液压伺服系统闭环控制原理
伺服位置控制原理
伺服位置控制原理
伺服位置控制是指通过控制系统对伺服电机的位置进行精确控制的过程。
在伺服位置控制中,控制系统接收反馈信号并与设定值进行比较,然后输出控制信号来调节伺服电机的位置。
伺服位置控制的原理基于闭环控制系统。
首先,控制系统中的传感器感知伺服电机当前的位置,并将该信息作为反馈信号反馈给控制系统。
控制系统还接收一个设定值,即期望的位置。
然后,控制系统采用位置误差(设定值与反馈值之差)作为输入,并将其与预设的控制算法进行比较。
根据比较结果,控制系统计算出控制信号,并将其发送给伺服电机。
伺服电机接收到控制信号后,根据信号调整自身位置,使其与设定值尽可能接近。
在伺服位置控制中,常用的控制算法包括比例控制、积分控制和微分控制的组合,即PID控制。
比例控制通过根据位置误
差的大小来调整控制信号的幅度,以此来控制伺服电机的速度。
积分控制通过累积位置误差的积分,来消除系统稳态误差,提高控制系统的精度。
微分控制根据位置误差的变化率来调整控制信号,以此来控制伺服电机的加速度。
通过不断调整PID控制器中的比例系数、积分系数和微分系数,可以实现伺服电机位置的快速、准确控制。
此外,还可以通过增加前馈控制、速度反馈和加速度反馈等方式进一步提高伺服位置控制的性能。
伺服位置控制在许多自动化领域中广泛应用,例如工业机械、
机器人、CNC机床等。
它可以实现对工作对象的精确定位和运动控制,提高自动化生产的效率和质量。
同时,伺服位置控制还可以根据具体应用需求,进行参数调整和优化,以满足不同应用场景对位置控制的要求。
伺服电机半闭环控制原理
伺服电机半闭环控制原理
伺服电机是现代工业自动化中不可或缺的重要元件,其精确的控制能力为各种生产过程提供了强大的支持。
半闭环控制系统是伺服电机控制中的一种常见方式,其原理和运作方式值得我们深入了解。
半闭环控制系统主要基于开环控制系统发展而来,并在其中加入角位移检测装置。
这个检测装置能对伺服机构的滚珠丝杠转角进行精确的检测。
简单来说,它能够间接地检测到移动部件的位移情况。
当伺服电机在运行过程中,角位移检测装置会实时检测滚珠丝杠的转角,并将这些数据反馈到数控装置的比较器中。
数控装置则负责将这些反馈数据与输入的原指令位移值进行比较。
如果实际位移与指令位移存在差异,比较器会产生一个差值,这个差值将被用于后续的控制操作。
基于比较后的差值,控制系统会对伺服电机的动作进行微调,使得移动部件能补充位移,直至差值消除为止。
这种控制方式的优势在于,它能够实时地根据实际位移与指令位移的差异进行调整,从而确保伺服电机的精确运行。
半闭环控制系统的出现,大大提高了伺服电机的控制精度和稳定性。
它不仅简化了控制流程,还提高了生产效率,使得现代工业生产更为智能化、高效化。
在未来,随着科技的进步,我们有理由相信,伺服电机的半闭环控制原理将会在更多领域得到应用和优化。
浅谈关于液压伺服系统的研究的论文
浅谈关于液压伺服系统的研究的论文本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!论文关键词数控液压伺服系统数控改造论文摘要随着液压伺服控制技术的飞速发展,液压伺服系统的应用越来越广泛,随之液压伺服控制也出现了一些新的特点,基于此对于液压伺服系统的工作原理进行研究,并进一步探讨液压传动的优点和缺点和改造方向,以期能够对于相关工作人员提供参考。
一、引言液压控制技术是以流体力学、液压传动和液力传动为基础,应用现代控制理论、模糊控制理论,将计算机技术、集成传感器技术应用到液压技术和电子技术中,为实现机械工程自动化或生产现代化而发展起来的一门技术,它广泛的应用于国民经济的各行各业,在农业、化工、轻纺、交通运输、机械制造中都有广泛的应用,尤其在高、新、尖装备中更为突出。
随着机电一体化的进程不断加快,技术装各的工作精度、响应速度和自动化程度的要求不断提高,对液压控制技术的要求也越来越高,文章基于此,首先分析了液压伺服控制系统的工作特点,并进一步探讨了液压传动的优点和缺点和改造方向。
二、液压伺服控制系统原理目前以高压液体作为驱动源的伺服系统在各行各业应用十分的广泛,液压伺服控制具有以下优点:易于实现直线运动的速度位移及力控制,驱动力、力矩和功率大,尺寸小重量轻,加速性能好,响应速度快,控制精度高,稳定性容易保证等。
液压伺服控制系统的工作特点:(1)在系统的输出和输入之间存在反馈连接,从而组成闭环控制系统。
反馈介质可以是机械的,电气的、气动的、液压的或它们的组合形式。
(2)系统的主反馈是负反馈,即反馈信号与输入信号相反,两者相比较得偏差信号控制液压能源,输入到液压元件的能量,使其向减小偏差的方向移动,既以偏差来减小偏差。
(3)系统的输入信号的功率很小,而系统的输出功率可以达到很大。
因此它是一个功率放大装置,功率放大所需的能量由液压能源供给,供给能量的控制是根据伺服系统偏差大小自动进行的。
液压伺服系统
控制元件-电液伺服阀
挡板 先导控制油腔
喷嘴
挡板一方面与力 矩马达衔铁连接, 另一方面,其穿过 两个喷嘴,与主阀 芯连接。
主阀芯
压缸停止运动。
喷嘴挡板阀的优点是结构简单、
加工方便、运动部件惯性小、反应快、
精度和灵敏度高;缺点是能量损耗大、
抗污染能力差。喷嘴挡板阀常用作多
级放大伺服控制元件中的前置级。
图7.11 喷嘴挡板阀的工作原理 1-挡板;2、3-喷嘴;4、5-
节流小孔
§7.3 电液伺服阀
电液伺服阀是电液联合控制的多 级伺服元件,它能将微弱的电气输入 信号放大成大功率的液压能量输出。 电液伺服阀具有控制精度高和放大倍 数大等优点,在液压控制系统中得到 了广泛的应用。
图7.4 速度伺服系统职能方框图
实际上,任何一个伺服系统都是由这些元件(环节) 组成的,如图7.5所示。
图7.5 控制系统的组成环节
下面对图中各元件做一些说明:
(1)输入(给定)元件。通过输入元件,给出必要的 输入信号。如上例中由给定电位计给出一定电压,作为系 统的控制信号。
(2)检测、反馈信号。它随时测量输出量(被控量) 的大小,并将其转换成相应的反馈信号送回到比较元件。 上例中由测速发电机测得液压缸的运动速度,并将其转换 成相应的电压作为反馈信号。
(5)执行元件(机构)。直接带动控制对象动作 的元件或机构。如上例中的液压缸。
(6)控制对象。如机器的工作台、刀架等。
3.液压伺服系统的分类
伺服系统可以从下面不同的角度加以分类。
(1)按输入的信号变化规律分类:有定值控制系统、程 序控制系统和伺服系统三类。
当系统输入信号为定值时,称为定值控制系统,其基本 任务是提高系统的抗干扰能力。当系统的输入信号按预先给 定的规律变化时,称为程序控制系统。伺服系统也称为随动 系统,其输入信号是时间的未知函数,输出量能够准确、迅 速地复现输入量的变化规律。
伺服驱动器的工作原理
伺服驱动器的工作原理
伺服驱动器是一种控制电机运动的设备,其工作原理如下:
1. 反馈控制系统:伺服驱动器中包含一个闭环反馈控制系统,用于监测电机的转速、位置或力矩。
反馈传感器(如编码器或霍尔传感器)将电机的实际状态返回到伺服驱动器中,使其能够实时调整输出信号以达到所需的运动精度和稳定性。
2. 控制信号处理:伺服驱动器接收来自控制器或计算机的控制信号,这些信号包含电机应该执行的运动指令,如加速、减速、位置调整等。
伺服驱动器根据接收的信号和反馈传感器的输入,计算出合适的驱动信号,并将其传递给电机。
3. 电流放大器:伺服驱动器中的电流放大器将控制信号转换为足够大的电流,用于驱动电机。
根据电机的负载情况和运动要求,电流放大器可以对驱动电流进行调节和控制。
4. 电机控制:伺服驱动器通过控制电流的大小和方向,使电机按照预定的速度、位置或力矩运动。
电源电压被转换为电机所需的直流电,以提供电机所需的功率。
5. 保护和监测功能:伺服驱动器通常还具有一系列的保护和监测功能,以确保电机和驱动器的安全运行。
这些功能可能包括过电流保护、过热保护、电压保护等,同时还可以实时监测电机运行状态和故障诊断。
通过以上工作原理,伺服驱动器能够实现对电机运动的精确控制,并在各种工业和自动化应用中发挥重要作用。
液压伺服系统
液压伺服系统液压伺服系统是以高压液体作为驱动源的伺服系统,是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量的变化而变化,与此同时,输出功率被大幅度地放大。
液压伺服系统以其响应速度快、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。
一、液压伺服系统的基本组成液压伺服系统无论多么复杂,都是由一些基本元件组成的。
如图就是一个典型的伺服系统,该图表示了各元件在系统中的位置和相互间的关系。
(1)外界能源—为了能用作用力很小的输入信号获得作用力很大的输出信号,就需要外加能源,这样就可以得到力或功率的放大作用。
外界能源可以是机械的、电气的、液压的或它们的组合形式。
(2)液压伺服阀—用以接收输入信号,并控制执行元件的动作。
它具有放大、比较等几种功能,如滑阀等。
(3)执行元件—接收伺服阀传来的信号,产生与输入信号相适应的输出信号,并作用于控制对象上,如液压缸等。
(4)反馈装置—将执行元件的输出信号反过来输入给伺服阀,以便消除原来的误差信号,它构成闭环控制系统。
(5)控制对象—伺服系统所要操纵的对象,它的输出量即为系统的被调量(或被控制量),如机床的工作台、刀架等。
二、液压伺服系统的分类液压伺服系统是由液压动力机构和反馈机构组成的闭环控制系统,分为机械液压伺服系统和电气液压伺服系统(简称电液伺服系统)两类。
电液伺服系统电液伺服系统是一种由电信号处理装置和液压动力机构组成的反馈控制系统。
最常见的有电液位置伺服系统、电液速度控制系统和电液力(或力矩)控制系统。
如图是一个典型的电液位置伺服控制系统。
图中反馈电位器与指令电位器接成桥式电路。
反馈电位器滑臂与控制对象相连,其作用是把控制对象位置的变化转换成电压的变化。
反馈电位器与指令电位器滑臂间的电位差(反映控制对象位置与指令位置的偏差)经放大器放大后,加于电液伺服阀转换为液压信号,以推动液压缸活塞,驱动控制对象向消除偏差方向运动。
当偏差为零时,停止驱动,因而使控制对象的位置总是按指令电位器给定的规律变化。
2 液压伺服系统
,它可以绕扭轴在a、b、c
、d四个气隙中摆动。
力矩马达 1——放大器; 2——上导磁体; 3——永久磁铁; 4——衔铁; 5——下导磁体; 6——弹簧管; 7——永久磁铁
当线圈控制电流为零时,四个 气隙中均有永久磁铁所产生的固定 磁场的磁通,因此作用在衔铁上的 吸力相等,衔铁处于中位平衡状态 。通入控制电流后,所产生的控制 磁通与固定磁通叠加,在两个气隙 中(例如,气隙a和d)磁通增大, 在另两个气隙中(例如,气隙b和c )磁通减少,因此作用在衔铁上的 电磁力矩与扭轴的弹性变形力矩及 外负载力矩平衡时,衔铁在某一扭 转位置上处于平衡状态。
(5)执行元件(机构)。直接带动控制对象动作 的元件或机构。如上例中的液压缸。
(6)控制对象。如机器的工作台、刀架等。
液压伺服系统的分类(1/2)
3.液压伺服系统的分类
伺服系统可以从不同的角度加以分类。
(1)按输入的信号变化规律分类:有定值控制 系统、程序控制系统和伺服系统三类。
当系统输入信号为定值时,称为定值控制系统, 其基本任务是提高系统的抗干扰能力。当系统的输 入信号按预先给定的规律变化时,称为程序控制系 统。伺服系统也称为随动系统,其输入信号是时间 的未知函数,输出量能够准确、迅速地复现输入量 的变化规律
动圈式力马达的线性行程范 围大(±2~4mm),滞环小, 可动件质量小,工作频率较宽, 结构简单,但如采用湿式方案, 动圈受油的阻尼较大,影响频宽 ,适合作为气压比例元件。
二、力矩马达
由上下两块导磁体、左
右两块永久磁铁、带扭轴
a
b
(弹簧管)的衔铁及套在
c
d
衔铁上的两个控制线圈所
组成。衔铁悬挂在扭轴上
液压伺服系统的分类(2/2)
液压控制系统
1-1 液压控制定义
液压伺服控制
液压伺服控制系统是以液压动力元件作驱动装置所组 成的反馈控制系统。在这种系统中,输出量(位移、速度、 力等)能够自动地、快速而准确地复现输入量的变化规律。 同时。还对输入信号进行功率放大,因此也是一个功率放 大装置。
泵控式电液速度控制系统的工作原理方块图
反馈之形式
输入讯号与输出讯号关系
液压伺服位置控制系统
液压伺服速度控制系统
液压伺服速度控制系统
微机液压伺服控制系统
液压伺服系统组成
• • • • • •
输入元件 反馈测量元件 比较元件 放大转换元件 执行元件 控制对象
伺服控制应用实例
图1.15 液压伺服控制之车床靠模加工系统
二、按被控物理量的名称分类 位置伺服控制系统、速度伺服控制系统、其它物 理量的控制系统。 三、按液压动力元件的控制方式或液压控制元件的形 式分类 节流式控制(阀控式)系统:阀控液压缸系统与阀 控液压马达系统 容积式控制系统:伺服变量泵系统与伺服变量马 达系统。 四、按信号传递介质的形式分类 机械液压伺服系统、电气液压伺服系统与气动 液压伺服系统等。
.可多方用于不同控制系统。 .以小能量的输入指令经放大后而得到 大的输出。 .是一种具有反馈(Feed Back)控制。 .可控制受控系统的动作、速度或出力。 .对目标值可作广范的变化。
开回路与闭回路控制
传统之开回路液压控制系统
传统点到点闭回路液压控制系统
闭回路液压伺服机构
图是泵控式电液速度控制系统的原理图。该 系统的液压动力元件由变量泵和液压马达组 成,变量泵既是液压能源又是液压控制元件。
滑阀是转换放大元件,它将输入的机械信号(阀芯位 移)转换成液压信号(流量、压力)输出,并加以功率放 大。液压缸是执行元件,输入是压力油的流量,输出 是运动速度(或位移)。滑阀阀体与液压缸体刚性连结 在一起,构成反馈回路。因此,这是个闭环控制系统 。
开环与闭环液压控制系统
第1章 绪论液压控制系统是以(静)液压控制与换能元件为主要控制元件构建的控制系统。
液压控制与换能元件通常指液压控制阀、控制用液压泵等。
液压控制技术是自动控制技术的一个重要分支。
液压控制系统特点鲜明,优势明显,发挥不可替代的作用。
液压控制技术是典型的机电液一体化技术,是多学科交叉融合发展的范例。
例如,电气液压控制系统以动力学系统为对象,以负反馈系统设计为手段,集成机械系统、电气系统和液压系统构建机电液一体化的动态系统。
目前,液压控制技术在装备制造业、汽车工业、航天航空、兵器工业、冶金工业、船舶工业、医疗工程等多领域获得应用。
本章将阐述如下问题:开环液压控制与闭环液压控制系统,液压控制系统的分类及特点,液压控制技术的发展历程与趋势,液压控制技术的应用。
1.1 开环液压控制与闭环液压控制与机电控制系统一样,液压控制系统也可以分为开环液压控制与闭环液压控制。
下面以机床运动平台控制为例探讨开环控制系统与闭环控制系统。
机床运动平台是常见的控制对象。
机床运动平台是机床的工作台体,它安装在床身的滑动导轨上。
不同类型机床对运动平台的性能要求不同,例如平面磨床的运动平台(工作台)仅要求实现平稳的水平往复运动,不需要精密控制其位移量。
数控加工中心或数控铣床的运动平台(工作台)作精密进给运动,则需要精确控制平台的运动位移量,否则影响工件加工质量。
为了便于清晰探讨实际液压开环控制与液压闭环控制的异同,以机床运动平台为被控对象,分别用电磁换向阀、电磁比例方向阀和电液伺服阀作为主要控制元件,建立机床运动平台的三种常见液压控制系统。
1.1.1 用电磁换向阀构建的液压控制系统普通平面磨床水平往复工作台可以采用如图1.1所示的液压控制方案。
因不需要精确控制运动位移,它采用电磁换向阀构建液压控制系统。
三位四通电磁换向阀作控制元件,采用行程开关或接近开关等作为指令元件,由继电器等构成逻辑运算网络,可以实现控制信号逻辑运算与功率放大,从而产生足够控制电流驱动电磁换向阀的电磁铁。
闭环控制数字液压缸的结构及工作原理
闭环控制数字液压缸的结构及工作原理图4-41是一种闭环控制数字液压缸的结构原理图。
步进电动机1接到脉冲信号,其输出轴旋转一定的角度,旋转运动通过花键2、万向联轴器3、阀芯4传递给外螺纹5,外螺纹5和沉入缸外转轴7右端的内螺纹相互配合,内螺纹位置固定,在旋转作用下外螺纹带动阀芯发生轴向的移动。
数字液压缸采用负开口三位四通阀控制流量,阀口存在一定的死区,开始的几个脉冲产生的一小段位移并不能将P口处的高压油与A口或B口接通。
死区过后,步进电动机再旋转一定角度,在旋转作用下阀芯又发生一定的轴向位移。
如果阀芯向左移动,P口和A口连通,B口和T口连通,P口处的高压油通过A口流入液压缸的后腔。
后腔增压,空心活塞杆15向左运动,前腔的油经过B口、T口流回油箱。
空心活塞杆向左移动时,带动固定在空心活塞杆上的丝杠螺母14向左运动,滚珠丝杠13在轴向上不移动,丝杠与步进电动机旋向相反,带动缸内转盘11旋转。
后缸盖9两边的磁铁10相互吸引,使得缸外转盘8和缸内转盘11同时旋转相同的角度。
反向旋转运动通过这个机构被准确地传递到液压缸外。
缸外转轴7和缸外转盘8是一个整体,缸外转轴7和编码器6通过平键连接,沉入缸外转轴7右端的内螺纹和外螺纹5配合。
缸外转轴7反向旋转,外螺纹5向右移动,阀口关闭,一个步进过程结束。
控制流程如图4-42所示。
滚珠丝杠旋转的角度被平键连接于缸外转轴7上的编码器6检测到,此旋转角度和空心活塞杆15的位移对应,此信号传给以单片机为核心的控制系统,控制系统根据运行位移和速度要求,对步进电动机进行闭环控制。
阀芯的两端使用万向联轴器连接,不限制径向的小位移,防止阀芯被拉伤,同时保证轴向运动、旋转运动的双向传递。
数字液压缸在向前运动的同时不断关闭阀口,形成一个伺服控制系统。
和开环控制数字液压缸相比,该闭环控制数字液压缸的创新之处有以下两点。
第一,采用了光电编码器反馈的闭环控制系统,能对系统温度、压力负载、内泄及死区等因素的影响进行补偿,并进一步提高了控制精度。
伺服系统的工作原理
伺服系统的工作原理伺服系统是一种能够精确控制运动位置、速度和加速度的系统,它在工业自动化、机器人、数控机床等领域得到了广泛的应用。
伺服系统的工作原理主要包括传感器、控制器和执行器三个部分。
首先,传感器是伺服系统的感知器官,它可以实时地感知运动位置、速度和加速度等参数,并将这些参数反馈给控制器。
常用的传感器包括编码器、光栅尺、霍尔传感器等,它们能够将机械运动转换成电信号,从而实现对运动状态的实时监测。
其次,控制器是伺服系统的大脑,它根据传感器反馈的信息,通过内部的控制算法计算出控制指令,并将指令发送给执行器。
控制器通常采用微处理器或者数字信号处理器,它能够实时地对传感器反馈的信息进行处理,从而保证系统对运动状态的精准控制。
最后,执行器是伺服系统的执行器官,它根据控制器发送的指令,驱动负载实现精确的运动控制。
常见的执行器包括伺服电机、液压缸、气动马达等,它们能够根据控制器发送的脉冲信号,精准地控制负载的位置和速度。
总的来说,伺服系统的工作原理可以简单概括为,传感器感知运动状态,控制器计算控制指令,执行器驱动负载实现精确的运动控制。
这种闭环控制系统能够实现对运动状态的高精度控制,从而满足工业自动化和机器人等领域对运动精度的要求。
在实际应用中,伺服系统的工作原理可以根据具体的控制要求进行调整和优化,例如采用不同的传感器、控制算法和执行器等,以适应不同的工程需求。
因此,了解伺服系统的工作原理对于工程师和技术人员来说至关重要,它能够帮助他们更好地设计和应用伺服系统,从而提高生产效率和产品质量。
综上所述,伺服系统的工作原理是一个涉及传感器、控制器和执行器的闭环控制系统,它能够实现对运动状态的高精度控制。
通过对伺服系统工作原理的深入了解,我们能够更好地应用和优化伺服系统,从而推动工业自动化和智能制造的发展。
伺服电机工作原理
伺服电机工作原理伺服电机是一种能够精确控制位置、速度和加速度的电机。
它通常由电机本体、编码器、控制器和电源组成。
下面将详细介绍伺服电机的工作原理。
1. 电机本体:伺服电机通常采用直流电机或交流电机。
直流电机由电枢和永磁体组成,当电流通过电枢时,产生的磁场与永磁体的磁场相互作用,从而产生转矩。
交流电机通常采用感应电机或永磁同步电机,通过交流电源提供的电流产生转矩。
2. 编码器:编码器是伺服电机的重要组成部分,用于测量电机转动的位置和速度。
编码器通常分为增量式编码器和绝对式编码器两种类型。
增量式编码器通过测量脉冲数来计算位置和速度,而绝对式编码器通过每个位置点的唯一编码来确定位置和速度。
3. 控制器:伺服电机的控制器负责接收来自编码器的反馈信号,并根据预设的控制算法计算出控制信号。
控制信号将通过驱动器传递给电机,以调整电机的转矩、速度和位置。
控制器通常由微处理器或数字信号处理器组成,能够实现高精度的位置和速度控制。
4. 电源:伺服电机的电源通常为直流电源,提供电机和控制器所需的电流和电压。
电源的稳定性对伺服电机的运行非常重要,因为电源的不稳定性可能导致电机无法准确控制位置和速度。
伺服电机的工作原理如下:1. 控制信号生成:控制器接收来自编码器的反馈信号,并根据预设的控制算法计算出控制信号。
控制信号根据需要调整电机的转矩、速度和位置。
2. 电机驱动:控制信号通过驱动器传递给电机,驱动器根据控制信号调整电机的电流和电压。
电机根据接收到的电流和电压产生相应的转矩,从而实现精确的位置和速度控制。
3. 反馈控制:伺服电机通过编码器实时测量电机的位置和速度,并将反馈信号传递给控制器。
控制器根据反馈信号与预设的目标位置和速度进行比较,计算出误差,并通过调整控制信号来减小误差。
4. 闭环控制:伺服电机采用闭环控制系统,通过不断地测量和调整,使电机的实际位置和速度与预设的目标位置和速度保持一致。
闭环控制能够提供高精度的位置和速度控制,使伺服电机能够应对各种复杂的工作环境和要求。
液压伺服控制系统
当液压缸运动速度降低时,调节过程相反。
1.2 伺服阀
1.2.1液压伺服阀
1.滑阀 根据滑阀的工作边数不同,有单边滑阀、双边滑阀和四边滑阀。
其中,四边滑阀有四个可控节流口,控制性能最好;双边滑阀有两 个可控节流口,控制性能一般;单边滑阀有一个可控节流口,控制 性能最差。四边滑阀性能虽好,但结构工艺复杂,生产成本较高; 单边滑阀容易加工,生产成本较低。
图10.6-10.8分别为单边滑阀,双边滑阀和四边滑阀控制液压 缸的原理图。
四边滑阀在平衡状态下,根据初始开口量的不同,有负开口 (图10.9(a))、零开口(图10.9(b))和正开口(图10.9 (c))之分。
2.喷嘴挡板阀 如图1.10所示为双喷嘴挡板阀由两个单喷嘴挡板阀组成,可
以控制双作用液压缸。它由挡板、左右喷嘴、固定节流孔组成。 挡板与左右喷嘴的环形面积形成两个可变节流孔,分别为δ1和δ2, 挡板绕轴旋转,可以改变两个可变节流孔的大小。挡板处于图中 所示位置时,即δ1=δ2。此时两节流口的节流阻力相同,使左右 喷嘴的压力相同,即p1= p2,液压缸两腔受力平衡,保持原来位 置不动。
3
1.1.3 液压伺服控制系统的分类
1.按系统输入信号的变化规律分类 液压伺服控制系统按输入信号的变化规律不同可分为:定值控
制系统、程序控制系统和伺服控制系统。 2.按被控物理量的名称分类 按被控物理量的名称不同,可分为:位置伺服控制系统、速度
伺服系统组成、概述与控制原理(难得好文)
伺服系统组成、概述与控制原理(难得好⽂)伺服系统既可以是开环控制⽅式,也可以是闭环控制⽅式。
⼀、伺服系统简述伺服系统(servomechanism)指经由闭环控制⽅式达到对⼀个机械系统的位置、速度和加速度的控制。
⼀个伺服系统的构成包括被控对象、执⾏器和控制器(负载、伺服电动机和功率放⼤器、控制器和反馈装置)。
1. 执⾏器的功能在于提供被控对象的动⼒,其构成主要包括伺服电动机和功率放⼤器,伺服电动机包括反馈装置如光电编码器、旋转编码器或光栅等(位置传感器)。
2. 控制器的功能在于提供整个伺服系统的闭环控制如转矩控制、速度控制、位置控制等,伺服驱动器通常包括控制器和功率放⼤器。
3. 反馈装置除了位置传感器,可能还需要电压、电流和速度传感器。
下图为⼀般⼯业⽤伺服系统的组成框图,其中红⾊为伺服驱动器组成部分,黄⾊为伺服电机组成部分。
“伺服”——词源于希腊语“奴⾪”的意思。
⼈们想把“伺服机构”当成⼀个得⼼应⼿的驯服⼯具,服从控制信号的要求⽽动作:在讯号来到之前,转⼦静⽌不动;讯号来到之后,转⼦⽴即转动;当讯号消失,转⼦能即时⾃⾏停转。
由于它的“伺服”性能,因此⽽得名——伺服系统。
⼆、常⽤参数1、伺服电机铭牌参数1. 法兰尺⼨2. 电机极对数3. 电机额定输出功率4. 电源电压规格:单相/三相5. 电机惯量:分为⼤、中、⼩惯量,指的是转⼦本⾝的惯量,从响应⾓度来讲,电机的转⼦惯量应⼩为好;从负载⾓度来看,电机的转⾃惯量越⼤越好6. 电机出轴类型:键槽、扁平轴、光轴、减速机适配…7. 电机动⼒线定义:U: RED V:BLACK W: WHITE8. 额定转速9. 编码器线数:2500/1250/1000/17B/20B法兰是轴与轴之间相互连接的零件,⽤于管端之间的连接。
2、伺服驱动器铭牌参数1. 额定输出功率2. 电源电压规格3. 编码器线数3、伺服系统的性能指标1. 检测误差:包括给定位置传感器和反馈位置传感器的误差,传感器本⾝固有,⽆法克服;2. 系统误差:系统类型决定了系统误差。