3122b a <-<,进而判断abc 的符号,得到0abc <,30a c +>;抛物线过点()1,0-和()1,4,代入可得0a b c -+=和4a b c ++=,解得2b =,又由3122b a <-<,得213a -<<-;对称轴为直线12m x -=,a<0,开口向下,所以y 有最大值为212m a +⎛⎫- ⎪⎝⎭,且34m <<,无法判断关于x 的方程()()13a x x m +-=是否有实数根.【详解】解:已知抛物线过()1,0-和()0m ,两点,则对称轴为直线()1122m m x +--==,∵34m <<,所以13122m -<<,即3122b a <-<,a<0,则0b >,当=1x -时,()()2110y a b c a b c =-+-+=-+=,则0c >,所以0abc <,故结论①错误;因为12b a->,所以2a b >-,32a c a a c a b c +=++>-+,即30a c +>,故结论②正确;抛物线过()1,0-和()1,4两点,代入可得0a b c -+=和4a b c ++=,两式相减解得2b =,由3122b a <-<可得23122a <-<,解得213a -<<-,故结论③正确;对称轴为直线12m x -=,a<0,开口向下,∵()()()222221*********m m m m y a x x m a x m x m a x am a a x a ---+⎛⎫⎛⎫⎛⎫⎛⎫⎡⎤=+-=+--=+--=+- ⎪ ⎪ ⎪ ⎪⎣⎦⎝⎭⎝⎭⎝⎭⎝⎭,∴所以y 有最大值为212m a +⎛⎫- ⎪⎝⎭,∵2132m a +⎛⎫-> ⎪⎝⎭不一定成立,∴关于x 的方程()()13a x x m +-=有实数根无法确定,故结论④错误.故选:B【点睛】本题主要考查二次函数的图象与性质,根据题意判断a ,b ,c 与0的关系,再借助点的坐标得出结论.二、填空题(把正确答案直接写在答题卡对应题目的横线上.每小题4分,共24分)11.有意义,则实数x 的取值范围是______【答案】3x >【分析】根据分式有意义的条件,二次根式有意义的条件计算即可.有意义,∴3030x x --≠≥,且,解得x 3>,故答案为:x 3>.【点睛】本题考查了分式有意义的条件,二次根式有意义的条件,熟练掌握分式有意义的条件,二次根式有意义的条件是解题的关键.12.广元市聚焦“1345”发展战略和“十四五”规划,牢牢牵住重点项目建设“牛鼻子”,《2023年广元市重点项目名单》共编列项目300个,其中生态环保项目10个,计划总投资约45亿元,将45亿这个数据用科学记数法表示为____________.【答案】94.510⨯【分析】根据科学记数法的表示方法求解即可.【详解】解:将45亿这个数据用科学记数法表示为94.510⨯.故答案为:94.510⨯.【点睛】此题考查了科学记数法的表示方法,解题的关键是熟练掌握科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1<10a ≤,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.13.如图,a b ∥,直线l 与直线a ,b 分别交于B ,A 两点,分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧相交于点E ,F ,作直线EF ,分别交直线a ,b 于点C ,D ,连接AC ,若34CDA ∠=︒,则CAB ∠的度数为_____.【答案】56︒##56度【分析】先判断EF 为线段AB 的垂直平分线,即可得CAB CBA ∠=∠,ACD BCD ∠=∠,再由a b ∥,可得34CDA BCD ∠=∠=︒,即有34ACD BCD ∠=∠=︒,利用三角形内角和定理可求CAB ∠的度数.【详解】解:由作图可知EF 为线段AB 的垂直平分线,∴AC BC =,∴CAB CBA ∠=∠,ACD BCD ∠=∠,∵a b ∥,∴34CDA BCD ∠=∠=︒,∴34ACD BCD ∠=∠=︒,∵180ACD BCD CAB CBA ∠+∠+∠+∠=︒,∴56CAB ∠=︒,故答案为:56︒.【点睛】本题考查了垂直平分线的作图、垂直平分线的性质、平行线的性质以及三角形内角和定理等知识,判断EF为线段AB 的垂直平分线是解答本题的关键.14.在我国南宋数学家杨辉所著的《详解九章算术》(1261年)一书中,用如图的三角形解释二项和的乘方规律,因此我们称这个三角形为“杨辉三角”,根据规律第八行从左到右第三个数为_____.【答案】21【分析】根据前六行的规律写出第7,8行的规律进而即可求解.【详解】解:根据规律可得第七行的规律为1,6,1520,15,6,1,第八行的规律为1,7,21,35,35,21,7,1∴根据规律第八行从左到右第三个数为21,故答案为:21.【点睛】本题考查了数字类规律,找到规律是解题的关键.15.如图,在平面直角坐标系中,已知点()1,0A ,点()0,3B -,点C 在x 轴上,且点C 在点A 右方,连接AB ,BC ,若1tan 3ABC ∠=,则点C 的坐标为_____.【答案】904⎛⎫ ⎪⎝⎭,【分析】根据已知条件得出ABO ABC ∠=∠,根据等面积法得出AC CB OA OB=,设(),0C m ,则1AC m =-,进而即可求解.【详解】解:∵点()1,0A ,点()0,3B -,∴1,3OA OB ==,1tan 3OBA ∠=,∵1tan 3ABC ∠=,∴ABO ABC ∠=∠,过点A 作AD BC ⊥于点D,∵,AO BO AD BC ⊥⊥,AB 是OBC ∠的角平分线,∴1AO AD ==∵11221122ABO ABC OA OB OB OA S S AC OB BC AD ⨯⨯==⨯⨯ ∴AC CB OA OB=设(),0C m ,则1AC m =-,BC =∴1313m -=解得:94m =或0m =(舍去)∴C 904⎛⎫ ⎪⎝⎭,故答案为:904⎛⎫ ⎪⎝⎭,.【点睛】本题考查了正切的定义,角平分线的性质,勾股定理,熟练掌握角平分线的定义是解题的关键.16.如图,45ACB ∠=︒,半径为2的O 与角的两边相切,点P 是⊙O 上任意一点,过点P 向角的两边作垂线,垂足分别为E ,F,设t PE =+,则t 的取值范围是_____.【答案】4t ≤≤+【分析】利用切线的性质以及等腰直角三角形的性质求得2CD DH ==+,再求得t PE PQ EQ =+=,分两种情况讨论,画出图形,利用等腰直角三角形的性质即可求解.【详解】解:设O 与ACB ∠两边的切点分别为D 、G ,连接OG OD 、,延长DO 交CB 于点H ,由90OGC ODC OGH ∠=∠=∠=︒,∵45ACB ∠=︒,∴45OHC ∠=︒,∴OH ==∴2CD DH ==+,如图,延长EP 交CB 于点Q ,同理PQ =,∵t PE =+,∴t PE PQ EQ =+=,当EQ 与O 相切时,EQ 有最大或最小值,连接OP ,∵D 、E 都是切点,∴90ODE DEP OPE ∠=∠=∠=︒,∴四边形ODEP 是矩形,∵OD OP =,∴四边形ODEP 是正方形,∴t 的最大值为4EQ CE CD DE ==+=+;如图,同理,t 的最小值为22EQ CE CD DE ==-=;综上,t 的取值范围是224t ≤≤+.故答案为:224t ≤≤+.【点睛】本题考查了切线的性质,等腰直角三角形的性质,勾股定理,求得t EQ =是解题的关键.三、解答题(要求写出必要的解答步骤或证明过程,共96分)17.计算:()101822202313++--.【答案】4【分析】先化简二次根式,绝对值,计算零次幂,再合并即可.【详解】解:()101822202313++--3222113=++22211=++4=.【点睛】本题考查的是二次根式的加减运算,化简绝对值,零次幂的含义,掌握运算法则是解本题的关键.18.先化简,再求值:222222322x y x x y y x x y xy ⎛⎫++÷ ⎪---⎝⎭,其中31x =+,3y =.【答案】2xy ;332【分析】先根据分式的加减计算括号内的,同时将除法转化为乘法,再根据分式的性质化简,最后将字母的值代入求解.【详解】解:222222322x y x x y y x x y xy⎛⎫++÷ ⎪---⎝⎭()22322xy x y x y x x y -+-=⨯-()()()2xy x y x y x y x y -+=⨯+-=2xy ,当1x =+,y =时,原式)13322+==.【点睛】本题考查了分式化简求值,二次根式的混合运算,解题关键是熟练运用分式运算法则进行求解.19.如图,将边长为4的等边三角形纸片沿边BC 上的高AD 剪成两个三角形,用这两个三角形拼成一个平行四边形.(1)画出这个平行四边形(画出一种情况即可);(2)根据(1)中所画平行四边形求出两条对角线长.【答案】(1)见解析(2)4或或2,【分析】(1)根据题意画出拼接图形即可;(2)利用等边三角形的性质求得BD CD AD 、、,分情况分别利用平行四边形和矩形的性质和勾股定理求解即可.【小问1详解】解:如图①或②或③,,【小问2详解】解:∵等边ABC 边4AB AC BC ===,∴2BD DC ==,∴AD ==如图①所示:可得四边形ACBD 是矩形,则其对角线长为4AB CD ==;如图②所示:AD =连接BC ,过点C 作CE BD ⊥于点E ,则可得四边形ACED 是矩形,∴==EC AD ,24BE BD ==,则BC ==;如图③所示:2BD =,连接AC ,过点A 作AE BC ⊥交CB 延长线于点E ,可得四边形AEBD 是矩形,由题意可得:2AE BD ==,28EC BC ==,故AC ==【点睛】本题考查图形的剪拼,涉及等边三角形的性质、平行四边形的性质、矩形的性质、勾股定理,熟练掌握等腰三角形的性质和矩形性质,作辅助线构造直角三角形求解是解答的关键.20.为进一步落实“德、智、体、美、劳”五育并举工作,某校开展以“文化、科技、体育、艺术、劳动”为主题的活动,其中体育活动有“一分钟跳绳”比赛项目,为了解学生“一分钟跳绳”的能力,体育老师随机抽取部分学生进行测试并将测试成绩作为样本,绘制出如图所示的频数分布直方图(从左到右依次为第一到第六小组,每小组含最小值,不含最大值)和扇形统计图,请根据统计图中提供的信息解答下列问题:(1)求第四小组的频数,并补全频数分布直方图;(2)若“一分钟跳绳”不低于160次的成绩为优秀,本校学生共有1260人,请估计该校学生“一分钟跳绳”成绩为优秀的人数;(3)若“一分钟跳绳”不低于180次的成绩为满分,经测试某班恰有3名男生1名女生成绩为满分,现要从这4人中随机抽取2人去参加学校组织的“一分钟跳绳”比赛,请用画树状图或列表的方法,求所选2人都是男生的概率.【答案】(1)第四小组的频数为10,补全图形见解析(2)该校学生“一分钟跳绳”成绩为优秀的人数为294人(3)所选2人都是男生的概率为12.【分析】(1)首先利用第二小组的人数及所占比例求得总人数,然后求得第四组的人数,即可作出统计图;(2)利用总人数1260乘以优秀成绩所占的比例即可求解;(3)画树状图展示所有12种等可能的结果数,再找出符合条件的结果数,然后根据概率公式计算即可.【小问1详解】解:样本容量是1220%60÷=(人),第四组的人数是:606121810410-----=(人),补全统计图如图:;【小问2详解】解:该校学生“一分钟跳绳”成绩为优秀的人数为104126029460+⨯=(人);【小问3详解】解:画树状图:共有12种等可能的结果数,其中抽到的2人都是男生的结果数为6,所以抽到的2人都是男生的概率为61122=.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.还考查读频数分布直方图的能力和利用统计图获取信息的能力.21.“一缕清风银叶转”,某市20台风机依次矗立在云遮雾绕的山脊之上,风叶转动,风能就能转换成电能,造福千家万户.某中学初三数学兴趣小组,为测量风叶的长度进行了实地测量.如图,三片风叶两两所成的角为120︒,当其中一片风叶OB 与塔干OD 叠合时,在与塔底D 水平距离为60米的E 处,测得塔顶部O 的仰角45OED ∠=︒,风叶OA 的视角30OEA ∠=︒.(1)已知α,β两角和的余弦公式为:()cos cos cos sin sin αβαβαβ+=-,请利用公式计算cos 75︒;(2)求风叶OA 的长度.【答案】(1)4(2)风叶OA的长度为()60-米【分析】(1)根据题中公式计算即可;(2)过点A 作AF D E ⊥,连接AC ,OG AC ⊥,先根据题意求出OE ,再根据等腰对等边证明OE AE =,结合第一问的结论用三角函数即可求EF ,再证明四边形DFAG 是矩形,即可求出.【小问1详解】解:由题意可得:()cos75cos 4530︒=︒+︒,∴()1cos 4530cos 45cos30sin 45sin 302︒+︒=︒︒-︒︒==;【小问2详解】解:过点A 作AF D E ⊥,连接AC ,OG AC ⊥,如图所示,由题意得:60DE =米,45OED ∠=︒,∴cos 45DE OE ==∠︒45DOE ∠=︒,∵三片风叶两两所成的角为120︒,∴120DOA ∠=︒,∴1204575AOE ∠=︒-︒=︒,又∵30OEA ∠=︒,∴180753075OAE ∠=︒-︒-︒=︒,∴OAE AOE ∠=∠,∴OE AE ==∵30OEA ∠=︒,45OED ∠=︒,∴75AED ∠=︒,由(1)得:62cos 754-︒=,∴cos 7530EF AE =⨯︒=米,∴()603090DF DE EF =-=-=-∵AF D E ⊥,OG AC ⊥,OD DE ⊥,∴四边形DFAG 是矩形,∴90AG DF ==-米,∵三片风叶两两所成的角为120︒,且三片风叶长度相等,∴30OAG ∠=︒,∴()60cos30AG OA ===︒米,∴风叶OA的长度为()60米.【点睛】本题考查解直角三角形的实际应用,正确理解题意和作出辅助线是关键.22.某移动公司推出A ,B 两种电话计费方式.计费方式月使用费/元主叫限定时间/min 主叫超时费/(元/min )被叫A782000.25免费B 1085000.19免费(1)设一个月内用移动电话主叫时间为t min ,根据上表,分别写出在不同时间范围内,方式A ,方式B 的计费金额关于t 的函数解析式;(2)若你预计每月主叫时间为350min ,你将选择A ,B 哪种计费方式,并说明理由;(3)请你根据月主叫时间t 的不同范围,直接写出最省钱的计费方式.【答案】(1)见解析;(2)选方式B 计费,理由见解析;(3)见解析.【分析】(1)根据题意,设两种计费金额分别为1y 、2y ,分别计算200,t ≤500,t 200<≤500,t >三个不同范围内的A 、B 两种方式的计费金额即可;(2)令350t =,根据(1)中范围求出对应两种计费金额,选择费用低的方案即可;(3)令1108y =,求出此时t 的值0t ,当主叫时间0t t <时,方式A 省钱;当主叫时间t t =0时,方式A 和B 一样;当主叫时间0t t >时,方式B 省钱;【小问1详解】解:根据题意,设两种计费金额分别为1y 、2y 当200t ≤时,方式A 的计费金额为78元,方式B 的计费金额为108元;500,t 200<≤方式A 的计费金额178(200)0.250.2528y t t =+-⨯=+,方式B 的计费金额为108元;当500t >时,方式A 的计费金额为10.2528y t =+,方式B 的计费金额为2108(500)0.190.1913y t t =+-⨯=+总结如下表:主叫时间t /分钟方式A 计费(1y )方式B 计费(2y )200t ≤78108500t 200<≤0.2528t +108500t >0.2528t +0.1913t +【小问2详解】解:当350t =时,10.2535028115.5y =⨯+=2108y =12y y >,故选方式B 计费.【小问3详解】解:令1108y ≤,有0.2528108t +≤解得320t ≤∴当320t <时,方式A 更省钱;当320t =时,方式A 和B 金额一样;当320t >时,方式B 更省钱.【点睛】本题考查了一次函数在电话计费中的应用,根据题意分段讨论是求解的关键.23.如图,已知一次函数6y kx =+的图象与反比例函数()0m y m x =>的图象交于()34A ,,B 两点,与x 轴交于点C ,将直线AB 沿y 轴向上平移3个单位长度后与反比例函数图象交于点D ,E .(1)求k ,m 的值及C 点坐标;(2)连接AD ,CD ,求ACD 的面积.【答案】(1)23k =-;12m =;()9,0C (2)9ACD S =△【分析】(1)把点()34A ,代入6y kx =+和()0m y m x=>求出k 、m 的值即可;把0y =代入AB 的解析式,求出点C 的坐标即可;(2)延长DA 交x 轴于点F ,先求出AB 平移后的关系式,再求出点D 的坐标,然后求出AD 解析式,得出点F 的坐标,根据ACD CDF CAF S S S =- 求出结果即可.【小问1详解】解:把点()34A ,代入6y kx =+和()0m y m x=>得:364k +=,43m =,解得:23k =-,12m =,∴AB 的解析式为263y x =-+,反比例函数解析式为12y x=,把0y =代入263y x =-+得:2063x =-+,解得:9x =,∴点C 的坐标为()9,0;【小问2详解】解:延长DA 交x 轴于点F,如图所示:将直线AB 沿y 轴向上平移3个单位长度后解析式为:2263933y x x =-++=-+,联立29312y x y x ⎧=-+⎪⎪⎨⎪=⎪⎩,解得:11328x y ⎧=⎪⎨⎪=⎩,22121x y =⎧⎨=⎩,∴点382,D ⎛⎫⎪⎝⎭,。
甘肃省2023年中考:《数学》考试真题与参考答案
![甘肃省2023年中考:《数学》考试真题与参考答案](https://img.taocdn.com/s3/m/32a4f20a3868011ca300a6c30c2259010202f39f.png)
甘肃省中考数学科目:2023年考试真题与参考答案适用:平凉、天水、武威临夏、庆阳、定西、白银目录选择题…………01页填空题…………05页解答题…………07页参考答案………13页甘肃省2023年中考:《数学》考试真题与参考答案一、选择题本大题共10小题,每小题3分,共30分,在以下每小题给出的四个选项中,只有一个正确选项。
1.9的算术平方根是( ) A.3± B.9± C.3D.3- 2.若32a b=,则ab =( ) A.6 B.32C.1D.233.计算:()22a a a +-=( ) A.2 B.2a C.22a a +D.22a a -4.若直线y kx =(k 是常数,0k ≠)经过第一、第三象限,则k 的值可为( ) A.2- B.1-C.12-D.25.如图,BD 是等边ABC △的边AC 上的高,以点D 为圆心,DB 长为半径作弧交BC 的延长线于点E ,则DEC ∠=( )A.20︒B.25︒C.30︒D.35︒ 6.方程211x x =+的解为( ) A.2x =- B.2x = C.4x =-D.4x =7.如图,将矩形ABCD 对折,使边AB 与DC ,BC 与AD 分别重合,展开后得到四边形EFGH .若2AB =,4BC =,则四边形EFGH 的面积为( )A.2B.4C.5D.68.据统计,数学家群体是一个长寿群体,某研究小组随机抽取了收录约2200位数学家的《数学家传略辞典》中部分90岁及以上的长寿数学家的年龄为样本,对数据进行整理与分析,统计图表(部分数据)如下,下列结论错误的是( ) 年龄范围(岁)人数(人)90-91 2592-93 94-95 96-97 11 98-99 10 100-101 mA.该小组共统计了100名数学家的年龄B.统计表中m的值为5C.长寿数学家年龄在92-93岁的人数最多D.《数学家传略辞典》中收录的数学家年龄在96-97岁的人数估计有110人9.如图1,汉代初期的《淮南万毕术》是中国古代有关物理、化学的重要文献,书中记载了我国古代学者在科学领域做过的一些探索及成就.其中所记载的“取大镜高悬,置水盆于其下,则见四邻矣”,是古人利用光的反射定律改变光路的方法,即“反射光线与入射光线、法线在同一平面上;反射光线和入射光线位于法线的两侧;反射角等于人射角”。
初三中考数学模拟试题及答案
![初三中考数学模拟试题及答案](https://img.taocdn.com/s3/m/be9c3f8dafaad1f34693daef5ef7ba0d4a736de3.png)
初三中考数学模拟试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx^2 + cx + dC. y = ax^2 + bx + c + dD. y = ax^2 + bx + c + dx2. 已知一个直角三角形的两条直角边长分别为3和4,求斜边的长度。
A. 5B. 6C. 7D. 83. 以下哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/104. 一个数的相反数是-3,那么这个数是多少?A. 3B. -3C. 0D. 65. 一个等腰三角形的底角是45度,求顶角的度数。
A. 45度B. 60度C. 90度D. 135度6. 圆的半径是5厘米,求圆的面积。
A. 25π平方厘米B. 50π平方厘米C. 75π平方厘米D. 100π平方厘米7. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 08. 以下哪个选项是不等式的基本性质?A. 如果a > b,那么a + c > b + cB. 如果a > b,那么ac > bcC. 如果a > b,那么a/c > b/cD. 如果a > b,那么a^2 > b^29. 一个长方体的长、宽、高分别是2cm、3cm、4cm,求其体积。
A. 8立方厘米B. 12立方厘米C. 24立方厘米D. 36立方厘米10. 一个多项式的最高次项系数是-1,且次数为3,这个多项式可能是?A. -x^3 + 2x^2 - 3x + 4B. -x^3 + 2x^2 + 3x - 4C. x^3 + 2x^2 - 3x + 4D. x^3 + 2x^2 + 3x - 4二、填空题(每题3分,共15分)1. 一个数的立方根是2,那么这个数是______。
2. 一个数的平方是9,那么这个数是______或______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考试题精选44.2002年我国发现首个世界级大气田,储量达6000亿立方米,6000亿立方米用科学记数法表示为( ).A .2106⨯亿立方米B .3106⨯亿立方米C .4106⨯亿立方米D .4100.6⨯亿立方米12.在抗击“非典”时期的“课堂在线”学习活动中,李老师从5月8日至5月14日在网上答题个数的记录如下表:日期 5月8日 5月9日 5月10日 5月11日 5月12日 5月13日 5月14日答题个数 68 55 50 56 54 48 68在李老师每天的答题个数所组成的这组数据中,众数和中位数依次是( ).A .68,55B .55,68C .68,57D .55,5714.三峡工程在6月1日至6月10日下闸蓄水期间,水库水位由106米升至135米,高峡平湖初现人间.假设水库水位匀速上升,那么下列图象中,能正确反映这10天水位h (米)随时间t (天)变化的是( ).18.观察下列顺序排列的等式:9×0+1=1,9×1+2=11,9×2+3=21,9×3+4=31,9×4+5=41,……猜想:第n 个等式(n 为正整数)应为________.22.如图,在□ABCD 中,点E 、F 在对角线AC 上,且AE =CF .请你以F 为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).(1)连结________.(2)猜想:________=________.(3)证明:.答案一:(1)BF ……………………………………………………………………1分(2)BF ,DE ……………………………………………………………………………2分(3)证法一:∵ 四边形ABCD 为平行四边形,∴ AD =BC ,AD ∥BC .∴ ∠DAE =∠BCF .……………………………………………………………………3分 在△BCF 和△DAE 中,⎪⎩⎪⎨⎧=∠∠,,,AE CF DAE BCF AD CB ==∴ △BCF ≌△DAE .……………………………………………4分 ∴ BF =DE .……………………………………………………………………………5分证法二:连结DB 、DF ,设DB 、AC 交于点O .∵ 四边形ABCD 为平行四边形,∴ AO =OC ,DO =OB .∵ AE =FC ,∴ AO -AE =OC -FC .∴ EO =OF .……………………………………………………………………………3分∴ 四边形EBFD 为平行四边形.………………………………………………………4分 ∴ BF =DE .……………………………………………………………………………5分答案二:(1)DF …………………………………………………………………………1分(2)DF ,BE ……………………………………………………………………………2分(3)证明:略(参照答案一给分).23.列方程或方程组解应用题:在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“二环路车流量为每小时10000辆.”乙同学说:“四环路比三环路车流量每小时多2000辆.”丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍.” 请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少. 解法一:设高峰时段三环路的车流量为每小时x 辆,…………………………1分则高峰时段四环路的车流量为每小时(x +2000)辆.………………………………2分 根据题意,得3x -(x +2000)=2×10000.…………………………………………4分 解这个方程,得 x =11000. …………………………………………………………5分 x +2000=13000.答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13000辆. …………………………………………………………………………………………………6分 解法二:设高峰时段三环路的车流量为每小时x 辆,四环路的车流量为每小时y 辆. …………………………………………………………………………………………………1分根据题意,得⎩⎨⎧⨯-.2000,1000023+==x y y x ……………………………………………………………………4分 解这个方程组,得⎩⎨⎧.13000,11000==y x ……………………………………………………………………………5分 答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13000辆. …………………………………………………………………………………………………6分24.已知:关于x 的方程0322=+-m mx x 的两个实数根是1x 、2x ,且16)(221=-x x .如果关于x 的另一个方程09622=-+-m mx x 的两个实数根都在1x 和2x 之间,求m 的值. 解:∵ 1x ,2x 是方程0322=+-m mx x ①的两个实数根,∴ m x x 221=+,m x x 321=⋅. ∵ 16)(221=-x x ,∴ 164)(21221=-+x x x x . ∴ 161242=-m m . 解得 11=-m ,42=m ………………………………………………………………3分 (ⅰ)当m =-1时, 方程①为0322=-+x x .∴ 31=-x ,12=x . 方程09622=-+-m mx x ②为01522=-+x x . ∴ 51=-x ',32=x '. ∵ -5、3不在-3和1之间,∴ m =-1不合题意,舍去.…………………………………………………………5分 (ⅱ)当m =4时, 方程①为01282=--x x .∴ 21=x ,62=x . 方程②为01582=+-x x .∴ 31=x ',52=x '. ∵ 2<3<5<6,即2211x x x x <<<'',∴ 方程②的两根都在方程①的两根之间.∵ m =4.………………………………………………………………………………7分综合(ⅰ)(ⅱ),m =4. 注:利用数形结合解此题正确的,参照上述评分标准给分.26.已知:抛物线t ax ax y ++=42与x 轴的一个交点为A (-1,0).(1)求抛物线与x 轴的另一个交点B 的坐标;(2)D 是抛物线与y 轴的交点,C 是抛物线上的一点,且以AB 为一底的梯形ABCD 的面积为9,求此抛物线的解析式;(3)E 是第二象限内到x 轴、y 轴的距离的比为5∶2的点,如果点E 在(2)中的抛物线上,且它与点A 在此抛物线对称轴的同侧,问:在抛物线的对称轴上是否存在点P ,使△APE 的周长最小?若存在,求出点P 的坐标;若不存在,请说明理由.解法一:(1)依题意,抛物线的对称轴为x =-2.∵ 抛物线与x 轴的一个交点为A (-1,0),∴ 由抛物线的对称性,可得抛物线与x 轴的另一个交点B 的坐标为(-3,0). …………………………………………………………………………………………………2分(2)∵ 抛物线t ax ax y ++=42与x 轴的一个交点为A (-1,0),∴ 0)1(4)1(2=+-+-t a a .∴ t =3a . ∴ a ax ax y 342++=.∴ D (0,3a ).∴ 梯形ABCD 中,AB ∥CD ,且点C 在抛物线a ax ax y 342++=上,∵ C (-4,3a ).∴ AB =2,CD =4.∵ 梯形ABCD 的面积为9, ∴9)(21=OD CD AB ⋅+. ∴ 93)42(21=+a . ∴ a ±1.∴ 所求抛物线的解析式为342++=x x y 或342---ax x y =…………………5分(3) 设点E 坐标为(0x ,0y )依题意,00<x ,00<y ,且2500=x y .∴ 0025x y =-. ①设点E 在抛物线342++=x x y 上,∴ 340200++=x x y . 解方程组⎪⎩⎪⎨⎧34,25020000++==-x x y x y 得 ⎩⎨⎧-;=,=15600y x ⎪⎪⎩⎪⎪⎨⎧'-'.=,=452100y x ∵ 点E 与点A 在对称轴x =-2的同侧,∴ 点E 坐标为(21-,45).设在抛物线的对称轴x =-2上存在一点P ,使△APE 的周长最小.∵ AE 长为定值,∴ 要使△APE 的周长最小,只须PA +PE 最小.∴ 点A 关于对称轴x =-2的对称点是B (-3,0), ∴ 由几何知识可知,P 是直线BE 与对称轴x =-2的交点.设过点E 、B 的直线的解析式为n mx y +=,∴ ⎪⎩⎪⎨⎧-.03,4521=+-=+n m n m 解得⎪⎪⎩⎪⎪⎨⎧.23,21==n m ∴ 直线BE 的解析式为2321+=x y . ∴ 把x =-2代入上式,得21=y .∴ 点P 坐标为(-2,21). ②设点E 在抛物线342---x x y =上,∴ 340200---x x y =.解方程组⎪⎩⎪⎨⎧---.34,25020000x x y x y ==- 消去0y ,得03x 23x 020=++. ∴ △<0∴ 此方程无实数根.综上,在抛物线的对称轴上存在点P (-2,21),使△APE 的周长最小.…………8分 解法二:(1)∵ 抛物线t ax ax y ++=42与x 轴的一个交点为A (-1,0), ∴ 0)1(4)1(2=+-+-t a a .∴ t =3a . ∴ a ax ax y 342++=.令 y =0,即0342=++a ax ax .解得 11=-x ,32=-x .∴ 抛物线与x 轴的另一个交点B 的坐标为(-3,0). 2分(2)由a ax ax y 342++=,得D (0,3a ). ∵ 梯形ABCD 中,AB ∥CD ,且点C 在抛物线a ax ax y 342++=上,∴ C (-4,3a ).∴ AB =2,CD =4.∵ 梯形ABCD 的面积为9,∴ 9)(21=+OD CD AB ⋅. 解得OD =3.∴ 33=a .∴ a ±1.∴ 所求抛物线的解析式为342++=x x y 或342--=-x x y .…………………5分(3)同解法一得,P 是直线BE 与对称轴x =-2的交点. ∴ 如图,过点E 作EQ ⊥x 轴于点Q .设对称轴与x 轴的交点为F .由PF ∥EQ ,可得EQPF BQ BF =. ∴45251PF =.∴ 21=PF . ∴ 点P 坐标为(-2,21). 以下同解法一.。