高一数学测试题及答案

合集下载

高一数学必修一综合测试题(含答案)

高一数学必修一综合测试题(含答案)

高一数学必修一综合测试题(含答案)一、选择题(每题5分,共50分)1、已知集合M={0,1,2},N={xx=2a,a∈M},则集合MN=A、{ }B、{0,1}C、{1,2}D、{0,2}答案:B解析:将M中的元素代入N中得到:N={2,4,8},与M 的交集为{0,1},故MN={0,1}。

2、若f(lgx)=x,则f(3)=()A、lg3B、3C、10D、310答案:C解析:将x=3代入f(lgx)=x中得到f(lg3)=3,又因为lg3=0.477,所以f(0.477)=3,即f(3)=10^0.477=3.03.3、函数f(x)=x−1x−2的定义域为()A、[1,2)∪(2,+∞)B、(1,+∞)C、[1,2)D、[1,+∞)答案:A解析:由于分母不能为0,所以x-2≠0,即x≠2.又因为对于x<1,分母小于分子,所以x-1<0,即x<1.所以定义域为[1,2)∪(2,+∞)。

4、设a=log13,b=23,则().A、a<b<cB、c<b<aC、c<a<bD、b<a<c答案:A解析:a=log13=log33-log32=1/2-log32,b=23=8,c=2^3=8,所以a<b=c。

5、若102x=25,则10−x等于()A、−15B、51C、150D、0.2答案:B解析:由102x=25可得x=log10(25)/log10(102)=1.3979,所以10^-x=1/10^1.3979=0.1995≈0.2.6、要使g(x)=3x+1+t的图象不经过第二象限,则t的取值范围为A.t≤−1B.t<−1C.t≤−3D.t≥−3答案:B解析:当x=0时,y=1+t,要使图像不经过第二象限,则1+t>0,即t>-1.又因为g(x)的斜率为正数,所以对于任意的x,g(x)的值都大于1+t,所以t< -1.7、函数y=2x,x≥1x,x<1的图像为()答案:见下图。

高一数学测试题(含答案)

高一数学测试题(含答案)

高一数学测试题(含答案)一.选择题1..下列结论正确的是A.若,a b c d >>,则a c b d ->-B. 若,a b c d >>,则a d b c ->-C.若,a b c d >>,则ac bd >D. 若,a b c d >>,则a b d c> 2.若直线a 不平行于平面α,且a α⊄,则下列结论成立的是A. α内所有的直线与a 异面.B. α内不存在与a 平行的直线.C. α内存在唯一的直线与a 平行.D. α内的直线与a 都相交. 3.圆x 2+y 2=1和圆x 2+y 2-6y +5=0的位置关系是A .外切B .内切C .外离D .内含二.填空题 1.已知sin cos tan 2,sin cos a aa a a+=--则的值是2.已知向量b a ,的夹角为3π,3,1==b a ,则b a -的值是 3.求值:οοοο15sin 105sin 15cos 105cos -=4.设函数⎪⎩⎪⎨⎧≥-<=-2),1(log 2,2)(231x x x e x f x 则))2((f f 的值为= 5.等比数列{}n a 中,0n a >,569a a =,则313233310log log log log a a a a +++⋅⋅⋅+= 6.已知函数f (x )满足f (x )=(2),0,2,0,xf x x x +<⎧⎨⎩≥ 则(7.5)f -=( ).。

三.解答题1.已知)2,(),3,2(x b a ==,(1)当b a 2-与b a +2平行时,求x 的值; (2)当a 与b 夹角为锐角时,求x 的范围.2.已知函数2()2sin 1f x x x θ=+-,⎥⎦⎤⎢⎣⎡-∈23,21x(1)当6πθ=时,求()f x 的最大值和最小值;(2)若()f x 在⎥⎦⎤⎢⎣⎡-∈23,21x 上是单调增函数,且[0,2)θπ∈,求θ的取值范围.3.求过两直线3420x y +-=和220x y ++=的交点且与直线3240x y -+=垂直的直线方程.4. (满分12分)如图,在正方体1111ABCD A B C D -中,E 、F 、G 分别为1CC 、11B C 、1DD 的中点,O 为BF 与1B E 的交点,(1)证明:BF ⊥面11A B EG(2)求直线1A B 与平面11A B EG 所成角的正弦值.5.已知数列{}n a 中,*1121,()2nn na a a n N a +==∈+ (1)求 1234,,,a a a a ; (2)求数列{}n a 的通项公式.高一测试题答案 一.选择题1.B2.B3.A4.C5.A6.D7.C 二.填空题 1.312、73、21- 4、2 5、10 6、2 三.解答题 1.解:(1)由题意得:b a 2-=)1,22(--xb a +2=)8,4(x + 由b a 2-与b a +2平行得:0)4()1(8)22(=+⋅--⋅-x x 分34=∴x (2)由题意得:⎪⎩⎪⎨⎧>•不共线与b a b a 0(3) 即⎩⎨⎧≠->+034062x x343≠->∴x x 且 2解:(1)当6πθ=时,45)21(1)(22-+=-+=x x x x f 分∴当21-=x 时,函数)(x f 有最小值45-当23=x 时,函数)(x f 有最大值4123- (2)要使()f x 在⎥⎦⎤⎢⎣⎡-∈23,21x 上是单调增函数, 则 -sin θ≤-21即sin θ≥21 又)2,0[πθ∈Θ 解得:⎥⎦⎤⎢⎣⎡∈65,6ππθ 3.。

高一数学必修一第一章测试题(含答案)

高一数学必修一第一章测试题(含答案)

高一数学必修一第一章测试题(含答案)高一数学必修一第一章测试题满分150分,考试时间120分钟第I卷一、选择题(本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.已知全集 $A = \{1,2,4\}$,集合 $A = \{1,2,3\}$,$B =\{2,4\}$,则 $(C \cup A) \cup B$ 为()A。

$\{2,3,4\}$ B。

$\{2,4\}$ C。

$\{0,2,4\}$ D。

$\{0,2,3,4\}$2.集合 $\{a,b\}$ 的子集有()A。

2个 B。

3个 C。

4个 D。

5个3.设集合 $A = \{x|-4<x<3\}$,$B = \{x|x \leq 2\}$,则 $A \cap B =$()A。

$(-4,3)$B。

$(-4,2]$C。

$(-\infty,2]$D。

$(-\infty,3)$4.已知函数 $f(x) = \frac{1}{2-x}$ 的定义域为 $M$,$g(x) = x+2$ 的定义域为 $N$,则 $M \cap N =$()A。

$\{x|x \geq -2\}$B。

$\{x|x < 2\}$C。

$\{-2<x<2\}$D。

$\{-2 \leq x < 2\}$5.下列函数中,既是奇函数又是增函数的为A。

$y=x+1$B。

$y=-x^2$C。

$y=|x|$D。

$y=x|x|$6.若函数$y=x^2+(2a-1)x+1$ 在$(-\infty,-3]$ 上是减函数,则实数 $a$ 的取值范围是()A。

$(-\infty,-2]$B。

$(-\infty,-\frac{1}{2}]$C。

$[-\frac{1}{2},\frac{1}{2}]$D。

$[\frac{1}{2},+\infty)$7.设函数 $f(x) = \begin{cases}x^2+1 & x \leq 1\\ 2x & x>1\end{cases}$,则 $f(f(3)) =$()A。

高一上数学测试题及答案

高一上数学测试题及答案

高一上数学测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是不等式2x - 5 < 0的解集?A. x < 2.5B. x > 2.5C. x < -2.5D. x > -2.5答案:A2. 函数f(x) = 3x^2 - 2x + 5在x = 1处的导数是:A. 4B. 5C. 6D. 7答案:B3. 集合A = {1, 2, 3},集合B = {2, 3, 4},A∩B是:A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3, 4}答案:B4. 直线y = 2x + 1与x轴的交点坐标是:A. (-0.5, 0)B. (0.5, 0)C. (0, 1)D. (1, 0)答案:A5. 圆x^2 + y^2 = 9的半径是:A. 3B. 6C. 9D. 18答案:A6. 函数y = sin(x)的周期是:A. 2πB. πC. 1D. 4π答案:A7. 抛物线y^2 = 4x的焦点坐标是:A. (1, 0)B. (0, 1)C. (2, 0)D. (0, 2)答案:C8. 等差数列{an}的首项a1 = 2,公差d = 3,其第5项a5是:A. 17B. 14C. 13D. 11答案:A9. 已知三角形ABC的三边长分别为a、b、c,且满足a^2 + b^2 = c^2,那么三角形ABC是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定答案:B10. 函数f(x) = x^3 - 3x^2 + 4在区间(1, 2)上是:A. 单调递增B. 单调递减C. 先增后减D. 先减后增答案:D二、填空题(每题4分,共20分)11. 已知等比数列{bn}的首项b1 = 4,公比q = 2,那么b3 =__________。

答案:1612. 函数f(x) = x^2 - 4x + 3的最小值是 __________。

答案:-113. 圆心在原点,半径为5的圆的标准方程是 __________。

全国高一高中数学同步测试带答案解析

全国高一高中数学同步测试带答案解析

全国高一高中数学同步测试班级:___________ 姓名:___________ 分数:___________一、选择题1.设任意角α的终边与单位圆的交点为P 1(x ,y ),角α+θ的终边与单位圆的交点为P 2(y ,﹣x ),则下列说法中正确的是( ) A .sin (α+θ)=sinα B .sin (α+θ)=﹣cosα C .cos (α+θ)=﹣cosα D .cos (α+θ)=﹣sinα2.已知角α的终边与单位圆相交于点P (sin ,cos),则sinα=( ) A .﹣B .﹣C .D .3.如图,以Ox 为始边作任意角α,β,它们的终边与单位圆分别交于A ,B 点,则的值等于( )A .sin (α+β)B .sin (α﹣β)C .cos (α+β)D .cos (α﹣β)二、填空题1.如图,在平面直角坐标系xOy 中,钝角α的终边与单位圆交于B 点,且点B 的纵坐标为.若将点B 沿单位圆逆时针旋转到达A 点,则点A 的坐标为 .2.(1)若sin (3π+θ)=,求+的值;(2)已知0<x <,利用单位圆证明:sinx <x <tanx .三、解答题1.如图,A 、B 是单位圆O 上的点,C 是圆O 与x 轴正半轴的交点,点A 的坐标为,三角形AOB 为直角三角形.(1)求sin ∠COA ,cos ∠COA 的值; (2)求cos ∠COB 的值. 2.已知,用单位圆求证下面的不等式:(1)sinx <x <tanx ; (2).3.已知点A (2,0),B (0,2),点C (x ,y )在单位圆上. (1)若|+|=(O 为坐标原点),求与的夹角; (2)若⊥,求点C 的坐标.4.如图,已知A 、B 是单位圆O 上的点,C 是圆与x 轴正半轴的交点,点A 的坐标为,点B 在第二象限,且△AOB 为正三角形.(Ⅰ)求sin ∠COA ; (Ⅱ)求△BOC 的面积.5.如图,以Ox 为始边分别作角α与β(0<α<β<π),它们的终边分别与单位圆相交于点P 、Q ,已知点P 的坐标为(,).(1)求sin2α的值; (2)若β﹣α=,求cos (α+β)的值.全国高一高中数学同步测试答案及解析一、选择题1.设任意角α的终边与单位圆的交点为P 1(x ,y ),角α+θ的终边与单位圆的交点为P 2(y ,﹣x ),则下列说法中正确的是( )A .sin (α+θ)=sinαB .sin (α+θ)=﹣cosαC .cos (α+θ)=﹣cosαD .cos (α+θ)=﹣sinα【答案】B【解析】根据三角函数的定义和题意,分别求出角α、α+θ的正弦值和余弦值,再对比答案项即可. 解:∵任意角α的终边与单位圆的交点为P 1(x ,y ), ∴由三角函数的定义得,sinα=y ,cosα=x , 同理sin (α+θ)=﹣x ,cos (α+θ)=y , 则sin (α+θ)=﹣cosα,cos (α+θ)=sinα, 故选:B .点评:本题考查任意角的三角函数的定义,属于基础题.2.已知角α的终边与单位圆相交于点P (sin ,cos),则sinα=( ) A .﹣B .﹣C .D .【答案】D【解析】利用单位圆的性质求解. 解:∵角α的终边与单位圆相交于点P (sin ,cos),∴sinα=cos =cos (2)=cos=.故选:D .点评:本题考查角的正弦值的求法,是基础题,解题时要认真审题,注意单位圆的性质的灵活运用.3.如图,以Ox 为始边作任意角α,β,它们的终边与单位圆分别交于A ,B 点,则的值等于( )A .sin (α+β)B .sin (α﹣β)C .cos (α+β)D .cos (α﹣β)【答案】D【解析】直接求出A ,B 的坐标,利用向量是数量积求解即可. 解:由题意可知A (cosα,sinα),B (cosβ,sinβ), 所以=cosαcosβ+sinαsinβ=cos (α﹣β). 故选D .点评:本题是基础题,考查向量的数量积的应用,两角差的余弦函数公式的推导过程,考查计算能力.二、填空题1.如图,在平面直角坐标系xOy 中,钝角α的终边与单位圆交于B 点,且点B 的纵坐标为.若将点B 沿单位圆逆时针旋转到达A 点,则点A 的坐标为 .【答案】().【解析】首先求出点B 的坐标,将点B 沿单位圆逆时针旋转到达A 点,利用两角和与差的三角函数即可求出点A 的坐标.解:在平面直角坐标系xOy 中,锐角α的终边与单位圆交于B 点, 且点B 的纵坐标为, ∴sinα=,cosα=将点B 沿单位圆逆时针旋转到达A 点, 点A 的坐标A (cos (),sin ()),即A (﹣sinα,cosα),∴A ()故答案为:().点评:本题主要考查了任意角的三角函数的定义,属于基础题.2.(1)若sin (3π+θ)=,求+的值;(2)已知0<x <,利用单位圆证明:sinx <x <tanx .【答案】(1)32,(2)见解析【解析】(1)利用诱导公式、平方关系对条件和所求的式子化简后,代入值求解; (2)由S △OPA <S 扇形OPA <S △OAE ,分别表示出3个面积,可推得,所以sinx <x <tanx ,据此判断即可.解:(1)由sin (3π+θ)=,可得sinθ=﹣, ∴======32,(2)∵S △OPA <S 扇形OPA <S △OAE ,,,, ∴,∴sinx <x <tanx .点评:本题主要考查了同角三角函数的基本关系,三角函数线,以及单位圆的性质的运用,属于基础题.三、解答题1.如图,A 、B 是单位圆O 上的点,C 是圆O 与x 轴正半轴的交点,点A 的坐标为,三角形AOB 为直角三角形.(1)求sin ∠COA ,cos ∠COA 的值; (2)求cos ∠COB 的值. 【答案】(1),.(2)﹣【解析】(1)利用任意角的三角函数的定义,先找出x ,y ,r ,代入公式计算. (2)利用∠AOB=90°,cos ∠COB=cos (∠COA+90°)=﹣sin ∠COA=﹣. 解:(1)∵A 点的坐标为,根据三角函数定义可知,,r=1;(3分) ∴,.(6分) (2)∵三角形AOB 为直角三角形, ∴∠AOB=90°, 又由(1)知sin ∠COA=,cos ∠COA=;∴cos ∠COB=cos (∠COA+90°)=﹣sin ∠COA=﹣.(12分) 点评:本题考查任意角的三角函数的定义,诱导公式cos (+θ)=﹣sinθ 的应用.2.已知,用单位圆求证下面的不等式:(1)sinx <x <tanx ; (2).【答案】见解析【解析】(1)利用单位圆中的三角函数线,通过面积关系证明sinx <x <tanx ; (2)利用(1)的结论,采用放缩法,求出=推出结果.证明:(1)如图,在单位圆中,有sinx=MA ,cosx=OM , tanx=NT ,连接AN ,则S △OAN <S 扇形OAN <S △ONT , 设的长为l ,则,∴,即MA <x <NT ,又sinx=MA ,cosx=OM ,tanx=NT , ∴sinx <x <tanx ; (2)∵均为小于的正数,由(1)中的sinx <x 得,,将以上2010道式相乘得=,即.点评:本题考查单位圆的应用,不等式的证明的方法,考查分析问题解决问题的能力,是中档题.3.已知点A(2,0),B(0,2),点C(x,y)在单位圆上.(1)若|+|=(O为坐标原点),求与的夹角;(2)若⊥,求点C的坐标.【答案】(1)30°或150°(2)点C的坐标为(,)或().【解析】(1)由已知得,从而cos<>===y=,由此能求出与的夹角.(2)=(x﹣2,y),=(x,y﹣2),由得,由此能求出点C的坐标.解:(1),,.且x2+y2=1,=(2+x,y),由||=,得(2+x)2+y2=7,由,联立解得,x=,y=.(2分)cos<>===y=,(4分)所以与的夹角为30°或150°.(6分)(2)=(x﹣2,y),=(x,y﹣2),由得,=0,由,解得或,(10分)所以点C的坐标为(,)或().(12分)点评:本题考查两向量的夹角的求法,考查点的坐标的求法,解题时要认真审题,注意单位圆的性质的合理运用.4.如图,已知A、B是单位圆O上的点,C是圆与x轴正半轴的交点,点A的坐标为,点B在第二象限,且△AOB为正三角形.(Ⅰ)求sin∠COA;(Ⅱ)求△BOC的面积.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)由三角函数在单位圆中的定义可以知道,当一个角的终边与单位圆的交点坐标时,这个点的纵标就是角的正弦值.(Ⅱ)根据第一问所求的角的正弦值和三角形是一个等边三角形,利用两个角的和的正弦公式摸到的这个角的正弦值,根据正弦定理做出三角形的面积.解:(Ⅰ)由三角函数在单位圆中的定义可以知道,当一个角的终边与单位圆的交点是,∴sin∠COA=,(Ⅱ)∵∠BOC=∠BOA+∠AOC,∴sin∠BOC==∴三角形的面积是点评:本题考查单位圆和三角函数的定义,是一个基础题,这种题目解题的关键是正确使用单位圆,注意数字的运算不要出错.5.如图,以Ox为始边分别作角α与β(0<α<β<π),它们的终边分别与单位圆相交于点P、Q,已知点P的坐标为(,).(1)求sin2α的值;(2)若β﹣α=,求cos(α+β)的值.【答案】(1)(2)﹣【解析】(1)由三角函数的定义,得出cosα、sinα,从而求出sin2α的值;(2)由β﹣α=,求出sinβ,cosβ的值,从而求出cos(α+β)的值.解:(1)由三角函数的定义得,cosα=,sinα=;∴sin2α=2sinαcosα=2××=;(2)∵β﹣α=,∴sinβ=sin(+α)=.cosβ=cos(+α)=﹣sinα=﹣,∴cos(α+β)=cosαcosβ﹣sinαsinβ=×(﹣)﹣×=﹣.点评:本题考查了三角函数的求值与应用问题,解题时应根据三角函数的定义以及三角恒等公式进行计算,是基础题.。

重庆市中学2023-2024学年高一下学期阶段测试数学试题含答案

重庆市中学2023-2024学年高一下学期阶段测试数学试题含答案

重庆高2026级高一(下)数学(答案在最后)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.如图,在平行四边形ABCD 中,,AB a AD b == ,E 是CD 边上一点,且2DE EC =,则AE = ()A.13a b+ B.23a b+ C.13a b + D.23a b + 【答案】D 【解析】【分析】由题意结合平面向量的线性运算法则、向量的数乘即可得解.【详解】由题意2233DE DC AB ==,所以232323AE AD DE AD DC AD AB a b +=+=+=+= .故选:D.【点睛】本题考查了平面向量线性运算法则及平面向量数乘的应用,考查了平面向量基本定理的应用,属于基础题.2.已知向量3AB a b =+ ,53BC a b =+ ,33CD a b =-+,则()A.A ,B ,C 三点共线B.A ,B ,D 三点共线C.A ,C ,D 三点共线D.B ,C ,D 三点共线【答案】B 【解析】【分析】根据向量共线定理进行判断即可.【详解】∵262(3)2BD BC CD a b a b AB =+=+=+=,又∵BD 和AB有公共点B ,∴A ,B ,D 三点共线.故选:B .【点睛】本题考查了用向量共线定理证明三点共线问题,属于常考题.3.在等边ABC 中,点D 是边BC 的中点,且AD =,则AB BC ⋅为()A .16- B.16 C.8- D.8【答案】C 【解析】【分析】利用向量数量积定义即可求得AB BC ⋅的值.【详解】等边ABC 中,点D 是边BC 的中点,且AD =则30DAB ∠=o,()22BC BD AD AB ==-,4AB =,则()2222AB BC AB AD AB AB AD AB=⋅⋅⋅--= 224248=⨯⨯-⨯=- 故选:C4.设D ,E ,F 分别为ABC 的三边BC ,CA ,AB 的中点,则EB +FC等于()A.BCB.12AD C.ADD.12BC 【答案】C 【解析】【分析】利用向量的线性运算和中点的向量表示进行计算,即得结果.【详解】如图,EB +FC =EB +BC +FC +CB =EC +FB=12AC +12AB =()12AC AB + 122AD AD =⨯=.故选:C.5.已知1sin()64πθ-=,则sin(2)6πθ+=()A.78-B.78C.1516D.1516-【答案】B 【解析】【分析】利用诱导公式及二倍角余弦公式求解可得答案.【详解】令π6t θ=-,故1sin 4t =,π6t θ=-,故22ππ17sin(2)sin(2)cos 212sin 12()6248t t t θ+=-==-=-⨯=.故选:B.6.在等腰△ABC 中,∠BAC =120°,AD 平分∠BAC 且与BC 相交于点D ,则向量BD uu u r 在BA上的投影向量为()A.3BA 2B.3BA 4C.BA 2D.4BA 【答案】B 【解析】【分析】首先画出图形,根据投影的几何意义,计算结果.【详解】由余弦定理可知2222cos1201113BC AB AC AB AC =+-⋅⋅=++= ,BC ∴=,30ABC ∠= ,AD 平分∠BAC 且与BC 相交于点D ,ABC 是等腰三角形,D ∴是BC 中点,2BD =,由图可知向量BD uu u r在BA 上的投影向量为BE3cos304BE BD ==34BE BA = ,34BE BA ∴= .故选:B【点睛】本题考查向量的投影,重点考查数形结合分析问题,属于基础题型.7.在平面四边形ABCD 中,E ,F 分别为AD ,BC 的中点.若2AB =,3CD =,且4EF AB ⋅=,则EF = ()A.172B.2C.2D.【答案】B 【解析】【分析】由向量的数量积以及模长运算公式即可得解.【详解】连接EB ,EC ,如图,可知()()()()111222EF EB EC EA AB ED DC AB DC ⎡⎤=+=+++=+⎣⎦ .由()212EF AB AB AB DC ⋅=+⋅ ,即1242AB DC +⋅=,可得4AB DC ⋅= .从而,()()2222211212444EF EF AB DC AB AB DC DC ==+=+⋅+=,所以212EF = .故选:B.8.已知函数()()3cos 2>0,<2f x x πωϕωϕ⎛⎫=++ ⎪⎝⎭,其图象与直线5y =相邻两个交点的距离为2π,若,1216x ππ⎡⎤∀∈-⎢⎣⎦,()2f x ≥恒成立,则ϕ的取值范围是()A.,64ππ⎡⎤-⎢⎥⎣⎦B.,46ππ⎡⎤--⎢⎥⎣⎦C.,36ππ⎡⎤-⎢⎥⎣⎦D.0,4⎡⎤⎢⎣⎦π【答案】A 【解析】【分析】由5是函数的最大值,结合已知可得周期,从而得ω值,再由不等式恒成立得ϕ的范围.【详解】由题意()f x 的最大值是5,所以由()f x 的图象与直线5y =相邻两个交点的距离为2π知2T π=,242πωπ==.即()3cos(4)2f x x ϕ=++,()2f x <即cos(4)0x ϕ+<,,1216x ππ⎡⎤∈-⎢⎥⎣⎦时,4,34x ππϕϕϕ⎡⎤+∈-++⎢⎥⎣⎦,因为2πϕ<,所以36ππϕ-+<,44ππϕ+>-,所以3242ππϕππϕ⎧-+≥-⎪⎪⎨⎪+≤⎪⎩,解得64ππϕ-≤≤.故选:A .【点睛】关键点点睛:本题考查三角函数的性质,解题时能确定具体数值的先确定具体值,如4ω=,而ϕ的求法有两种:(1)由x 的范围,求出4x ϕ+的范围,并根据ϕ的范围得出3πϕ-和4πϕ+的范围,然后根据余弦函数性质得出不等关系.(2)先利用余弦函数性质,求出()2f x ≥时,x 的范围,再由已知区间,1216ππ⎡⎤-⎢⎥⎣⎦是这个范围的子集,得出结论.二、多项选择题,本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得5分,部分选对得2分,有选错得0分.9.下列命题为真命题的是()A.AB AM BM-=B.零向量与任意向量共线C.互为相反向量的两个向量的模相等D.若向量a ,b 满足1a = ,4b = ,则35a b ≤+≤ 【答案】BCD 【解析】【分析】由向量减法法则判断选项A ;由零向量的性质判断选项B ;由相反向量的定义判断选项C ;由向量三角不等式判断选项D.【详解】对A ,AB AM MB -=,A 选项错误;对B ,零向量与任意向量共线,B 选项正确;对C ,互为相反向量的两个向量的模相等,C 选项正确;对D ,若向量a ,b 满足1a = ,4b = ,则a b a b a b -≤+≤+ ,即35a b ≤+≤,D 选项正确.故选:BCD10.已知△ABC 的重心为O ,边AB ,BC ,CA 的中点分别为D ,E ,F ,则()A.2OA OB OD+= B.OD OE FO+=C.若()0AO AB AC ⋅-=,则OA BC⊥D.若△ABC 为正三角形,则0OA OB OB OC OC OA ⋅+⋅+⋅=【答案】ABC 【解析】【分析】利用平面向量的线性运算及其几何意义,数量积的定义及运算法则逐项分析即得.【详解】对于A ,因为D 为OAB 中AB 的中点,所以2OA OB OD +=,故A 正确;对于B ,因为O 为ABC 的重心,,,D E F 分别为边,,AB BC CA 的中点,所以()()()111+++222OD OE OF OA OB OB OC OA OC ++=++++2+0OA OB OC OD OC ===,所以OD OE FO += ,故B 正确;对于C ,因为()0AO AB AC AO CB ⋅-=⋅=,所以OA BC ⊥,所以C 正确;对于D ,因为ABC 为正三角形,所以221cos1202OA OB OA OA ︒⋅==- ,所以232OA OB OB OC OC OA OA ⋅+⋅+⋅=-,所以D 不正确.故选:ABC.11.已知函数()()sin (0,0,0π)f x A x A ωϕωϕ=+>><<的部分图象如图所示,则()A.()f x 的单调递增区间是[]58,18,k k k -+-+∈ZB.()f x 的单调递增区间是[]5π8π,π8π,k k k -+-+∈Z C.()f x 在[]2π,2π-上有3个零点D.将函数图象向左平移3个单位长度得到的图象所对应的函数为奇函数【答案】AC 【解析】【分析】利用图象求出函数解析式,再求出单调增区间,[2π,2π]-上零点,图象的对称轴,逐一对选项判断即可.【详解】由图象得2A =,周期2π8,8T ω==,得π4ω=,所以()()ππ32sin ,12sin 0.0π,π444f x x f ϕϕϕϕ⎛⎫⎛⎫=+=+=<<∴=⎪ ⎪⎝⎭⎝⎭,()π32sin π44f x x ⎛⎫∴=+ ⎪⎝⎭.令ππ3π2ππ2π,2442k x k k -+≤+≤+∈Z ,解得5818,k x k k -+≤≤-+∈Z ,故单调递增区间为[]58,18,k k k -+-+∈Z .A 正确,B 错误;令π3ππ,44x k k +=∈Z ,解得43x k =-,令2π432πk -≤-≤得32π32π,44k k -+≤≤∈Z ,解得0,1,2k =,可知C 选项正确;函数图象关于直线3x =对称,向左平移3个单位长度,图象关于y 轴对称,得到的函数为偶函数,故D 错误.故选:AC .12.如图,边长为2的正六边形ABCDEF ,点P 是DEF 内部(包括边界)的动点,AP xAB y AD =+,x ,y ∈R .()A.0AD BE CF -+=B.存在点P ,使x y=C.若34y =,则点P 的轨迹长度为2 D.AP AB ⋅的最小值为2-【答案】AD 【解析】【分析】根据正六边形的性质,结合向量的线性运算即可求解A ,根据共线即可得矛盾求解B ,根据共线即可求解C ,根据数量积的运算律,结合图形关系即可求解D.【详解】设O 为正六边形的中心,根据正六边形的性质可得,,,ED AB EF CB CD AF ===且四边形,,OAFE OCDE OABC 均为菱形,()()()AD BE CF AB BC CD BC CD DE CD DE EF-+=++-+++++ ()0AB CD EF AB AF EF AB FA FE AB FO =++=++=-+=-=,故A 正确,假设存在存在点P ,使x y =,则()AP xAB y AD x AB AD xAM =+=+=,其中点M 为以,AB AD 为邻边作平行四边形的顶点,所以P 在直线AM 上,这与点P 是DEF 内部(包括边界)的动点矛盾,故B 错误,当34y =时,34AP xAB AD =+ ,取34AN AD = ,则34AP AD AP AN NP xAB -=-==,所以点P 的轨迹为线段HK ,其中,H K 分别为过点N 作//NH AB 与,EF FD 的交点,由于N 为OD 的中点,所以1//,12HK ED HK ED ==,故点P 的轨迹长度为1,C 错误,由于2,DB AB AD AB AB ⊥∴⋅= ,()22444AP AB xAB y AD AB xAB y AD AB x y AB x y ⋅=+⋅=+⋅=+=+ ,过F 作FT BA ⊥于T ,则112AT AF ==,所以此时1,02x y =-=,由于,x y 分别为,AB AD 上的分量,且点点P 是DEF 内部(包括边界)的动点,所以10,012x y -≤≤≤≤当P 位于F 时,此时,x y 同时最小,故AP AB ⋅的最小值为2-故选:AD三、填空题:本题共4小题,每小题5分,共20分.13.已知向量a ,b 满足3a = ,5b = ,且a b λ= ,则实数λ的值是________.【答案】35±【解析】【分析】利用向量的线性运算,以及向量的模,转化求解即可.【详解】由a b λ= ,得a b b λλ== ,因为3a = ,5b = ,所以35λ=,即35λ=±.故答案为:35±14.计算:sin 47sin17cos30cos17︒-︒︒︒.【答案】12【解析】【分析】因为473017︒=︒+︒,所以对sin 47︒进行和差公式展开,即可求解【详解】sin 47sin17cos30cos17︒-︒︒︒()sin 3017sin17cos30cos17︒︒︒+-︒=︒sin 30cos17cos30sin17sin17cos30cos17︒︒+︒︒-︒︒=︒sin30cos171sin30cos172=︒︒︒=︒=.15.已知函数()cos (0)f x x ωω=>,将()f x 的图象向左平移π6个单位长度,所得函数()g x 的图象关于原点对称,且()g x 在ππ,3618⎛⎫-⎪⎝⎭上单调递减,则ω=__________.【答案】3【解析】【分析】根据余弦函数的性质可得πππ,62k k ω=+∈Z ,结合单调性列不等式即可求解.【详解】由题意知()()πcos ,6g x x g x ωω⎛⎫=+⎪⎝⎭图象关于原点对称,因此πππ,62k k ω=+∈Z ,解出63,k k ω=+∈Z ,由于()g x 在ππ,3618⎛⎫-⎪⎝⎭上单调递减,πππππ,6366186x ωωωωωω⎛⎫+∈-++ ⎪⎝⎭,因此ππ2π,366πππ2π,186k k ωωωω⎧≤-+⎪⎪⎨⎪+≤+⎪⎩,解出7291852k k ω+≤≤,由于k ∈Z ,所以取0k =,解得902ω<≤,又由于63,k k ω=+∈Z ,且k ∈Z ,则0,3k ω==.故答案为:316.已知O 为ABC 的外心,6,4BC BO AC =⋅=,当C ∠最大时,AB 边上的中线长为_________.【答案】【解析】【分析】作出图形,利用平面向量的运算得到228a c -=,再利用余弦定理与基本不等式求得C ∠最大时b 的值,从而得解.【详解】取AC 中点D ,连接OD BD 、,则DO AC ⊥,则()()()142BO AC BD DO AC BD AC BC BA BC BA ⋅=+⋅=⋅=+⋅-=,所以228BC BA -= ,即228a c -=,又6BC = ,所以6a =,c =则22228cos 212123a b c b C ab b b +-+==≥=,当且仅当28b =,即b =时取等号,此时角C 最大,同时222a b c =+,所以90A =︒,所以AB边上中线长为CE ===.【点睛】关键点睛:本题解决的关键是利用面向量的运算转化BO AC ⋅ ,得到228BC BA -= ,从而得解.四、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.在平行四边形ABCD 中,,AB a AD b == .(1)如图1,如果E F 、分别是BC DC 、的中点,试用,a b 分别表示,BF DE .(2)如图2,如果O 是AC 与BD 的交点,G 是DO 的中点,试用a b ,表示AG .【答案】(1)12BF b a =- ,12DE a b =- (2)1344AG a b =+ 【解析】【分析】(1)根据向量的线性运算结合图形直接表示即可;(2)根据向量的线性运算结合图形直接表示即可.【小问1详解】因为,E F 分别是,BC DC 的中点,所以1122BF BC CF AD AB b a =+=-=- ,1122DE DC CE AB AD a b =+=-=- .【小问2详解】因为O 是AC 与BD 的交点,G 是DO 的中点,所以()3344BG BD AD AB ==-u u u r u u u r u u u r u u u r ,()3131344444AG AB BG AB AD AB AB AD a b ∴=+=+-=+=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r r r .18.已知||2a = ,||1b = ,(23)(2)17a b a b -⋅+= .(1)求a 与b 的夹角和a b + 的值;(2)设2c ma b =+ ,2d a b =- ,若c 与d 共线,求实数m 的值.【答案】(1)a 与b 的夹角为23π,a b += ;(2)4m =-.【解析】【分析】(1)根据(23)(2)17a b a b -⋅+= 求出1a b ⋅=- ,根据数量积关系求出夹角,a b += (2)根据共线定理必存在λ使得:()2,2c ma d b b a λλ=+-= ,求解参数.【详解】(1)||2a = ,||1b = ,(23)(2)17a b a b -⋅+= ,2243417a b a b --⋅= ,163417a b --⋅= 1a b ⋅=- ,所以1cos ,2a b a b a b⋅==-⋅ ,所以a 与b 的夹角为23π,a b +== ;(2)由(1)可得:a 与b不共线,2c ma b =+ ,2d a b=- ,若c 与d 共线,则必存在λ使得:()2,2c ma d b b a λλ=+-= ,所以2,2m λλ==-,得4m =-.【点睛】此题考查向量的数量积运算,根据数量积关系求向量夹角和模长,利用平面向量基本定理结合向量共线求参数的值.19.如图,在ABC ∆中,已知点D E 、分别在边AB BC 、上,且3AB AD =,2BC BE =.(1)用向量AB 、AC 表示DE;(2)设6AB =,4AC =,60A =︒,求线段DE的长.【答案】(1)1162AB AC +.【解析】【详解】试题分析:(1)现将DE 转换为DB BE + ,然后利用题目给定的比例,将其转化为以,AB AC为起点的向量的形式.(2)由(1)将向量DE 两边平方,利用向量的数量积的概念,可求得DE .试题解析:(1)由题意可得:21DE DB BE AB BC 32=+=+ ()21AB AC AB 32=+- 11AB AC62=+ (2)由11DE AB AC 62=+ 可得:2222211111|DE |DE AB AC AB AB AC AC623664⎛⎫==+=+⋅+ ⎪⎝⎭ 22111664cos60473664=⨯+⨯⨯⨯︒+⨯=.故DE =20.已知()()()()π3πsin cos tan π22tan πsin πf αααααα⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭=---(1)化简()f α;(2)若()513f α=,()35f αβ-=-,且0πα<<,0πβ<<,求()f β.【答案】(1)()cos f αα=(2)()6365f β=-【解析】【分析】(1)运用诱导公式进行求解即可;(2)根据同角的三角函数关系式,结合两角差的余弦公式进行求解即可.【小问1详解】()()()()()π3πsin cos tan πcos sin tan 22cos tan πsin πtan sin f αααααααααααα⎛⎫⎛⎫-+- ⎪ ⎪--⎝⎭⎝⎭===---;【小问2详解】()55cos 1313f αα=⇒=,因为0πα<<,所以π02α<<所以12sin 13α===,()()33cos 55f αβαβ-=-⇒-=-,因为π02α<<,0πβ<<,所以ππ2αβ-<-<,因为()3cos 05αβ-=-<,所以ππ2αβ-<-<-,于是()4sin 5αβ-===-所以()()()()cos cos cos cos sin sin f ββααβααβααβ⎡⎤==--=-+-⎣⎦531246313513565⎛⎫⎛⎫=⨯-+⨯-=- ⎪ ⎪⎝⎭⎝⎭.21.已知函数()ππ2sin cos cos 44f x x x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭.(1)求函数()f x 的单调递增区间;(2)将函数()f x 的图象向右平移π3个单位长度,得到函数()g x 的图象,若关于x 的方程()1g x m -=在π0,2⎡⎫⎪⎢⎣⎭上恰有一解,求实数m 的取值范围.【答案】21.5πππ,π1212k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z22.{}11⎡⎤⋃⎣⎦【解析】【分析】(1)先根据二倍角公式以及辅助角公式化简()f x ,利用整体代换法即可解出()f x 的单调递增区间;(2)先结合条件将问题转化为“π1sin 232m x +⎛⎫-= ⎪⎝⎭在π0,2⎡⎫⎪⎢⎣⎭上恰有一解”,然后分析πsin 23y x ⎛⎫=- ⎪⎝⎭的单调性以及函数值,从而列出关于m 的不等式,由此求解出结果.【小问1详解】函数()ππ2sin cos cos44f x x x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭ππsin 22sin 222sin 223x x x x x ⎛⎫⎛⎫=++=+=+ ⎪ ⎪⎝⎭⎝⎭,令,ππ22223π2ππk x k -≤+≤+k ∈Z ,π5,12πππ12k x k ∴-≤≤+k ∈Z ,函数()f x 的单调递增区间为5πππ,π,1212k k ⎡⎤-+⎢⎥⎣⎦k ∈Z .【小问2详解】将函数()f x 的图象向右平移π3个单位长度,得到函数()πππ2sin 22sin 2333g x x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,若关于x 的方程()1g x m -=在π0,2⎡⎫⎪⎢⎣⎭上恰有一解,即π2sin 213x m ⎛⎫-=+ ⎪⎝⎭在π0,2⎡⎫⎪⎢⎣⎭上恰有一解,即π1sin 232m x +⎛⎫-= ⎪⎝⎭在π0,2⎡⎫⎪⎢⎣⎭上恰有一解,当π0,2x ⎡⎫∈⎪⎢⎣⎭时,ππ2π2,333x ⎡⎫-∈-⎪⎢⎣⎭,函数πsin 23y x ⎛⎫=- ⎪⎝⎭,当πππ2,332x ⎡⎫-∈-⎪⎢⎣⎭时,单调递增,当ππ2π2,323x ⎛⎫-∈ ⎪⎝⎭时,单调递减,而πsin 32⎛⎫-=- ⎪⎝⎭,πsin 12=,2πsin 32=,1222m +∴-≤≤或112m +=,解得11m ≤≤或1m =,即实数m 的取值范围为{}11⎡⎤--⋃⎣⎦.22.如图所示,在等腰直角OAB 中,π,2AOB OA M ∠==为线段AB 的中点,点,P Q 分别在线段,AM BM 上运动,且π4POQ ∠=,设AOP θ∠=.(1)设()PM f θ=,求θ的取值范围及()fθ;(2)求OPQ △面积的最小值.【答案】(1)()ππtan ,0,44fθθθ⎛⎫⎡⎤=-∈ ⎪⎢⎥⎝⎭⎣⎦(21-【解析】【分析】(1)根据条件得π1,,4OM AOM OM AB ∠==⊥,即可得π0,4θ⎡⎤∈⎢⎥⎣⎦,在Rt OMP 中,利用tan PM OM POM ∠=⋅即可求出结果;(2)根据条件得到11tan tan 21tan OPQ S θθθ-⎛⎫=+ ⎪+⎝⎭ ,再利用基本不等式即可求出结果.【小问1详解】因为OAB 为等腰直角三角形,OA M =为线段AB 的中点,所以π1,,4OM AOM OM AB ∠==⊥.因为点P 在线段AM 上运动,所以π0,4θ⎡⎤∈⎢⎥⎣⎦,因为AOP θ∠=,所以ππ,tan tan 44POM PM OM POM θθ⎛⎫∠=-=⋅∠=- ⎪⎝⎭,所以()ππtan ,0,44f θθθ⎛⎫⎡⎤=-∈ ⎪⎢⎥⎝⎭⎣⎦.【小问2详解】因为π4POQ MOA ∠=∠=,所以,tan tan QOM QM OM QOM ∠θ∠θ==⋅=,所以πtan tan 4PQ PM QM θθ⎛⎫=+=-+⎪⎝⎭,所以11π11tan tan tan tan 22421tan OPQ S PQ OM θθθθθ⎡⎤-⎛⎫⎛⎫=⋅=-+=+ ⎪⎪⎢⎥+⎝⎭⎝⎭⎣⎦ ()12121tan 11tan 22121tan 21tan 2θθθθ⎛⎫⎛⎫=+-=++-≥=- ⎪ ⎪++⎝⎭⎝⎭,当且仅当[]tan 10,1θ=-∈时,等号成立,所以OPQ △1-.。

高一数学必修1第一章测试题及答案

高一数学必修1第一章测试题及答案

高一数学必修1第一章测试题及答案高一第一章测试题(一)一.选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求。

)1.设集合 $A=\{x\in Q|x>-1\}$,则()A。

$\varnothing \in A$ B。

$2\in A$ C。

$2\in A$ D。

$\{2\}\subseteq A$2.已知集合 $A$ 到 $B$ 的映射 $f:x\rightarrow y=2x+1$,那么集合 $A$ 中元素 $2$ 在 $B$ 中对应的元素是:A。

$2$ B。

$5$ C。

$6$ D。

$8$3.设集合 $A=\{x|1<x<2\},B=\{x|x<a\}$。

若 $A\subseteq B$,则 $a$ 的范围是()A。

$a\geq 2$ B。

$a\leq 1$ C。

$a\geq 1$ D。

$a\leq 2$4.函数 $y=2x-1$ 的定义域是()A。

$(,\infty)$ B。

$[。

\infty)$ C。

$(-\infty,)$ D。

$(-\infty,]$5.全集 $U=\{0,1,3,5,6,8\}$,集合 $A=\{1,5,8\},B=\{2\}$,则集合 $B$ 为()A。

$\{0,2,3,6\}$ B。

$\{0,3,6\}$ C。

$\{2,1,5,8\}$ D。

$\varnothing$6.已知集合 $A=\{x-1\leq x<3\},B=\{x^2<x\leq 5\}$,则$A\cap B$ 为()A。

$(2,3)$ B。

$[-1,5]$ C。

$(-1,5)$ D。

$(-1,5]$7.下列函数是奇函数的是()A。

$y=x$ B。

$y=2x-3$ C。

$y=x^2$ D。

$y=|x|$8.化简:$(\pi-4)+\pi=$()A。

$4$ B。

$2\pi-4$ C。

$2\pi-4$ 或 $4$ D。

$4-2\pi$9.设集合 $M=\{-2\leq x\leq 2\},N=\{y\leq y\leq 2\}$,给出下列四个图形,其中能表示以集合 $M$ 为定义域,$N$ 为值域的函数关系的是()无法呈现图片,无法回答)10.已知$f(x)=g(x)+2$,且$g(x)$ 为奇函数,若$f(2)=3$,则 $f(-2)=$A。

2023-2024学年高一上数学必修一综合测试卷(附答案解析)

2023-2024学年高一上数学必修一综合测试卷(附答案解析)

解析:当 c=0 时,A 不成立;当 a=-1,b=-2 时,B 不成立;
由不等式的性质知 C 不成立;若 a> b,则一定能推出 a>b,故 D 成
立.
3.命题“∃x∈R,x3-x2+1>0”的否定是( A )
A.∀x∈R,x3-x2+1≤0 B.∀x∈R,x3-x2+1>0
C.∃x∈R,x3-x2+1≤0 D.不存在 x∈R,x3-x2+1≤0
的取值范围是( A )
A.[2,6)
B.(2,6)
C.(-∞,2]∪(6,+∞)
D.(-∞,2)∪(6,+∞)
解析:①当 a=2 时,1>0 成立,故 a=2 符合条件;②当 a≠2 时,
a-2>0,
必须满足 Δ=a-22-4a-2<0,
解得 2<a<6.由①②可知,a∈
[2,6).故选 A.
二、多项选择题(本题共 4 小题,每小题 5 分,共 20 分.在每小
2
4
sinx

1π,3π 22
上单调递减,故
y=
π,3π 2sin2x 在 4 4 上单调递减,故
题给出的四个选项中,有多个选项符合题目要求.全部选对的得 5 分,
部分选对的得 3 分,有选错的得 0 分)
9.下列函数是偶函数的是( CD )
A.f(x)=tanx B.f(x)=sinx C.f(x)=cosx D.f(x)=lg|x|
解析:根据题意,依次分析选项:对于 A,f(x)=tanx,是正切函
解析:存在量词命题“∃x∈M,p(x)”的否定为全称量词命题“∀
x∈M,綈 p(x)”,故选 A.
4. 22cos375°+ 22sin375°的值为( A )

高一数学必修1综合测试题3套(附答案)

高一数学必修1综合测试题3套(附答案)

高一数学综合检测题(1)一、选择题:(每小题5分,共60分,请将所选答案填在括号内) 1.已知集合M ⊂≠{4,7,8},且M 中至多有一个偶数,则这样的集合共有 ( )(A)3个 (B) 4个 (C) 5个 (D) 6个2.已知S={x|x=2n,n ∈Z}, T={x|x=4k ±1,k ∈Z},则 ( ) (A)S ⊂≠T (B) T ⊂≠S (C)S ≠T (D)S=T 3.已知集合P={}2|2,y y x x R =-+∈, Q={}|2,y y x x R =-+∈,那么PQ 等( )(A)(0,2),(1,1) (B){(0,2 ),(1,1)} (C){1,2} (D){}|2y y ≤4.不等式042<-+ax ax 的解集为R ,则a 的取值范围是 ( ) (A)016<≤-a (B)16->a (C)016≤<-a (D)0<a 5. 已知()f x =5(6)(4)(6)x x f x x -≥⎧⎨+<⎩,则(3)f 的值为 ( )(A)2 (B)5 (C)4 ( D)36.函数243,[0,3]y x x x =-+∈的值域为 ( )(A)[0,3] (B)[-1,0] (C)[-1,3] (D)[0,2] 7.函数y=(2k+1)x+b 在(-∞,+∞)上是减函数,则 ( )(A)k>12 (B)k<12 (C)k>12- (D).k<12- 8.若函数f(x)=2x +2(a-1)x+2在区间(,4]-∞内递减,那么实数a 的取值范围为( )(A)a ≤-3 (B)a ≥-3 (C)a ≤5 (D)a ≥39.函数2(232)xy a a a =-+是指数函数,则a 的取值范围是 ( )(A) 0,1a a >≠ (B) 1a = (C) 12a =( D)121a a ==或10.已知函数f(x)14x a -=+的图象恒过定点p ,则点p 的坐标是 ( )(A )( 1,5 ) (B )( 1, 4) (C )( 0,4) (D )( 4,0)11.函数y =的定义域是 ( )(A )[1,+∞] (B) (23,)+∞ (C) [23,1] (D) (23,1]12.设a,b,c都是正数,且346a b c==,则下列正确的是( )(A) 111c ab =+ (B) 221C a b =+ (C) 122C a b =+ (D) 212c a b =+二、填空题:(每小题4分,共16分,答案填在横线上)13.已知(x,y )在映射 f 下的象是(x-y,x+y),则(3,5)在f 下的象是 ,原象是 。

高一数学测试题及答案

高一数学测试题及答案

高一数学测试题及答案# 高一数学测试题及答案一、选择题(每题3分,共15分)1. 若函数f(x) = 2x^2 + 3x + 1,求f(-1)的值。

A. -2B. 0C. 2D. 42. 已知等差数列的前三项为3,7,11,求该数列的通项公式。

A. an = 2n + 1B. an = n^2 + 2C. an = 4n - 1D. an = 2n - 13. 函数y = ln(x)的定义域是:A. (0, +∞)B. (-∞, +∞)C. (-∞, 0)D. (-∞, 0] ∪ [0, +∞)4. 已知圆的方程为(x-2)^2 + (y-3)^2 = 25,求圆心坐标。

A. (-2, -3)B. (2, 3)C. (-3, 2)D. (3, -2)5. 若sinθ = 3/5,且θ为锐角,求cosθ的值。

A. 4/5B. √(1 - (3/5)^2)C. -4/5D. √(1 - (4/5)^2)答案:1. C2. C3. A4. B5. B二、填空题(每空2分,共10分)1. 已知函数f(x) = ax^3 + bx^2 + cx + d,若f(0) = 4,则d的值为______。

2. 根据题目,我们可以知道等差数列的公差d = 7 - 3 = 4,因此通项公式为an = a1 + (n-1)d,将a1 = 3代入,得到an = 3 + (n-1)* 4 = 4n - 1。

3. 对数函数的定义域是其内部参数大于0的范围,因此y = ln(x)的定义域为x > 0。

4. 圆的方程中,圆心坐标可以通过公式(a, b) = (2, 3)得到,其中a 和b分别是圆的方程中的常数项。

5. 根据三角函数的基本恒等式sin^2θ + cos^2θ = 1,我们可以解得cosθ = √(1 - sin^2θ) = √(1 - (3/5)^2)。

三、解答题(每题10分,共30分)1. 求函数f(x) = x^3 - 3x^2 + 2的极值点。

高一数学必修一综合测试题附答案

高一数学必修一综合测试题附答案

高一数学必修一综合测试题附答案高中数学必修1检测题【附答案】本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共120分,考试时间90分钟。

第Ⅰ卷(选择题,共48分)一、选择题:本大题共12小题,每小题4分,共48分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集 $U=\{1,2,3,4,5,6,7\}$,$A=\{2,4,6\}$,$B=\{1,3,5,7\}$,则 $A\cap(C\cup B)$ 等于A。

$\{2,4,6\}$ B。

$\{1,3,5\}$ C。

$\{2,4,5\}$ D。

$\{2,5\}$2.已知集合 $A=\{x|x^2-1=0\}$,则下列式子表示正确的有()① $1\in A$② $\{-1\}\in A$③ XXX④ $\{1,-1\}\subseteq A$A。

1个 B。

2个 C。

3个 D。

4个3.若 $f:A\to B$ 能构成映射,下列说法正确的有()1)$A$ 中的任一元素在 $B$ 中必须有像且唯一;2)$A$ 中的多个元素可以在 $B$ 中有相同的像;3)$B$ 中的多个元素可以在 $A$ 中有相同的原像;4)像的集合就是集合 $B$。

A。

1个 B。

2个 C。

3个 D。

4个4.如果函数 $f(x)=x^2+2(a-1)x+2$ 在区间 $(-\infty,4]$ 上单调递减,那么实数 $a$ 的取值范围是()A。

$a\leq-3$ B。

$a\geq-3$ C。

$a\leq5$ D。

$a\geq5$5.下列各组函数是同一函数的是()① $f(x)=-2x^3$ 与 $g(x)=x-2x$;② $f(x)=x$ 与 $g(x)=x^2$;③ $f(x)=x$ 与 $g(x)=\dfrac{x-2}{x-1}$;④ $f(x)=x-2x-1$ 与 $g(t)=t-2t-1$。

A。

①② B。

①③ C。

③④ D。

①④6.根据表格中的数据,可以断定方程 $e^x-x-2=0$ 的一个根所在的区间是()begin{tabular}{|c|c|c|c|c|c|c|}XXXx$ & $-1$ & $1$ & $2$ & $3$ & $4$ & $5$ \\XXXe^x$ & $0.371$ & $2.718$ & $7.389$ & $20.086$ & $54.598$ & $148.413$ \\XXXx+1$ & $0$ & $2$ & $3$ & $4$ & $5$ & $6$ \\XXXend{tabular}A。

高一数学必修1、4测试题(分单元测试_含详细答案_强烈推荐_共90页)【适合14523顺序】

高一数学必修1、4测试题(分单元测试_含详细答案_强烈推荐_共90页)【适合14523顺序】

必修1 第一章 集合测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.下列选项中元素的全体可以组成集合的是 ( )A.学校篮球水平较高的学生B.校园中长的高大的树木C.2007年所有的欧盟国家D.中国经济发达的城市2.方程组20{=+=-y x y x 的解构成的集合是 ( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{ 3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( )A. aB. {a ,c }C. {a ,e }D.{a ,b ,c ,d }4.下列图形中,表示N M ⊆的是 ( )5.下列表述正确的是 ( )A.}0{=∅B. }0{⊆∅C. }0{⊇∅D. }0{∈∅6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参加自由泳又参加蛙泳的运动员”用集合运算表示为 ( )A.A∩BB.A ⊇BC.A ∪BD.A ⊆B7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14}又,,B b A a ∈∈则有 ( )A.(a+b )∈ AB. (a+b) ∈BC.(a+b) ∈ CD. (a+b) ∈ A 、B 、C 任一个8.集合A ={1,2,x },集合B ={2,4,5},若B A ={1,2,3,4,5},则x =( )A. 1B. 3C. 4D. 59.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是 ( )A. 8 B . 7C. 6D. 510.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )A. A BB. B AC. B C A C U UD. B C A C U UM N A M N B N M C M ND11.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤ ( )A .{}01,B .{}101-,,C .{}012,, D .{}1012-,,, 12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 ( )A .0B .0 或1C .1D .不能确定 二、填空题(共4小题,每题4分,把答案填在题中横线上)13.用描述法表示被3除余1的集合 .14.用适当的符号填空:(1)∅ }01{2=-x x ; (2){1,2,3} N ;(3){1} }{2x x x =; (4)0 }2{2x x x =.15.含有三个实数的集合既可表示成}1,,{ab a ,又可表示成}0,,{2b a a +,则=+20042003b a . 16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M .三、解答题(共4小题,共44分,解答应写出文字说明,证明过程或演算步骤)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18. 已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A ,求实数a 的值.19. 已知方程02=++b ax x .(1)若方程的解集只有一个元素,求实数a ,b 满足的关系式;(2)若方程的解集有两个元素分别为1,3,求实数a ,b 的值20. 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ⊆,求实数a 的取值范围.必修1 函数的性质一、选择题:1.在区间(0,+∞)上不是增函数的函数是( ) A .y =2x +1 B .y =3x 2+1 C .y =x2 D .y =2x 2+x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( )A .-7B .1C .17D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( )A .(3,8)B .(-7,-2)C .(-2,3)D .(0,5)4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0,21) B .( 21,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞) 5.函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内 ( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一的实根6.若q px x x f ++=2)(满足0)2()1(==f f ,则)1(f 的值是 ( )A 5B 5-C 6D 6-7.若集合}|{},21|{a x x B x x A ≤=<<=,且Φ≠B A ,则实数a 的集合( )A }2|{<a aB }1|{≥a aC }1|{>a aD }21|{≤≤a a8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是 ( )A .f (-1)<f (9)<f (13)B .f (13)<f (9)<f (-1)C .f (9)<f (-1)<f (13)D .f (13)<f (-1)<f (9)9.函数)2()(||)(x x x g x x f -==和的递增区间依次是A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞ 10.若函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围 ( )A .a ≤3B .a ≥-3C .a ≤5D .a ≥3 11. 函数c x x y ++=42,则 ( )A )2()1(-<<f c fB )2()1(->>f c fC )2()1(->>f f cD )1()2(f f c <-<12.已知定义在R 上的偶函数()f x 满足(4)()f x f x +=-,且在区间[0,4]上是减函数则A .(10)(13)(15)f f f <<B .(13)(10)(15)f f f <<C .(15)(10)(13)f f f <<D .(15)(13)(10)f f f <<.二、填空题:13.函数y =(x -1)-2的减区间是___ _.14.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时是增函数,当x ∈(-∞,-2]时是减函数,则f (1)= 。

高一数学测试题及答案

高一数学测试题及答案

高一数学测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是实数?A. √2B. -πC. iD. 3.142. 如果函数f(x) = 2x + 3,那么f(-1)的值是多少?A. -1B. 1C. -5D. 53. 集合{1, 2, 3}与{2, 3, 4}的交集是什么?A. {1, 2, 3}B. {2, 3}C. {1, 4}D. 空集4. 以下哪个不等式是正确的?A. |-3| < 3B. |-3| > 3C. |-3| ≤ 3D. |-3| ≥ 35. 圆的方程为(x-2)² + (y-3)² = 16,圆心坐标是?A. (0, 0)B. (2, 3)C. (-2, -3)D. (3, 2)6. 直线方程3x - 4y = 12的斜率是多少?A. 3/4B. -3/4C. 4/3D. -4/37. 函数y = x³ - 2x的极值点是?A. x = 0B. x = 1C. x = -2D. x = 28. 以下哪个数列是等差数列?A. 1, 3, 6, 10B. 2, 4, 8, 16C. 5, 7, 9, 11D. 3, 6, 12, 249. 已知a + b = 5,a - b = 1,那么a² + b²的值是多少?A. 13B. 15C. 17D. 1910. 一个三角形的三边长分别为3, 4, 5,这个三角形是什么形状?A. 等边三角形B. 等腰三角形C. 直角三角形D. 钝角三角形二、填空题(每题2分,共20分)11. 函数f(x) = x² - 4的顶点坐标是。

12. 若a > 0,b < 0,且|a| < |b|,则a + b 0。

13. 集合A = {x | x < 5}与B = {x | x > 3}的并集是。

14. 已知等差数列的首项为2,公差为3,第5项的值是。

全国高一高中数学同步测试带答案解析

全国高一高中数学同步测试带答案解析

全国高一高中数学同步测试班级:___________ 姓名:___________ 分数:___________一、选择题1.以下命题正确的是A .两个平面可以只有一个交点B .一条直线与一个平面最多有一个公共点C .两个平面有一个公共点,它们可能相交D .两个平面有三个公共点,它们一定重合2.下面四个说法中,正确的个数为(1)如果两个平面有三个公共点,那么这两个平面重合(2)两条直线可以确定一个平面(3)若M ∈α,M ∈β,α∩β=l ,则M ∈l(4)空间中,相交于同一点的三直线在同一平面内A .1B .2C .3D .43.ABCD -A 1B 1C 1D 1是正方体,O 是B 1D 1的中点,直线A 1C 交平面AB 1D 1于点M ,则下列结论中错误的是A .A 、M 、O 三点共线B .M 、O 、A 1、A 四点共面C .A 、O 、C 、M 四点共面D .B 、B 1、O 、M 四点共面4.已知平面α内有无数条直线都与平面β平行,那么A .α∥βB .α与β相交C .α与β重合D .α∥β或α与β相交5.两等角的一组对应边平行,则A .另一组对应边平行B .另一组对应边不平行C .另一组对应边也不可能垂直D .以上都不对6.如图所示,点S 在平面ABC 外,SB ⊥AC ,SB =AC =2, E 、F 分别是SC 和AB 的中点,则EF 的长是( )A .1B .C .D .7.平面α∥平面β,AB 、CD 是夹在α和β间的两条线段,E 、F 分别为AB 、CD 的中点,则EF 与α的关系是A .平行B .相交C .垂直D .不能确定8.经过平面外两点与这个平面平行的平面A .只有一个B .至少有一个C .可能没有D .有无数个9.已知ABCD 是空间四边形形,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,如果对角线AC =4,BD =2,那么EG2+HF2的值等于A .10B .15C .20D .2510.若三个平面把空间分成6个部分,那么这三个平面的位置关系是A .三个平面共线;B .有两个平面平行且都与第三个平面相交;C .三个平面共线,或两个平面平行且都与第三个平面相交;D .三个平面两两相交。

高一数学必修综合测试题套附答案

高一数学必修综合测试题套附答案

高一数学必修综合测试题套附答案高一数学综合检测题(1)一、选择题:(每小题5分,共60分,请将所选答案填在括号内)1.已知集合M⊂{4,7,8},且M中至多有一个偶数,则这样的集合共有()。

A) 3个 (B) 4个 (C) 5个 (D) 6个2.已知S={x|x=2n,n∈Z},T={x|x=4k±1,k∈Z},则()。

A) S⊂T (B) T⊂S (C) S≠T (D) S=T3.已知集合P={y|y=−x^2+2,x∈R},Q={y|y=−x+2,x∈R},那么P∩Q等于()。

A) (,2),(1,1) (B) {(,2),(1,1)} (C) {1,2} (D){y|y≤2}4.不等式ax^2+ax−4<0的解集为R,则a的取值范围是()。

A) −16≤a−16 (C) −1605.已知f(x)=x−5(x≥6)f(x+4)(x<6)则f(3)的值为()。

A) 2 (B) 5 (C) 4 (D) 36.函数y=x^2−4x+3,x∈[0,3]的值域为()。

A) [0,3] (B) [−1,0] (C) [−1,3] (D) [0,2]7.函数y=(2k+1)x+b在(-∞,+∞)上是减函数,则()。

A) k>−1/2 (B) k−1 (D) k<−18.若函数f(x)=x^2+2(a−1)x+2在区间(−∞,4]内递减,那么实数a的取值范围为()。

A) a≤−3 (B) a≥−3 (C) a≤5 (D) a≥39.函数y=(2a^2−3a+2)ax是指数函数,则a的取值范围是()。

A) a>0,a≠1 (B) a=1 (C) a=1/2 (D) a=1或a=1/210.已知函数f(x)=4+ax−1的图象恒过定点p,则点p的坐标是()。

A) (1,5) (B) (1,4) (C) (0,4) (D) (4,4)11.函数y=log(3x−2)的定义域是()。

高一数学测试试题及答案

高一数学测试试题及答案

高一数学测试试题及答案一、选择题(每题4分,共40分)1. 下列函数中,为奇函数的是()A. y = x^2B. y = x^3C. y = |x|D. y = sin(x)2. 已知集合A={1, 2, 3},B={2, 3, 4},则A∩B等于()A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3, 4}3. 函数f(x) = x^2 - 4x + 4的对称轴是()A. x = -2B. x = 2C. x = 0D. x = 44. 计算(2x - 1)^5的展开式中,x^3的系数是()A. 10B. -10C. 20D. -205. 已知等差数列{a_n}的首项a_1=3,公差d=2,则a_5等于()B. 11C. 9D. 76. 函数y = 2x + 3的图象与x轴的交点坐标是()A. (-3/2, 0)B. (3/2, 0)C. (-1.5, 0)D. (1.5, 0)7. 已知函数f(x) = 2x^2 - 3x + 1,求f(-1)的值()A. 6B. 4C. 2D. 08. 圆x^2 + y^2 = 4的圆心坐标是()A. (0, 0)B. (2, 2)C. (-2, -2)D. (1, 1)9. 已知向量a = (3, 1),向量b = (-1, 2),则向量a与向量b的点积为()A. -1B. 1C. 5D. -510. 计算sin(π/6)的值是()B. √3/2C. 1/√2D. √2/2二、填空题(每题4分,共20分)1. 函数y = x^2 - 6x + 9的最小值是______。

2. 已知等比数列{a_n}的首项a_1=2,公比q=3,则a_4等于______。

3. 函数f(x) = 3x - 5的反函数是______。

4. 已知向量a = (2, -3),向量b = (4, -6),则向量a与向量b平行,向量a与向量b的夹角是______。

5. 计算cos(π/3)的值是______。

2023-2024学年山东省临沂高一上学期期末数学质量测试题(含答案)

2023-2024学年山东省临沂高一上学期期末数学质量测试题(含答案)

2023-2024学年山东省临沂高一上册期末数学质量测试题一、单选题1.已知1sin3α=,,2παπ⎛⎫∈ ⎪⎝⎭,则tanα的值为()A.4BC.-D.【正确答案】A根据同角三角函数的基本关系求出cosα,tanα;【详解】解:因为1sin3α=,22sin cos1αα+=,所以cos3α=±,因为,2παπ⎛⎫∈ ⎪⎝⎭,所以cos3α=-,所以1sin3tancos43ααα==-故选:A2.已知命题:0p x∀>,2log2x x>,则命题p的否定为()A.0x∀>,2log2x x≤B.00x∃>,002log2x x≤C.00x∃>,002log2x x<D.00x∃≤,002log2x x≤【正确答案】B根据全称命题的否定是特称命题,可得选项.【详解】因为全称命题的否定是特称命题,所以命题:0p x∀>,2log2x x>,则命题p的否定为“00x∃>,002log2x x≤”,故选:B.3.已知函数()xf x a=(0a>且1a≠)在(0,2)内的值域是2(1,)a,则函数()y f x=的函数大致是()A .B.C .D .【正确答案】B【详解】试题分析:由题意可知21a>,所以1a>,所以()f x是指数型的增函数.故选B.指数函数的图象与性质.4.若正实数a ,b ,c 满足1b a c c c <<<,则a ,b 的大小关系为()A .01a b <<<B .01b a <<<C .1b a <<D .1a b<<【正确答案】A【分析】根据已知可得01c <<,根据指数函数的单调性,即可得出答案.【详解】因为c 是正实数,且1c <,所以01c <<,则函数x y c =单调递减.由1b a c c c <<<,可得10b a c c c c <<<,所以01a b <<<.故选:A.5.若0a >且1a ≠,函数()(),140.52,1x a x f x a x x ⎧≥⎪=⎨-+<⎪⎩,满足对任意的实数12x x ≠都有11222112()()()()x f x x f x x f x x f x +>+成立,则实数a 的取值范围是()A .(1,)+∞B .(1,8)C .(4,8)D .[4,8)【正确答案】D【分析】由已知可得函数()f x 在R 上单调递增,根据分段函数的单调性列出不等式组,即可求得实数a 的取值范围.【详解】解:11222112()()()()x f x x f x x f x x f x +>+ ,∴对任意的实数12x x ≠都有1212()[()()]0x x f x f x -->成立,可知函数()f x 在R 上单调递增,1140.50(40.5)12a a a a >⎧⎪∴->⎨⎪≥-⨯+⎩,解得[4,8)a ∈,故选:D.6.已知1:12p x ≥-,:2q x a -<,若p 是q 的充分不必要条件,则实数a 的取值范围为()A .(],4-∞B .[]1,4C .(]1,4D .()1,4【正确答案】C【分析】求出p 、q 中的不等式,根据p 是q 的充分不必要条件可得出关于实数a 的不等式组,由此可解得实数a 的取值范围.【详解】解不等式112x ≥-,即131022x x x --=≤--,解得23x <≤,解不等式2x a -<,即22x a -<-<,解得22a x a -<<+,由于p 是q 的充分不必要条件,则(]2,3()2,2a a -+,所以2223a a -≤⎧⎨+>⎩,解得14a <≤.因此,实数a 的取值范围是(]1,4.故选:C.本题考查利用充分不必要条件求参数,同时也考查了分式不等式和绝对值不等式的求解,考查计算能力,属于中等题.7.已知函数π()cos()0,||2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的最小正周期为π,且当π3x =时,函数()f x 取最小值,若函数()f x 在[,0]a 上单调递减,则a 的最小值是()A .π6-B .5π6-C .2π3-D .π3-【正确答案】A【分析】根据最小正周期求出2ω=,根据当π3x =时,函数取最小值,求出π3ϕ=,从而π()cos 23f x x ⎛⎫=+ ⎪⎝⎭,由[,0]x a ∈得到22,33πππ3x a ⎡⎤+∈+⎢⎥⎣⎦,由单调性列出不等式,求出06π,a ⎡⎫∈-⎪⎢⎣⎭,得到答案.【详解】因为0ω>,所以2π2π2πT ω===,故13πcos(2)ϕ⨯+=-,所以2ππ2π,Z 3k k ϕ+=+∈,解得:ππ,Z k k ϕ=+∈23,因为π||2ϕ<,所以只有当0k =时,π3ϕ=满足要求,故π()cos 23f x x ⎛⎫=+ ⎪⎝⎭,因为[,0]x a ∈,所以22,33πππ3x a ⎡⎤+∈+⎢⎥⎣⎦,故π2,33π0a ⎡⎫∈⎪⎢⎣⎭+,解得:06π,a ⎡⎫∈-⎪⎢⎣⎭,故a 的最小值为π6-.故选:A8.质数也叫素数,17世纪法国数学家马林·梅森曾对“21p -”(p 是素数)型素数作过较为系统而深入的研究,因此数学界将“21p -”(p 是素数)形式的素数称为梅森素数.已知第6个梅森素数为1721M =-,第14个梅森素数为60721N =-,则下列各数中与NM最接近的数为()(参考数据:lg 20.3010≈)A .18010B .17710C .14110D .14610【正确答案】B【分析】根据题意,得到6076075901717212==2212N M -≈-,再结合对数的运算公式,即可求解.【详解】由第6个梅森素数为1721M =-,第14个梅森素数为60721N =-,,可得6076075901717212=212N M -≈-,令5902k =,两边同时取对数,则590lg 2lg k =,可得lg 590lg 2k =,又lg 20.3010≈,所以lg 5900.3010177.59k ≈⨯=,17710k ≈与NM最接近的数为17710.故选:B.二、多选题9.下列结论正确的是()A .若,a b 为正实数,a b ¹,则3223+a b a b b a +>B .若,,a b m 为正实数,a b <,则a m ab m b+<+C .若,a b R ∈,则“0a b >>”是“11a b <”的充分不必要条件D .当0,2x π⎛⎫∈ ⎪⎝⎭时,2sin sin x x +的最小值是【正确答案】AC利用作差法可考查选项A 是否正确;利用作差法结合不等式的性质可考查选项B 是否正确;利用不等式的性质可考查选项C 是否正确;利用均值不等式的结论可考查选项D 是否正确.【详解】对于A ,若a ,b 为正实数,a b ¹,()()()233220a b a b ab a b a b +-+=-+>,3322a b a b ab ∴+>+,故A 正确;对于B ,若a ,b ,m 为正实数,a b <,()()0m b a a m a b m b b b m -+-=>++,则a m ab m b+>+,故B 错误;对于C ,若11a b <,则110b aa b ab--=<,不能推出0a b >>,而当0a b >>时,有0>0b a ab -<,,所以0b aab -<成立,即11a b<,所以“0a b >>”是“11a b<”的充分不必要条件,故C 正确;对于D ,当0,2x π⎛⎫∈ ⎪⎝⎭时,0sin 1x <<,2sin sin x x +≥=,当且仅当()sin 0,1x =时取等号,故D 不正确.故选:AC.易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.10.已知关于x 的方程23xm -=有两个不等实根,则实数m 的取值可能是()A .2B .3C .4D .5【正确答案】CD【分析】化简方程得23x m =±,利用指数函数的值域,列式求解得出答案.【详解】23xm -= ,23x m ∴-=±,23x m -= 有两个不等实根,即23x m =±有两个不等实根,则3030m m +>⎧⎨->⎩,解得3m >,显然选项A ,B 不满足,选项C ,D 满足.故选:CD.11.定义在R 上的函数()f x 满足()(2)f x f x =+,当[3,5]x ∈时,()2|4|f x x =--,则下列说法正确的是()A .ππsin cos 66f f⎛⎫⎛⎫< ⎪ ⎝⎭⎝⎭B .(sin1)(cos1)f f <C .2π2πcos sin 33f f ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭D .(cos 2)(sin 2)f f >【正确答案】BD【分析】根据函数的周期性可得()f x 在[]1,1-上的解析式以及函数在[0,1]上的单调性.比较自变量的大小,即可根据单调性判断A 、B 项;又易知()f x 在[1,1]-上为偶函数,则根据()()f x f x =,可将[1,0]-上的自变量转化为[0,1]上,进而根据单调性,即可判断C 、D 项.【详解】当[1,1]x ∈-时,则[45]3,x +∈,于是()(2)(4)2||f x f x f x x =+=+=-,当01x ≤≤时,()2f x x =-,所以函数()f x 在[0,1]上单调递减;当10x -≤<时,()2f x x =+,所以函数()f x 在[1,0]-上是增函数.()f x 的定义域[1,1]-关于原点对称,且此时()()22-=--=-=f x x x f x则()f x 在[1,1]-上为偶函数.对于A 项,因为ππ0sincos 166<<<,所以ππsin cos 66f f ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭,故A 错误;对于B 项,因为0cos1sin11<<<,所以(cos1)(sin1)f f >,故B 正确;对于C项,因为2π12π0cossin 1323<==<,所以2π2πcossin 33f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>,所以2π2πcos sin 33f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,故C 错误;因为ππ0|cos 2|cos sin |sin 2|144<<=<<,所以(|cos2|)(|sin 2|)f f >,所以(cos 2)(sin 2)f f >,故D 正确.故选:BD.12.已知定义域为R 的奇函数()f x ,当0x >时,21,01()1,121x x x f x x x ⎧-+<≤⎪=⎨>⎪-⎩,下列说法中错误的是()A .当121122x x -<<<时,恒有()()12f x f x >B .若当(0,]x m ∈时,()f x 的最小值为34,则m 的取值范围为17,26⎡⎤⎢⎥⎣⎦C .存在实数k ,使函数()()F x f x kx =-有5个不相等的零点D .若关于x 的方程3()[()]04f x f x a ⎡⎤--=⎢⎥⎣⎦所有实数根之和为0,则34a =-【正确答案】ACD【分析】根据奇函数的定义确定()f x 在(1,0)-上单调性与性质,然后由函数值大小可判断A ,由函数解析式分段求函数值的范围后可判断B ,由直线y kx =与函数()f x 的图象交点个数判断C ,求出3()4f x =的根是17,26,然后确定a 值使()f x a =根的和为53-即可判断D .【详解】选项A ,()f x 是奇函数,10x -≤<时,22()()[()()1]1f x f x x x x x =--=----+=---213()24x =-+-,在1(,0)2-上递减,且()0f x <,()f x 是奇函数,则(0)0f =,01x <≤时,2213()1()24f x x x x =-+=-+,在1(0,)2上递减,但()0f x >,因此()f x 在11(,)22-上不是增函数,A 错;选项B ,当01x <≤时,2213()1()24f x x x x =-+=-+,13()24f =,因此12m ≥,当1m >时,1()21f x x =-是减函数,由13214x =-得76x =,因此76m ≤,综上有1726m ≤≤,B 正确;选项C ,易知0x =是()F x 的一个零点,由于(1)1f =,y kx =过点(1,1)时,1k =,此时由21y xy x x =⎧⎨=-+⎩得21x x x -+=,2(1)0x -=,121x x ==,即直线y x =与21y x x =-+在点(1,1)处相切,因此1k >时,直线y kx =与21(01)y x x x =-+<<的图象只有一交点,在01k <<时,直线y kx =与1(1)21y x x =>-只有一个交点,从而0k >时,直线y kx =与()F x 的图象有三个交点,而0x >时,()0f x >,因此0k ≤,直线y kx =与()F x 的图象无交点,所以直线y kx =与()F x 的图象不可能是5个交点,即函数()()F x f x kx =-不可能有5个不相等的零点,C 错;选项D ,由上讨论知3()4f x =的解为12x =和76x =,因此若关于x 的方程3()[()]04f x f x a ⎡⎤--=⎢⎥⎣⎦所有实数根之和为0,由()f x 是奇函数知若34a =-,则()f x a =的解是12x =-和76x =-,符合题意,但513(537213f ==⨯-(由此讨论知3()7f x =只有一解),即53()37f -=-,即37a =-时,关于x 的方程3()[()]04f x f x a ⎡⎤--=⎢⎥⎣⎦所有实数根之和也为0,D 错.故选:ACD .方法点睛:解决分段函数的零点与交点问题,把零点问题转化为直线与函数图象交点问题进行处理,从而利用函数的性质确定出函数解析式,作出函数图象,观察出结论并找到解题思路.三、填空题13.已知弧长为πcm 3的弧所对圆周角为6π,则这条弧所在圆的半径为____________cm .【正确答案】1【分析】由弧度制公式lrα=求解即可得出答案.【详解】已知弧长为πcm 3的弧所对圆周角为6π,则所对的圆心角为π3,lrα=,313l r ππα∴===,故1.14.已知函数()()22,1log 1,1x ax f x x x ⎧+≤⎪=⎨->⎪⎩,若()02f f ⎡⎤=⎣⎦,则实数a 的值为_________.先求()03f =,再代入求()3f ,求实数a 的值.【详解】()00223f =+=,()()03log 22a f f f ⎡⎤===⎣⎦,即22a =,又0a >,且1a ≠,所以a =15.若函数()log a f x x =(0a >且1a ≠)在1,42⎡⎤⎢⎥⎣⎦上的最大值为2,最小值为m,函数()(32g x m =+[0,)+∞上是增函数,则a m -的值是____________.【正确答案】3【分析】根据对数函数的单调性,分类讨论,再结合已知进行求解得出a 和m 的值,最后根据()g x 的单调性检验即可得到.【详解】当1a >时,函数()log a f x x =是正实数集上的增函数,而函数()log a f x x =在1,42⎡⎤⎢⎥⎣⎦上的最大值为2,因此有(4)log 42a f ==,解得2a =,所以21log 12m ==-,此时()g x =[)0,∞+上是增函数,符合题意,因此()213a m -=--=;当01a <<时,函数()log a f x x =是正实数集上的减函数,而函数()log a f x x =在1,42⎡⎤⎢⎥⎣⎦上的最大值为2,因此有11log 222a f ⎛⎫== ⎪⎝⎭,a =44m ==-,此时()g x =-在[)0,∞+上是减函数,不符合题意.综上所述,2a =,1m =-,3a m -=.故3.16.若函数()()()sin cos 0f x x x ϕϕ<π=++<的最大值为2,则常数ϕ的值为_______.【正确答案】2π根据两角和的正弦公式以及辅助角公式即可求得()()f x x θ=+,可得2=,即可解出.【详解】因为()()()cos sin sin 1cos f x x x x ϕϕθ=++=+,2=,解得sin 1ϕ=,因为0ϕπ<<,所以2ϕπ=.故答案为.2π四、解答题17.在①22{|1}1x A x x -=<+,②{||1|2}A x x =-<,③23{|log }1xA x y x -==+这三个条件中任选一个,补充在下面的横线上,并回答下列问题.设全集U =R ,______,22{|0}.B x x x a a =++-<(1)若2a =,求()()U UC A C B ;(2)若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围.【正确答案】(1)1{}1|x x x ≤-≥或(2)(][),34,-∞-⋃+∞【分析】(1)根据除法不等式,绝对值不等式,对数函数的定义域即可分别求出三种情形下的集合A ;(2)对集合B 中不等式进行因式分解,再根据充分必要条件和集合包含关系即可求解.【详解】(1)若选①:222213{|1}{|0}{|0}{|13}1111x x x x A x x x x x x x x x --+-=<=-<=<=-<<++++,()22{|0}{|()10}{|(2)(1)0}B x x x a a x x a x a x x x ⎡⎤=++-<=++-<=+-<⎣⎦,所以{|2<1}B x x =-<,{|13}U C A x x x =≤-≥或,{|21}U C B x x x =≤-≥或,故()()U U C A C B ⋃=1{}1|x x x ≤-≥或.若选②:{|12}{|212}{|13}A x x x x x x =-<=-<-<=-<<()22{|0}{|()10}{|(2)(1)0}B x x x a a x x a x a x x x ⎡⎤=++-<=++-<=+-<⎣⎦,所以{|2<1}B x x =-<,{|13}U C A x x x =≤-≥或,{|21}U C B x x x =≤-≥或,故()()U U C A C B ⋃=1{}1|x x x ≤-≥或.若选③:()(){}233{|log }031011x x A x y x x x x x x ⎧⎫--====-+=⎨⎬++⎩⎭{|13}x x -<<,()22{|0}{|()10}{|(2)(1)0}B x x x a a x x a x a x x x ⎡⎤=++-<=++-<=+-<⎣⎦,所以{|2<1}B x x =-<,{|13}U C A x x x =≤-≥或,{|21}U C B x x x =≤-≥或,故()()U U C A C B ⋃=1{}1|x x x ≤-≥或.(2)由(1)知{|13}A x x =-<<,()22{|0}{|()10}B x x x a a x x a x a ⎡⎤=++-<=++-<⎣⎦,因为“x A ∈”是“x B ∈”的充分不必要条件,(i )若(1)a a -<--,即12a >,此时{|(1)}B x a x a =-<<--,所以1,3(1)aa -≥-⎧⎨≤--⎩等号不同时取得,解得4a ≥.故4a ≥.(ii )若(1)a a -=--,则B =∅,不合题意舍去;(iii )若(1)a a ->--,即12a <,此时{|(1)}B x a x a =--<<-,1(1),3a a -≥--⎧⎨≤-⎩等号不同时取得,解得3a ≤-.综上所述,a 的取值范围是(][),34,-∞-⋃+∞.18.(1)已知sin 2cos 0αα-=,求22sin cos sin 3sin cos 2cos αααααα--的值;(2)已知4sin()5απ+=,且sin cos 0αα<,求()()()2sin 3tan 34cos παπααπ----的值.【正确答案】(1)12-;(2)73.【分析】(1)先求出tan 2α=,再进行弦化切代入即可求解;(2)先求出4sin 5α=-,3cos 5α=,得到4tan 3α=-,再进行诱导公式和弦化切变换,代入即可求解.【详解】(1)由sin 2cos 0αα-=知tan 2α=∴原式=2tan 21tan 3tan 24622ααα==-----(2) 4sin()5απ+=∴4sin 05α=-<又sin cos 0αα<∴cos 0α>∴3cos 5α==∴4tan 3α=-原式=()()2sin 3tan 4cos απαπα---=2sin 3tan 4cos ααα+-=44237533345⎛⎫⎛⎫⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭=-⨯19.已知函数()323log 1x f x x -=-.(1)求函数()f x 的解析式及定义域;(2)求函数()f x 在()(),00,2x ∈-∞⋃时的值域.【正确答案】(1)()()12031xf x x =-≠-,()f x 的定义域为()(),00,∞-+∞U (2)()15,3,8⎛⎫-∞⋃+∞ ⎪⎝⎭【分析】(1)利用换元法求得函数的解析式,根据函数定义域的求法,求得函数的定义域.(2)结合3x 的取值范围来求得()f x 在()(),00,2x ∈-∞⋃时的值域.【详解】(1)对于3log x ,需0x >;对231x x --,需1x ≠;则()()3log ,00,x ∈-∞⋃+∞,令3log t x =,则0t ≠,3t x =,()()231123312313131tt t t t f t ⋅--⋅-===----,所以()()12031x f x x =-≠-,即()f x 的定义域为()(),00,∞-+∞U .(2)当0x <时,11031,1310,1,13131x xxx <<-<-<<-->--,12331x ->-.当02x <<时,1111139,0318,,318318x xx x <<<-<>-<---,1115223188x-<-=-.所以()f x 在()(),00,2x ∈-∞⋃时的值域为()15,3,8⎛⎫-∞⋃+∞ ⎪⎝⎭.20.已知函数()24f x x π⎛⎫=- ⎪⎝⎭,x R ∈.(1)求函数()f x 的最小正周期和单调递减区间;(2)求函数()f x 在区间,82ππ⎡⎤-⎢⎣⎦上的最小值和最大值,并求出取得最值时x 的值.【正确答案】(1)最小正周期为π,单调减区间是5,88k k ππππ⎡⎤++⎢⎥⎣⎦,Z k ∈;(2)max ()f x =,此时8x π=,min ()1f x =-,此时2x π=.【分析】(1)直接利用周期公式计算周期,再利用整体代入法求余弦型函数的单调减区间即可;(2)先求出24x π-的取值范围,再利用余弦函数的性质求最值及取最值的条件即可.【详解】解:(1)()f x 的最小正周期22||2T πππω===.令2224k x k ππππ≤-≤+,解得588k x k ππππ+≤≤+,Z k ∈,此时时,()f x 单调递减,()f x ∴的单调递减区间是5,88k k ππππ⎡⎤++⎢⎥⎣⎦,Z k ∈;(2),82x ππ⎡⎤∈-⎢⎥⎣⎦,则32,424x πππ⎡⎤-∈-⎢⎥⎣⎦,故cos 2,142x π⎡⎤⎛⎫-∈⎢⎥ ⎪⎝⎭⎣⎦,()24f x x π⎛⎫⎡=-∈- ⎪⎣⎝⎭,max ()f x ∴=cos 214x π⎛⎫-= ⎪⎝⎭,即204x π-=,即8x π=;min ()1f x =-,此时cos 242x π⎛⎫-=- ⎪⎝⎭,即3244x ππ-=,即2x π=.方法点睛:解决三角函数()cos y A x ωϕ=+的图象性质,通常利用余弦函数的图象性质,采用整体代入法进行求解,或者带入验证.21.2022年冬天新冠疫情卷土重来,我国大量城市和地区遭受了奥密克戎新冠病毒的袭击,为了控制疫情,某单位购入了一种新型的空气消毒剂用于环境消毒,已知在一定范围内,每喷洒1个单位的消毒剂,空气中释放的浓度(y 单位:毫克/立方米)随着时间(x 单位:小时)变化的关系如下:当04x 时,1618y x =--;当410x <时,15.2y x =-若多次喷洒,则某一时刻空气中的消毒剂浓度为每次投放的消毒剂在相应时刻所释放的浓度之和.由实验知,当空气中消毒剂的浓度不低于4(毫克/立方米)时,它才能起到杀灭空气中的病毒的作用.(1)若一次喷洒4个单位的消毒剂,则有效杀灭时间可达几小时?(2)若第一次喷洒2个单位的消毒剂,6小时后再喷洒(14)a a 个单位的消毒剂,要使接下来的4小时中能够持续有效消毒,试求a 的最小值.(精确到0.1取1.4)【正确答案】(1)8(2)1.6【分析】(1)根据喷洒4个单位的净化剂后浓度为()644,048202,410x f x x x x ⎧-≤≤⎪=-⎨⎪-<≤⎩,由()4f x ≥求解;(2)得到从第一次喷洒起,经()610x x ≤≤小时后,浓度为()()116251286g x x a x ⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪--⎝⎭⎝⎭,化简利用基本不等式求解.【详解】(1)解:因为一次喷洒4个单位的净化剂,所以其浓度为()644,0448202,410x f x y x x x ⎧-≤≤⎪==-⎨⎪-<≤⎩,当04x ≤≤时,64448x-≥-,解得0x ≥,此时04x ≤≤,当410x <≤时,2024x -≥,解得8x ≤,此时48x <≤,综上08x ≤≤,所以若一次喷洒4个单位的消毒剂,则有效杀灭时间可达8小时;(2)设从第一次喷洒起,经()610x x ≤≤小时后,其浓度为()()116251286g x x a x ⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪--⎝⎭⎝⎭,1616101441414a ax a x a x x=-+-=-+----,因为[][]144,8,1,4x a -∈∈,所以161444414a x a a a x -+--≥--=---,当且仅当161414ax x-=-,即14x =-时,等号成立;所以其最小值为4a --,由44a -≥,解得244a -≤,所以a 的最小值为24 1.6-≈.22.我们知道,指数函数()xf x a =(0a >,且1a ≠)与对数函数()log a g x x =(0a >,且1a ≠)互为反函数.已知函数()2xf x =,其反函数为()g x .(1)求函数()()()223F x g x tg x =-+⎡⎤⎣⎦,[]2,8x ∈的最小值;(2)对于函数()x ϕ,若定义域内存在实数0x ,满足()()00x x ϕϕ-=-,则称()x ϕ为“L 函数”.已知函数()()()223,1,3,1f x mf x x h x x ⎧⎡⎤--≥-⎪⎣⎦=⎨-<-⎪⎩为其定义域上的“L 函数”,求实数m 的取值范围.【正确答案】(1)答案见解析(2)[)1,∞-+【分析】(1)利用换元法令2log ,[1,3]p x p =∈,可得所求为关于p 的二次函数,根据二次函数的性质,分析讨论,即可得答案.(2)根据题意,分别讨论在[1,1]-、(,1)-∞-和(1,)+∞上存在实数0x ,满足题意,根据所给方程,代入计算,结合函数单调性,分析即可得答案.【详解】(1)由题意得2()log g x x=所以()()()()222223log 2log 3F x g x tg x xt x =-+=-+⎡⎤⎣⎦,[]2,8x ∈,令2log ,[1,3]p x p =∈,设2()23,[1,3]M p p tp p =-+∈则()M p 为开口向上,对称轴为p t =的抛物线,当1t ≤时,()M p 在[1,3]上为单调递增函数,所以()M p 的最小值为(1)42M t =-;当13t <<时,()M p 在(1,)t 上单调递减,在(,3)t 上单调递增,所以()M p 的最小值为2()3M t t =-;当3t ≥时,()M p 在[1,3]上为单调递减函数,所以()M p 的最小值为(3)126M t =-;综上,当1t ≤时,()F x 的最小值为42t -,当13t <<时,()F x 的最小值为23t -,当3t ≥时,()F x 的最小值为126t-(2)①设在[1,1]-上存在0x ,满足()()00x x ϕϕ-=-,则0000114234230x x x x m m +--+-⋅-+-⋅-=,令0022x x t -=+,则2t ≥=,当且仅当00x =时取等号,又0[1,1]x ∈-,所以115222t -≤+=,即52,2t ⎡⎤∈⎢⎥⎣⎦,所以00001124234232260x x x x m m t mt +--+-⋅-+-⋅-=---=,所以28471,2220t t m t t -⎡⎤==---⎢⎥⎣⎦所以71,20m ⎡⎤∈--⎢⎥⎣⎦②设在(,1)-∞-存在0x ,满足()()00x x ϕϕ-=-,则00134230x x m --+-+-⋅-=,即001232x x m --=-⋅有解,因为1232x x y --=-⋅在(,1)-∞-上单调递减,所以12m >-,同理当在(1,)+∞存在0x ,满足()()00x x ϕϕ-=-时,解得12m >-,所以实数m 的取值范围[)1,∞-+解题的关键是理解新定义,并根据所给定义,代入计算,结合函数单调性及函数存在性思想,进行求解,属难题。

高一数学测试题及答案

高一数学测试题及答案

高一数学测试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x + 1答案:B2. 计算下列极限:\[\lim_{x \to 0} \frac{1 - \cos x}{x^2}\]A. 0B. 1C. 2D. -1答案:C3. 已知向量\(\vec{a} = (3, -2)\)和\(\vec{b} = (1, 2)\),求这两个向量的点积。

A. 5B. -5C. 1D. -1答案:B4. 以下哪个不等式是正确的?A. \(\sqrt{2} < 1.5\)B. \(\sqrt{2} > 1.5\)C. \(\sqrt{2} = 1.5\)D. \(\sqrt{2} < 1\)答案:B5. 计算以下定积分:\[\int_{0}^{1} x^2 dx\]A. 1/3B. 1/2C. 1D. 2答案:A6. 以下哪个是复数的共轭?A. \(z = 3 + 4i\)的共轭是\(3 - 4i\)B. \(z = 3 - 4i\)的共轭是\(3 + 4i\)C. \(z = -3 + 4i\)的共轭是\(-3 - 4i\)D. \(z = -3 - 4i\)的共轭是\(-3 + 4i\) 答案:A7. 以下哪个是二项式定理的应用?A. \((a + b)^2 = a^2 + 2ab + b^2\)B. \((a - b)^2 = a^2 - 2ab + b^2\)C. \((a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3\)D. \((a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3\) 答案:C8. 以下哪个是等差数列的通项公式?A. \(a_n = a_1 + (n - 1)d\)B. \(a_n = a_1 - (n - 1)d\)C. \(a_n = a_1 + nd\)D. \(a_n = a_1 - nd\)答案:A9. 以下哪个是等比数列的通项公式?A. \(a_n = a_1 \cdot r^{n-1}\)B. \(a_n = a_1 \cdot r^n\)C. \(a_n = a_1 \cdot \frac{1}{r^{n-1}}\)D. \(a_n = a_1 \cdot \frac{1}{r^n}\)答案:A10. 以下哪个是三角恒等式?A. \(\sin^2 x + \cos^2 x = 1\)B. \(\sin^2 x + \cos^2 x = 0\)C. \(\sin^2 x + \cos^2 x = 2\)D. \(\sin^2 x + \cos^2 x = x\)答案:A二、填空题(每题4分,共20分)11. 已知\(\sin \theta = \frac{1}{2}\),求\(\cos \theta\)的值。

高一数学必修一测试题及答案

高一数学必修一测试题及答案

高中数学必修1检测题一、选择题:每小题5分;12个小题共60分1.已知全集(}.7,5,3,1{},6,4,2{},7.6,5,4,3,2,1{ A B A U 则===B C U 等于A .{2;4;6}B .{1;3;5}C .{2;4;5}D .{2;5}2.已知集合}01|{2=-=x x A ;则下列式子表示正确的有 ①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A .1个B .2个C .3个D .4个3.若:f A B →能构成映射;下列说法正确的有 1A 中的任一元素在B 中必须有像且唯一; 2A 中的多个元素可以在B 中有相同的像; 3B 中的多个元素可以在A 中有相同的原像; 4像的集合就是集合B .A 、1个B 、2个C 、3个D 、4个4、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减;那么实数a 的取值范围是A 、3a -≤B 、3a -≥C 、a ≤5D 、a ≥5 5、下列各组函数是同一函数的是①()f x =()g x =fx=x 与()g x = ③0()f x x =与01()g x x=;④2()21f x x x =--与2()21g t t t =--.. A 、①② B 、①③ C 、③④ D 、①④6.根据表格中的数据;可以断定方程02=--x e x 的一个根所在的区间是A .-1;0B .0;1C .1;2D .2;37.若=-=-33)2lg()2lg(,lg lg yx a y x 则A .a 3B .a 23C .aD .2a8、 若定义运算b a ba b aa b <⎧⊕=⎨≥⎩;则函数()212log log f x x x =⊕的值域是 A [)0,+∞ B (]0,1 C [)1,+∞ D R9.函数]1,0[在x a y =上的最大值与最小值的和为3;则=aA .21B .2C .4D .41 10. 下列函数中;在()0,2上为增函数的是A 、12log (1)y x =+ B、2log y =C 、21log y x = D、2log (45)y x x =-+ 11.下表显示出函数值y 随自变量x 变化的一组数据;判断它最可能的函数模型是A .一次函数模型B .二次函数模型C .指数函数模型D .对数函数模型12、下列所给4个图象中;与所给3件事吻合最好的顺序为1我离开家不久;发现自己把作业本忘在家里了;于是立刻返回家里取了作业本再上学; 2我骑着车一路以常速行驶;只是在途中遇到一次交通堵塞;耽搁了一些时间; 3我出发后;心情轻松;缓缓行进;后来为了赶时间开始加速..A 、124 B、423 C、413D 、412 二、填空题:每小题4分;共16分13.函数24++=x x y 的定义域为 . 14. 若)(x f 是一次函数;14)]([-=x x f f 且;则)(x f = _________________. 15.已知幂函数)(x f y =的图象过点=)9(),2,2(f 则 .1234的16.若一次函数b ax x f +=)(有一个零点2;那么函数ax bx x g -=2)(的零点是 . 三、解答题:17.本小题12分已知集合{|121}A x a x a =-<<+;{|01}B x x =<<;若A B =∅;求实数a 的取值范围..18.本小题满分12分已知定义在R 上的函数()y f x =是偶函数;且0x ≥时;()()2ln 22f x x x =-+;1当0x <时;求()f x 解析式;2写出()f x 的单调递增区间..19、本小题满分12分设2()32f x ax bx c =++;若0a b c ++=;(0)0f >;(1)0f >. 求证:10a >且12-<<-ab;2方程()0f x =在(0,1)内有两个实根. 20.本小题满分13分某租赁公司拥有汽车100辆;当每辆车的月租金为3000元时;可全部租出..当每辆车的月租金每增加50元时;未租出的车将会增加一辆..租出的车每辆每月需要维护费150元;未租出的车每辆每月需要维护费50元..1当每辆车的月租金定为3600元时;能租出多少辆车2当每辆车的月租金定为多少元时;租赁公司的月收益最大 最大月收益是多少21、本小题满分13分已知函数()24(0)2(0)12(0)x x f x x x x ⎧->⎪==⎨⎪-<⎩;1画出函数()f x 图像;2求()()()21(),3f a a R f f +∈的值;3当43x -≤<时;求()f x 取值的集合. 22、本小题满分14分对于函数()()21f x ax bx b =++-0a ≠.Ⅰ当1,2a b ==-时;求函数()f x 的零点;Ⅱ若对任意实数b ;函数()f x 恒有两个相异的零点;求实数a 的取值范围. 23、本小题满分14分已知定义域为R 的函数fx 满足ffx-x 2+x= fx-x 2+x; 1若f2=3;求f1;又若f0=a;求fa ;2设有且仅有一个实数x 0;使得fx 0=x 0;求函数fx 的解析表达式..较难 数学参考答案一、选择题:每小题5分;12个小题共60分.1.A2.C3.B4.A.5.C6.C7.A8.A9.B 10. D 11.A 12.D 二、填空题:每小题4分;共16分.13.),2()2,4[+∞--- 14.2x-13或-2x+1 15.3 16.21,0-三、解答题共76分17. 解:A B=∅1当A=∅时;有2a+1a-1a -2≤⇒≤ 2当A ≠∅时;有2a+1a-1a>-2>⇒又A B =∅;则有2a+10a-11≤≥或1a -a 22⇒≤≥或由以上可知1a -a 22≤≥或18.10x <时;()()2ln 22f x x x =++;2(1,0)-和()1,+∞19、分析:利用0a b c ++=;(0)0f >;(1)0f >进行消元代换. 证明:1(0)0f c =>;(1)320f a b c =++>;由0a b c ++=;得b a c =--;代入(1)f 得:0a c ->;即0a c >>;且01ca<<;即1(2,1)b c a a =--∈--;即证.211()024f a =-<;又(0)0f >;(1)0f >.则两根分别在区间1(0,)2;1(,1)2内;得证.点评:在证明第2问时;应充分运用二分法求方程解的方法;选取(0,1)的中点12来考察1()2f 的正负是首选目标;如不能实现1()02f <;则应在区间内选取其它的值.本题也可选3b a -;也可利用根的分布来做. 20.本小题14分解:1租金增加了600元;所以未出租的车有12辆;一共出租了88辆..2设每辆车的月租金为x 元;x ≥3000;租赁公司的月收益为y 元..则:y=x100-x-3000÷50-x-3000÷50×50-100-x-3000÷50×150 =160x-x 2/50-x+3000-24000+3x =-1/50x 2-8100-21000 =-1/50x-40502=-1/50x-40502+328050-21000 =-1/50x-40502+307050max 4050,30705x y ==当时 021.本小题16分解:1 图像略 ………………5分222224(1)4(1)32f a a a a +=-+=--;((3))f f =(5)f -=11;………………………………………………12分3由图像知;当43x -≤<时;5()9f x -<≤故()f x 取值的集合为{}|59y y -<≤………………………………16分 22、∵a=1;b=-2 ∴fx=x 2-2x-3 令fx=0;则x 2-2x-3=0 ∴x=3或x=-1此时fx 的零点为3和-1. 2由题意可得a≠0则△=b 2-4ab-1>0对于b∈R 恒成立 即△′=16a 2-16a <0 ∴0<a <123、解:1因为对任意x ∈R;有;所以;又由f2=3;得;即f1=1;若f0=a;即..2因为对任意x ∈R;有;又因为有且只有一个实数x 0;使得fx 0=x 0; 所以对任意x ∈R;有;在上式中令;又因为;若;即;但方程有两个不同实根;与题设条件矛盾;故;若x=1;则有;易验证该函数满足题设条件;综上;所求函数为..。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(4)
(3)
(1)
俯视图
俯视图
俯视图
侧视图
侧视图 侧视图
侧视图
正视图
正视图 正视图 正视图
(2)
·
高一数学第一学期模块检测卷
数学必修2 斗鸡中学 张晓明
一、选择题 :(本大题共10小题 ,每小题4分,共40分,在每小题给出的四个选择项中,只有一
项是符合题目要求的.)
1.若直线l 经过原点和点A (-2,-2),则它的斜率为( ) A .-1
B .1
C .1或-1
D .0
2.各棱长均为a 的三棱锥的表面积为( )
A .2
34a
B .2
33a
C .2
32a
D .2
3a
3. 如图⑴、⑵、⑶、⑷为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为( )
A .三棱台、三棱柱、圆锥、圆台
B .三棱台、三棱锥、圆锥、圆台
C .三棱柱、正四棱锥、圆锥、圆台
D .三棱柱、三棱台、圆锥、圆台
4.经过两点(3,9)、(-1,1)的直线在x 轴上的截距为( )
A .23
-
B .32-
C .32
D .2
5.不论m 取何实数,直线
:+-+=20l mx y m 恒过一定点,则该定点的坐标为( )
A. (-1,2)
B.(-1,-2)
C. (1,2)
D. (1,-2) 6.如果AC <0,BC <0,那么直线Ax+By+C=0不通过( ) A .第一象限
B .第二象限
C .第三象限
D .第四象限
7.已知圆心为C (6,5),且过点B (3,6)的圆的方程为( )
A .22(6)(5)10x y -+-=
B .22
(6)(5)10x y +++= C .22(5)(6)10x y -+-= D .
22(5)(6)10x y +++= 8.在右图的正方体中,M 、N 分别为棱BC 和棱CC1的中点,
则异面直线AC 和MN 所成的角为( ) A .30° B .45°
C .90°
D . 60°
9、已知点P 是圆22(3)1x y -+=上的动点,则点P 到直线y =x +1的距离的最小值为( ) A. 3 B. 22 C. 22-1 D. 22+1
10、两圆相交于点A (1,3)、B (m ,-1),两圆的圆心均在直线x -y +c =0上,则m +c 的值为( )
A. 2
B. 3
C.-1
D. 0
10.给出下列命题
①过平面外一点有且仅有一个平面与已知平面垂直 ②过直线外一点有且仅有一个平面与已知直线平行 ③过直线外一点有且仅有一条直线与已知直线垂直 ④过平面外一点有且仅有一条直线与已知平面垂直 其中正确命题的个数为( ) A .0个 B .1个
C .2个
D .3个
1
12.点
)
,(00y x P 在圆2
22r y x =+内,则直线200r y y x x =+和已知圆的公共点的个数为( )
A .0
B .1
C .2
D .不能确定
二、填空题(每题5分,共25分)
13.已知原点O (0,0),则点O 到直线x+y+2=0的距离等于 .
14.经过两圆922=+y x 和
8)3()4(2
2=+++y x 的交点的直线方程 15.过点(1,2),且在两坐标轴上截距相等的直线方程 16.一个圆柱和一个圆锥的底面直径和它们的高都与某一个球的直径相等,这时圆柱、圆锥、球的体积之比为 .
17.已知两条不同直线m 、l ,两个不同平面α、β,给出下列命题: ①若l 垂直于α内的两条相交直线,则l ⊥α; ②若l ∥α,则l 平行于α内的所有直线; ③若m ⊂α,l ⊂β且l ⊥m ,则α⊥β; ④若l ⊂β,α⊥l ,则α⊥β;
⑤若m ⊂α,l ⊂β且α∥β,则m ∥l ;
其中正确命题的序号是 .(把你认为正确命题的序号都填上) 三、解答题(5道题,共65分)
18.(本大题12分)如图是一个圆台形的纸篓(有底无盖),它的母线长 为50cm ,两底面直径分别为40 cm 和30 cm ;现有制作这种纸篓的塑料 制品50m2,问最多可以做这种纸篓多少个?
19.(本大题12分)求经过直线L1:3x + 4y – 5 = 0与直线L2:2x – 3y + 8 = 0的交点M ,且满足下列条件的直线方程
M
(1)与直线2x + y + 5 = 0平行 ; (2)与直线2x + y + 5 = 0垂直;
20.(本大题12分)求圆心在03:1=-x y l 上,与x 轴相切,且被直线0:2=-y x l 截得弦长为
72的圆的方程.
21.(本大题14分)如图,在棱长为ɑ的正方体ABCD-1111A B C D 中,E 、F 、G 分别是CB 、CD 、1CC 的中点.
(1)求直线1A C 与平面ABCD 所成角的正弦的值; (2)求证:平面11AB D ∥平面EFG ; (3)求证:平面1AA C ⊥面EFG .
22.(本大题15分)已知方程
0422
2=+--+m y x y x . (1)若此方程表示圆,求m 的取值范围;
(2)若(1)中的圆与直线042=-+y x 相交于M ,N 两点,且OM ⊥ON (O 为坐标原点)求m 的
值;
(3)在(2)的条件下,求以MN 为直径的圆的方程.
数学必修2参考答案
一、选择题:
二、填空题:
13、2; 14、4 x+3y+13=0 15、3,2+==x y x y 16、3:1:2. 17、 ①④ 三、 解答题:
18.解:)('
2
'rl l r r S ++=π-----------6分
=)5020501515(2⨯+⨯+π =0.1975)(2
m π----------9分
≈=
S
n 50
80(个)-------11分 答:(略)--------12分
19.解:⎩⎨
⎧-=-=+832543y x y x 解得⎩⎨⎧=-=2
1
y x --------3分
所以交点(-1,2) (1)2-=k -----5分
直线方程为02=+y x --------7分 (2)2
1
=
k ---------10分 直线方程为052=+-y x --------12分
20.解:由已知设圆心为(a a 3,)--------2分
与x 轴相切则a r 3=---------3分
圆心到直线的距离2
2a d =
----------5分
弦长为72得:22
92
47a a =+-------6分 解得1±=a ---------8分
圆心为(1,3)或(-1,-3),3=r -----------10分 圆的方程为9)3()1(2
2
=-+-y x ---------11分 或9)3()1(22
=+++y x ----------12分
21.解:(1)∵C A 1⋂平面ABCD=C ,在正方体ABCD-A 1B 1C 1D 1
⊥A A 1 平面ABCD ∴AC 为C A 1在平面ABCD 的射影
∴CA A 1∠为C A 1与平面ABCD 所成角……….2分
正方体的棱长为a ∴AC=a 2,C A 1=a 3
………..4分
(2)在正方体ABCD-A 1B 1C 1D 1
连接BD ,1DD ∥B B 1,1DD =B B 1
1DD 1BB 为平行四边形
∴11B D ∥DB
∵E ,F 分别为BC ,CD 的中点 ∴EF ∥BD
∴EF ∥11B D …………3分
∵EF ⊂平面GEF ,11B D ⊄平面GEF
∴11B D ∥平面GEF …………8分 同理1AB ∥平面GEF ∵11B D ⋂1AB =1B
∴平面A B 1D 1∥平面EFG ……………10分
(3)在正方体ABCD-A 1B 1C 1D 1
∴⊥1AA 平面ABCD
3
3
sin 111==
C A A A CA A
∵EF ⊂平面ABCD
∴⊥1AA EF …………11分 ∵ABCD 为正方形 ∴AC ⊥BD ∵EF ∥BD
∴AC ⊥ EF ………..12分
A AC AA =⋂1
∴EF ⊥平面AA 1C ∵EF ⊂平面EFG
∴平面AA 1C ⊥面EFG …………….14分 22.解:(1)0422
2
=+--+m y x y x D=-2,E=-4,F=m
F E D 422-+=20-m 40>
5<m …………4分 (2)⎩⎨
⎧=+--+=-+0
420
422
2m y x y x y x y x 24-=代入得
081652
=++-m y y ………..6分
5
1621=
+y y ,5821m
y y += ……………7分
∵OM ⊥ON
得出:02121=+y y x x ……………8分 ∴016)(852121=++-y y y y ∴5
8
=
m …………….10分 (3)设圆心为),(b a
5
8
2,5421121=+==+=
y y b x x a …………….12分 半径5
5
4=
r …………9分
圆的方程5
16
)5
8()5
4(2
2
=-+-y x ……………15分。

相关文档
最新文档