生命科学导论复习总结资料.doc
生命科学导论重点总结

第一章一、生命的基本特征是什么?1.生长。
生长是生物普遍具有的一种特征。
2.繁殖和遗传。
生命靠繁殖得以延续,上代特征在下代的重现,通常称为遗传。
3.细胞。
生物体都以细胞为其基本结构单位和基本功能单位。
生长发育的基础就在于细胞的分裂与分化。
4.新陈代谢。
生物体内维持生命活动的各种化学变化的总称,包括同化和异化。
5.应激性。
能对由环境变化引起的刺激做出相应的反应。
6.病毒是一类特殊的生命。
二、孟德尔在生物学研究方法上有什么创新?孟德尔的豌豆杂交实验,为遗传学的发展奠定了科学基础。
相较于前人有下面显著特点:1.他把许多遗传性状分别开来独立研究。
2.他进行了连续多代的定量统计分析。
3.他应用了假设---推理---验证的科学研究方法。
三、有人说机械论和活力论是互补关系,你的看法如何?个人观点觉得机械论和活力论是相对立的关系。
“活力论”观点认识生命,认为生物体具有与物理化学过程不同的生命力,即活力。
与活力论相对立的是“机械论”观点,认为生命问题说到底是物理和化学问题,一切生命现象都可以用物理和化学定律做出解释,生物体内没有什么与物理化学不同的生命力。
其实个人觉得生物体是不同于物理化学系统,是高级的、非常复杂的生命系统,当把它还原为简单的物理化学系统以后,它所具有的一些特别的性质和功能就会失去。
四、你是否认为21世纪时生命科学的世纪?20世纪下半叶,生物学进入分子生物学时代,研究生物大分子物质的结构、性质和功能,从分子水平上阐述生命现象。
20世纪下半叶以来,生命科学文献在科学文献中所占的比例、从事生命科学研究的科学家在自然科学家中所占的比例都在迅速增长,这就是这种趋势的反应。
生命系统是地球上最复杂的物质系统,是从非生命系统经过几十亿年进化的结果。
现代科学技术的发展对生命科学发展起到重要的作用,生命科学的发展对整个科学技术的发展产生重要影响。
生命科学与农业的可持续发展:解决粮食短缺,基因工程将在育种中发挥重要作用。
生命科学导论期末考试 复习提纲(精华版)汇总

生命科学导论第一章绪论1、【填空题】生命的本质特征①新陈代谢包括物质代谢和能量代谢②生长、发育和繁殖生物经历了从小到大过程,表现细胞数量增加③遗传、变异与适应④应激性和适应性3、本世纪人类面临的挑战有哪些方面?人口膨胀、粮食短缺、环境污染、能源危机、疾病、生态平衡遭到破坏4、【简答题】生物学经历了几个发展阶段?①前生物学时期②描述生物学阶段③实验生物学阶段④创造生物学阶段生命科学导论第二章生命的物质基础1、组成生命元素分为几大类?①基本元素②微量元素③偶然存在的元素:3、【填空题】生态系统由哪几部分构成?①生产者②消费者③分解者4、糖的分类单糖、寡糖、多糖组成。
5、【判断题】磷脂类结构和作用?•细胞膜的主要结构成分•有极性的头部和两条疏水的尾部7、简述蛋白质的结构层次①一级结构:②二级结构:肽链的主链在空间的走向α-螺旋β-折叠β-转角③三级结构:④四级结构:9、【填空题】核酸的分类和构成的基本单位?构成的基本单位为核苷酸,分为•脱氧核糖核酸,DNA含G.A.C.T四种碱基和脱氧核糖•核糖核酸,RNA含G.A.C.U四种碱基和核糖12 、【判断改错题】几种重要维生素缺乏症?VA:夜盲症;VB:脚气病VC:坏血病VD:佝偻病生命科学导论第三章细胞与克隆技术1、【判断改错题】细胞的发现者有哪些?•1665年英国物理学家罗伯特.胡克发现了软木切片死的细胞壁,这是人类第一次发现细胞。
•1674年,荷兰布商列文.胡克用高倍显微镜看到了血细胞、池塘微生物、和哺乳动物精子,这是人类首次观察到的活细胞。
3细胞分类?①原核细胞②真核细胞6、细胞结构包括哪些?•细胞膜•细胞壁•细胞质•细胞核7、植物细胞特有的细胞结构•细胞壁•叶绿体•大液泡•胞间连丝8 、细胞器的种类及功能?线粒体(功能:能量转换,细胞复制,生存)“人体的动力工厂”内质网:蛋白质的合成、蛋白质的修饰、新生多肽的折叠与组装。
“合成蛋白质的场所”核糖体:核糖体是合成蛋白质的细胞器。
上海大学生命科学导论总结

生命科学导论复习纲要+讲解第一章绪论1. 生命科学知识重要性表现在哪几个方面?当今人类社会面临最重大的问题和挑战 6个重要方面人口膨胀,粮食短缺,环境污染,疾病危害,能源危机,生态破坏。
解决这些问题,在很大程度上将依赖于生命科学的发展。
生命科学对人类经济、科技、政治和社会发展的作用是全方位的。
2. 试从哈佛大学,麻省理工和我校的通识课程设计,看生命科学导论课程的重要性?文理见长的哈佛大学8类通识课,生命科学单独列出。
工学见长的MIT 的人文社科和科学两大类,科学中单独生命科学。
我校九大类中,也单独突出生命科学(自然进化与生命关怀),这些同时课程的共同设置说明生命科学对于专业人才的培养是非常重要的。
3. 为什么生命科学将成为物理学之后的带头学科,如何才能发挥它的作用?面对复杂系统的许多问题,科学界把目光转向生命科学,寻求新的概念,新的观点,新的思路。
生命科学必须与多学科形成交叉学科和边缘领域,才能同时提供机会与挑战。
4. 请从生物学,物理学角度对生命下一个定义?生物学:生命是由核酸和蛋白质等物质组成的多分子体系,它具有不断自我更新、繁殖后代以及对外界产生反应的能力。
物理学:生命的演化过程总是朝着熵减少的方向进行,一旦熵的减少趋近于零,生命将趋向终结,走向死亡。
5.生命的四个最显著的特征及其对生命体的意义是什么?精细结构:适应不同环境;能量交换:维持分子结构需要;应激:生存需要;复制:维持生命在时空上的延续6. 奥巴林的生命起源假说(每个阶段的形成物质和相应条件)四个主要阶段和形成的主要分子。
I.大爆炸形成的->无机物,原始气体冷凝汇流成海洋。
(CO2,N2,H2O,CO)II.火山爆发和闪电的能量使气体合成简单有机物->复杂的有机物。
(氨基酸,嘧啶,葡萄糖,嘌啉,核苷酸)III.->多分子体系(团聚体)溅到岩石上氨基酸聚合肽链回到水中(多肽)IV.->具有新陈代谢功能的蛋白质体,细胞的形成7. Miller实验的重要意义是什么?模拟原始大气条件,生命的基本组成蛋白质和核酸的单元:碱基和氨基酸8. 严整有序的生命,主要体现在那些方面?分子到细胞,细胞到器官,个体到生态群落。
生命科学导论总结

生命科学导论总结第1讲生命的起源与进化一、生命到底是什么?生命的生物学定义:生命是生物体所表现出来的自身繁殖、生长发育、新陈代谢、遗传变异以及对刺激产生反应等复合现象。
1、前分子生物学时代——生命是活力(隐得来稀——亚里士多德)2、分子生物学时代——生命是机器,是生物大分子机器3、基因组时代——生命是信息只不过是一组碱基编码基因数不对应生物体的复杂性越是高等的生物,非编码DNA在不断增加(人类基因组中,有95% DNA不参加编码蛋白质)生命是单一起源(共相同源)●1、DNA是遗传物质;●2、DNA复制使用模板和碱基配对机制;●3、将DNA转录成RNA使用有同源催化机制的RNA聚合酶;●4、使用三联体密码子把RNA翻译成蛋白;●5、使用rRNA、tRNA和核糖体蛋白的混合物来翻译蛋白质;●6、ATP作为细胞内能量储存和合成DNA、RNA的能量来源;●7、细胞质被包在膜内,营养和废物可以通过;8、生命起源于海洋,并是热起源。
二、生命起源的各种假说(一) 神创论(二)胚种论(Panspermia)只是一种猜测该理论认为,地球最初的生命来源于宇宙空间(三)深海烟囱起源假说这种生命形成理论认为,生命起源于海底热泉口,最初富含氢气的有机微粒便是从这个口中喷出。
然后,热泉边的岩石凹陷处将这些有机微粒集中到一起,并给它们提供丰富的矿物养分。
即便是今天,这些海底热泉依然富含大量的化学物质和热能,滋养着充满生气的生态系统。
(四)泥土造物假说与土壤形成机理相矛盾一些科学家认为最早的有机生命体应该起源于泥土。
他们认为泥土不仅使有机微粒聚在一起,更帮助它们逐步形成我们今天的基因模式。
DNA的一大作用就是储存分子如何排列的信息,DNA的发生次序对于蛋白质内氨基酸的排列模式起到至关重要的作用。
而泥土中的矿物晶体将有机分子按照某种模式排列起来。
逐渐的,有机分子自己也具有了自我组织的能力,并慢慢形成了今天的万物。
然而,土壤是群落发育的产物,除非是火山灰(四)电火花形成假说电火花可以使空气中的水、甲烷、氨气和氢气通过化学作用形成氨基酸和糖分。
辽宁工程技术大学生命科学导论期末复习资料.doc

1、原核细胞的突出特点没有成形细胞核2、有丝分裂的主要特征及分裂过程中染色体的行为变化细胞周期的概念减数分裂的重要意义及分裂过程中染色体的行为变化一主要特征:形成的子细胞与母细胞有一样的遗传潜能,保证了细胞遗传的稳定性行为变化:复制一次分一次,一条染色体复制一次形成两个染色单体,染色单体分离形成两条染色体。
染色体条数不变,染色单体加倍。
细胞周期:细胞从•次分裂完成开始到下一次分裂结束所经历的时间。
减数分裂逝要意义:是有性生殖产生的后代始籍保持亲本固有的数目和种类,保证物种稳定性,有性繁殖的后代具有更大的变异性和适应性。
行为变化:复制一次分两次,一条染色体夏制成两条染色单体,同源染色体分开,染色单体也分开。
染色体条数减半,种类不变。
3、细胞增殖、分化、凋亡、及癌变的主要特征增殖:数星变多分化:功能变多凋亡:细胞自动放弃生命癌变:分裂不受控制1、X染色体基因传递特点常染色体隐性基因的传递特点X特点:父传了母传女交叉遗传。
常染色体隐性:正常夫妇生下有病孩子,父母必携带隐性基因.2、DNA分子的结构、复制、及DNA 指导蛋白质的合成过程(转录、翻译)、DNA与RNA在组成上的差异结构:以脱氧核酰和磷酸交杵排列为基本骨架的反向平行双螺旋结构C DXA 的主:链在外侧由脱氧核糖和横酸交替连接而成碱基补配对位于内侧配对的碱基是稳定不变的总是 A与T, C与(;,碱基排列顺序干变万化。
DM介成:转录:在RXA聚合前作用下,以DNA 一条主链(非信息链)为模板按碱基互补配对原则合成 RXA翻洋:把RNA核昔酸排列顺序转化成氨基酸排列顺序DM与RNA区别:五碳糖成分脱氧核糖核糖碱基 AGCT AGCU3、什么叫具相对性状的个体杂交、自交、测交什么叫隐性个体隐性个体有哪些特点什么是单倍体单倍体有哪些特点什么是基因重组及基因重组的类型杂交Aa Bb 自交Aa Aa测交Aa aa隐性个体:显示隐性性状的个体。
特点:显示隐性形状,基因是纯合子。
生命科学导论复习

生命:主要由核酸和蛋白质组成的具有不断自我更新能力的多分子体系的存在形式,是一种过程,是一种现象。
突现属性:依赖于组成物质的层次的特征,不存在于低层次组织中。
稳态:生命体调节并维持内部环境(如温度、pH 等)恒定的特性。
发育:遗传调控下的细胞生长、分化和形态建成。
稳态:调节并维持内部环境(温度,PH等)恒定的特性。
生命的内涵:物质基础:蛋白质和核酸。
运动的本质特征是不断自我更新,是一个不断与外界进行物质和能量交换的开放系统。
是物质运动的一种高级的特殊存在形式。
林奈,系统分类生命体的七个最显著的特征:有复杂的结构和精细的组织形式;感受并应答环境变化;能从环境捕获,转换和利用能量;具有显著的自我复制,组装能力;生长和发育;生命体结构的等级秩序;群体中变异的遗传,进化S,P, Cl, Ca, K, Na, Mg (Cl, Ca, K, Na, Mg 调节离子浓度和酶活性)最早原核生物:蓝细菌化石(34.50 亿年前)生命起源假说:地外起源、超自然力或神创造、化学进化奥巴林-霍丹理论:1. 原始大气主要是由H2, H2O, NH3, CH4, CO2, 等组成的还原性大气,没有游离氧气。
水蒸气冷凝汇流成原始海洋。
2.火山爆发、闪电、紫外线等能量使气体合成简单有机物,汇入海洋,形成原始汤。
3. 原始汤中简单的化合物溅到岩石上,受辐射、热等聚合,如:氨基酸聚合肽链,核苷酸聚合形成核酸,冲刷回到水中。
在水中大分子聚合成多分子体系(团聚体)。
4.具有新陈代谢功能的团聚体和细胞的形成。
氨基酸:含氨基和羧基的有机化合物统称,生物功能大分子蛋白质的基本组成单位。
蛋白质的一级结构:蛋白质分子中氨基酸的排列顺序,也叫初级结构或基本结构。
共价键蛋白质的高级结构:也称空间结构或三维构象,是指蛋白质分子中原子和基团在三维空间上的排列、分布及肽链的走向。
非共价键DNA的一级结构:四种碱基ATGC在DNA上的排列顺序。
功能:血红蛋白:运输氧气和二氧化碳,维持血液酸碱平衡血清白蛋白:维持血浆胶体渗透压的恒定;运输脂肪酸、Ca2+、Na+、K+等乳糖酶:分解牛奶中的乳糖肌球蛋白:帮助肌肉收缩胰岛素:降低血糖血红蛋白基因突变:β链的第6个氨基酸是谷氨酸,突变后,翻译出来的就成了缬氨酸,正常圆盘状扭曲变形成镰刀状,脆弱,容易破裂造成贫血病。
生命科学导论(生物学导论)全复习整理

生命科学导论第一章绪论21世纪将是生命科学的世纪,面向21世纪的大学生应有生命科学基础,而不应该成为“生物盲”。
一.什么是生物学?1. 定义生物学(biology)是研究生物体生命现象和生命活动规律的科学,因此,又称为生命科学(life sciences)。
生物学研究生物体的形态、构造、行为、机能、演变及其与环境间相互关系等问题。
2. 生物学的研究对象生物学的研究对象正在日渐加深和扩大,不仅要研究肉眼看不见的微生物,也要研究自然界的动物、植物。
生物学还要研究人类自己,因为人类也是一种生物。
生物学还要研究小至生物大分子的基团行为,广至地球表面的生物圈(bio-sphere)的将来动态,延伸至玄古生命的发生和宇宙中生命存在的问题。
3. 生物学的分科根据研究对象分为:动物生物学、植物生物学、微生物学、人类学。
根据研究角度分为:分类学,形态学,生理学,胚胎学,古生物学,遗传学,生态学等。
根据研究范围分为:生物化学,生物物理学,分子生物学,细胞生物学,组织生物学,器官生物学,个体生物学,群体生物学等。
二.生物学的历史和发展从传统生物学到现代生命科学(1)描述生物学阶段(19世纪中叶以前)主要从外部形态特征观察、描述、记载各种类型生物,寻找他们之间的异同和进化脉络。
代表人物:达尔文—《物种起源》(1859)(2)实验生物学阶段(19世纪中叶~20世纪中叶)利用各种仪器工具,通过实验过程,探索生命活动的内在规律。
(3)创造生物学阶段(20世纪中叶以后)分子生物学和基因工程的发展使人们有可能“创造”新的物种。
(4)生物学的发展趋势从微观到宏观分子→细胞→整体水平高度分化和高度综合的辨证统一现代生物学的高度分化,各学科的相互渗透,新学科或边缘学科的产生。
三.生物学的研究方法1. 观察与描述方法外部观察和外部形态描述:分类学。
《尔雅》、《本草纲目》、亚里士多德对500种动物的描述分类、林奈的双名法等。
2. 比较方法比较解剖学:脊椎动物各类群的器官和器官系统的形态,结构进行解剖,加以比较,为生物进化论提供证据。
生命科学导论复习

生命科学导论复习生命科学导论复习————————————————————————————————作者: ————————————————————————————————日期:生命科学导论复习第一讲绪论生物学经历了三个发展阶段:(1)描述生物学阶段(19世纪中叶以前)主要从外部形态特征观察、描述、记载各种类型生物,寻找他们之间的异同和进化脉络。
达尔文《物种起源》(1859)(2)实验生物学阶段( 19世纪中到20世纪中)利用各种仪器工具,通过实验过程,探索生命活动的内在规律。
(3)创造生物学阶段(20世纪中叶以后)分子生物学和基因工程的发展使人们有可能“创造”新的物种。
第二讲构造生物体的基本元件—从生物小分子到生物大分子一、生物小分子与生物大分子的关系二、生物小分子简介1、水水占生物体的60% 以上的重量。
地球上生命起源于水中,陆生生物体内细胞也生活在水环境中。
水的性质影响生命活动,如:溶解性质,酸碱度,pH。
水影响生命活动的例子:△肺泡在水环境中保证O2和CO2的交换。
△水分子间氢键造成水的表面张力,可使肺泡瘪塌。
△肺泡中存在一种表面活性蛋白破坏水的表面张力,使肺泡胀开。
2、氨基酸氨基酸是同时具有α-氨基和α-羧基的小分子。
参与蛋白合成的共有20种天然氨基酸。
根据侧链结构和性质,可把20种氨基酸分成不同的组:疏水氨基酸:亮氨酸。
亲水氨基酸:丝氨酸。
酸性氨基酸:天冬氨酸。
碱性氨基酸:精氨酸。
氨基酸的功能:(1)作为组建蛋白质的元件(2)有的氨基酸或其衍生物具有生物活性(代谢调节、信号传递等)3、单糖——多羟基醛或多羟基酮称为糖。
以葡萄糖为例,葡萄糖是六碳糖。
单糖的生物功能:A、作为多糖的组成元件。
B、作为燃料。
C、组成寡糖参与细胞信号传递4、核苷酸核苷酸分子由三个部分组成:碱基:嘧啶、嘌呤、五碳糖(核糖或脱氧核糖)、磷酸。
参加大分子核酸组成的共有8种核苷酸DNA水解液中:腺脱氧核苷酸(dAMP)、鸟脱氧核苷酸(dGMP)、胞脱氧核苷酸(dCMP)、胸腺脱氧核苷酸(dTMP);RNA水解液中:腺苷酸(AMP)、鸟苷酸(GMP)、胞苷酸(CMP)、尿苷酸(UMP)。
生命科学导论复习资料

第一讲序论一、为什么要上《生命科学导论》课二、21世纪将是生命科学的世纪三、生命科学向我们每个人走来四、生命的元素组成吴庆余主编.《基础生命科学》,高等教育出版社,2006张惟杰主编.《生命科学导论》, 高等教育出版社,1999一为什么要开设《现代生物学导论》课?1.高等教育的目标哈佛大学教学计划说明“every Harvard graduate should be broadly educated as well as trained in a particularac ademic specialty or concentration.”每一个哈佛毕业生应该受到广博教育并且还应在专门的学科方面得到一定的培训哈佛大学核心课程主要包括六大门类1. 各国文化2. 历史研究3. 文学美术4. 道德伦理5. 科学:数学,生命科学6. 社会分析人格的养成—从历史及文化角度理解人类社会发展,认识个人与社会联系,养成历史感和责任感。
❖思辨能力和思维习惯的养成----准确地认识和把握事物,慎密的分析和综合,冷静的归结和对策2、“公共基础”由哪些板块组成?1980s以来,世界著名大学如MIT等,纷纷把生物类课程列为全校必修课。
1995年以后,国内重点大学陆续把生物类课程列为全校非生物类专业大学生的限选或必修课程。
这是因为人们意识到,21世纪将是生命科学的世纪,面向21世纪的大学生应有生命科学基础,而不应该成为“生物盲”。
二、21世纪将是生命科学的世纪1.带头学科近300年来(17-20世纪):物理学一直作为带头学科17世纪中叶牛顿经典力学18世纪中叶(蒸汽机)工业革命19世纪中后电气革命20世纪初量子论、相对论和核物理标志着物理学革命性飞跃。
20世纪上半叶被称为“现代物理学黄金半世纪”物理学主导着工业革命和经济发展带领着天文、地质、气象、化学等学科发展❑薛定谔(Erwin Schrodinger,1887-1961)是一位近代物理学家,他试着跨越物理世界/生命世界之间难以逾越的鸿沟。
生命科学导论总结资料(很重要)

⽣命科学导论总结资料(很重要)《⽣命科学导论复习提纲》⼀、章节的要求复习第⼀、⼆、三、四、五、六、七、⼗、⼗⼆章;其中五、六、七重点章节。
⼆、要求掌握的知识点1、⽔的重要性机体的主要组分之⼀;促进物质代谢;调节体温;润滑作⽤;保持机体形态。
2. 物质的跨膜运输⼀、被动运输(1)⾃由扩散其特点是:①沿浓度梯度(或电化学梯度)扩散;⾃由扩散②不需要提供能量;③没有膜蛋⽩的协助。
某种物质对膜的通透性(P)可以根据它在油和⽔中的分配系数(K)及其扩散系数(D)来计算:P=KD/t,t为膜的厚度。
脂溶性越⾼通透性越⼤,⽔溶性越⾼通透性越⼩;⾮极性分⼦⽐极性容易透过,⼩分⼦⽐⼤分⼦容易透过。
具有极性的⽔分⼦容易透过是因⽔分⼦⼩,可通过由膜脂运动⽽产⽣的间隙。
⾮极性的⼩分⼦如O2、CO2、N2可以很快透过脂双层,不带电荷的极性⼩分⼦,如⽔、尿素、⽢油等也可以透过⼈⼯脂双层,尽管速度较慢,分⼦量略⼤⼀点的葡萄糖、蔗糖则很难透过,⽽膜对带电荷的物质如:H+、Na+、K+、Cl—、HCO3—是⾼度不通透的事实上细胞的物质转运过程中,透过脂双层的简单扩散现象很少,绝⼤多数情况下,物质是通过载体或者通道来转运的。
离⼦、葡萄糖、核苷酸等物质有的是通过质膜上的运输蛋⽩的协助,按浓度梯度扩散进⼊质膜的,有的则是通过主动运输的⽅式进⾏转运。
举例:氧⽓,⼆氧化碳,⽔,⽢油,⼄醇,苯,脂肪酸,脂溶性维⽣素等(2)协助扩散也称促进扩散(faciliatied diffusion),其运输特点是:①⽐⾃由扩散转运速率⾼;②存在最⼤转运速率;在⼀定限度内运输速率同物质浓度成正⽐。
如超过⼀定限度,浓度再增加,运输也不再增加。
因膜上载体蛋⽩的结合位点已达饱和;③有特异性,即与特定溶质结合。
这类特殊的载体蛋⽩主要有离⼦载体和通道蛋⽩两种类型。
举例:红细胞吸收葡萄糖⼆、主动运输其概念是:主动运输涉及物质输⼊和输出细胞和细胞器,并且能够逆浓度梯度或电化学梯度。
《生命科学导论》重要知识点汇总一

《生命科学导论》重要知识点汇总一1.生命的基本特征1.化学成分的同一性2.新陈代谢作用新陈代谢是指生物体不断地吸收外界物质,在生物体内发生一系列变化,最后成为代谢最终产物而被排出体外的过程。
包括合成代谢和分解代谢两个过程。
合成代谢(anabolism)是指从外界摄取物质和能量,将它们转化为生命本身的物质和储存于化学键中的化学能。
分解代谢(catabolism)是指分解生命物质,将能量释放出来,供生命活动之用。
3.有序性(order)所有的有机体由一个或多个细胞组成,细胞具有高度有序的结构:原子组成分子,分子构筑细胞内的细胞器。
4.应激性(sensitivity)所有的生物体都会对刺激产生反应,如植物会朝着有光的方向生长,当你走进黑暗的房间时,你的瞳孔会扩张。
5.生长、发育和繁殖所有生物体的形成都要经历从小到大的变化过程,这就是生长。
有性生殖的生物,从生殖细胞形成.卵受精、受精卵分裂,再经过一系列形态、结构和功能的变化,才能形成一个成熟的个体,这一过程称为发育。
当生物生长发育到一定大小和一定程度时,就可能产生后代,使个体数目增多,种族得以延续,这种生命功能称为生殖。
6.遗传、变异与进化生物生殖所产生的后代常常与亲代相似,这种现象称为遗传。
后代与亲代之间,后代各个体之间,也有不同之处,这种现象叫做变异。
遗传、变异,加上自然选择的长期作用,导致了整个生物界的向上发展,即由低等到高等,由简单到复杂逐渐演变,这就是生物的进化。
7.自稳态( homeostasis)所有的生物体都具有相对恒定的内环境,而区别于它们所在的外环境,这个过程叫做自稳态。
2.生命科学生命科学是研究生物体的生命现象和生命活动规律的科学,即研究自然界所有生物的起源、演化、生长发育、遗传变异等生命活动的规律和生命现象的本质,以及各种生物之间、生物与环境之间的相互联系。
生命科学(life science)原称生物学(biology),它是自然科学的基础学科之一。
生命科学导论复习.doc

一、名词解释(本题2小题,每小题10分,共20分)1、生命科学:研究生命现象的科学。
既研究各种生命现象和本质,又研究生物之间、生物与环境之间的相互关系,以及生命科学原理和技术在人类经济、社会活动中的应用。
生命科学所要回答的首要问题就是“什么是生命?”这个古老的命题。
一般来说,生命具有新陈代谢、生长、遗传、刺激反应等特征。
这些特征是生命活动的具体反应。
生命科学就是研究生命运动及其规律的科学。
2、化学起源学说:这个学说的主要内容是:原始大气在高温、紫外线以及雷电等自然条件的长期作用下,形成了许多的简单的小分子有机物。
后来,地球的温度逐渐降低,原始大气(指由水蒸气、氢气、氨、甲烷、二氧化碳、硫化氢等构成的原始大气层,原始大气中不含氧气)中的水蒸气凝结成雨落在地面上,这些有机物又随雨水进入原始海洋。
原始海洋中的有机物不断相互作用,又形成了大分子蛋白质,大约在地球形成后10亿年,才形成了原始生命。
值得注意的是,1953年,美国学者米勒模拟原始地球的条件和原始大气的成分,合成了多种氨基酸,为这一学说提供了一个论证。
二、简答题(本题1小题,共15分)1、简述为何男性秃头的比例要明显高于女性,这反映了什么现象(15分)仁男女内分泌水平不一样男性承担的生活压力更大2.反映男性思考的问题比女性多3•雄性荷尔蒙阻碍头发生长,雌性荷尔蒙促进头发生长,所以和尚最男人,还有压力因素…4.现在我们生活的环境中充满着对男性生活不利的因素。
所以男性也是应该处于被保护的地位的,同时也反应现在生活环境的日益变化。
(汽车尾气,粉尘等等)三、问答题(本题1小题,共15分)1、谈一谈什么是试管婴儿,对人类有何意义?(15分)试管婴儿的定义:试管婴儿就是采用人工方法让卵细胞和精子在体外受精,并进行早期胚胎发育,然后移植到母体子宫内发育而诞生的婴儿。
对人类的意义:优点:1.由于各种原因引起的输卵管阻塞,使精子卵子不能相遇,从而导致不孕。
解决的方法是想法使精子与卵子在体外相遇并受精,这就是常说的试管婴儿。
生命科学导论(知识点归纳)

生命是由核酸和蛋白质组成的,具有不断自我更新能力的多分子体系的存在形式,是一种过程,是一种现象。
生命科学是研究自然界中各种生命现象及其规律的学科。
既研究生物的生命现象及其本质,又研究生物与环境之间的相互关系。
生命的物质基础是蛋白质和核酸;生命运动的本质特征是不断自我更新,是一个不断与外界进行物质和能量交换的开放系统;生命是物质的运动,是物质运动的一种高级的特殊实在形式。
生命的特征:细胞、原生质、新陈代谢、调节、生长、繁殖、应激性生物学经历了三个发展阶段:描述生物学阶段(19世纪中叶以前);实验生物学阶段(19世纪中到20世纪中);创造生物学阶段(20世纪中叶以后)17世纪中叶——牛顿经典力学;18世纪中叶——(蒸汽机)工业革命;19世纪中后——电气革命;20世纪初——量子论、相对论、核物理(20世纪上半叶,现代物理学黄金半世纪)人类文明发展的三次技术革命:19世纪——工业革命——解放手脚;20世纪——信息革命——解放大脑;21世纪——生物技术革命——创造生命维纳——控制论;贝塔朗菲——系统论;申农——信息论生物技术:应用自然科学和工程学的原理,依靠微生物、动物、植物体作为反应器将物料进行加工以提供产品为社会服务的技术。
水稻育种专家袁隆平;小麦育种专家李振声生物气体燃料:天然沼气;发酵沼气沼气发酵的优点:白色能源;增加肥效;消除病害;处理污泥沼气,是各种有机物质,在隔绝空气(还原条件),并必适宜的温度、湿度下,经过微生物的发酵作用产生的一种可燃烧气体。
细胞学说的三点内容:1.所有生物都是一个或多个细胞组成2. 细胞是生命的基本单位3. 新细胞是从原有细胞(分裂)而来。
原核生物的特征:1.遗传物质仅一个环状DNA 2.无核膜 3.无细胞器,无细胞骨架 4.以无丝分裂或出芽繁殖例子:支原体、细菌、蓝藻、螺旋藻真核生物三大系统:膜系统、细胞核系统、骨架系统内质网:蛋白质合成、脂类合成、蛋白质的修饰、新生多肽的折叠与组装高尔基体:蛋白质的加工与修饰(糖基化等)、蛋白质的分解、蛋白质和脂的运输、蛋白质的分泌等溶酶体:(酸性水解酶)清除无用的生物大分子、衰老的细胞器及衰老损伤和死亡的细胞,为新细胞的产生创造条件。
生命科学导论复习资料共41页文档

第一讲序论一、为什么要上《生命科学导论》课二、21世纪将是生命科学的世纪三、生命科学向我们每个人走来四、生命的元素组成吴庆余主编.《基础生命科学》,高等教育出版社,2019张惟杰主编.《生命科学导论》, 高等教育出版社,2019一为什么要开设《现代生物学导论》课?1.高等教育的目标哈佛大学教学计划说明“every Harvard graduate should be broadly educated as well as trained in a particular academicspecialty or concentration.”每一个哈佛毕业生应该受到广博教育并且还应在专门的学科方面得到一定的培训哈佛大学核心课程主要包括六大门类1. 各国文化2. 历史研究3. 文学美术4. 道德伦理5. 科学:数学,生命科学6. 社会分析人格的养成—从历史及文化角度理解人类社会发展,认识个人与社会联系,养成历史感和责任感。
思辨能力和思维习惯的养成----准确地认识和把握事物,慎密的分析和综合,冷静的归结和对策2、“公共基础”由哪些板块组成?1980s以来,世界著名大学如MIT等,纷纷把生物类课程列为全校必修课。
1995年以后,国内重点大学陆续把生物类课程列为全校非生物类专业大学生的限选或必修课程。
这是因为人们意识到,21世纪将是生命科学的世纪,面向21世纪的大学生应有生命科学基础,而不应该成为“生物盲”。
二、21世纪将是生命科学的世纪1.带头学科近300年来(17-20世纪):物理学一直作为带头学科17世纪中叶牛顿经典力学18世纪中叶(蒸汽机)工业革命19世纪中后电气革命20世纪初量子论、相对论和核物理标志着物理学革命性飞跃。
20世纪上半叶被称为“现代物理学黄金半世纪”物理学主导着工业革命和经济发展带领着天文、地质、气象、化学等学科发展❑薛定谔(Erwin Schrodinger,1887-1961)是一位近代物理学家,他试着跨越物理世界/生命世界之间难以逾越的鸿沟。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P12常量元素和微量元素:五种对人体的生理功能铁:血红蛋白的必要成分;氟:关系牙齿健康;碘:甲状腺素的成分,碘多了会得甲状腺肿瘤;锌和镒:一些酶的辅助因子P14根据氨基酸侧链化学性质不同,氨基酸分为疏水性氨基酸,带电的氨基酸,极性氨基酸P17①甜度从高到低蔗糖一个果糖一个葡萄糖麦芽糖两个葡萄糖乳糖一个葡萄糖一个半乳糖②多糠种类2J0个单糖连在一起是寡糠,20多个的交多糠。
比如淀粉,糠原一肝糠原肌糖原,都是葡萄糖组成的。
多糖常常是能量储备比如淀粉和糖原。
纤维素,支持骨架,也是多糖。
昆虫和蟹虾甲壳中的甲壳素也是葡萄糖组成的多糖。
P19脂的分类1•油和脂日常生活中食用的均属于中性脂肪,(动物)牛油熔点高,在常温下呈固体状, 俗称脂,反映出牛油的甘油三酯分子中脂肪酸的不饱和程度低。
(植物)豆油熔点低,在常温下呈液体状,俗称油,反映出豆油的甘油三酯分子中脂肪酸不饱和程度高。
人体营养必需脂肪酸他们必须由食物提供-> 植物油2.甘油磷脂和鞘脂一个极性的头两个非极性的尾巴,在水环境中容易形成脂双层结构,加上镶嵌其中的各种蛋白质,成为生物膜主要成分。
3 .帖类和类固醇(1)贴类(有草字头)植物中许多贴类化合物具有特殊气味,是特种植物油的主要成分,例如柠檬香素,薄荷醇,樟脑,核叶醇等,作为药物香料,防蛀剂。
天然橡胶也是贴类,蜡也是,长链脂肪酸加上一元醇脱水而成,在皮肤表面植物表面昆虫表面。
(2)类固醇P24①那些被称为高级结构?蛋白质二、三、四级结构统称为蛋白质的高级结构②高级结构的作用?蛋白质的高级结构赋予蛋白质分子特定的外观形状,亦体现出内部基团之间的相互关系,直接关系着蛋白质生物活性和生理功能。
例如呈椭圆形还是拳击手套形,哪个部位出现一条浅沟或者深沟等。
许多重要的生命过程,例如精卵结合,信号传递,抗原•抗体反应等。
都是以蛋白质•蛋白质分子之间、蛋白质与其他分子之间的相互识别和相互作用为基础的。
分子之间的相互识别与作用,取决于由蛋白质分子高级结构所决定的分子构象和形状。
寻找相互作用的蛋白质,是现代分子生物学研究中的一条重要的思路。
③一些分类蛋白质的高级结构主要靠非共价键来保持稳定。
生物大分子中常见的非共价键包扌舌氢键,离子键,疏水键和范德华力共价键:二硫键。
这是唯一参与蛋白质高级结构稳定的共价键,只出现在三、四级结构中,并且不是每--种蛋白质都出现二硫键。
、④变性的含义,条件,和变构的区别变性:如果在较为剧烈的物理或化学因素作用下,如加热到60°C以上,或者遇到强酸碱,或受电离辐射照射,蛋白质高级结构可能会被破坏,随之蛋白质的正常物理化学性质发生改变,生物学活性丧失。
这就是蛋白质变性。
鸡蛋清在沸水中凝固是最常见的蛋白质变性的例子。
有人认为,衰老过程包括体内许多蛋白质逐渐变性,使得功能逐渐失常。
有时候,除去蛋白质变性的因素,己经变性的蛋片质逐渐恢复原来的高级结构,又重新表现出该蛋白质的生物活性,这个过程称为蛋白质复性。
变构:蛋白质分子高级结构在生理条件下的可逆变化,称为变构。
P27①RNA大分子高级结构和生理功能核糖核酸大分子不仅在分子内糖基和嚅呢碱基组成上不同于DNA而且在大分子的高级结构和生理功能上,两者也有很大区别。
细胞内RNA大分子有3种①mRNA,信使RNA作为蛋白质合成屮的模板,负责把DNA屮的遗传信息,转达为蛋白质分子中的氨基酸序列。
②tRNA,转移RNA负责在蛋白质合成过程中将合适的氨基酸转移到合适的位置。
tRNA的三叶草结构常被作为RNA分子以局部配对为基础的二级结构的例子。
③rRNA,核糖体RNA与蛋白质结合形成核糖体,后者是蛋白质合成的工厂。
RNA大分子也具有以核昔酸序列为基础的一级结构。
RNA大分子通常是以单链存在,可能存在局部的以碱基配对为基础的二级结构,还可进一步盘绕折叠形成高级结构。
②核酸大分子高级结构的变化(1)变性和复性核酸大分子的高级结构的稳定,主要也是靠非共价键。
在加热等剧烈的物理化学因素作用下, 也可因非共价键的破坏导致核酸大分子变性,即核酸大分子的髙级结构被破坏,而失去生物活性。
对DNA大分子变性的研究很多。
加热可以使DNA变性,使双螺旋拆开成为两条DNA单链。
温度降低时,两条DNA链有可能依赖其碱基配対关系,恢复为原來的双螺旋结构,称为复性。
(2)分子杂交如果在复性时溶液屮海存在和单链DNA局部碱基序列有配对关系的一小段RNA,这小段RNA 有可能随着温度降低,结合到DNA分子屮可配对的区段上去。
这就是分子杂交,分子杂交己经被广为开发应用,成为名目繁多的分子生物学实验技术的重要部分,在基因工程操作,乃至医疗诊断等许多方面大显身手。
P31生物膜的结构特征20世纪70年代提出的流动镶嵌模型概括了生物膜的结构特征,得到广泛认可,大致内容如下:(1)脂双层形成框架生物膜的基本框架是甘油磷脂和鞘脂所形成的脂双层。
前己述及,甘油磷脂和鞘脂都有相似的分子特征:具有“一个极性的头”和“两条非极性的尾巴。
”在水环境中,由于水分子对“非极性尾巴”的排斥,以及对“极性头”的吸引,这样的分子会白发地形成脂双层泡:两层这样的脂质分子拼在一起,它们的非极性尾巴相互靠近,一层脂分子的“极性头”朝外,朝向周围的水环境,另一层脂分子的“极性头”朝向,朝向泡内的水环境。
(2)蛋白质镶嵌其中蛋白质镶嵌或挂靠在脂双层框架屮。
一部分蛋白质偏向膜外侧,一部分蛋白质偏向膜内侧,更多的蛋白质穿膜而过。
估计整个细胞中有20%-25%的蛋白质与生物膜的结构相联系。
(3)脂分子和蛋白质分子均具有动态特征就脂质分子來说,在单层膜的“横向”运动相当频繁,从这一层“翻筋斗”转入另一层的运动则较少发生。
分子的运动和生物膜的功能紧密相关。
例如,在胞外信号分子作用下,细胞膜屮的受体蛋白质可以靠拢,形成二聚体,或者可以聚集到细胞的一端称为“戴帽”。
P34①光面内质网功能在不同种类细胞屮,光面内质网执行多种不同的功能。
在与脂代谢有关的细胞屮,光面内质网中合成中性脂肪或磷脂;在肾上腺细胞或性腺细胞中,光面内质网中合成类固醇激素;在肌细胞屮,光面内质网贮钙并参与钙代谢调节;在肝细胞屮,光而内质网参与糖代谢、脂代谢和解毒功能了经常接触巴比妥等药物的肝细胞,细胞内光面内质网的数量,以及内质网解读酶类的数量都明显增加。
总之,光面内质网膜的内侧,结合着丰富的各种酶类。
②高尔基体功能高尔基体完成分泌蛋白质的最后加工和折叠从内质网不断运来一些膜泡,抵达后与高尔基体膜融合,使内含物进入高尔基体腔内。
在腔内,心合成的蛋白质继续完成肽链的修饰和折叠。
高尔基体小还合成一些分泌到胞外去的多糖和修饰细胞膜的材料。
高尔基体片状囊泡之间也有膜泡负责沟通和运输。
靠近细胞膜的高尔基体囊泡上陆续断裂下一些膜泡,把内含物运至细胞膜,抵达并与细胞膜融合以后,其内含物如蛋白质,多糖等, 便被分到胞外,而膜泡的膜成分包括结合在膜上的蛋白质便补充扩增到细胞膜屮去。
③什么是次级溶酶体?较大的囊泡中,除了水解酶类外,还有从胞外吞进来的食物,或者来自胞内的失去功能的细胞组分碎片,称为次级溶酶体。
P35①线粒体结构特点线粒体由两层生物膜魏晨。
这一点与细胞核还有植物细胞特有的质体相似。
线粒体的内膜非常发达,出现许多折叠,称为山脊,内膜中有丰富的酶和蛋白质,担负着几个重要的生物功能。
这样,线粒体的两层膜分割出3个几何空间:内膜里面的空I'可为基质,外模和内膜Z间交膜间隙,外模的外面就是胞质溶胶。
P49小分子物质进入细胞有4种方式被动转运包括①简单扩散:溶于水的小分子物质通过细胞膜上直径约0.1mm的小孔,在浓度梯度的推动下进入细胞。
这是一个基于分子热运动的自发扩散过程,不需要细胞消耗能量。
CO2②协助扩散:像葡萄糖这样的较大分子,虽然也溶于水,但是不能通过膜上的小孔,可以通过专一的载体蛋白帮助,仍然以浓度梯度为动力进入细胞,仍然不需要细胞消耗能暈。
这就是协助扩散,起协助作用的载体蛋白称为透过酶,如葡萄糖透过酶。
主动扩散包括①主动运输:物质逆浓度进入细胞,也就是说某种物质及时在胞内浓度比胞外搞的情况下, 细胞液需要把他吸纳进来,这时候非但需要专一的载体蛋口帮助述需要由ATP提供能量。
有时候用于主动运输的能量并非来自ATP水解。
例如胞外NA+浓度通常比胞内大20倍,当NA+通过某种载体蛋白进入细胞,”推动“同一个载体蛋白把另一种物质(例如葡萄糖)逆浓度运入或者运出细胞。
也就是说逆浓度梯度运送后一种物质所需要的能量來自NA+扩散过程。
这种情况称为”协同运输”按照运送方向分为“反向协同”和“同向协同”。
②基团转移:细胞消耗能量对抗浓度梯度将某种物质煮东西进来的另一种方式。
这个过程除了需要细胞膜上特异载体蛋白参与外,还需要胞内集中酶或蛋白质的参与。
在运输过程屮,对被运输的分子加以修饰,加上一个磷酸基团,其结果是,胞外S进入胞内后变成S■磷酸基团形式,也就是说胞内S分子的浓度没有增高。
P50大分子和颗粒借胞吞作用进入细胞像蛋白质那样的大分子,在水溶液中以亲水胶体形式存在,还有更大的不溶性颗粒,它们进入细胞,需要有局部细胞膜的参与形成一个胞吞泡,称为胞吞。
胞吞分为两种吞噬一一细胞摄入较大颗粒。
胞饮一一细胞摄入溶于水的大分子或者悬浮于水的小颗粒。
这个过程常常也会有专一的受体蛋白参与。
上述两个过程摄入的胞吞泡,在进入细胞之后,可能和溶酶体融合为食物泡,继续食物的笑话分解;也可能经历其他形式的变化。
物质如何被排出细胞物质排除细胞主要通过胞吐,需耍排除的物质被包在膜泡内,膜泡和细胞膜融合使膜泡内物质排出胞外。
一些小分子物质也可以通过前述4种方式的反向过程排除胞外。
P53密码子的特点冗余性:大多数氨基酸拥有2个以上,甚至多至6个密码子。
这种现象称为冗余性,又称简并性。
AUG既是甲硫氨酸密码子,又充当其实密码子,作为整条肽琏合成的起点又3个密码子起着终止符号的作用,即UAA、UAG、UGA,他们不对应任何氨基酸,只表明肽链合成终了,可称为终止密码子。
P59①端粒特点每条染色体的两头具有特殊结构,称为端粒。
②有丝分裂各时期的主要特点前期:主要特征是核膜消失,染色体逐渐形成,纺锤体显现。
屮期:主要特征是染色体排列在细胞屮部的赤道板上,着丝粒逐渐分为两个,意味着姐妹染色体准备分开。
后期:随着与着丝粒相连的微观蛋白的收缩,姐妹染色体分开,分别被拉向细胞的两级。
与此同时,连在两侧的纺锤体极上的另一套微管使细胞被细胞拉长。
末期:已被分开到两侧的两组姐妹染色体逐渐冋复到染色质状态,核膜重新形成,可以看到两个细胞核和核内的核仁细胞质分裂:前述4个期都以细胞核以及核物质的变化为主要标志。
细胞质分裂(又称报纸分裂)从中后期开始,赤道面附近的细胞质渐渐呈现向内的凹沟,到末期,细胞中部逐渐形成隔膜,将细胞分隔为两个子细胞。