2021-2022年高三10月月考数学文试题 含答案
黑龙江省哈尔滨市2024-2025学年高三10月月考试题 数学含答案
![黑龙江省哈尔滨市2024-2025学年高三10月月考试题 数学含答案](https://img.taocdn.com/s3/m/6367d875cec789eb172ded630b1c59eef8c79a96.png)
哈2024—2025学年度上学期高三学年十月月考数学试卷(答案在最后)考试说明:本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分.考试时间为120分钟.1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色字迹签字笔书写,字体工整,字迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.4.保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第I卷(选择题,共58分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A. B.C. D.2.已知是关于的方程的一个根,则()A.20B.22C.30D.323.已知,,,则的最小值为()A.2B.C.D.44.数列中,若,,,则数列的前项和()A. B. C. D.5.在中,为中点,,,若,则()A. B. C. D.6.在三棱柱中,点在棱上,且,点为中点,点在棱上,若平面,则()A.2B.3C.4D.57.已知偶函数定义域为,且,当时,,则函数在区间上所有零点的和为()A. B. C. D.8.已知平面向量,,,满足,且,,则的最小值为()A. B.0 C.1 D.2二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.对于函数,下列说法正确的是()A.函数最大值为B.是函数图象的一个对称中心C.是函数图象的一个对称轴D.将函数的图象向右平移个单位,即可得到函数的图象10.在正方形中,,为中点,将沿直线翻折至位置,使得二面角为直二面角,若为线段的中点,则下列结论中正确的是()A.若点在线段上,则的最小值为B.三棱锥的体积为C.异面直线、所成的角为D.三棱锥外接球的表面积为11.已知函数,则下列结论中正确的是()A.函数有两个零点B.恒成立C.若方程有两个不等实根,则的范围是D.直线与函数图象有两个交点第II卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.将答案填在答题卡相应的位置上.12.等差数列中,是其前项和.若,,则______.13.在中,,的平分线与交于点,且,,则的面积为______.14.已知三棱锥中,平面,,,,,、分别为该三棱锥内切球和外接球上的动点,则线段的长度的最小值为______.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.在三棱柱中,,,,,为中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.16.已知函数.(1)讨论函数的单调性;(2)设函数,若在恒成立,求实数的取值范围.17.已知在锐角中,,,分别为内角,,的对边,.(1)求;(2)若,为中点,,求;(3)若,求内切圆半径的取值范围.18.某汽车销售公司为了提升公司的业绩,将最近一段时间内每日的汽车销售情况进行了统计,如图所示.(1)求的值,并求该公司这段时间内每日汽车销售量的第60百分位数;(2)以频率估计概率,若在这段时间内随机选择4天,设每日汽车销售量在内的天数为,在恰有1天的汽车销售量不超过150辆的条件下,求的分布列及数学期望;(3)为增加销售量,公司规定顾客每购买一辆汽车可以进行一次抽奖活动,规则如下:在三棱锥中,、均是边长为2的正三角形,,现从写有数字1~8的八个标签中随机选择两个分别贴在、两个顶点,记顶点、上的数字分别为和,若为侧棱上一个动点,满足,当“二面角大于”即为中奖,求中奖的概率.19.如图,在四棱锥中,底面为正方形,,是中点,平面,.(1)求四棱锥体积最大值;(2)设,为线段上的动点.①求平面与平面的夹角余弦值的取值范围;②四棱锥外接球记为球,当为线段中点时,求平面截球所得的截面面积.数学试卷考试说明:本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分.考试时间为120分钟.1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色字迹签字笔书写,字体工整,字迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.4.保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第I卷(选择题,共58分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A. B.C. D.【答案】B【解析】【分析】分别求出集合,,再根据交集的定义求.【详解】对集合:因为,所以,即;对集合:因为恒成立,所以.所以.故选:B2.已知是关于的方程的一个根,则()A.20B.22C.30D.32【答案】D【解析】【分析】根据虚根成对原理可知方程的另一个虚根为,再由韦达定理计算可得.【详解】因为是关于的方程的一个根,所以方程的另一个虚根为,所以,解得,所以.故选:D.3.已知,,,则的最小值为()A.2B.C.D.4【答案】D【解析】【分析】由已知可得,利用,结合基本不等式可求最小值.【详解】因为,所以,所以,所以,所以,当且仅当,即时等号成立,所以的最小值为.故选:D.4.数列中,若,,,则数列的前项和()A. B. C. D.【答案】C【解析】【分析】结合递推关系利用分组求和法求.【详解】因为,,所以,,,,,又,,,所以.故选:C.5.在中,为中点,,,若,则()A. B. C. D.【答案】C【解析】【分析】选择为平面向量的一组基底,表示出,再根据表示的唯一性,可求的值.【详解】选择为平面向量的一组基底.因为为中点,所以;又.由.故选:C6.在三棱柱中,点在棱上,且,点为中点,点在棱上,若平面,则()A.2B.3C.4D.5【答案】B【解析】【分析】根据已知条件及线面平行的判定定理,利用面面平行的判定定理和性质定理,结合平行四边形的性质即可得结论.【详解】依题意,作出图形如图所示设为的中点,因为为的中点,所以,又平面,平面,所以平面,连接,又因为平面,,平面,所以平面平面,又平面平面,平面,所以,又,所以四边形是平行四边形,所以,所以,又,所以,所以,所以.故选:B.7.已知偶函数定义域为,且,当时,,则函数在区间上所有零点的和为()A. B. C. D.【答案】A【解析】【分析】函数在区间上的零点的集合等于函数和函数在区间内的交点横坐标的集合,分析函数的图象特征,作出两函数的图象,观察图象可得结论.【详解】因为函数,的零点的集合与方程在区间上的解集相等,又方程可化为,所以函数,的零点的集合与函数和函数在区间内的交点横坐标的集合相等,因为函数为定义域为的偶函数,所以,函数的图象关于轴对称,因为,取可得,,所以函数为偶函数,所以函数的图象关于对称,又当时,,作出函数,的区间上的图象如下:观察图象可得函数,的图象在区间上有个交点,将这个交点的横坐标按从小到大依次记为,则,,,,所以函数在区间上所有零点的和为.故选:A.8.已知平面向量,,,满足,且,,则的最小值为()A. B.0 C.1 D.2【答案】B【解析】【分析】可设,,,由得到满足的关系,再求的最小值.【详解】可设,,,则.可设:,则.故选:B【点睛】方法点睛:由题意可知:,都是单位向量,且夹角确定,所以可先固定,,这样就只有发生变化,求最值就简单了一些.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.对于函数,下列说法正确的是()A.函数的最大值为B.是函数图象的一个对称中心C.是函数图象的一个对称轴D.将函数的图象向右平移个单位,即可得到函数的图象【答案】ACD【解析】【分析】先利用两角和与差的三角函数公式和二倍角公式,把函数化成的形式,再对函数的性质进行分析,判断各选项是否正确.【详解】因为.所以,故A正确;函数对称中心的纵坐标必为,故B错误;由,得函数的对称轴方程为:,.令,得是函数的一条对称轴.故C正确;将函数的图象向右平移个单位,得,即将函数的图象向右平移个单位,可得到函数的图象.故D正确.故选:ACD10.在正方形中,,为中点,将沿直线翻折至位置,使得二面角为直二面角,若为线段的中点,则下列结论中正确的是()A.若点在线段上,则的最小值为B.三棱锥的体积为C.异面直线、所成角为D.三棱锥外接球的表面积为【答案】AC【解析】【分析】对于A,的最小值为可判断A;对于B,过作于,求得,可求三棱锥的体积判断B;对于C;取的中点,则,取的中点,连接,求得,由余弦定理可求异面直线、所成的角判断C;对于D,取的中点,过点在平面内作的垂线交于,求得外接球的半径,进而可求表面积判断D.【详解】对于A,将沿直线翻折至,可得的最小值为,故A正确;对于B,过作于,因为二面角为直二面角,所以平面平面,又平面平面,所以平面,由题意可得,由勾股定理可得,由,即,解得,因为为线段的中点,所以到平面的距离为,又,所以,故B错误;对于C,取的中点,则,且,,所以,因为,所以是异面直线、所成的角,取的中点,连接,可得,所以,在中,可得,由余弦定理可得,所以,在中,由余弦定理可得,所以,所以异面直线、所成的角为,故C正确;对于D,取的中点,过点在平面内作的垂线交于,易得是的垂直平分线,所以是的外心,又平面平面,又平面平面,所以平面,又因为直角三角形的外心,所以是三棱锥的外球的球心,又,所以,所以三棱锥外接球的表面积为,故D错误.故选:AC.11.已知函数,则下列结论中正确的是()A.函数有两个零点B.恒成立C.若方程有两个不等实根,则的范围是D.直线与函数图象有两个交点【答案】BCD【解析】【分析】分和两种情况探讨的符号,判断A的真假;转化为研究函数的最小值问题,判断B的真假;把方程有两个不等实根,为有两个根的问题,构造函数,分析函数的图象和性质,可得的取值范围,判断C的真假;直线与函数图象有两个交点转化为有两解,分析函数的零点个数,可判断D的真假.【详解】对A:当时,;当时,;时,,所以函数只有1个零点.A错误;对B:欲证,须证在上恒成立.设,则,由;由.所以在上单调递减,在上单调递增.所以的最小值为,因为,所以.故B正确;对C:.设,则,.由;由.所以在上单调递增,在单调递减.所以的最大值为:,又当时,.如图所示:所以有两个解时,.故C正确;对D:问题转化为方程:有两解,即有两解.设,,所以.由;由.所以在上单调递增,在上单调递减.所以的最大值为.因为,,所以所以.且当且时,;时,.所以函数的图象如下:所以有两解成立,所以D 正确.故选:BCD【点睛】方法点睛:导数问题中,求参数的取值范围问题,通常有如下方法:(1)分离参数,转化为不含参数的函数的值域问题求解.(2)转化为含参数的函数的极值问题求解.第II 卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.将答案填在答题卡相应的位置上.12.等差数列中,是其前项和.若,,则______.【答案】【解析】【分析】设数列的公差为,将条件关系转化为的方程,解方程求,由此可求结论.【详解】设等差数列的公差为,因为,,所以,,所以,,所以,故答案为:.13.在中,,的平分线与交于点,且,,则的面积为______.【答案】【解析】【分析】根据三角形面积公式,余弦定理列方程求,再由三角形面积公式求结论.【详解】因为,为的平分线,所以,又,所以,由余弦定理可得,又,所以所以,所以的面积.故答案为:.14.已知三棱锥中,平面,,,,,、分别为该三棱锥的内切球和外接球上的动点,则线段的长度的最小值为______.【答案】【解析】【分析】根据已知可得的中点外接球的球心,求得外接球的半径与内切球的半径,进而求得两球心之间的距离,可求得线段的长度的最小值.【详解】因为平面,所以是直角三角形,所以,,在中,由余弦定理得,所以,所以,所以是直角三角形,所以,因为平面,平面,所以,又,平面,结合已知可得平面,所以是直角三角形,从而可得的中点外接球的球心,故外接球的半径为,设内切球的球心为,半径为,由,根据已知可得,所以,所以,解得,内切球在平面的投影为内切球的截面大圆,且此圆与的两边相切(记与的切点为),球心在平面的投影为在的角平分线上,所以,由上易知,所以,过作于,,从而,所以,所以两球心之间的距离,因为、分别为该三棱锥的内切球和外接球上的动点,所以线段的长度的最小值为.故答案为:.【点睛】关键点点睛:首先确定内外切球球心位置,进而求两球半径和球心距离,再利用空间想象判断两球心与位置关系求最小值.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.在三棱柱中,,,,,为中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.【答案】(1)证明见解析(2)【解析】【分析】(1)由题意可得,利用勾股定理的逆定理可得,可证结论;(2)以为坐标原点,所在直线为,过作的平行线为轴建立如图所示的空间直角坐标系,利用向量法可求得直线与平面所成角的正弦值.【小问1详解】连接,因为,为中点,所以,因为,所以,所以,又,所以,所以,又,平面,所以平面;【小问2详解】以为坐标原点,所在直线为,过作平行线为轴建立如图所示的空间直角坐标系,因为,所以,则,则,设平面的一个法向量为,则,令,则,所以平面的一个法向量为,又,所以,设直线与平面所成的角为,则,所以直线与平面所成角的正弦值为.16.已知函数.(1)讨论函数的单调性;(2)设函数,若在恒成立,求实数的取值范围.【答案】(1)答案见解析(2)的取值范围为.【解析】【分析】(1)求函数的定义域及导函数,分别在,,,条件下研究导数的取值情况,判断函数的单调性;(2)由条件可得,设,利用导数求其最小值,由此可得结论.【小问1详解】函数的定义域为,导函数,当时,,函数在上单调递增,当且时,即时,,函数在上单调递增,当时,,当且仅当时,函数在上单调递增,当时,方程有两个不等实数根,设其根为,,则,,由,知,,,所以当时,,函数在上单调递增,当时,,函数在上单调递减,当时,,函数在上单调递增,所以当时,函数在上单调递增,当时,函数在上单调递增,函数在上单调递减,函数在上单调递增,【小问2详解】因为,,所以,不等式可化为,因为在恒成立,所以设,则,当时,,函数在上单调递增,当时,,函数在上单调递减,所以当时,函数取最小值,最小值为,故,所以的取值范围为.17.已知在锐角中,,,分别为内角,,的对边,.(1)求;(2)若,为中点,,求;(3)若,求内切圆半径的取值范围.【答案】(1)(2)(3)【解析】【分析】(1)利用正弦定理进行边化角,再结合三角形内角和定理及两角和与差的三角函数公式,可求,进而得到角.(2)利用向量表示,借助向量的数量积求边.(3)利用与正弦定理表示出,借助三角函数求的取值范围.【小问1详解】因为,根据正弦定理,得,所以,因为,所以,所以.【小问2详解】因为为中点,所以,所以,所以,解得或(舍去),故.【小问3详解】由正弦定理:,所以,,因为,所以,所以,,设内切圆半径为,则.因为为锐角三角形,所以,,所以,所以,即,即内切圆半径的取值范围是:.18.某汽车销售公司为了提升公司的业绩,将最近一段时间内每日的汽车销售情况进行了统计,如图所示.(1)求的值,并求该公司这段时间内每日汽车销售量的第60百分位数;(2)以频率估计概率,若在这段时间内随机选择4天,设每日汽车销售量在内的天数为,在恰有1天的汽车销售量不超过150辆的条件下,求的分布列及数学期望;(3)为增加销售量,公司规定顾客每购买一辆汽车可以进行一次抽奖活动,规则如下:在三棱锥中,、均是边长为2的正三角形,,现从写有数字1~8的八个标签中随机选择两个分别贴在、两个顶点,记顶点、上的数字分别为和,若为侧棱上一个动点,满足,当“二面角大于”即为中奖,求中奖的概率.【答案】(1),175(2)分布列见解析,(3)【解析】【分析】(1)根据频率之和为1可求的值,再根据百分位数的概念求第60百分位数.(2)根据条件概率计算,求的分布列和期望.(3)根据二面角大于,求出可对应的情况,再求中奖的概率.【小问1详解】由.因为:,,所以每日汽车销售量的第60百分位数在,且为.【小问2详解】因为抽取的1天汽车销售量不超过150辆的概率为,抽取的1天汽车销售量在内的概率为.所以:在恰有1天的汽车销售量不超过150辆的条件下,抽取的1天汽车销售量在内的概率为.由题意,的值可以为:0,1,2,3.且,,,.所以的分布列为:0123所以.【小问3详解】如图:取中点,链接,,,,.因为,都是边长为2的等边三角形,所以,,,平面,所以平面.平面,所以.所以为二面角DE平面角.在中,,所以.若,在中,由正弦定理:.此时:,.所以,要想中奖,须有.由是从写有数字1~8的八个标签中随机选择的两个,所以基本事件有个,满足的基本事件有:,,,,,,,,共9个,所以中奖的概率为:.【点睛】关键点点睛:在第(2)问中,首先要根据条件概率的概念求出事件“在恰有1天的汽车销售量不超过150辆的条件下,抽取的1天汽车销售量在内的概率”.19.如图,在四棱锥中,底面为正方形,,是中点,平面,.(1)求四棱锥体积的最大值;(2)设,为线段上的动点.①求平面与平面的夹角余弦值的取值范围;②四棱锥的外接球记为球,当为线段中点时,求平面截球所得的截面面积.【答案】(1)(2)①;②【解析】【分析】(1)设,用表示四棱锥体积,分析函数的单调性,可求四棱锥体积的最大值.(2)①建立空间直角坐标系,设点坐标,用空间向量求二面角的余弦,结合二次函数的值域,可得二面角余弦的取值范围.②先确定球心,求出球心到截面的距离,利用勾股定理可求截面圆的半径,进而得截面圆的面积.【小问1详解】设则,所以四棱锥体积,.所以:.由;由.所以在上单调递增,在上单调递减.所以四棱锥体积的最大值为.【小问2详解】①以为原点,建立如图空间直角坐标系.则,,,所以,,.设平面的法向量为,则.令,则.取平面的法向量.因为平面与平面所成的二面角为锐角,设为.所以.因为,,所以.②易得,则,此时平面的法向量,所以点到平面的距离为:,设四棱锥的外接球半径为,则,所以平面截球所得的截面圆半径.所以平面截球所得的截面面积为:.【点睛】关键点点睛:平面截球的截面面积问题,要搞清球心的位置,球的半径,球心到截面的距离,再利用勾股定理,求出截面圆的半径.。
四川省绵阳市绵阳中学2024-2025学年高三上学期10月月考数学试题(含答案)
![四川省绵阳市绵阳中学2024-2025学年高三上学期10月月考数学试题(含答案)](https://img.taocdn.com/s3/m/7a0a7cb5e109581b6bd97f19227916888486b9fc.png)
绵阳中学高2022级高三上期第一学月月考数学试题一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知全集,集合和的关系的韦恩(Venn )图如图所示,则阴影部分所示的集合的元素共有( )A.3个B.2个C.1个D.无穷多个2.围棋是中国传统棋种,蕴含着中华文化丰富内涵,围棋棋盘横竖各有19条线,共有个落子点.每个落子点都有落白子、落黑子和空白三种可能,因此围棋空间复杂度的上限.科学家们研究发现,可观测宇宙中普通物质的原子总数.则下列各数中与最接近的是( )(参考数据:)A. B. C. D.3.的定义域为( )A. B.C. D.4.设,,,则( )A. B. C. D.5.设函数,则不等式的解集是( )A. B. C. D.6.下列选项可以使得成立的一个充分不必要条件的是( )A. B. C. D.R U ={}2230M x x x =--≤{}21,Z N x x k k ==-∈1919361⨯=3613M ≈8010N ≈MNlg 30.48≈9310831073105310lg(tan 1)y x =-ππππ,Z 24xk x k k ⎧⎫⎨⎬⎩⎭+>>+∈πππ,π,Z 42x x k x k k ⎭>+≠+⎧⎫⎨⎬⎩∈ππ,Z 4x x k k ⎧⎫⎨⎬⎩⎭>+∈ππ,Z 42k x x k ⎧⎫⎨⎬⎩⎭>+∈0.30.2a =0.20.3b =0.2log 2c =c b a>>c a b >>b a c >>a b c>>3()f x x x =()()332log 3log 0f x f x +-<1,2727⎛⎫⎪⎝⎭10,27⎛⎫ ⎪⎝⎭()0,27()27,+∞1144xy -≤≤221x y +=2241x y +=1x y +=1y x=7.函数的导函数,若函数仅在有极值,则的取值范围是( )A. B.或 C.或 D.8.存在三个实数,,使其分别满足下述两个等式:(1);(2)其中表示三个实数,,中的最小值,则( )A.的最小值是 B.的最大值是 C.的最小值是 D.的最大值是二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.已知定义在R 上的奇函数,其周期为4,当时,,则( )A. B.的值域为C.在上单调递增D.在上有9个零点10.已知函数,下列说法正确的是( )A.关于对称B.的值域为R ,当且仅当或C.的最大值为1,当且仅当D.有极值,当且仅当11.关于函数,下列说法中正确的是( )A.图象关于直线对称 B.为偶函数C.为的周期D.三、填空题(本题共3小题,每小题5分,共15分.把答案填在题中的横线上.)12.已知顶点在坐标原点,始边与轴非负半轴重合,其终边上一点P 的坐标为,则的值为________13.甲说:在上单调递减乙说:存在实数使得在成立若甲、乙两人至少有一人说的话是对的,则的取值范围是________()f x ()(1)(ln 1)f x x x ax '=-+-()f x 1x =a 21e a ≤-21ea <-1a =21ea ≤-1a =1a =1a 2a 3a 1232a a a =-1230a a a ++=M 1a 2a 3a M 2-M 2-M M -()f x (0,2)x ∈()22xf x =-(2024)0f =()f x (2,2)-()f x (2,2)-()f x [4,4]-()214()log 21f x x ax =-+()f x x a =()f x 1a ≥1a ≤-()f x a =()f x 1a <()cos sin 2f x x x =π4x =()f x 2π()f x αx 11,23⎛⎫⎪⎝⎭sin(2)α()2ln 23y x ax =-+(,1]-∞x 2210x ax -+>1,22⎡⎤⎢⎥⎣⎦a14.已知不等式对任意的实数恒成立,则的最大值为________四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)已知函数.(1)若,求函数的极值;(2)讨论函数的单调性.16.(15分)已知函数,将函数的图象向右平移个单位长度,再将所得函数图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数的图象.(1)求的解析式;(2)若关于的方程在区间上有且只有两个实数解,求实数的取值范围.17.(15分)已知,,,(1)求的值(2)求角的值.18.(17分)已知函数.(1)证明:曲线是中心对称图形;(2)若,求实数m 的取值范围.19.(17分)已知函数.(1)函数与的图像关于对称,求的解析式;(2)在定义域内恒成立,求的值;(3)求证:,.112x aeax b -+-≥x ba3212()232a f x x x ax +=-+1a =()f x ()f x π()sin 26f x x ⎛⎫=++ ⎪⎝⎭()f x π212()y g x =()g x x ()g x k =-π5π,186⎡⎤-⎢⎥⎣⎦k ππ42α≤≤3ππ2β≤≤4sin 25α=cos()αβ+=225sin 8sincos11cos 82222πsin 2ααααα++-⎛⎫- ⎪⎝⎭βα-3()ln2(1)2xf x x x x=++--()y f x =(21)()40f m f m -+-<()2ln(1)cos(2)g x x x =--+--()f x ()g x 1x =-()f x ()1f x ax -≤a 2111ln 42nk n f k =+⎛⎫-< ⎪⎝⎭∑*N n ∈绵阳中学高2022级高三上期第一学月月考数学试题参考答案题号1234567891011答案AAACBBABABDABCCD12.13. 14.8.【详解】由已知得,,,中必有2个正数,1个负数,设,,,则,因为,所以,所以,即,所以,由得,,即,所以,故选:B.10.【详解】A.令,有,由于,所以,所以关于对称,故A 正确;B.当函数的值域为R ,则能取到的所有值,所以解得:或,故B 正确;C.若函数的最大值为1,则,故C 正确;D.若有极值,则在定义域内不单调,所以,则,故D 错误.故选:ABC 11.【详解】对于A ,,故A 错误;对于B ,,故B 错误对于C ,,故是的周期,故C 正确;对于D ,,令故,,利用导数求得,故D 正确.故选:CD 12132a <22ln 2-1a 2a 3a 30a <10a >20a >3M a =1230a a a ++=312a a a -=+312a a a -=+≥23124a a a ≤331234a a a a ≥1232a a a =-3324a ≤-338a ≤-32a ≤-2()21g x x ax =-+()(2)g x g a x =-14()log ()f x g x =1144(2)log (2)log ()()f a x g a x g x f x -=-==()f x x a =2()21g x x ax =-+(0,)+∞2440a ∆=-≥1a ≥1a ≤-()f x min 11()()44g x g a a =⇒=⇒=()f x 2()21g x x ax =-+2440a ∆=-<11a -<<ππcos sin(π2)sin sin 2()22f x x x x x f x ⎛⎫⎛⎫-=--=≠⎪ ⎪⎝⎭⎝⎭()cos()sin(2)()f x x x f x -=--=-(2π)cos(2π)sin(24π)cos sin 2()f x x x x x f x +=++==2π()f x ()22()cos sin 22cos sin 21sin sin f x x x x x x x ===-sin x t =()2()21f x t t =-[1,1]t ∈-()f x13.甲对,则有在上单调递减,且大于零,所以有且,则.若乙对,则,,若甲、乙两人至少有一人说的话是对的其对立面为甲乙说的均不对,此时或与求交集为,取其补集后的取值范围,所以14.可转化为图像恒在上方,所以必然有,现考虑刚好相切时的情况,设切点为,则,消元得到带得到,所以图像恒在上方,只需要,所以,令,所以15.【详解】(1),,所以或时,,时,,则在上递减,在递增,所以的极小值为,极大值为.(2),当时,,所以在上递增,当时,或时,;时,,所以在上递增,在上递减,当时,或时,;时,,所以在上递增;在上递减.16.【详解】(1)将的图象向右平移个单位长度后,得到的图象,2210x ax -+>(,1]-∞1a ≥420a ->12a ≤<1,22x ⎡⎤∃∈⎢⎥⎣⎦max 115522224x a x a a a x x ⎛⎫+>⇒+>⇒>⇒< ⎪⎝⎭{1a a <}2a ≥54a a ⎧≥⎫⎨⎬⎩⎭{}2a a ≥a {}2a a <{}2a a <11x ay e-=2y ax b =+0a >0110,x ax e-+⎛⎫ ⎪⎝⎭001111022x a x a e ae ax b-+-+⎧=⎪⎨⎪=+⎩022a b x a -=0112x a e a -+=121212ln 22422ln 22a b a ab e a a b a a a a a--+=⇒=--⇒=--11x ay e -+=2y ax b =+422ln 2b a a a ≤--242ln 2b a a a ≤--222(1)42ln 2()()a a h a h a a a-'--=⇒=max ()(1)22ln 2h a h ==-321323()2x x x f x =-+(1)(2)()x x f x =--'1x <2x >()0f x '>12x <<()0f x '<()f x (1,2)(,1),(2,)-∞+∞()f x 2(2)3f =5(1)6f =()()(2)f x x a x '=--2a =()0f x '≥()f x (,)-∞+∞2a >2x <x a >()0f x '>2x a <<()0f x '<()f x (,2),(,)a -∞+∞(2,)a 2a <x a <2x >()0f x '>2a x <<()0f x '<()f x (,),(2,)a -∞+∞(,2)a ()f x π2πππsin 2sin 2263y x x ⎡⎤⎛⎫⎛⎫=-++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦再将所得函数图象上所有点的横坐标缩短到原来的,纵坐标不变,得到的图象,所以.(2)因为,所以.,即在区间上有且只有两个实数解,于是函数与的图象在区间上有且只有两个交点,,,,所以.画出在区间上的图象如图所示,所以,所以,.所以实数的取值范围是.17.(1)由12πsin 223y x ⎛⎫=-+ ⎪⎝⎭π()sin 223g x x ⎛⎫=-+ ⎪⎝⎭π5π186x-≤≤4ππ4π2933x-≤-≤()g x k =-πsin 223x k ⎛⎫-=-- ⎪⎝⎭π5π,186⎡⎤-⎢⎥⎣⎦πsin 23y x ⎛⎫=-⎪⎝⎭2y k =--π5π,186⎡⎤-⎢⎥⎣⎦44πsin sin 99π⎛⎫-=- ⎪⎝⎭4πππ3πsin sin πsin sin 3339⎛⎫=+=-=-= ⎪⎝⎭3π4ππ0992<<<4π4πsin sin93⎛⎫-< ⎪⎝⎭πsin 23y x ⎛⎫=-⎪⎝⎭π5π,186⎡⎤-⎢⎥⎣⎦21k ≤--<23k +≤-<32k -<≤k 3,2⎛--+ ⎝222225sin 5cos 4sin 6cos 85sin 8sin cos 11cos 82222222πcos sin 2αααααααααα⎛⎫+++-++- ⎪⎝⎭=-⎛⎫- ⎪⎝⎭2254sin 6cos 84sin 6cos 34sin 3cos 22(4tan 3)cos cos cos αααααααααα++-+-+====-+---又因为,所以,可得,解得或,由于,所以.原式.(2)又由知,因则,由,又因,故.18.【详解】(1)函数,定义域为,所以曲线关于点对称.(2),因为,,所以,所以在定义域上单调递增;又关于点对称,,由(1)得恒成立,所以,所以所以,解得19.【详解】(1)依题意,设图像上任意一点坐标为,则其关于对称的点在图像上,4sin 25α=2sin cos 5αα=222sin cos tan 2sin cos 1tan 5αααααα==++tan 2α=1tan 2α=ππ42α≤≤tan 2α=∴11=-3ππ2β≤≤5π2π4αβ≤+≤cos()αβ+=sin()αβ+===sin()sin[()2]sin()cos 2cos()sin 2βααβααβααβα-=+-=+-+3455⎛⎛⎫=--⨯= ⎪ ⎝⎭⎝π5π24βα≤-≤3π4βα-=3()ln 2(1)2xf x x x x=++--(0,2)332()(2)ln 2(1)ln 2(2)(1)2x xf x f x x x x x x x-+-=++-++-+--332ln [22(2)](1)(1)04042x x x x x x x x-⎡⎤=⋅++-+-+-=++=⎣⎦-()y f x =(1,2)22112()23(1)23(1)2(2)f x x x x x x x '=+++-=++---(0,2)x ∈20(2)x x >-22()23(1)0(2)f x x x x '=++->-()f x (0,2)()f x (1,2)(21)()4f m f m -+<()(2)4f x f x +-=()(2)4f m f m +-=(21)()4()(2)f m f m f m f m -+<=+-212021202022m mm m m -<-⎧⎪<-<⎪⎨<<⎪⎪<-<⎩112m <<()f x ()00,x y 1x =-()002,x y --()g x则,则,故,;(2)令,则在在恒成立,又,且在上是连续函数,则为的一个极大值点,,.下证当时,在恒成立,令,,当,,在上单调递增,当,,在上单调递减,故,在上恒成立,又,则时,恒成立,综上,.(3)由(2)可知:,则,即,则,又由(2)可知:在上恒成立,则在上恒成立且当且仅当时取等,令,,则,即,则,综上,,即证.()()0002y f x g x ==--()()()000022ln 1cos f x g x x x =--=++()01x >-()2ln(1)cos f x x x =++(1)x >-()()12ln(1)cos 1h x f x ax x x ax =--=++--(1)x >-()0h x ≤(1,)x ∈-+∞(0)0h =()h x (1,)x ∈-+∞0x =()h x 2()sin 1h x x a x '=--+(0)202h a a '=-=⇒=2a =()0h x ≤(1,)x ∈-+∞()ln(1)x x x ϕ=+-1()111xx x x ϕ'=-=-++(1,0)x ∈-()0x ϕ'>()x ϕ(1,0)-(0,)x ∈+∞()0x ϕ'<()x ϕ(0,)+∞()(0)0x ϕϕ≤=ln(1)x x +≤(1,)-+∞cos 1x ≤2a =()()12[ln(1)](cos 1)0h x f x ax x x x =--=+-+-≤2a =()12f x x -≤11111222f k k ⎛⎫⎛⎫--≤- ⎪ ⎪⎝⎭⎝⎭1122f k k ⎛⎫-≤ ⎪⎝⎭211111122122nk n f k n n n =+⎛⎫⎛⎫-≤+++ ⎪ ⎪++⎝⎭⎝⎭∑ ln(1)x x +≤(1,)-+∞ln 1x x ≤-(0,)+∞1x =(0,1)1n x n =∈+*N n ∈1ln 1111n n n n n -<-=+++11ln ln ln(1)ln 11n n n n n n n +<-==+-++111ln(1)ln ln(2)ln(1)ln(2)ln(21)122n n n n n n n n n+++<+-++-+++--++ ln(2)ln ln 2n n =-=21112ln 2ln 42nk n f k =+⎛⎫-<= ⎪⎝⎭∑。
2024-2025学年湖北省襄阳市高三上学期10月月考数学检测试题(含解析)
![2024-2025学年湖北省襄阳市高三上学期10月月考数学检测试题(含解析)](https://img.taocdn.com/s3/m/dc35c7b1370cba1aa8114431b90d6c85ec3a88f8.png)
一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符2024-2025学年湖北省襄阳市高三上学期10月月考数学检测试题合题目要求的.1. 已知集合31A x x ⎧⎫=∈∈⎨⎬-⎩⎭Z Z ,则用列举法表示A =( )A. {}2,0,1,2,4- B. {}2,0,2,4- C. {}0,2,4 D. {}2,4【答案】B 【解析】【分析】由题意可得1x -可为1±、3±,计算即可得.【详解】由题意可得1x -可为1±、3±,即x 可为0,2,2,4-,即{}2,0,2,4A =-.故选:B.2. 设3i,ia a z +∈=R ,其中i 为虚数单位.则“1a <-”是“z >”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】首先根据复数代数形式的除法运算化简z ,再求出z,令z >a 的取值范围,最后根据充分条件、必要条件的定义判断即可.【详解】因为23i 3i 3i i ia az a +-===-,所以z =令z >>1a >或1a <-,所以1a <-推得出z >,故充分性成立;由z >推不出1a <-,故必要性不成立;所以“1a <-”是“z >的充分不必要条件.故选:A3. 已知向量a ,b 不共线,且c a b λ=+ ,()21d a b λ=++ ,若c 与d 同向共线,则实数λ的值为( )A. 1B.12C. 1或12-D. 1-或12【答案】B 【解析】【分析】先根据向量平行求参数λ,再根据向量同向进行取舍.【详解】因为c与d 共线,所以()2110λλ+-=,解得1λ=-或12λ=.若1λ=-,则c a b =-+,d a b =- ,所以d c =- ,所以c 与d 方向相反,故舍去;若12λ=,则12c a b =+ ,2d a b =+ ,所以2d c = ,所以c与d 方向相同,故12λ=为所求.故选:B4. 已知3322x y x y ---<-,则下列结论中正确的是( )A. ()ln 10y x -+> B. ln0yx> C. ln 0y x +> D. ln 0y x ->【答案】A 【解析】【分析】构造函数()32xf x x -=-,利用()f x 的单调性可得x y <,进而可得.【详解】由3322x y x y ---<-得3322x y x y ---<-,设()32xf x x -=-,因函数3y x =与2x y -=-都是R 上的增函数,故()f x 为R 上的增函数,又因3322x y x y ---<-,故x y <,()ln 1ln10y x -+>=, 故A 正确,因y x,y x +,y x -与1的大小都不确定,故B ,C ,D 错误,故选:A5. 从0,1,2,3,4,5,6这7个数中任选5个组成一个没有重复数字的“五位凹数12345a a a a a ”(满足12345a a a a a >><<),则这样的“五位凹数”的个数为( )A. 126个 B. 112个 C. 98个 D. 84个【答案】A 【解析】【分析】利用分步乘法计数原理可得.【详解】第一步,从0,1,2,3,4,5,6这7个数中任选5个共有57C 种方法,第二步,选出的5个数中,最小的为3a ,从剩下的4个数中选出2个分给12,a a ,由题意可知,选出后1245,,,a a a a 就确定了,共有24C 种方法,故满足条件的“五位凹数”5274C C 126=个,故选:A6. 若数列{}n a 满足11a =,21a =,12n n n a a a --=+(3n ≥,n 为正整数),则称数列{}n a 为斐波那契数列,又称黄金分割数列.在现代物理、准晶体结构、化学等领域,斐波那契数列都有直接的应用.设n S 是数列{}n a 的前n 项和,则下列结论成立的是( )A. 78a = B. 135********a a a a a +++⋅⋅⋅+=C. 754S = D. 24620202021a a a a a +++⋅⋅⋅+=【答案】B 【解析】【分析】按照斐波那契数列的概念,找出规律,得出数列的性质后逐个验证即可.【详解】解析:按照规律有11a =,21a =,32a =,43a =,55a =,68a =,713a =,733S =,故A 、C 错;21112123341n n n n n n n n n n n n n n a a a a a a a a a a a a a S ++--------=+=+++=+++++==+ ,则202020181220183520191352019111a S a a a a a a a a a a =+=++++=++++=++++ ,故B 对;24620202234520182019a a a a a a a a a a a ++++=+++++++ 1234520182019201920211a a a a a a a S a =+++++++==- ,故D 错.故选:B .7. 已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的左,右焦点,A ,B 是椭圆C 上的两点.若122F A F B = ,且12π4AF F ∠=,则椭圆C 的离心率为( )A13B.C.D.23【答案】B 【解析】【分析】设1AF =,结合题意可得2AF,根据椭圆定义整理可得22b c m -=,根据向量关系可得1F A ∥2F B,且2BF =2b c m+=,进而可求离心率.【详解】由题意可知:()()12,0,,0F c F c -,设1,0AF m =>,因为12π4AF F ∠=,则()2,2A c m m -+,可得2AF =由椭圆定义可知:122AF AF a+=,即2a +=,整理可得22b c m-=;又因为122F A F B = ,则1F A ∥2F B,且2112BF AF ==,则(),B c m m +,可得1BF =由椭圆定义可知:|BF 1|+|BF 2|=2a2a =,.2bcm+=;即2c c-=+3c=,所以椭圆C的离心率cea==.故选:B.【点睛】方法点睛:椭圆的离心率(离心率范围)的求法求椭圆的离心率或离心率的范围,关键是根据已知条件确定a,b,c的等量关系或不等关系,然后把b用a,c代换,求e的值.8. 圆锥的表面积为1S,其内切球的表面积为2S,则12SS的取值范围是()A. [)1,+∞ B. [)2,+∞C. )∞⎡+⎣ D.[)4,+∞【答案】B【解析】【分析】选择OBC∠(角θ)与内切球半径R为变量,可表示出圆锥底面半径r和母线l,由圆锥和球的表面积公式可得()122212tan1tanSSθθ=-,再由2tan(0,1)tθ=∈换元,转化为求解二次函数值域,进而得12SS的取值范围.【详解】设圆锥的底面半径为r,母线长为l,圆锥内切球半径为R,如图作出圆锥的轴截面,其中设O为外接圆圆心,,D E为切点,,AB AC为圆锥母线,连接,,,OB OD OA OE.设OBCθ∠=,tanRrθ=,0tan1θ<<tanRrθ∴=.OD AB⊥,OE BC⊥,πDBE DOE∴∠+∠=,又πAOD DOE∠+∠=,2AOD DBE θ∴∠=∠=,tan 2AD R θ∴=,22tan 2tan Rl r AD BD r AD r R θθ∴+=++=+=+,则圆锥表面积()21πππS r rl r l r =+=+,圆锥内切球表面积224πS R =,所求比值为()212222π2tan 21tan 1tan tan 4π2tan 1tan R R R S S R θθθθθθ⎛⎫+ ⎪-⎝⎭==-,令2tan 0t θ=>,则()2211()2122222g t t t t t t ⎛⎫=-=-+=--+ ⎪⎝⎭,则10()2g t <≤,且当12t =时,()g t 取得最大值12,故122S S ≥,即12S S 的取值范围是[)2,+∞.故选:B.【点睛】关键点点睛:求解立体几何中的最值问题一般方法有两类,一是设变量(可以是坐标,也可以是关键线段或关键角)将动态问题转化为代数问题,利用代数方法求目标函数的最值;二是几何法,利用图形的几何性质,将空间问题平面化,将三维问题转化为二维问题来研究,以平面几何中的公理、定义、定理为依据,以几何直观为主要手段直接推理出最值状态何时取到,再加以求解.二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 设A ,B 为随机事件,且()P A ,()P B 是A ,B 发生的概率. ()P A ,()()0,1P B ∈,则下列说法正确的是( )A. 若A ,B 互斥,则()()()P A B P A P B ⋃=+B. 若()()()P AB P A P B =,则A ,B 相互独立C 若A ,B 互斥,则A ,B 相互独立D. 若A ,B 独立,则()(|)P B A P B =【答案】ABD 【解析】【分析】利用互斥事件的概率公式可判断A 选项;由相互独立事件的概念可判断B 选项;由互斥事件和相互独立事件的概念可判断C 选项;由相互独立事件的概念,可判断D 选项.【详解】对于选项A ,若,A B 互斥,根据互斥事件的概率公式,则()()()P A B P A P B ⋃=+,所以选项A 正确,.对于选项B ,由相互独立事件概念知,若()()()P AB P A P B =,则事件,A B 是相互独立事件,所以选项B 正确,对于选项C ,若,A B 互斥,则,A B 不一定相互独立,例:抛掷一枚硬币的试验中,事件A :“正面朝上”,事件B :“反面朝上”,事件A 与事件B 互斥,但()0P AB =,1()()2P A P B ==,不满足相互独立事件的定义,所以选项C 错误,对于选项D ,由相互独立事件的定义知,若A ,B 独立,则()(|)P B A P B =,所以选项D 正确,故选:ABD.10. 已知函数()sin sin cos 2f x x x x =-,则( )A. ()f x 的图象关于点(π,0)对称B. ()f x 的值域为[1,2]-C. 若方程1()4f x =-在(0,)m 上有6个不同的实根,则实数m 的取值范围是17π10π,63⎛⎤⎥⎝⎦D. 若方程[]22()2()1(R)f x af x a a -+=∈在(0,2π)上有6个不同的实根(1,2,,6)i x i = ,则61i i ax =∑的取值范围是(0,5π)【答案】BCD 【解析】【分析】根据(2π)()f f x =-是否成立判断A ,利用分段函数判断BC ,根据正弦函数的单调性画出分段函数()f x 的图象,求出的取值范围,再利用对称性判断D.【详解】因为()sin sin cos 2f x x x x =-,所以(2π)sin(2π)sin(2π)cos 2(2π)sin sin cos 2()f x x x x x x x f x -=----=--≠-,所以()f x 的图象不关于点(π,0)对称,故A 错误;当sin 0x ≥时,()222()sin 12sin 3sin 1f x x x x =--=-,由[]sin 0,1x ∈可得[]()1,2f x ∈-,当sin 0x <时,()222()sin 12sin sin 1f x x x x =---=-,由[)sin 1,0x ∈-可得(]()1,0f x ∈-,的综上[]()1,2f x ∈-,故B 正确:当sin 0x ≥时,由21()3sin 14f x x =-=-解得1sin 2x =,当sin 0x <时,由21()sin 14f x x =-=-解得sin x =,所以方程1()4f x =-在(0,)+∞上的前7个实根分别为π6,5π6,4π3,5π3,13π6,17π6,10π3,所以17π10π63m <≤,故C 正确;由[]22()2()1f x af x a -+=解得()1f x a =-或()1f x a =+,又因为()223sin 1,sin 0sin 1,sin 0x x f x x x ⎧-≥=⎨-<⎩,所以根据正弦函数的单调性可得()f x 图象如图所示,所以()1f x a =-有4个不同的实根,()1f x a =+有2个不同的实根,所以110012a a -<-<⎧⎨<+<⎩,解得01a <<,设123456x x x x x x <<<<<,则1423πx x x x +=+=,563πx x +=,所以615πii x==∑,所以61i i a x =∑的取值范围是(0,5π),故D 正确.故选:BCD.11. 在平面直角坐标系中,定义(){}1212,max ,d A B x x y y =--为两点()11,A x y 、()22,B x y 的“切比雪夫距离”,又设点P 及l 上任意一点Q ,称(),d P Q 的最小值为点P 到直线l 的“切比雪夫距离”,记作(),d P l ,给出下列四个命题,正确的是( )A 对任意三点,,ABC ,都有()()(),,,d C A d C B d A B +≥;B. 已知点()2,1P 和直线:220l x y --=,则()83d P l =,;C. 到定点M 的距离和到M 的“切比雪夫距离”相等的点的轨迹是正方形.D. 定点()1,0F c -、()2,0F c ,动点(),P x y 满足()()()12,,2220d P F d P F a c a =>>-,则点P 的轨迹.与直线y k =(k 为常数)有且仅有2个公共点.【答案】AD 【解析】【分析】对于选项A ,根据新定义,利用绝对值不等性即可判断;对于选项B ,设点Q 是直线21y x =-上一点,且(,21)Q x x -,可得()1,max 2,22d P Q x x ⎧⎫=--⎨⎬⎩⎭,讨论|2|x -,1|2|2x -的大小,可得距离d ,再由函数的性质,可得最小值;对于选项C ,运用新定义,求得点的轨迹方程,即可判断;对于选项D ,根据定义得{}{}max ,max ,2x c y x c y a +--=,再根据对称性进行讨论,求得轨迹方程,即可判断.【详解】A 选项,设()()(),,,,,A A B B C C A x y B x y C x y ,由题意可得:()(){}{},,max ,max ,,A C A CBC B C A C B C A B d C A d C B x x y y x x y y x x x x x x +=--+--≥-+-≥-同理可得:()(),,A B d C A d C B y y +≥-,则:()(){}(),,max ,,A B A B d C A d C B x x y y d A B +≥--=,则对任意的三点A ,B ,C ,都有()()(),,,d C A d C B d A B +≥;故A 正确;B 选项,设点Q 是直线220x y --=上一点,且1,12Q x x ⎛⎫- ⎪⎝⎭,可得()1,max 2,22d P Q x x ⎧⎫=--⎨⎬⎩⎭,由1222x x -≥-,解得0x ≤或83x ≥,即有(),2d P Q x =-,当83x =时,取得最小值23;由1222x x -<-,解得803x <<,即有()1,22d P Q x =-,(),d P Q 的范围是2,23⎛⎫⎪⎝⎭,无最值,综上可得,P ,Q 两点的“切比雪夫距离”的最小值为23,故B 错误;C 选项,设(),M ab {}max ,x a y b =--,若y b x a -≥-,则y b =-,两边平方整理得x a =;此时所求轨迹为x a=(y b ≥或)y b ≤-若y b x a -<-,则x a =-,两边平方整理得y b =;此时所求轨迹为y b=(x a ≥或)x a ≤-,故没法说所求轨迹是正方形,故C 错误;D 选项,定点()1,0F c -、()2,0F c ,动点(),P x y 满足()()12,,2d P F d P F a -=(220c a >>),则:{}{}max ,max ,2x c y x c y a +--=,显然上述方程所表示的曲线关于原点对称,故不妨设x ≥0,y ≥0.(1)当x c yx c y ⎧+≥⎪⎨-≥⎪⎩时,有2x c x c a +--=,得:0x a y a c =⎧⎨≤≤-⎩;(2)当x c y x c y ⎧+≤⎪⎨-≤⎪⎩时,有02a =,此时无解;(3)当x c y x c y⎧+>⎪⎨-<⎪⎩时,有2,x c y a a x +-=<;则点P 的轨迹是如图所示的以原点为中心的两支折线.结合图像可知,点P 的轨迹与直线y k =(k 为常数)有且仅有2个公共点,故D 正确.故选:AD.【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.对于此题中的新概念,对阅读理解能力有一定的要求.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.三、填空题:本题共3小题,每小题5分,共15分.12. 若)nax的展开式的二项式系数和为32,且2x -的系数为80,则实数a 的值为________.【答案】―2【解析】【分析】由二项式系数和先求n ,再利用通项53215C ()r r rr T a x -+=-得到2x -的指数确定r 值,由2x -的系数为80,建立关于a 的方程求解可得.【详解】因为)na x-的展开式的二项式系数和为32,所以012C C C C 232nnn n n n ++++== ,解得5n =.所以二项式展开式的通项公式为5352155C ()C ()rr rr r rr a T a x x--+=-=-,由5322r-=-,解得3r =,所以2x -的系数为3335C ()1080a a -=-=,解得2a =-.故答案为:2-.13. 已知函数()()()2f x x a x x =--在x a =处取得极小值,则a =__________.【答案】1【解析】【分析】求得()()()221f x x x x a x =-+--',根据()0f a ¢=,求得a 的值,结合实数a 的值,利用函数的单调性与极值点的概念,即可求解.【详解】由函数()()()2f x x a x x =--,可得()()()221f x x x x a x =-+--',因为x a =处函数()f x 极小值,可得()20f a a a =-=',解得0a =或1a =,若0a =时,可得()(32)f x x x '=-,当0x <时,()0f x '>;当203x <<时,()0f x '<;当23x >时,()0f x '>,此时函数()f x 在2(,0),(,)3-∞+∞单调递增,在2(0,)3上单调递减,所以,当0x =时,函数()f x 取得极大值,不符合题意,(舍去);若1a =时,可得()(1)(31)f x x x '=--,当13x <时,()0f x '>;当113x <<时,()0f x '<;当1x >时,()0f x '>,此时函数()f x 在1(,),(1,)3-∞+∞单调递增,在(0,1)上单调递减,所以,当1x =时,函数()f x 取得极小值,符合题意,综上可得,实数a 的值为1.故答案为:1.14. 数学老师在黑板上写上一个实数0x ,然后老师抛掷一枚质地均匀的硬币,如果正面向上,就将黑板上的数0x 乘以2-再加上3得到1x ,并将0x 擦掉后将1x 写在黑板上;如果反面向上,就将黑板上的数0x 除以2-再减去3得到1x ,也将0x 擦掉后将1x 写在黑板上.然后老师再抛掷一次硬币重复刚才的操作得到黑板上的数为2x .现已知20x x >的概率为0.5,则实数0x 的取值范围是__________.【答案】()(),21,-∞-+∞ 【解析】【分析】构造函数()23f x x =-+,()32xg x =--,由两次复合列出不等式求解即可.【详解】由题意构造()23f x x =-+,()32xg x =--,则有()()43f f x x =-,()()9f g x x =+,()()92g f x x =-,()()342x g g x =-.因为()()f g x x >,()()g f x x <恒成立,又20x x >的概率为0.5,所以必有43,3,42x x x x ->⎧⎪⎨-≤⎪⎩或者43,3,42x x x x -≤⎧⎪⎨->⎪⎩解得()(),21,x ∈-∞-⋃+∞.故答案为:()(),21,-∞-+∞ 四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15. 在ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知()()()sin sin sin b c B C a c A +-=-.(1)求B ;(2)若ABC,且2AD DC = ,求BD 的最小值.【答案】(1)π3(2.【解析】【分析】(1)利用正弦定理可得()()()b c b c a c a +-=-,再结合余弦定理得2221cos 22a cb B ac +-==,从而可求解.(2)结合ABC V 的面积可求得3ac =,再由112333BD BC CA BA BC =+=+ ,平方后得,()222142993BD c a =++ ,再结合基本不等式即可求解.【小问1详解】由正弦定理得()()()b c b c a c a +-=-,即222a c b ac +-=,由余弦定理可得2221cos 222a cb ac B ac ac +-===,因为()0,πB ∈,所以π3B =.【小问2详解】因为ABC V π3B =,所以1sin 2ac B =,所以3ac =.因为()11123333BD BC CA BC BA BC BA BC =+=+-=+,所以()()()()22222221421441422cos 999999993BD BA BC BA BC c a ac B c a =++⋅⋅=++=++ ,所以2214212222993333c a c a ++≥⋅⋅+=,当且仅当a c ==时取等号,所以BD .16. 已知抛物线2:2(0)E y px p =>与双曲线22134x y -=的渐近线在第一象限的交点为Q ,且Q 点的横坐标为3.(1)求抛物线E 的方程;(2)过点(3,0)M -的直线l 与抛物线E 相交于,A B 两点,B 关于x 轴的对称点为B ',求证:直线AB '必过定点.【答案】(1)24y x = (2)证明见解析【解析】【分析】(1)由双曲线求其渐近线方程,求出点Q 的坐标,由此可求抛物线方程;(2)联立直线AB 的方程与抛物线方程可得关于x 的一元二次方程,设A (x 1,y 1),B (x 2,y 2),()22,B x y '-,根据韦达定理求出12124,12y y m y y +==,求出直线AB '的方程并令0y =,求出x 并逐步化简可得3x =,则直线AB '过定点(3,0).【小问1详解】设点Q 的坐标为()03,y ,因为点Q 在第一象限,所以00y >,双曲线22134x y -=的渐近线方程为y x =,因为点Q在双曲线的渐近线上,所以0y =,所以点Q的坐标为(3,,又点(3,Q 在抛物线22y px =上,所以1223p =⨯,所以2p =,故抛物线E 的标准方程为:24y x =;【小问2详解】设直线AB 的方程为3x my =-,联立243y xx my ⎧=⎨=-⎩,消x 得,24120y my -+=,方程24120y my -+=的判别式216480m ∆=->,即230m ->,设A (x 1,y 1),B (x 2,y 2),则12124,12y y m y y +==,因为点A 、B 在第一象限,所以121240,120y y m y y +=>=>,故0m >,设B 关于x 轴的对称点为()22,B x y '-, 则直线AB '的方程为212221()y y y y x x x x ---+=-,令0y =得:212221x x x y x y y -=+-⨯-122121x y x y y y +=+()()12211233y my y my y y -+-=+()21121223my y y y y y -+=+241212344m m mm m-===.直线AB '过定点(3,0).【点睛】方法点睛:联立直线AB 的方程与抛物线方程可得关于x 的一元二次方程,设A (x 1,y 1),B (x 2,y 2),()22,B x y '-,根据韦达定理求出12124,12y y m y y +==,求出直线AB '的方程并令0y =,求出x 并逐步化简可得3x =,则直线AB '过定点(3,0).17. 如图,已知正方形ABCD 的边长为4,,E F 分别为,AD BC 的中点,沿EF 将四边形EFCD 折起,使二面角A EF C --的大小为60°,点M 在线段AB 上.(1)若M 为AB 的中点,且直线MF 与直线EA 的交点为O ,求OA 的长,并证明直线OD //平面EMC ;(2)在线段AB 上是否存在点M ,使得直线DE 与平面EMC 所成的角为60°;若存在,求此时二面角M EC F --的余弦值,若不存在,说明理由.【答案】(1)2OA =;证明见解析.(2)存在点M ,使得直线DE 与平面EMC 所成的角为60°;此时二面角M EC F --的余弦值为14.【解析】【分析】(1)根据中位线性质可求得OA ,由//MN OD ,结合线面平行判定定理可证得结论;(2)由二面角平面角定义可知60DEA ∠=︒,取AE ,BF 中点O ,P ,由线面垂直的判定和勾股定理可知OD ,OA ,OP 两两互相垂直,则以O 为坐标原点建立空间直角坐标系;设()1,,0M m ()04m ≤≤,利用线面角的向量求法可求得m ;利用二面角的向量求法可求得结果.【小问1详解】,E F 分别为,AD BC 中点,////EF AB CD ∴,且2AE FB ==,又M 为AB 中点,且,AB OE AB BF ⊥⊥,易得OAM FBM ≅ ,2OA FB AE ∴===,连接,CE DF ,交于点N ,连接MN ,由题设,易知四边形CDEF 为平行四边形,N Q 为DF 中点,//,AM EF A 是OE 的中点,M ∴为OF 中点,//MN OD ∴,又MN ⊂平面EMC ,OD ⊄平面EMC ,//OD ∴平面EMC ;【小问2详解】////EF AB CD ,EF DE ⊥ ,EF AE ⊥,又DE ⊂平面CEF ,AE ⊂平面AEF ,DEA ∴∠即为二面角A EF C --的平面角,60DEA ∴=︒∠;取,AE BF 中点,O P ,连接,OD OP ,如图,60DEA ∠=︒ ,112OE DE ==,2414cos 603OD ∴=+-︒=,222OD OE DE +=,OD AE ∴⊥,//OP EF ,OP DE ⊥,OP AE ⊥,又,AE DE ⊂平面AED ,AE DE E = ,OP ∴⊥平面AED ,,OD AE ⊂ 平面AED ,,OD OP AE OP ∴⊥⊥,则以O 为坐标原点,,,OA OP OD方向为,,x y z 轴正方向建立空间直角坐标系如下图所示,则(D ,()1,0,0E -,()1,4,0F -,(0,C ,设()()1,,004M m m ≤≤,则(1,0,DE =-,()2,,0EM m =,(1,EC = ,设平面EMC 的法向量n 1=(x 1,y 1,z 1),则1111111·20·40EM n x my EC n x y ⎧=+=⎪⎨=++=⎪⎩,令12y =,则1x m =-,1z =1,m m ⎛∴=- ⎝,∵直线DE 与平面EMC 所成的角为60o ,·sin 60cos ,·DE n DE n DE n ∴︒==111==1m =或3m =,存在点M ,当1AM =或3AM =时,使得直线DE 与平面EMC 所成的角为60o ;设平面CEF 的法向量()2222,,n x y z=,又(1,EC = ,(FC =,2222222·40·0EC n x y FC n x ⎧=++=⎪∴⎨==⎪⎩,令21z =,则2x =,20y =,()2m ∴=;当1m =时,11,2,n ⎛=- ⎝,121212·1cos ,4·n n n n n n ∴=== ;当3m =时,23,2,n ⎛=- ⎝,121212·1cos ,4·n n n n n n ∴=== ;综上所述:二面角M EC F --的余弦值为14.【点睛】关键点点睛:本题第二步的关键在于证明三线互相垂直,建立空间直角坐标系,设出动点M 的坐标,熟练利用空间向量的坐标运算,求法向量,求二面角、线面角是解题的关键.18. 已知函数()12ex xf x x λ-=-.(1)当1λ=时,求()f x 图象在点(1,f (1))处的切线方程;(2)若1x ≥时,()0f x ≤,求λ的取值范围;(3)求证:()1111111232124e 2e*n n n n nnn ++++-+++->∈N .【答案】(1)0y = (2)[)1,+∞ (3)证明见详解【解析】【分析】(1)利用导数的几何意义求解即可;(2)根据题意,由条件式恒成立分离参数,转化为212ln x x xλ≥+,求出函数()212ln xg x x x =+的最大值得解;(3)先构造函数()12ln x x x x ϕ=-+,利用导数证明11ln 2x x x ⎛⎫<- ⎪⎝⎭,1x >,令11x n=+,可得()111ln 1ln 21n n n n ⎛⎫+-<+ ⎪+⎝⎭,迭代累加可证得结果.【小问1详解】当1λ=时,()12ex xf x x -=-,f (1)=0,的则()12121e x x f x x x -⎛⎫=-+ ⎪⎝'⎭,则()0122e 0f =-=',所以()f x 在点(1,f (1))处的切线方程为0y =.【小问2详解】由1x ≥时,()0f x ≤,即12e0x xx λ--≤,整理得212ln x x xλ≥+,对1x ≥恒成立,令()212ln x g x x x =+,则()()42321ln 222ln x x x x x g x x x x---=-+'=,令()1ln h x x x x =--,1x ≥,所以()ln 0h x x '=-≤,即函数ℎ(x )在1x ≥上单调递减,所以()()10h x h ≤=,即()0g x '≤,所以函数()g x 在1x ≥上单调递减,则()()11g x g ≤=,1λ∴≥.【小问3详解】设()12ln x x x xϕ=-+,1x >,则()()222221212110x x x x x x x xϕ---+-='=--=<,所以φ(x )在(1,+∞)上单调递减,则()()10x ϕϕ<=,即12ln 0x x x-+<,11ln 2x x x ⎛⎫∴<- ⎪⎝⎭,1x >,令11x n=+,*N n ∈,可得1111111ln 1112211n n n n n ⎛⎫⎪⎛⎫⎛⎫+<+-=+ ⎪ ⎪ ⎪+⎝⎭⎝⎭ ⎪+⎝⎭,所以()111ln 1ln 21n n n n ⎛⎫+-<+ ⎪+⎝⎭,()()111ln 2ln 1212n n n n ⎛⎫+-+<+ ⎪++⎝⎭,()()111ln 3ln 2223n n n n ⎛⎫+-+<+ ⎪++⎝⎭,…()()111ln 2ln 212212n n n n ⎛⎫--<+ ⎪-⎝⎭,以上式子相加得()112221ln 2ln 212212n n n n n n n ⎛⎫-<+++++ ⎪++-⎝⎭,整理得,11111ln 2412212n n n n n-<++++++-L ,两边取指数得,11111ln 2412212e e n n n n n -++++++-<L ,即得111114122122e e n n n n n -++++-<L ,()*Nn ∈得证.【点睛】关键点点睛:本题第三问解题的关键是先构造函数()12ln x x x xϕ=-+,利用导数证明11ln 2x x x ⎛⎫<- ⎪⎝⎭,1x >,令11x n=+,得到()111ln 1ln 21n n n n ⎛⎫+-<+ ⎪+⎝⎭.19. 已知整数4n …,数列{}n a 是递增的整数数列,即12,,,n a a a ∈Z 且12n a a a <<<.数列{}n b 满足11b a =,n n b a =.若对于{}2,3,,1i n ∈- ,恒有1i i b a --等于同一个常数k ,则称数列{}n b 为{}n a 的“左k 型间隔数列”;若对于{}2,3,,1i n ∈- ,恒有1i i a b +-等于同一个常数k ,则称数列{}n b 为{}n a 的“右k 型间隔数列”;若对于{}2,3,,1i n ∈- ,恒有1i i a b k +-=或者1i i b a k --=,则称数列{}n b 为{}n a 的“左右k 型间隔数列”.(1)写出数列{}:1,3,5,7,9n a 的所有递增的“左右1型间隔数列”;(2)已知数列{}n a 满足()81n a n n =-,数列{}n b 是{}n a 的“左k 型间隔数列”,数列{}n c 是{}n a 的“右k 型间隔数列”,若10n =,且有1212n n b b b c c c +++=+++ ,求k 的值;(3)数列{}n a 是递增的整数数列,且10a =,27a =.若存在{}n a 的一个递增的“右4型间隔数列{}n b ”,使得对于任意的{},2,3,,1i j n ∈- ,都有i j i j a b b a +≠+,求n a 的关于n 的最小值(即关于n的最小值函数()f n ).【答案】(1)1,2,4,6,9或1,2,4,8,9或1,2,6,8,9或1,4,6,8,9. (2)80k =(3)()()382n n f n -=+【解析】【分析】(1)由“左右k 型间隔数列”的定义,求数列{}:1,3,5,7,9n a 的所有递增的“左右1型间隔数列”;(2)根据“左k 型间隔数列”和“右k 型间隔数列”的定义,由1212n n b b b c c c +++=+++ ,则有1291016a a k a a ++=+,代入通项计算即可;(3)由“右4型间隔数列”的定义,有144i i i b a a +=->-,可知{}3i i b a nn -∈≥-∣,则有()()()232431n n n a a a a a a a a -=+-+-++- ()()()()413216n n ≥-+-+-+-++- ,化简即可.【小问1详解】数列{}:1,3,5,7,9n a 的“左右1型间隔数列”为1,2,4,6,9或1,2,4,8,9或1,2,6,8,9或1,4,6,8,9.【小问2详解】由12101210b b b c c c +++=+++ ,可得239239b b b c c c +++=+++ ,即128341088a a a k a a a k ++++=+++- ,即1291016a a k a a ++=+,即16168988109k +=⨯⨯+⨯⨯,所以80k =.【小问3详解】当{}2,3,,1i n ∈- 时,由144i i i b a a +=->-,可知{}3i i b a nn -∈≥-∣.又因为对任意{},2,3,,1i j n ∈- ,都有i j i j a b b a +≠+,即当{}2,3,,1i n ∈- 时,i i b a -两两不相等.因为()()()232431n n n a a a a a a a a -=+-+-++- ()()()2233117444n n b a b a b a --=++-++-+++- ()()()()223311742n n n b a b a b a --=+-+-+-++- ()()()()413216n n ≥-+-+-+-++- ()382n n -=+.所以n a 的最小值函数()()382n n f n -=+.另外,当数列{a n }的通项()0,1,38,2,2i i a i i i n =⎧⎪=⎨-+≤≤⎪⎩间隔数列{b n }的通项(),1,13,21,2i i a i i n b i i i n ==⎧⎪=⎨-+≤≤-⎪⎩或时也符合题意.【点睛】方法点睛:在实际解决“新定义”问题时,关键是正确提取新定义中的新概念、新公式、新性质、新模式等信息,确定新定义的名称或符号、概念、法则等,并进行信息再加工,寻求相近知识点,明确它们的共同点和不同点,探求解决方法,在此基础上进行知识转换,有效输出,合理归纳,结合相关的数学技巧与方法来分析与解决!。
江苏省盐城2024-2025学年高三上学期10月月考试题 数学含答案
![江苏省盐城2024-2025学年高三上学期10月月考试题 数学含答案](https://img.taocdn.com/s3/m/0ebba1b05ff7ba0d4a7302768e9951e79b8969d6.png)
2025届高三年级第一次阶段性考试数学(答案在最后)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}{2,,A y y x x B x y ==∈==R ,则A B = ()A.∅B.RC.0,1D.−∞,12.已知条件:12p x -≤<,条件:q x a >,若p 是q 的充分不必要条件,则a 的取值范围为()A.{2}a a >∣B.{2}a a ≥∣C.{1}a a <-∣D.{1}aa ≤-∣3.设函数()f x x x =,则不等式()()332log 3log 0f x f x +-<的解集是()A .1,2727⎛⎫⎪⎝⎭B.10,27⎛⎫⎪⎝⎭C.()0,27 D.()27,+∞4.已知tan 2θ=,则πsin cos24πsin 4θθθ⎛⎫- ⎪⎝⎭=⎛⎫+ ⎪⎝⎭()A.15-B.73-C.15D.735.在ABC V 中,a ,b ,c 分别为角A ,B ,C 的对边,且()cos 2cos a B c b A c +-=,则ABC V 的形状为()A .等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形6.已知函数()f x 满足()()22f x f x --=-+,对任意(]12,,2x x ∈-∞-,且12x x ≠,都有()()12120f x f x x x ->-成立,且()00f =,则()0f x >的解集是()A.()(),22,∞∞--⋃+ B.()2,2-C.()(),40,-∞-+∞ D.()4,0-7.函数()ln f x x =与函数()212g x mx =+有两个不同的交点,则m 的取值范围是()A .21,e ⎛⎫-∞ ⎪⎝⎭B.21,2e ⎛⎫-∞ ⎪⎝⎭C.210,e ⎛⎫ ⎪⎝⎭D.210,2e ⎛⎫ ⎪⎝⎭8.在锐角三角形ABC 中,2A B ∠=∠,则2b cb+的范围是()A.1,32⎛⎫⎪⎝⎭B.1,43⎛⎫⎪⎝⎭ C.43,32⎛⎫⎪⎝⎭D.12,2⎛⎫⎪⎝⎭二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,有选错的得0分,部分选对的得部分分.9.若函数()2101xy a b a a =-->≠且的图象过第一,三,四象限,则()A.01a << B.1a > C.0b > D.0b <10.下列说法正确的是()A.函数()2f x 的定义域为()0,1,则函数()1f x -的定义域为()1,1-B.y =与y x =表示同一个函数C.关于x 的不等式()()10ax a x -+>的解集为{},1A B xx =≥∣,若A B ⊆,则0a =D.若13,24a b a b -<+<<-<,则23a b +的取值范围为913,22⎛⎫-⎪⎝⎭11.设1a >,0b >,且ln 2a b =-,则下列关系式可能成立的是()A.a b= B.eb a -= C.2024a b= D.eab ≤三、填空题:本大题共3小题,每小题5分,共15分.将答案填在答题卡的相应位置.12.不等式312x ≥--的解集为________.13.化简:()()()()sin 180cos 180tan 90sin 270αααα︒-︒-︒-=︒+______.14.在ABC V ,角A ,B ,C 所对的边分别为a ,b ,c ,120ABC ∠=︒,BD BC ⊥交AC 于点D ,且1BD =,则2a c +的最小值为___________.四、解答题:本大题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.(1)设命题p :实数x 满足22430x ax a -+<,其中0a <;命题q :实数x 满足23100x x +->,且q 是p 的必要不充分条件,求实数a 的取值范围.(2)已知不等式210ax bx -->的解集是1123x x ⎧⎫-<<-⎨⎬⎩⎭,求不等式20x bx a --≥的解集.16.函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将函数()f x 的图象先向右平移π4个单位,再将所有点的横坐标缩短为原来的12(纵坐标不变),得到函数()g x 的图象,求()g x 在ππ,126⎡⎤-⎢⎥⎣⎦上的最大值和最小值;17.已知函数()e xf x =与函数()lng x x =,函数()()()11x g x g x ϕ=++-的定义域为D .(1)求()x ϕ的定义域和值域;(2)若存在x D ∈,使得(2)1()mf x f x ≥-成立,求m 的取值范围;(3)已知函数()y h x =的图象关于点(),P a b 中心对称的充要条件是函数()y h x a b =+-为奇函数.利用上述结论,求函数()1ey f x =+的对称中心.18.设ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且()()()sin sin sin sin b a ABC BAC c ABC C +∠-∠=∠-,BC ,AC 边上的两条中线AD ,BE 相交于点P .(1)求BAC ∠;(2)若AD =,BE =2,cos 14DPE ∠=,求ABC 的面积.19.已知函数2()e 31x a f x ax ax -=+-+,a ∈R .(1)当1a =时,求曲线()y f x =在1x =处切线的方程;(2)当1a >时,试判断()f x 在[1,)+∞上零点的个数,并说明理由;(3)当0x ≥时,()0f x ≥恒成立,求a 的取值范围.2025届高三年级第一次阶段性考试数学一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】C【2题答案】【答案】C【3题答案】【答案】B【4题答案】【答案】A【5题答案】【答案】D【6题答案】【答案】D【7题答案】【答案】D【8题答案】【答案】A二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,有选错的得0分,部分选对的得部分分.【9题答案】【答案】BC【10题答案】【答案】ACD【11题答案】【答案】ACD三、填空题:本大题共3小题,每小题5分,共15分.将答案填在答题卡的相应位置.【12题答案】【答案】(](),12,-∞-+∞ 【13题答案】【答案】cos α【14题答案】【答案】3四、解答题:本大题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.【15题答案】【答案】(1)(,5]-∞-;(2){2x x ≤或}3x ≥.【16题答案】【答案】(1)()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭(2)最大值为2-【17题答案】【答案】(1)定义域为()1,1-,值域为(],0-∞(2)14m ≥-(3)11,2e ⎛⎫⎪⎝⎭【18题答案】【答案】(1)π3(2)【19题答案】【答案】(1)0y =(2)1个,理由见解析(3)(,1]-∞。
四川省成都市2024-2025学年高三上学期10月月考数学试题含答案
![四川省成都市2024-2025学年高三上学期10月月考数学试题含答案](https://img.taocdn.com/s3/m/6d83c289185f312b3169a45177232f60ddcce7af.png)
2024-2025学年度高三上期数学10月阶段性测试(答案在最后)(考试时间:120分钟;满分150分)第Ⅰ卷(选择题,共58分)一、单项选择题:本题共8小题,每小题5分,共40分.1.已知集合{{},21x A x y B y y ====+,则A B = ()A .(]0,1B .(]1,2C .[]1,2D .[]0,22.已知复数z 满足23i z z +=+,则3iz+=()A .12i+B .12i-C .2i+D .2i-3.已知向量,a b 满足222a b a b -=-= ,且1b = ,则a b ⋅=()A .14B .14-C .12D .12-4.如图为函数()y f x =在[]6,6-上的图象,则()f x 的解析式只可能是()A .())lncos f x x x =+B .())lnsin f x x x =+C .())ln cos f x x x =-D .())ln sin f x x x=-5.已知()()cos f x x a x =+为奇函数,则曲线()y f x =在点()()π,πf 处的切线方程为()A .ππ0x y +-=B .ππ0x y -+=C .π0x y -+=D .0x y +=6.在体积为12的三棱锥A BCD -中,,AC AD BC BD ⊥⊥,平面ACD ⊥平面ππ,,34BCD ACD BCD ∠=∠=,若点,,,A B C D 都在球O 的表面上,则球O 的表面积为()A .12πB .16πC .32πD .48π7.若()()sin cos2sin αβααβ+=-,则()tan αβ+的最大值为()A .62B .64C .22D .248.设202420230.2024log 2023,log 2022,log 0.2023a b c ===,则()A .c a b<<B .b c a<<C .b a c<<D .a b c<<二、多项选择题:本题共3小题,每小题6分,共18分.9.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并满足条件:2024120242025202511,1,01a a a a a ->><-,下列结论正确的是()A .20242025S S <B .202420261a a <C .2024T 是数列{}n T 中的最大值D .数列{}n T 无最大值10.透明的盒子中装有大小和质地都相同的编号分别为1,2,3,4的4个小球,从中任意摸出两个球.设事件1A =“摸出的两个球的编号之和小于5”,事件2A =“摸出的两个球的编号都大于2”,事件3A =“摸出的两个球中有编号为3的球”,则()A .事件1A 与事件2A 是互斥事件B .事件1A 与事件3A 是对立事件C .事件1A 与事件3A 是相互独立事件D .事件23A A 与事件13A A 是互斥事件11.已知6ln ,6e n m m a n a =+=+,其中e nm ≠,则e nm +的取值可以是()A .eB .2eC .23eD .24e第Ⅱ卷(非选择题,共92分)三、填空题:本题共3小题,每小题5分,共15分,第14题第一个空3分,第二个空2分.12.若1sin 3α=-,则()cos π2α-=______.13.设n S 是数列{}n a 的前n 项和,点()()*,n n a n ∈N在直线2y x =上,则数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为______.14.已知点()()2,0,1,4,A B M N 、是y 轴上的动点,且满足4,MN AMN =△的外心P 在y 轴上的射影为Q ,则点P 的轨迹方程为______,PQ PB +的最小值为______.四、解答题:本题共5小题,共77分.15.(13分)设ABC△的内角,,A B C的对边分别为,,a b c,且()()()sin sin sin sin b a ABC BAC c ABC C +∠-∠=∠-,,BC AC 边上的两条中线,AD BE 相交于点P.(1)求BAC ∠;(2)若2,cos 14AD BE DPE ==∠=,求ABC △的面积.16.(15分)如图,在三棱锥D ABC -中,ABC △是以AB 为斜边的等腰直角三角形,ABD △是边长为2的正三角形,E 为AD 的中点,F 为DC 上一点,且平面BEF ⊥平面ABD .(1)求证:AD ⊥平面BEF ;(2)若平面ABC ⊥平面ABD ,求平面BEF 与平面BCD 夹角的余弦值.17.(15分)为研究“眼睛近视是否与长时间看电子产品有关”的问题,对某班同学的近视情况和看电子产品的时间进行了统计,得到如下的列联表:近视情况每天看电子产品的时间合计超过一小时一小时内近视10人5人15人不近视10人25人35人合计20人30人50人附表:α0.10.050.010.0050.001x α2.7063.8416.6357.87910.828()()()()22()n ad bc a b c d a c b d χ-=++++.(1)根据小概率值0.05α=的2χ独立性检验,判断眼睛近视是否与长时间看电子产品有关;(2)在该班近视的同学中随机抽取3人,则至少有两人每天看电子产品超过一小时的概率是多少?(3)以频率估计概率,在该班所在学校随机抽取2人,记其中近视的人数为X ,每天看电子产品超过一小时的人数为Y ,求()P X Y =的值.18.(17分)已知函数()()ln 1f x x =+.(1)求曲线()y f x =在3x =处的切线方程;(2)讨论函数()()()F x ax f x a =-∈R 的单调性;(3)设函数()()1111g x x f f x x ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭.证明:存在实数m ,使得曲线()y g x =关于直线x m =对称.19.(17分)已知椭圆C 的对称中心在坐标原点,以坐标轴为对称轴,且经过点)和2,3⎛- ⎝⎭.(1)求椭圆C 的标准方程;(2)过点()2,0M 作不与坐标轴平行的直线l 交曲线C 于,A B 两点,过点,A B 分别向x 轴作垂线,垂足分别为点D ,E ,直线AE 与直线BD 相交于P 点.①求证:点P 在定直线上;②求PAB △面积的最大值.2024-2025学年度高三上期数学10月阶段性测试(参考答案)一、单项选择题:BAACDDDC8.【解】由对数函数的性质知0.20240.2024log 0.2023log 0.20241c =>=,2024202420242023202320230log 1log 2023log 20241,0log 1log 2022log 20231=<<==<<=,所以1,01,01c a b ><<<<;当2n >时,()()ln 1ln ln 10n n n +>>->,所以()()()()222ln 1ln 1ln 1ln 1(ln )(ln )2n n n n n n ++-⎡⎤+⋅--<-⎢⎥⎣⎦()()()2222222222ln 1ln 11ln (ln )(ln )(ln )(ln )(ln )0222n n n n n n n n n ⎡⎤-+-⎡⎤⎛⎫=-=-<-=-=⎢⎥ ⎪⎢⎢⎥⎝⎭⎣⎦⎣⎦,取2023n =,则2lg2022lg2024(lg2023)0⋅-<,所以220232024lg2022lg2023lg2022lg2024(lg2023)log 2022log 20230lg2023lg2024lg2023lg2024b a ⋅--=-=-=<⋅,即b a <,综上,b a c <<.二、多项选择题:ABC ACD CD .11.【解】令()6ln f x x x =-,则()661xf x x x-=-=',故当()0,6x ∈时,()()0,f x f x '>单调递增,当()6,x ∈+∞时,()()0,f x f x '<单调递减,()()6ln ,66lne e ,e n n n m m a n a f m f =+==+∴= ,又e n m ≠,不妨设06e n m <<<,解法一:记12,e nx m x ==,设()()()()12,0,6g x f x f x x =--∈,则()()()()2662(6)1201212x x x g x f x f x x x x x ---=---=-=<--'''在()0,6上恒成立,所以()g x 在()0,6上单调递减,所以()()()()()1260,0,6g x f x f x g x =-->=∈,则()()()11212f x f x f x ->=,又因为()1212,6,x x -∈+∞,且()f x 在()6,+∞上单调递减,所以1212x x -<,则1212x x +>,所以e 12n m +>.解法二:由6ln ,66lne e nnm m a n a =+==+,两式相减,可得e 6ln e n nm m =-,令e (1)n t t m=>,则()()61ln 6ln 6ln 6ln 1,,e ,e 111n n t t t t tt m t m mt m t t t +=-===∴+=---;令()()()1ln 21,1g t t t t t =+-->,则()11ln 2ln 1t g t t t t t+=+-=+-',令1ln 1(1)y t t t =+->,则221110t y t t t-=-=>'在()1,+∞上恒成立,所以()g t '在()1,+∞上单调递增,因为()()10g t g ''>=在()1,+∞上恒成立,所以()g t 在()1,+∞上单调递增,则()()10g t g >=,即()1ln 21t tt +>-,所以()61ln e 121n t tm t ++=>-.解法三:6ln ,66lne e nnm m a n a =+==+ ,两式相减得e 6lne ln n nmm-=-,212121ln ln 2x x x xx x -+<<-,可得e 12n m +>,三、填空题:79-1n n +24y x =;314.【解】设点()0,M t ,则()0,4)N t -根据点P 是AMN 的外心,(),2P x t -,而22||PM PA =,则2224(2)(2)x x t +=-+-,所以2(2),24t x y t -==-从而得到点P 的轨迹为24y x =,焦点为()1,0F 由抛物线的定义可知1PF PQ =+,因为4,14PF PB BF PF PB PQ PB +≥=+=++≥,即3PQ PB +≥,当点P 在线段BF 上时等号成立.四、解答题:15.【解】(1)因为()()()sin sin sin sin b a ABC BAC c ABC C +∠-∠=∠-,所以由正弦定理得222b c a bc +-=,由余弦定理得2221cos 22b c a BAC bc +-∠==,又0πBAC <∠<,所以π3BAC ∠=.(2)因为P 是,BC AC 边上的两条中线AD 与BE 的交点,所以点P 是ABC △的重心.又7,2,AD BE APB DPE ==∠=∠,所以在ABP △中,由余弦定理22222cos c AB PA PB PA PB APB==+-⋅∠2227474724333314⎛⎛⎫=+-⨯⨯⨯= ⎪⎝⎭⎝⎭,所以2c =,又π2,3BE BAC =∠=,所以2AE BE ==,所以24b AE ==,所以ABC △的面积为1π42sin 2323⨯⨯⨯=.16.【解】(1)ABD △是边长为2的正三角形,E 为AD 的中点,则BE AD ⊥.且平面BEF ⊥平面ABD ,平面BEF 平面,ABD BE AD =⊂平面ABD ,则AD ⊥平面BEF .(2)由于底面ABC △为等腰直角三角形,ABD △是边长为2正三角形,可取AB 中点O ,连接OD ,则,OD AB OC AB ⊥⊥.且平面ABC ⊥平面ABD ,且平面ABC 平面ABD AB =,则OD ⊥平面ABC .因此,,OC OA OD 两两垂直,可以建立空间直角坐标系O xyz -.ABD △是边长为2的正三角形,则可求得高3OD =.底面ABC △为等腰直角三角形,求得1OC OA OB ===.可以得到关键点的坐标()()()(0,1,0,0,1,0,1,0,0,0,0,3A B C D -由第(1)问知道平面BEF 的法向量可取(0,3AD =-.设平面BCD 的法向量为(),,m x y z =,且()(1,1,0,1,0,3BC CD ==- ,则m BC m CD ⎧⋅=⎪⎨⋅=⎪⎩,则030x y x z +=⎧⎪⎨-+=⎪⎩,解得()3,3,1m = .则2321cos ,727m AD m AD m AD⋅〈〉==⨯⋅ .则平面BEF 与平面BCD 夹角的余弦值为217.17.【解】(1)零假设0H 为:学生患近视与长时间使用电子产品无关.计算可得,220.0550(1025105)4006.349 3.8411535203063x χ⨯⨯-⨯==≈>=⨯⨯⨯,根据小概率值0.05α=的2χ独立性检验,推断0H 不成立,即患近视与长时间使用电子产品的习惯有关.(2)每天看电子产品超过一小时的人数为ξ,则()()()21310510331515C C C 45512069223C C 45591P P P ξξξ⨯+≥==+==+==,所以在该班近视的同学中随机抽取3人,则至少有两人每天看电子产品超过一小时的概率是6991.(3)依题意,()()1111110,22245525P X Y P X Y ===⨯====⨯=,事件1X Y ==包含两种情况:①其中一人每天看电子产品超过一小时且近视,另一人既不近视,每天看电子产品也没超过一小时;②其中一人每天看电子产品超过一小时且不近视,另一人近视且每天看电子产品没超过一小时,于是()1122111161C C 2551025P X Y ===⨯⨯+⨯⨯=,所以()()()()1165301242525100P X Y P X Y P X Y P X Y ====+==+===++=.18.【解】(1)切点为()3,ln4.因为()11f x x '=+,所以切线的斜率为()134k f ='=,所以曲线()y f x =在3x =处的切线方程为()1ln434y x -=-,化简得48ln230x y -+-=;(2)由题意可知()()ln 1F x ax x =-+,则()F x 的定义域为()1,-+∞,()()11,1,,11ax a F x a x x x +-=-=∈-'+∞++当0a ≤时,()101F x a x '=-<+,则()F x 在()1,-+∞上单调递减;当0a >时,令()0F x '=,即10ax a +-=,解得11x a=-,若()11111,01a ax a x F x a a x '-+--<≤=-=≤+;若()111,01ax a x F x a x +--'>=>+,则()F x 在11,1a ⎛⎤-- ⎥⎝⎦上单调递减,在11,a ⎛⎫-+∞ ⎪⎝⎭上单调递增.综上所述,当0a ≤时,()F x 在()1,-+∞上单调递减;当0a >时,()F x 在11,1a ⎛⎤-- ⎥⎝⎦上单调递减,在11,a ⎛⎫-+∞ ⎪⎝⎭上单调递增;(3)证明:函数()()111ln 1ln 2g x x x x ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭,函数()g x 的定义域为()(),10,-∞-+∞ .若存在m ,使得曲线()y g x =关于直线x m =对称,则()(),10,-∞-+∞ 关于直线x m =对称,所以12m =-由()()111ln 1ln 211g x x x x ⎛⎫⎛⎫--=-+-+ ⎪ ⎪----⎝⎭⎝⎭21121lnln ln ln 111x x x x x x x x x x +++=--=-+++()()()11211211ln ln ln 1ln ln 1x x x x x x x g x x x x x x+++++=+--=+-=+.可知曲线()y g x =关于直线12x =-对称.19.【解】(1)设椭圆C 的方程为221(0,0,)mx ny m n m n +=>>≠,代入已知点的坐标,得:312413m n m n +=⎧⎪⎨+=⎪⎩,解得1612m n ⎧=⎪⎪⎨⎪=⎪⎩,所以椭圆C 的标准方程为22162x y +=.(2)如图:①设直线l 的方程为()20x my m =+≠,并记点()()()112200,,,,,A x y B x y P x y,由222,162x my x y =+⎧⎪⎨+=⎪⎩消去x ,得()223420m y my ++-=,易知()()222Δ16832410m m m =++=+>,则12122242,33m y y y y m m --+==++.由条件,()()12,0,,0D x E x ,直线AE 的方程为()1212y y x x x x =--,直线BD 的方程为()2121y y x x x x =--,联立解得()()2112211212012121222223my y my y x y x y my y x y y y y y y ++++====++++,所以点P 在定直线3x =上.②0212121121111312222PAB S AD x x y x y my y my y =⋅-=⋅-=⋅-=-△,而121212my y y y =+,所以()121212my y y y =+,则1211211224PABy y S y y y +=-=-=△令t =,则1t >,所以21222224PAB t S t t t=⋅=⋅≤++△,当且仅当t =时,等号成立,所以PAB △面积的最大值为4.。
江苏省徐州市王杰中学2022届高三10月月考数学试题 Word版含答案
![江苏省徐州市王杰中学2022届高三10月月考数学试题 Word版含答案](https://img.taocdn.com/s3/m/a8acf9795bcfa1c7aa00b52acfc789eb172d9eb8.png)
王杰中学2021---2022高三月考数学试卷一, 填空题:1. 已知集合}2,0{},2,1,0,1{=-=B A ,则集合A B =_____________2. 命题“,sin 1R θθ∀∈≤”的否定是 .3. i 是虚数单位,若(i 1)i z +=,则=||z ______________4. 已知a b ∈R 、,i 是虚数单位,若(2)a i i b i +=+,则a +b 的值是 .5. 已知2=a ,3=b ,a ,b 的夹角为60,则2-=a b ____________.6. 命题“若a b >,则22ac bc >(∈c b a ,,R )”否命题的真假性为7. 函数()2ln 2()1x x f x x -=-的定义域为8. 函数22,0,()1,0xx f x x x ⎧⎪=⎨-+>⎪⎩≤的值域为9.等比数列}{n a 的公比大于1,6,152415=-=-a a a a ,则=3a .10.将函数()2sin 2f x x =的图象上每一点向右平移6π个单位,得到函数()y g x =的图象,则()g x =11.若函数42x x ay +=的图象关于原点对称,则实数a 等于 . 12.已知函数()()log a f x x b =+(0,1,R a a b >≠∈)的图像如图所示,则a b +的值是 13.若x 轴是曲线()ln 3f x x kx =-+的一条切线,则k =14.已知两曲线f (x )=cos x ,g (x )=3sin x ,x ∈(0,π2)相交于点A .若两曲线在点A 处的切线与x 轴分别相交于B ,C 两点,则线段BC 的长为二, 解答题:15. 已知α为锐角,cosα=55.(1)求tan(α+π4)的值; (2)求sin(2α+π3)的值. 16.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3sin 5A =,1tan()2A B -=-. (1)求tan B 的值; (2)若5b =,求c . 17. 已知|a |=1,|b |=3,b +a =(3,1) 求:-(2)b +a 与b a -的夹角 18.已知等差数列}{n a 的前n 项和为n S ,且53=a ,22515=S , (Ⅰ)求数列}{n a 的通项n a ; (Ⅱ)设n b n a n 22+=,求数列}{n b 的前n 项和n T . 19. 半圆的直径AB =6,O 为圆心,C 为半圆上不同于A 、B 的任意一点,若P 为半径OC 上的动点,求(PA →+PB →)·PC →的最小值. 20.(16分)已知函数2()8ln f x x x =-,2()14g x x x =-+。
2021届广东省深圳高级中学高三上学期10月月考数学试题(解析版)
![2021届广东省深圳高级中学高三上学期10月月考数学试题(解析版)](https://img.taocdn.com/s3/m/79df6bad0b4e767f5bcfce4b.png)
2021届广东省深圳高级中学高三上学期10月月考数学试题一、单选题1.设集合2{|0}M x x x =-≥,{|2}N x x =<,则M N =( )A .{|0}x x ≤B .{|12}x x ≤<C .{|01}x x ≤≤D .{|0x x ≤或12}x ≤<【答案】D【解析】先解不等式得集合M ,再根据交集定义求结果. 【详解】2{|0}(,0][1,)M x x x =-≥=-∞+∞ (,0][1,2)MN ∴=-∞故选:D 【点睛】本题考查集合交集、解一元二次不等式,考查基本分析求解能力,属基础题. 2.已知i 为虚数单位,则复数131ii-+的虚部为( ) A .2- B .2i -C .2D .2i【答案】A【解析】先化简复数z ,然后由虚部定义可求. 【详解】()()()()131********i i i ii i i -----===++-﹣1﹣2i , ∴复数131ii-+的虚部是﹣2, 故选A . 【点睛】该题考查复数代数形式的运算、复数的基本概念,属基础题.3.设a R ∈,则“1a =-”是“直线10ax y +-=与直线50x ay ++=平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【解析】【详解】【分析】试题分析:若1a =-,则直线 10ax y +-=与直线50x ay ++=平行,充分性成立;若直线 10ax y +-=与直线50x ay ++=平行,则 1a =或,必要性不成立. 【考点】充分必要性.4.设向量a ,b 满足(3,1)a b +=,1a b ⋅=,则||a b -=( ) A .2 B 6C .22D 10【答案】B【解析】由题意结合向量的运算法则,以及向量的模的运算公式,即可求解. 【详解】由题意结合向量的运算法则,可知:()222431416a b a b a b -=+-⋅=+-⨯=故选:B. 【点睛】本题主要考查向量的运算法则,向量的模的求解等知识,意在考查学生的转化能力和计算求解能力.5.在6x x ⎫⎝的二项展开式中,2x 的系数为( ) A .154-B .154C .38-D .38【答案】C 【解析】【详解】因为1r T +=66((rr r x C x-⋅⋅,可得1r =时,2x 的系数为38-,C 正确.6.已知函数()()1f x x x =+,则不等式()()220f x f x +->的解集为( )A .(2,1)-B .(1,2)-C .(,1)(2,)-∞-+∞D .(,2)(1,)-∞-+∞【答案】D【解析】判断出()f x 的奇偶性与单调性,然后将不等式转化为()()22f xf x <-,【详解】()()1f x x x =+()()()()11f x x x x x f x ∴-=--+=-+=-()f x ∴为奇函数,当0x ≥时,()2f x x x =+,可知()f x 在[)0,+∞上单调递增;()f x ∴在(],0-∞上也单调递增,即()f x 为R 上的增函数;由()()220f xf x +->()()22f x f x ⇒>--()()22f x f x ⇒>-,22x x ∴>-,解得:2x <-或1x >故选:D. 【点睛】本题考查利用函数单调性与奇偶性求解函数不等式的问题,解题关键在于将不等式转化为符合单调性定义的形式,利用单调性转变为自变量的比较,属于常考题型.7.如图,双曲线()2222:10,0x y C a b a b-=>>的左,右焦点分别为1F ,2F ,过2F 作直线与C 及其渐近线分别交于Q ,P 两点,且Q 为2PF 的中点.若等腰三角形12PF F 的底边2PF 的长等于C 的半焦距.则C 的离心率为( )A 2215-+ B .43C 2215+ D .32【答案】C【解析】先根据等腰三角形的性质得12QF PF ⊥,再根据双曲线定义以及勾股定理列方程,解得离心率. 【详解】连接1QF ,由12PF F △为等腰三角形且Q 为2PF 的中点,得12QF PF ⊥,由2PF c =知22c QF =.由双曲线的定义知122cQF a =+,在12Rt FQF 中,()2222222c c a c ⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭,22284708470a ac c e e ∴+-=∴+-= 2157e +∴=(负值舍去). 故选:C 【点睛】本题考查双曲线的定义、双曲线的离心率,考查基本分析求解能力,属基础题. 8.将函数sin 2y x =的图象向右平移ϕ(02πϕ<<)个单位长度得到()y f x =的图象.若函数()f x 在区间0,4⎡⎤⎢⎥⎣⎦π上单调递增,且()f x 的最大负零点在区间5,126ππ⎛⎫-- ⎪⎝⎭上,则ϕ的取值范围是( ) A .,64ππ⎛⎤⎥⎝⎦ B .,62ππ⎛⎫⎪⎝⎭ C .,124ππ⎛⎤⎥⎝⎦ D .,122ππ⎛⎫⎪⎝⎭ 【答案】C【解析】利用函数sin()y A x ωϕ=+的图象变换规律,求得()f x 的解析式,再利用正弦函数的性质求得ϕ的取值范围. 【详解】将函数sin 2y x =的图象向右平移ϕ(02πϕ<<)个单位长度得到()sin(22)y f x x ϕ==-的图象.若函数()f x 在区间0,4⎡⎤⎢⎥⎣⎦π上单调递增,则22πϕ-≤-,且222ππϕ-≤,求得04πϕ<≤①.令22x k ϕπ-=,求得2k x πϕ=+,Z k ∈,故函数的零点为2k x πϕ=+,k Z ∈. ∵()f x 的最大负零点在区间5,126ππ⎛⎫-- ⎪⎝⎭上, ∴51226k πππϕ-<+<-, ∴512262k k ππππϕ--<<--②. 由①②令1k =-,可得124ππϕ<≤, 故选:C . 【点睛】本题主要考查函数sin()y A x ωϕ=+的图象变换规律,正弦函数的性质综合应用,属于中档题.二、多选题9.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、“90后”从事互联网行业岗位分布条形图,则下列结论中正确的是( )注:“90后”指1990年及以后出生的人,“80后”指1980-1989年之间出生的人,“80前”指1979年及以前出生的人.A .互联网行业从业人员中“90后”占一半以上B .互联网行业中从事技术岗位的人数超过总人数的20%C .互联网行业中从事运营岗位的人数“90后”比“80前”多D .互联网行业中从事技术岗位的人数“90后”比“80后”多 【答案】ABC【解析】根据饼状图确定互联网行业从业人员中“90后”占总人数比例,即可判断A; 根据条形图确定互联网行业从业人员中“90后”从事技术岗位的人数占总人数比例,即可判断B;饼状图确定“80前”的人数占总人数的比例,两者比较可判断C;根据条形图确定互联网行业从业人员中“90后”从事技术岗位的人数占总人数的比例,但“80后”中从事技术岗位的比例不可确定,即可判断D. 【详解】由题图可知,互联网行业从业人员中“90后”占总人数的56%,超过一半,A 正确; 互联网行业从业人员中“90后”从事技术岗位的人数占总人数的56%39.6%22.176%⨯=,超过20%,所以互联网行业从业人员(包括“90后”“80后”“80前”)从事技术岗位的人数超过总人数的20%,B 正确;互联网行业从业人员中“90后”从事运营岗位的人数占总人数的56%17%9.52%⨯=,超过“80前”的人数占总人数的比例,且“80前”中从事运营岗位的比例未知,C 正确; 互联网行业从业人员中“90后”从事技术岗位的人数占总人数的56%39.6%22.176%⨯=,小于“80后”的人数占总人数的比例,但“80后”中从事技术岗位的比例未知,D 不一定正确. 故选:ABC 【点睛】本题考查饼状图与条形图,考查数据分析与判断能力,属基础题. 10.对于实数a 、b 、m ,下列说法正确的是( ) A .若22am bm >,则a b > B .若a b >,则a ab bC .若0b a >>,0m >,则a m ab m b+>+ D .若0a b >>且ln ln a b =,则()23,a b +∈+∞ 【答案】ABCD【解析】首先可根据22am bm >以及20m >判断出A 正确,然后将B 项分为0a b >>、0a b 以及0a b >≥三种情况进行讨论,即可判断出B 正确,再然后通过判断0a m a b m b +->+即可得出C 正确,最后可根据题意得出1a b =以及122a b a a,设()()121f a a a a=+>,通过函数()f a 的单调性即可判断出D 正确.【详解】A 项:因为22am bm >,20m >,所以a b >,A 正确;当0a b 时,22a aa b b b ,当0a b >≥时,22a a ab b b ,综上所述,a ab b 成立,B 正确;C 项:因为0b a >>,0m >, 所以0a m b a b mb a ma m a ab mb ab amb m bb b mb b mb b m,C 正确;D 项:因为0a b >>,ln ln a b =,所以1a b =,1a >,122a b a a, 设()()121f a a a a =+>,因为2120f aa,所以函数()f a 在区间()1,+∞上单调递增, 故13f af ,即()23,a b +∈+∞,D 正确,故选:ABCD. 【点睛】本题主要考查绝对值不等式的证明以及导数的灵活应用,考查通过去绝对值证明绝对值不等式,考查化归与转化思想以及函数方程思想,考查分类讨论思想,考查计算能力,是中档题.11.已知函数()122log xf x x =-,且实数a ,b ,()0c a b c >>>满足()()()0f a f b f c <.若实数0x 是函数()y f x =的一个零点,那么下列不等式中可能成立的是( ) A .0x a < B .0x a > C .0x b < D .0x c <【答案】ABC【解析】先判断()f x 单调性,根据题设条件,得到()()(),,f a f b f c 的符号,结合零点的定义,即可求解. 【详解】由题意,函数()1222log 2log xxf x x x =-=+,可知函数()f x 在区间()0,∞+上单调递增,则()()(),,f a f b f c 可能()()()0,0,0f b f a f c >><或()()()0,0,0f a f b f c <<<,又由实数0x 是函数()y f x =的一个零点,即()00f x =, 综上可得,只有x c >成立,结合选项,可得不等式中可能成立的是0x a <,0x a >和0x b <. 故选:ABC. 【点睛】本题主要考查了函数的零点的概念,以及指数函数、对数函数的单调性的应用,其中解答中熟记指数函数与对数函数的图象与性质,结合函数零点的概念求解是解答的关键,着重考查推理与运算能力. 12.已知函数()ln f x x =,若()f x 在1x x =和()212x x x x =≠处切线平行,则( ) A.12= B .12128x x <C .1232x x +<D .2212512x x +>【答案】AD【解析】根据()()12f x f x ='',即可判断A 选项;再结合均值不等式即可判断其它选项. 【详解】由题意知1()(0)f x x x'=->,因为()f x 在1x x =和()212x x x x =≠处切线平行, 所以()()12f x f x ''=,1211x x -=-,12=,A 正确; 由基本不等式及12x x ≠,可得12=>12256x x >,B错误;1232x x +>>,C 错误;2212122512x x x x +>>,D 正确.故选:AD本题考查利用导数的几何意义处理切线平行的问题,涉及均值不等式的使用,属综合中档题.三、填空题13.已知cos θ=,且,2πθπ⎛⎫∈ ⎪⎝⎭,则tan 2θ=__________.【答案】43【解析】先利用已知条件和同角三角函数的关系求出tan θ的值,再利用正切的二倍角公式可求出tan 2θ的值. 【详解】解:因为cos 5θ=-,且,2πθπ⎛⎫∈ ⎪⎝⎭,所以sin θ===, 所以sin tan 2cos θθθ==-, 所以222tan 2(2)4tan 21tan 1(2)3θθθ⨯-===---,故答案为:43. 【点睛】三角函数的化简求值问题,可以从四个角度去分析:(1)看函数名的差异;(2)看结构的差异;(3)看角的差异;(4)看次数的差异.对应的方法是:弦切互化法、辅助角公式(或公式的逆用)、角的分拆与整合(用已知的角表示未知的角)、升幂降幂法. 14.一组数据的平均数是8,方差是16,若将这组数据中的每一个数据都减去4,得到一组新数据,则所得新数据的平均数与方差的和是________. 【答案】20【解析】根据新数据与原数据平均数与方差的关系直接求解,即得结果. 【详解】因为原数据平均数是8,方差为16,将这组数据中的每一个数据都减去4,所以新数据的平均数为844-=,方差不变仍为16,所以新数据的方差与平均数的和为20. 故答案为:20本题考查新数据与原数据平均数与方差的关系,考查基本分析求解能力,属基础题. 15.已知A ,B ,C 为球O 的球面上的三个定点.60ABC ∠=︒,2AC =,P 为球O 的球面上的动点,记三棱锥РABC -的体积为1V ,三棱锥O ABC -的体积为2V .若12V V 的最大值为3.则球O 的表面积为________. 【答案】649π【解析】先求出ABC 的外接圆半径,根据题意确定12V V 的最大值取法,再根据12V V 的最大值为3,解得球半径,最后根据球的表面积公式得结果. 【详解】如图所示,设ABC 的外接圆圆心为1O ,半径为r ,则1OO ⊥平面ABC . 设球O 的半径为R ,1OO d =,则2432sin sin 603AC r ABC ===∠︒,即233r =.121313P ABCABCP ABC ABC h S h V V d d S --⋅⋅==⋅⋅所以当P ,O ,1O 三点共线时,12max3V R dV d ⎛⎫+==⎪⎝⎭,即2R d =. 由222R d r =+,得2169R =,所以球O 的表面积26449S R ππ==. 故答案为:649π【点睛】本题考查三棱锥及其外接球的体积,考查空间想象能力以及基本分析求解能力,属中档四、双空题16.已知直线:2l y x b =+与抛物线()2:20C y px p =>相交于A 、B 两点,且5AB =,直线l 经过C 的焦点.则p =________,若M 为C 上的一个动点,设点N 的坐标为()3,0,则MN 的最小值为________.【答案】2【解析】将直线l 的方程与抛物线C 的方程联立,列出韦达定理,利用抛物线的焦点弦长公式可求得p 的值,设点()00,M x y ,可得()200040y x x =≥,利用两点间的距离公式结合二次函数的基本性质可求得MN 的最小值. 【详解】由题意知,直线:2l y x b =+,即22b y x ⎛⎫=+⎪⎝⎭. 直线l 经过抛物线()2:20C y px p =>的焦点,22b p∴-=,即b p =-. ∴直线l 的方程为2y x p =-.设()11,A x y 、()22,B x y ,联立222y x p y px=-⎧⎨=⎩,消去y 整理可得22460x px p -+=,由韦达定理得1232p x x +=, 又5AB =,12552x p p x ∴++==,则2p =,∴抛物线2:4C y x =.设()()000,0M x y x ≥,由题意知2004y x =,则()()()2222200000334188x y x x MNx =-+=-+=-+≥,当01x =时,2MN 取得最小值8,MN ∴的最小值为.故答案为:2;. 【点睛】本题考查利用抛物线的焦点弦长求参数,同时也考查了抛物线上的点到定点距离最值的求解,考查了抛物线方程的应用,考查计算能力,属于中等题.五、解答题17.请从下面三个条件中任选一个,补充在下面的问题中,并解决该问题①2252b c +=;②ABC 的面积为;③26AB AB BC +⋅=-.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .在已知2b c -=,A 为钝角,sin A (1)求边a 的长;(2)求sin 26C π⎛⎫- ⎪⎝⎭的值.【答案】选择条件见解析;(1)8a =;(2)1764.【解析】(1)方案一:选择条件①,结合向量数量积的性质可求bc ,进而可求b ,c ,然后结合余弦定理可求;方案二:选择条件②:由已知即可直接求出b ,c ,然后结合余弦定理可求; 方案三:选择条件③,由已知结合三角形的面积公式可求bc ,进而可求b ,c ,然后结合余弦定理可求.(2)由余弦定理可求cos C ,然后结合同角平方关系及二倍角公式,和差角公式即可求解. 【详解】方案一:选择条件①(1)由22522b c b c ⎧+=⎨-=⎩,解得64b c =⎧⎨=⎩,A 为钝角,sin A 1cos 4A =-,则22212cos 3616264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭, 故8a =;(2)2226436167cos 22868a b c C ab +-+-===⨯⨯,∴sin 8C ==,∴217cos 22cos 132C C =-=,sin 22sin cos 32C C C ==, ∴sin 2sin 2cos cos 2sin 666C C C πππ⎛⎫-=- ⎪⎝⎭1711732232264=-⨯=; 方案二:选择条件②(1)sin A =1sin 2ABC S bc A ===△24bc =, 由242bc b c =⎧⎨-=⎩,解得64b c =⎧⎨=⎩,则22212cos 3616264644a b c b A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭, 故8a =;(2)2226436167cos 22868a b c C ab +-+-===⨯⨯,∴sin C ==,∴217cos 22cos 132C C =-=,sin 22sin cos C C C ==, ∴sin 2sin 2cos cos 2sin 666C C C πππ⎛⎫-=- ⎪⎝⎭1711732232264=-⨯=; 方案三:选择条件③:(1)A 为钝角,sin A =1cos 4A =-,2()cos 6AB AB BC AB AB BC AB AC bc A +⋅=⋅+=⋅==-,24bc =,由242bc b c =⎧⎨-=⎩,解得6b =,4c =,则22212cos 3616264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭, 故8a =;(2)2226436167cos 22868a b c C ab +-+-===⨯⨯,∴sin C ==, ∴217cos 22cos 132C C =-=,sin 22sin cos C C C ==, ∴sin 2sin 2cos cos 2sin 666C C C πππ⎛⎫-=- ⎪⎝⎭171322=-⨯=. 【点睛】本题主要考查了余弦定理,三角形的面积公式,和差角公式、二倍角公式在求解三角形中的应用,属于中档试题.18.已知等差数列{}n a 的公差0d ≠,若611a =,且2a ,5a ,14a 成等比数列. (1)求数列{}n a 的通项公式; (2)设11n n n b a a +=⋅,求数列{}n b 的前n 项和n S .【答案】(1)21n a n =-;(2)21n nS n =+. 【解析】(1)利用等差数列的通项公式以及等比中项列方程组可求解. (2)利用裂项求和法即可求解. 【详解】 (1)611=a ,1511a d ∴+=,①2a ,5a ,14a 成等比数列,∴2111(4)()(13)a d a d a d +=++,化简得212d a d =,②又因为0d ≠且由①②可得,11a =,2d =.∴数列的通项公式是21n a n =-(2)由(1)得111111()(21)(21)22121n n n b a a n n n n +===--+-+, 12111111(1)23352121n n S b b b n n ∴=++⋯+=-+-+⋯+--+11(1)221n =-+21nn =+ 所以21n nS n =+. 【点睛】本题考查了等差数列的通项公式、裂项求和法,考查了基本运算求解能力,属于基础题. 19.如图所示,在三棱柱中111ABC A B C -,侧面11ABB A 是矩形,2AB =,122AA =,D 是1AA 的中点,BD 与1AB 交于O ,且CO ⊥面11ABB A .(1)求证:1BC AB ⊥;(2)若OC OA =,求二面角D BC A --的余弦值. 【答案】(1)详见解析;(2)105. 【解析】(1)推导出DB ⊥AB 1,1CO AB ⊥,从而AB 1⊥平面BDC ,由此能证明AB 1⊥BC ,(2)以O 为坐标原点,OA ,O 1B ,OC 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,利用向量法能求出二面角D BC A --的余弦值. 【详解】解:(1)由于侧面11ABB A 是矩形,D 是中点, 故12tan 2AB B ∠=,2tan 2ABD ∠=,所以1AB B ABD ∠=∠,又1190BAB AB B ∠+∠=, 于是190BAB ABD ∠+∠=,1BD AB ⊥,而CO ⊥面1ABB A ,所以1CO AB ⊥1AB ⊥面BCD ,得到1BC AB ⊥(2)如图,建立空间直角坐标系,则20,3,03A ⎛⎫ ⎪⎝⎭,26,0,03B ⎛⎫ ⎪⎝⎭,20,0,33C⎛⎫⎪⎝⎭,6,0,03D⎛⎫⎪⎪⎝⎭可以计算出面ABC的一个法向量的坐标为()11,2,2n=-而平面BCD的一个法向量为()20,1,0n=设二面角D BC A--的大小为θ,则121210cos5n nn nθ⋅==【点睛】本题考查线线垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.20.如图,设点A,B的坐标分别为(3,0)-,(3,0),直线AP,BP相交于点P,且它们的斜率之积为23-.(1)求P的轨迹方程;(2)设点P的轨迹为C,点M、N是轨迹为C上不同于A,B的两点,且满足//AP OM,//BP ON,求MON△的面积.【答案】(1)(221332x yx+=≠;(2)62.【解析】(1)先设动点坐标,根据条件斜率之积为23-列方程即得解;(2)由平行条件得斜率关系得23OM ONk k=-,即得坐标关系121223y yx x=-;设直线MN的方程x my t =+,与椭圆方程联立,利用韦达定理可得韦达定理,代入121223y y x x =-可得22223t m =+,再求三角形面积,将22223t m =+代入化简即得解. 【详解】(1)由已知设点P 的坐标为(),x y ,由题意知(23AP BP k k x ⋅==-≠,化简得P的轨迹方程为(22132x y x +=≠.(2)证明:由题意M N 、是椭圆C 上非顶点的两点,且//AP OM ,//BP ON , 则直线AP ,BP 斜率必存在且不为0,又由已知23AP BP k k =-⋅. 因为//AP OM ,//BP ON ,所以23OM ON k k =-. 设直线MN 的方程为x my t =+,代入椭圆方程22132x y+=,得()222324260m ymty t +++-=,设,M N 的坐标分别为()()1122,,,x y x y ,则2121222426,3232mt t y y y y m m-+=-=++. 又()2121222221212122636OM ONy y y y t k k x x m y y mt y y t t m -===+++-, 所以222262363t t m -=--,得22223t m =+.又1212MONSt y y ∆=-=, 所以2MONS∆==,即MON △的面积为定值2.【点睛】本题主要考查动点的轨迹方程的求法,考查椭圆中的定值问题的求解,考查直线和椭圆的位置关系,意在考查学生对这些知识的理解掌握水平和计算分析推理能力》 21.某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为(01)p p <<,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为()f p ,求()f p 的最大值点0p ; (2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ;(ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【答案】(1)0.1;(2)(i )490;(ii )应该对余下的产品作检验.【解析】(1)利用独立重复实验成功次数对应的概率,求得()()182220C 1f p p p =-,之后对其求导,利用导数在相应区间上的符号,确定其单调性,从而得到其最大值点,这里要注意01p <<的条件;(2)先根据第一问的条件,确定出0.1p =,在解(i )的时候,先求件数对应的期望,之后应用变量之间的关系,求得赔偿费用的期望;在解(ii )的时候,就通过比较两个期望的大小,得到结果. 【详解】(1)20件产品中恰有2件不合格品的概率为()()182220C 1f p p p =-. 因此()()()()()1817172222020C 211812C 1110f p p p p p p p p ⎡⎤='---=--⎣⎦.令()0f p '=,得0.1p =.当()0,0.1p ∈时,()0f p '>;当()0.1,1p ∈时,()0f p '<. 所以()f p 的最大值点为00.1p =; (2)由(1)知,0.1p =.(i )令Y 表示余下的180件产品中的不合格品件数,依题意知()180,0.1Y B ~,20225X Y =⨯+,即4025X Y =+.所以()40254025490EX E Y EY =+=+=.(ii )如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.由于400EX >,故应该对余下的产品作检验. 【点睛】该题考查的是有关随机变量的问题,在解题的过程中,一是需要明确独立重复试验成功次数对应的概率公式,再者就是对其用函数的思想来研究,应用导数求得其最小值点,在做第二问的时候,需要明确离散型随机变量的可取值以及对应的概率,应用期望公式求得结果,再有就是通过期望的大小关系得到结论. 22.已知0a >,函数()ln (1),()x f x x a x g x e =--=.(1)经过原点分别作曲线(),()y f x y g x ==的切线12l l 、,若两切线的斜率互为倒数,证明:211e e a e e--<<; (2)设()(1)()h x f x g x =++,当0x ≥时,()1h x ≥恒成立,试求实数a 的取值范围.【答案】(1)证明见解析;(2)](,2-∞.【解析】(1)求出两条直线的斜率,设1l 与曲线()y f x =的切点为()11,x y 1111111e e x y ax a x ⇒==-⇒=-,令11()ln 1m x x x e=-+-利用导数单调性可得答案;(2)构造函数()(1)()h x f x g x =++ln(1)e xx ax =+-+,求其导数利用函数的单调性,得出()h x 在区间()00,x 上递减,在区间()0,x +∞递增,又()0(0)1h x h <=,得到实数a 的取值范围. 【详解】(1)设切线22:l y k x =,切点为()22,x y .则22e x y =,()22222e x y k g x x ===' 22x 22e e 1x x x ⇒=⇒=,2e y =2e k ⇒=.由题意,知切线1l 的斜率为1211e k k ==,方程为1ey x =.设1l 与曲线()y f x =的切点为()11,x y . 则()111111y k f x a x x =-='= 1111111e ex y ax a x ⇒==-⇒=-. 又()111ln 1y x a x =--,消去1y 、a 后,整理得1111ln 10ex x -+-=. 令11()ln 1m x x x e=-+-,则 22111()x m x x x x-'=-=. 于是,()m x 在区间()0,1上单调递减,在区间()1,+∞上单调递增.若1(0,1)x ∈,由112e 0e e m ⎛⎫=-+-> ⎪⎝⎭,()110e m =-<, 则11,1x e ⎛⎫∈ ⎪⎝⎭.而111e a x =-在11,1x e ⎛⎫∈ ⎪⎝⎭上单调递减, 故211e e a e e--<<. 若()11,x ∈+∞,因为()m x 在区间()1,+∞上单调递增,则()0m e =,所以,1110a x e=-=,这与题设0a >矛盾. 综上,211e e a e e--<<. (2)注意到,()(1)()h x f x g x =++ ln(1)e x x ax =+-+1()e 1x h x a x =++'⇒-.第 1 页 共 6 页 i .当2a ≤时,由1x e x ≥+,则1()e 1x h x a x =+-+' 11201x a a x ≥++-≥-≥+. 于是,()h x 在区间[]0,+∞上递增,()0()1h x h x ≥=恒成立,符合题意. ii .当2a >时,由[0,)x ∈+∞,且2221(1)e 1()e 0(1)(1)x xx h x x x +-=-=≥+'+', 则()h x '在区间[]0,+∞上递增.又(0)20h a '=-<,则存在0(0,)x ∈+∞,使得()00h x '=.于是,()h x 在区间()00,x 上递减,在区间()0,x +∞递增.又()0(0)1h x h <=,此时,()1h x ≥不恒成立,不符合题意.综上,实数a 的取值范围是](,2-∞.【点睛】本题主要考查利用导数研究曲线的切线及结合方程有零点存在得到不等式的证明;考查利用导数处理函数最值和不等式恒成立的问题.。
湖北省武汉市武汉外国语学校2024-2025学年高三上学期10月考试 数学(含答案)
![湖北省武汉市武汉外国语学校2024-2025学年高三上学期10月考试 数学(含答案)](https://img.taocdn.com/s3/m/fba1328d77a20029bd64783e0912a21614797f2e.png)
武汉外国语学校2024—2025学年度上学期10月月考高三数学试卷命题教师: 审题教师:考试时间:2024年10月9日 考试时长:120分钟 试卷满分:150分一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则( )A .B .C .D .2.复数的共轭复数是( )A .B .C .D .3,且,则与的夹角为( )A .B .C .D .4. 已知,则下列不等关系中不恒成立的是( )A .B .C .D .5. 将体积为1的正四面体放置于一个正方体中,则此正方体棱长的最小值为( )A .3B .C .D .6. 武汉外校国庆节放7天假(10月1日至10月7日),马老师、张老师、姚老师被安排到校值班,每人至少值班两天,每天安排一人值班,同一人不连续值两天班,则不同的值班方法共有( )种A .114B. 120C .126D .1327.已知,设函数,若关于的不等式在上恒成立,则的取值范围为( )A .B .C .D .8. 已知函数,,函数,若为偶函数,则的值为( )A .B .C .D .二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列关于概率统计的知识,其中说法正确的是( )A .数据,0,2,4,5,6,8,9的第25百分位数是1B .已知随机变量,若,,则C .若一组样本数据(,2,…,n )的对应样本点都在直线上,则这组样本数据的相关系数为D .若事件M ,N 的概率满足,且,则M 与N 相互独立10. 连接抛物线上任意四点组成的四边形可能是( )A .平行四边形B .梯形C .有三条边相等的四边形D .有一组对角相等的四边形11. 设函数,则( )A .当时,直线是曲线的切线B .若有三个不同的零点,则C .存在a ,b ,使得为曲线的对称轴D .当时,在处的切线与函数的图象有且仅有两个交点 三、填空题:本题共3小题,每小题5分,共15分.12. 已知是等差数列的前n 项和,若,,则 .13. 已知函数,写出函数的单调递减区间.14. 掷一个质地均匀的骰子,向上的点数不小于3得2分,向上的点数小于3得1分,反复掷这个骰子,(1)恰好得3分的概率为 ;(2)恰好得n 分的概率为.(用与n 有关的式子作答){}2|230A x x x =+-≥{}|22B x x =-≤<A B = []2,1--[)1,2-[]1,1-[)1,2ii 212+-3i5-3i 5i -ib a -=c a c ⊥a b 6π3π23π56π(0,),(0,)22ππαβ∈∈()sin sin sin αβαβ+<+()sin cos cos αβαβ+<+()cos sin sin αβαβ+<+()cos cos cos αβαβ+<+33333a R ∈222,1()ln ,1x ax a x f x x a x x ⎧-+≤=⎨->⎩x ()0f x …R a[]0,1[]0,e []0,2[]1,e ()()f x f x x R =-∈,()15.5=f ()()()1g x x f x =-⋅()1+x g ()0.5-g 32.521.51-(),X B n p :()40E X =()30D X =160n =(),i i x y 1i =132y x =-+12-()()0,1P M ∈()()0,1P N ∈()()1P N M P N +=32()231f x x ax =-+0a =1y =()y f x =()f x 123,,x x x 12312x x x ⋅⋅=-x b =()y f x =02ax ≠()f x 0x x =()y f x =n S {}n a 320S =990S =6S =()()π2,0,cos 2sin ∈+=x xxx f ()x f四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. (本题满分13分)已知的面积为,且满足,设和的夹角为,(1)求的取值范围;(2)求函数16.(本题满分15分)如图,已知四棱锥,,侧面为正三角形,底面是边长为4的菱形,侧面与底面所成的二面角为120°.(1)求四棱锥的体积;(2)求二面角的正弦值.17.(本题满分15分)已知函数(1)当时,求曲线在点处的切线方程;(2)若不等式恒成立,求的取值范围.18.(本题满分17分)已知椭圆的左、右焦点分别为,离心率为,且经过点A (1)求椭圆E 的方程;(2)求的角平分线所在直线的方程;(3)在椭圆E 上是否存在关于直线对称的相异两点?若存在,请找出;若不存在,说明理由.19.(本题满分17分)设使定义在区间上的函数,其导函数为.如果存在实数和函数,其中对任意的都有>0,使得,则称函数具有性质.(1)设函数,其中为实数① 求证:函数具有性质;② 讨论函数的单调性;(2)已知函数具有性质,给定,,且,若,求的取值范围.ABC ∆3360≤⋅≤AC AB AB ACθθ()2cos sin 3f πθθθθ⎛⎫=⋅+ ⎪⎝⎭ABCD P -AD PB ⊥PAD ABCD PAD ABCD ABCD P -A PB C --()2()e ln0x af x a a x-=+>a e =()y f x =()()1,1f ()2f x ≥a 2222:1(0)x y E a b a b +=>>12,F F 2352,3⎛⎫ ⎪⎝⎭21AF F ∠l l )(x f ),1(+∞)('x f a )(x h )(x h ),1(+∞∈x )(x h )1)(()('2+-=ax x x h x f )(x f )(a P )(x f 2ln (1)1b x x x +=+>+b )(x f )(b P )(x f )(x g )2(P 为正实数,设m x x x x ,),,1(,2121<+∞∈21)1(x m mx -+=α21)1(mx x m +-=β1,1>>βα12()()()()g g g x g x αβ-<-m2024-2025学年度高三10月月考数学试题参考答案一、选择题题号1234567891011答案DDBCCABDABDBCDABD二、填空题12.13. 14. (1);(2)三、解答题15、解:(1)由题,可得,又,所以,得到或因为,所以6分(2),化简得进一步计算得,因为,故故可得13分16、解:(1)过点作垂直于平面,垂足为,连接交于,连接,则有,又,所以,因为,所以,又,所以为得中点依题侧面与底面所成的二面角为120°,即有,所以,因为侧面为正三角形,502433ππ⎛⎫⎪⎝⎭,132713425153n -⎛⎫-⋅- ⎪⎝⎭3sin 21==∆θbc S ABC θsin 6=bc 36cos 0≤=⋅≤θbc AC AB 36sin cos 60≤≤θθ33tan≥θ2πθ=()πθ,0∈,62ππθ⎡⎤∈⎢⎥⎣⎦()2cos sin 3f πθθθθ⎛⎫=⋅+ ⎪⎝⎭()21sin 24f θθθ=()1sin 223f πθθ⎛⎫=- ⎪⎝⎭,62ππθ⎡⎤∈⎢⎥⎣⎦22033ππθ⎡⎤-∈⎢⎥⎣⎦,()102f θ⎡⎤∈⎢⎥⎣⎦,P PO ABCD O BO AD E PE AD PB AD PO ⊥⊥,P PB PO =⋂POB AD 平面⊥POB PE 平面⊂PE AD ⊥PD PA =E AD PAD ABCD 32π=∠PEB 3π=∠PEO PAD所以,则,所以7分(2)如图,在平面内过点作得垂线,依题可得两两垂直,以为建立空间直角坐标系可得,,,取得中点为,则因为,所以,由(1),,知所以,可得所成角即为二面角的平面角,求得,,则则15分17、解:(1)当时,,,所求切线方程为:,即5分(2)转化为,可得构造函数,易得在单调递增所以有,由在单调递增,故可得,即有在恒成立令,,得到,可得时,;时,,所以在时取最大值所以,得到15分323sin4=⋅=πPE 323323sin=⋅=⋅=πPE PO 38323443131=⋅⋅⋅⋅==-PO S V ABCD ABCD P ABCD O OB Ox Ox OB OP ,,Ox OB OP ,,轴轴,轴,x y z ()0,3,2A ()0,0,0P ()0,33,0B PB N ⎪⎪⎭⎫⎝⎛23,233,0N AB AP =PB AN ⊥POB AD 平面⊥AD BC //POB BC 平面⊥PB BC ⊥NA BC ,A PB C --⎪⎪⎭⎫⎝⎛-=23,23,2AN ()0,0,2=BC 72724-=-BC NA sin A PB C --=a e =1()e lnx e f x x -=+0(1)e ln 2f e =+=11()e ,(1)0x f x f x-''=-=)1(02-=-x y 2y =()2≥x f ln 2e ln ln 2a x a x +-+-≥ln 2e ln +2ln 0a x a x x x x +-+-≥+>,()e x g x x =+()g x R ()(ln 2)ln g a x g x +-≥()g x R ln 2ln a x x +-≥ln ln 2a x x ≥-+()∞+,0()2ln +-=x x x h ()011=-='xx h 1=x ()10,∈x ()0>'x h ()∞+∈,1x ()0<'x h ()x h 1=x ()ln 11a h ≥=ea ≥18、解:(1)∵椭圆E 经过点A ,∴,解得E :;4分(2)由(1)可知,,思路一:由题意,,设角平分线上任意一点为,则得或∵斜率为正,∴的角平分线所在直线为思路二:椭圆在点A 处的切线方程为,根据椭圆的光学性质,的角平分线所在直线的斜率为,∴,的角平分线所在直线即10分(3)思路一:假设存在关于直线对称的相异两点,设,∴∴线段中点为在的角平分线上,即得∴与点A 重合,舍去,故不存在满足题设条件的相异的两点.思路二:假设存在关于直线对称的相异两点,线段中点,52,3⎛⎫⎪⎝⎭23e =222222549123a b a b c c e a ⎧⎪+=⎪⎪⎨=+⎪⎪==⎪⎩32a b c =⎧⎪=⎨⎪=⎩22195x y +=1(2,0)F -2(2,0)F 1:512100AF l x y -+=2:2AF l x =(),P x y 51210213x y x -+=-9680x y --=2390x y +-=21AF F ∠9680x y --=52,3⎛⎫⎪⎝⎭2319x y +=23k =-切21AF F ∠l 32l k =21AF F ∠34:23l y x =-9680x y --=l ()()1122,,,B x y C x y 2:3BC l y x m =-+2222195912945023x y x mx m y x m ⎧+=⎪⎪⇒-+-=⎨⎪=-+⎪⎩BC 25,39m mM ⎛⎫⎪⎝⎭21AF F ∠106803m m --=3m =52,3M ⎛⎫⎪⎝⎭l ()()1122,,,B x y C x y BC ()00,M x y由点差法,,∴,∴,与点A 重合,舍去,故不存在满足题设条件的相异的两点.17分19、解:(1)① ,∵,恒成立,∴函数具有性质;3分② 设,(i) 当即时,,,故此时在区间上递增;(ii) 当时当即时,,,故此时在区间上递增;当即时,,∴时,,,此时在上递减;时,,,此时在上递增.综上所述,当时,在上递增;当时,在上递减,在上递增.9分()()()222121()111b f x x bx x x x x +=-=-+'++1x >()()2101h x x x =>+()f x ()P b ()0f x '>()f x ()1,+∞()0f x '>()f x ()1,+∞x ⎛∈ ⎝()0f x '<()fx ⎛ ⎝()fx ∞⎫+⎪⎪⎭2b ≤()f x ()1,+∞2b >()fx ⎛ ⎝∞⎫+⎪⎪⎭2211222212122222195095195x y x x y y x y ⎧+=⎪⎪⇒+=⎨⎪+=⎪--⎩0121212120552993BC x y y x x k x x y y y -+==-=-=--+0065OM y k x ==:968052,63:5AM OM l x y M l y x --=⎧⎪⎛⎫⇒⎨⎪=⎝⎭⎪⎩()()211u x x bx x =-+>0b -≥0b ≤()0u x >0b >240b ∆=-≤02b <≤()0u x >240b ∆=->2b>1211x x ==<=>,()0u x<x ∞⎫∈+⎪⎪⎭()0u x >()0f x '<(2)由题意, ,又对任意的都有,所以对任意的都有,在上递增.10分∵,,∴①先考虑的情况即,得,此时,∴∴满足题意13分②当时,,,∴∴,∴,不满足题意,舍去16分综上所述,17分()()22()()21()1g x h x x x h x x =-+=-'()h x ()1,x ∈+∞()0h x >()1,x ∈+∞()0g x '>()g x ()1,+∞12(1)mx m x α=+-12(1)m x mx β=-+()()1212,21x x m x x αβαβ+=+-=--12x x αβ-<-()()121221m x x x x --<-01m <<1122(1)x mx m x x α<=+-<1122(1)x m x mx x β<=-+<1212()()(),()()()g x g g x g x g g x αβ<<<<12()()()()g g g x g x αβ-<-1m ≥11112(1)(1)mx m x mx m x x α--≤==++12222(1)(1)m x mx m x mx x β=--+≥=+12x x αβ≤<≤12()()()()g g x g x g αβ≤<≤12()()()()g g g x g x αβ-≥-01m <<。
2022-2023学年北京市第八中学高三10月月考数学试卷含详解
![2022-2023学年北京市第八中学高三10月月考数学试卷含详解](https://img.taocdn.com/s3/m/3b4a42fdc0c708a1284ac850ad02de80d4d80607.png)
2023届高三10月测试数学试题第一部分(选择题共40分)一、选择题:共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|22}A x x =-<,{|11}B x x =-< ,则()A.A B A= B.B ⊆R Að C.R A B =∅ð D.R A B ⋃=Rð2.若复数()i 1i z =+,则2z =()A.2- B.2C.2i- D.2i3.在621x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为()A.15B.15- C.30D.30-4.在立体几何中,用一个平面去截一个几何体得到的平面图形叫截面.平面α以任意角度截正方体,所截得的截面图形不可能为()A.等腰梯形B.非矩形的平行四边形C.正五边形D.正六边形5.已知半径为1的圆经过点()3,4,则其圆心到点()3,4--的距离的最大值为()A.9B.10C.11D.126.已知函数()()πsin 0,2f x x ωθωθ⎛⎫=+><⎪⎝⎭,π6x =是()f x 的一个极值点,π6x =-是与其相邻的一个零点,则π3f ⎛⎫⎪⎝⎭的值为()A.0B.1C.1-D.227.已知函数()2log 1f x x x =-+,则不等式()0f x >的解集是()A.()0,1 B.()()1,22,⋃+∞ C.()1,2 D.()2,+∞8.过抛物线C :26y x =的焦点且垂直于x轴的直线被双曲线E :()22210xy a a-=>所截得线段长度为,则双曲线的离心率为()A.B.512+ C.72D.9.已知数列{}n a 是递增数列,且4(1)5,4,(3)5,4n n n n a n N n λλ+--+≤⎧=∈⎨-+>⎩,则λ的取值范围是()A.()1,2 B.51,4⎛⎫⎪⎝⎭ C.51,4⎛⎤ ⎥⎝⎦D.71,5⎛⎫ ⎪⎝⎭10.如图,已知1OA OB == ,OC = 4tan 3AOB ∠=-,45BOC ∠=︒,OC mOA nOB =+,则mn等于A.57 B.75C.37D.73第二部分(非选择题共110分)二、填空题:共5小题,每小题5分,共25分.11.已知y =f (x )是奇函数,当x ≥0时,()23 f x x =,则f (-8)的值是____.12.若函数()()cos sin f x x x ϕ=++的最大值为2,则ϕ的一个可能的取值为___________.13.若直线y x a =+和直线y x b =+将圆()()22111x y -+-=的周长四等分,则a b -=__________.14.若数列{}n a 满足12a =,23a =,()*21n n n a a a n +++=∈N,则2021a的值为__________.15.甲乙丙三个学生同时参加了若干门学科竞赛,至少包含数学和物理,在每科竞赛中,甲乙丙三人中都有一个学生的分数为x ,另一个学生的分数为y ,第三个学生的分数为z ,其中x ,y ,z 是三个互不相等的正整数.在完成所有学科竞赛后,甲的总分为47分,乙的总分为24分,丙的总分为16分.(1)甲乙丙三个学生参加的学科竞赛门数为________;(用x ,y ,z 表示);(2)若在甲乙丙这三个学生中乙的数学竞赛成绩排名第一,则下列正确的序号为________.①甲乙丙三个学生至少参加了四门学科竞赛②x ,y ,z 这三个数中的最大值可以取到21③在甲乙丙这三个学生中,甲学生的物理竞赛成绩可能排名第二④在甲乙丙这三个学生中,丙学生的物理竞赛成绩一定排名第二三、解答题:共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.在ABC 中,1cos 7C =,8c =,再从条件①、条件②这两个条件中选择一个作为已知,求:(1)b 的值;(2)角A 的大小和ABC 的面积.条件①:7a =;条件②:11cos 14B =.17.如图,在四棱锥P ABCD -中,O 是AD 边的中点,PO ⊥底面,1ABCD PO =.在底面ABCD 中,//,,1,2BC AD CD AD BC CD AD ⊥===.(1)求证://AB 平面POC ;(2)求二面角B AP D --的余弦值.18.在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到950m .以上(含950m .)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m ):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,9.35,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X 是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X 的数学期望E (X );(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)19.已知椭圆()2222:10x y C a b a b+=>>过点(,且离心率为12.设A ,B 为椭圆C 的左、右顶点,P 为椭圆上异于A ,B 的一点,直线AP ,BP 分别与直线:4l x =相交于M ,N 两点,且直线MB 与椭圆C 交于另一点H .(1)求椭圆C 的标准方程;(2)求证:直线AP 与BP 的斜率之积为定值;(3)判断三点A ,H ,N 是否共线:并证明你的结论.20.已知函数()e 1xf x ax =--.(1)当1a =时,求()f x 的极值;(2)若()2f x x ≥在[)0,x ∈+∞上恒成立,求实数a 的取值范围.21.设m 为正整数,若无穷数列{}n a 满足(1,2,,;1,2,)ik i ik a a i i m k +=+== ,则称{}n a 为m P 数列.(1)数列{}n 是否为1P 数列?说明理由;(2)已知,,,,n s n a t n ⎧=⎨⎩为奇数为偶数其中,s t 为常数.若数列{}n a 为2P 数列,求,s t ;(3)已知3P 数列{}n a 满足10a <,82a =,666(1,2,)k k a a k +<= ,求n a .2023届高三10月测试数学试题第一部分(选择题共40分)一、选择题:共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|22}A x x =-<,{|11}B x x =-< ,则()A.A B A =B.B ⊆R A ðC.R A B =∅ð D.R A B ⋃=RðD【分析】根据集合的运算法则判断各选项.【详解】由题意1{|1}A B x x =-<≤ ,A 错;{|2R A x x =≤-ð或2}x >,B 错;{|1B x x =≤-R ð或1}x >,{|21R A B x x =-<≤- ð或12}x <≤,C 错;R A B R ⋃=ð,D 正确.故选:D .2.若复数()i 1i z =+,则2z =()A.2-B.2C.2i- D.2iC【分析】结合复数乘法公式直接求解.【详解】因为i(1i)1i z =+=-+,所以22i z =-.故选:C3.在621x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为()A.15B.15- C.30D.30-A【分析】根据二项展开式的通项公式直接求解.【详解】()663166211rr rr r r r T C x C x x --+⎛⎫=⋅⋅-=⋅-⋅ ⎪⎝⎭,令630r -=,得2r =,所以常数项是()2236115T C =-=.故选:A4.在立体几何中,用一个平面去截一个几何体得到的平面图形叫截面.平面α以任意角度截正方体,所截得的截面图形不可能为()A.等腰梯形B.非矩形的平行四边形C.正五边形D.正六边形C【分析】在正方体中依次分析,经过正方体的一个顶点去切就可得到五边形.但此时不可能是正五边形,其他情况都可构造例子.【详解】画出截面图形如图:可以画出等腰梯形,故A 正确;在正方体1111ABCD A B C D 中,作截面EFGH (如图所示)交11C D ,11AB ,AB ,CD 分别于点E ,F ,G ,H ,根据平面平行的性质定理可得四边形EFGH 中,//EF HG ,且//EH FG ,故四边形EFGH 是平行四边形,此四边形不一定是矩形,故B 正确;经过正方体的一个顶点去切就可得到五边形.但此时不可能是正五边形,故C 错误;正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,且可以画出正六边形,故D 正确.故选:C5.已知半径为1的圆经过点()3,4,则其圆心到点()3,4--的距离的最大值为()A.9 B.10C.11D.12C【分析】根据圆的性质,求得轨迹方程,由点与圆的位置关系,可得答案.【详解】由题意,圆心的轨迹方程为()()22341x x -+-=,则其圆心到点()3,4--的距离的最大值为111=.故选:C.6.已知函数()()πsin 0,2f x x ωθωθ⎛⎫=+><⎪⎝⎭,π6x =是()f x 的一个极值点,π6x =-是与其相邻的一个零点,则π3f ⎛⎫⎪⎝⎭的值为()A.0B.1C.1-D.22D【分析】根据题中条件求出ω的值,结合θ的取值范围可求得θ的值,可得出函数()f x 的解析式,然后代值计算可得π3f ⎛⎫ ⎪⎝⎭的值.【详解】由题意可知,函数()f x 的最小正周期为π4π4263T =⨯⨯=,2π32T ω∴==,()3sin 2x f x θ⎛⎫∴=+ ⎪⎝⎭,因为π6x =是()f x 的一个极值点,则()3πππZ 262k k θ⨯+=+∈,则()ππZ 4k k θ=+∈,因为π2θ<,π4θ∴=,则()3πsin 24x f x ⎛⎫=+ ⎪⎝⎭,因此,ππππsin cos 32442f ⎛⎫⎛⎫=+== ⎪ ⎪⎝⎭⎝⎭.故选:D.7.已知函数()2log 1f x x x =-+,则不等式()0f x >的解集是()A.()0,1B.()()1,22,⋃+∞C.()1,2 D.()2,+∞C【分析】利用导数可求得()f x 单调性,结合()()120f f ==可得不等式的解集.【详解】()f x 定义域为()0,∞+,()11ln 21ln 2ln 2x f x x x -'=-=,∴当10,ln 2x ⎛⎫∈ ⎪⎝⎭时,()0f x ¢>;当1,ln 2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<;()f x \在10,ln 2⎛⎫ ⎪⎝⎭上单调递增,在1,ln 2⎛⎫+∞ ⎪⎝⎭上单调递减;又()()120f f ==,且112ln 2<<,()0f x ∴>的解集为()1,2.故选:C8.过抛物线C :26y x =的焦点且垂直于x 轴的直线被双曲线E :()22210xy a a-=>所截得线段长度为,则双曲线的离心率为()A.B.512+C.2D.213D【分析】根据题意,代入32x =,求得弦长=即可求得a ,再由基本量的计算即可得解.【详解】抛物线C :26y x =的焦点为3(,0)2,令32x =,可得y =所以=,32a =,由1b =,所以2c ==,所以7212332c e a ===.故选:D9.已知数列{}n a 是递增数列,且4(1)5,4,(3)5,4n n n n a n N n λλ+--+≤⎧=∈⎨-+>⎩,则λ的取值范围是()A.()1,2 B.51,4⎛⎫ ⎪⎝⎭C.51,4⎛⎤ ⎥⎝⎦D.71,5⎛⎫ ⎪⎝⎭D【分析】根据数列{}n a 是递增数列,列出符合条件的不等式组,求出λ的取值范围即可.【详解】数列{}n a 是递增数列,且4(1)5,4,(3)5,4n n n n a n N n λλ+--+≤⎧=∈⎨-+>⎩,则5410314(1)5(3)5λλλλ-->⎧⎪->⎨⎪-+≤-+⎩,解得715λ<<,故λ的取值范围是71,5⎛⎫ ⎪⎝⎭故选:D10.如图,已知1OA OB ==,OC = 4tan 3AOB ∠=-,45BOC ∠=︒,OC mOA nOB =+,则mn等于A.57 B.75C.37D.73A【分析】依题意建立直角坐标系,根据已知角,可得点B、C 的坐标,利用向量相等建立关于m、n 的方程,求解即可.【详解】以OA 所在的直线为x 轴,过O 作与OA 垂直的直线为y轴,建立直角坐标系如图所示:因为1OA OB == ,且4tan 3AOB ∠=-,∴34cos sin 55AOB AOB ∠=-∠=,,∴A(1,0),B(3455-,),又令θAOC ∠=,则θ=AOB BOC ∠-∠,∴413tanθ413--=-=7,又如图点C 在∠AOB 内,∴cosθ=210,sin θ=7210,又OC =,∴C(1755,),∵OC mOA nOB =+ ,(m ,n ∈R ),∴(1755,)=(m,0)+(3455n n -,)=(m 35n -,45n )即15=m 35n -,7455n =,解得n=74,m=54,∴57m n =,故选A .【点睛】本题考查了向量的坐标运算,建立直角坐标系,利用坐标解决问题是常用的处理向量运算的方法,涉及到三角函数的求值,属于中档题.第二部分(非选择题共110分)二、填空题:共5小题,每小题5分,共25分.11.已知y =f (x )是奇函数,当x ≥0时,()23f x x=,则f (-8)的值是____.4-【分析】先求(8)f ,再根据奇函数求(8)f -【详解】23(8)84f ==,因为()f x 为奇函数,所以(8)(8)4f f -=-=-故答案为:4-【点睛】本题考查根据奇函数性质求函数值,考查基本分析求解能力,属基础题.12.若函数()()cos sin f x x x ϕ=++的最大值为2,则ϕ的一个可能的取值为___________.2π-(答案不唯一)【分析】化简可得出()()cos cos 1sin sin f x x x ϕϕ=+-,可得出()max2f x ==,求出sin ϕ的值,即可得解.【详解】因为()()cos cos sin sin sin cos cos 1sin sin f x x x x x x ϕϕϕϕ=-+=+-,故()max 2f x ===,可得sin 1ϕ=-.故()2Z 2k k πϕπ=-∈.故答案为:2π-(答案不唯一).13.若直线y x a =+和直线y x b =+将圆()()22111x y -+-=的周长四等分,则a b -=__________.2【分析】由条件可得直线y x a =+和直线y x b =+间的距离为,由此可求a b -的值.【详解】设直线y x a =+和圆()()22111x y -+-=相交与点,A B ,直线y x b =+与圆()()22111x y -+-=相交于点,M N ,圆心为C ,因为直线y x a =+和直线y x b =+将圆()()22111x y -+-=的周长四等分,所以圆心位于两直线之间,且2ACB MCN π∠=∠=,所以ACB △为等腰直角三角形,所以圆心为C 到直线y x a =+的距离为22,同理可得圆心为C 到直线y x b =+的距离为2,故直线y x a =+和直线y x b =+间的距离为,=,所以2a b -=,故答案为:2.14.若数列{}n a 满足12a =,23a =,()*21n n n a a a n +++=∈N ,则2021a 的值为__________.3-【分析】由递推式求数列的前几项,确定数列的项的规律,由规律确定2021a .【详解】解:132a a a +=,则3211a a a =-=,243a a a +=,则4322a a a =-=-,354a a a +=,则5433a a a =-=-,6541a a a =-=-,7652a a a =-=,8763a a a =-=,⋅⋅⋅⋅⋅⋅∴数列{}n a 为周期数列,且周期6T =,又202163365=⨯+,∴202153a a ==-.故答案为:-3.15.甲乙丙三个学生同时参加了若干门学科竞赛,至少包含数学和物理,在每科竞赛中,甲乙丙三人中都有一个学生的分数为x ,另一个学生的分数为y ,第三个学生的分数为z ,其中x ,y ,z 是三个互不相等的正整数.在完成所有学科竞赛后,甲的总分为47分,乙的总分为24分,丙的总分为16分.(1)甲乙丙三个学生参加的学科竞赛门数为________;(用x ,y ,z 表示);(2)若在甲乙丙这三个学生中乙的数学竞赛成绩排名第一,则下列正确的序号为________.①甲乙丙三个学生至少参加了四门学科竞赛②x ,y ,z 这三个数中的最大值可以取到21③在甲乙丙这三个学生中,甲学生的物理竞赛成绩可能排名第二④在甲乙丙这三个学生中,丙学生的物理竞赛成绩一定排名第二①.87x y z ++②.④【分析】(1)甲乙丙三人总分为87,即可求得甲乙丙三个学生参加的学科竞赛门数;(2)不妨设x y z >>,由472416293x y z ++++==,利用排除法即可判断①;再由甲乙丙这三个学生中乙的数学竞赛成绩排名第一,依次判断②③④.【详解】(1)甲乙丙三人总分为47241687++=,又每科竞赛中,甲乙丙三人中都有学生的分数为x ,y ,z ,故甲乙丙三个学生参加的学科竞赛门数为87x y z++(2)不妨设x y z >>,由题意可得472416293x y z ++++==,对于①,假设甲乙丙只参加了三门竞赛,当20,7,2x y z ===时,若甲:2020747++=,乙:202224++=,丙:77216++=,此时符合题意,故①错误;对于②,若21x =,有8y z +=,丙的分数无法满足;因为2116>,且x ,y ,z 是正整数,16不能整除3,必有216y z +=,但由于8y z +=,则2()16y z +=与216y z +=矛盾,故②错误;对于③④,当20,7,2x y z ===时,对于甲有2020747++=,对于乙有202224++=,对于丙有77216++=,由于甲乙丙这三个学生中乙的数学竞赛成绩排名第一,所以甲乙丙的数学成绩分为7,20,2,物理成绩分别为20,2,7,所以甲学生的物理竞赛成绩是第一,丙学生的物理竞赛成绩一定排名第二,故③错误,④正确;故答案为:87x y z++,④【点睛】关键点点睛:本题考查了合情推理的应用,主要考查了逻辑推理能力,正确理解题意是解题的关键,属于较难题.三、解答题:共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.在ABC 中,1cos 7C =,8c =,再从条件①、条件②这两个条件中选择一个作为已知,求:(1)b 的值;(2)角A 的大小和ABC 的面积.条件①:7a =;条件②:11cos 14B =.(1)5b =(2)3A π=,ABC S = 【分析】(1)若选①,则直接利用余弦定理可求得b ,若选②,先由同角三角函数的关系求出sin ,sin B C ,然后由正弦定理可求出b ,(2)若选①,先求出sin C ,再利用正弦定理可求出角A ,利用面积公式可求出其面积,若选②,由于cos cos()A B C =-+,利用两角和的余弦公式展开计算可求出角A ,利用面积公式可求出其面积,【小问1详解】选择条件①因为1cos 7C =,8c =,7a =,由余弦定理2222cos c a b ab C =+-,得216449147b b =+-⨯,化简得22150b b --=,解得5b =或3b =-(舍).所以5b =;选择条件②因为11cos 14B =,0B π<<,所以53sin 14B ==,因为1cos 7C =,0C π<<,所以43sin 7C ===,由正弦定理得sin sin b c B C =5343147=解得5b =;【小问2详解】选择条件①因为1cos 7C =,0C π<<,所以43sin 7C ===.由正弦定理sin sin a c A C =,得7sin 437A =,所以3sin 2A =,因为c a >,所以C A >,所以A 为锐角,所以3A π=,所以1143sin 75227ABC S ab C ==⨯⨯⨯= ,选择条件②由(1)知53sin 14B =,43sin 7C =,又因为11cos 14B =,1cos 7C =,在ABC 中,()A B C π=-+,所以cos cos()cos cos sin sin A B C B C B C=-+=-+111534311471472=-⨯+⨯=因为0A π<<所以3A π=,所以113sin 58222ABC S bc A ==�△17.如图,在四棱锥P ABCD -中,O 是AD 边的中点,PO ⊥底面,1ABCD PO =.在底面ABCD 中,//,,1,2BC AD CD AD BC CD AD ⊥===.(1)求证://AB 平面POC ;(2)求二面角B AP D --的余弦值.(1)证明见解析;(2)33.【分析】(1)证明//AB OC 后可证线面平行;(2)以,,OB OD OP 为,,x y z 轴建立空间直角坐标系,用空间向量法求二面角.【详解】(1)由题意BC OA =,又//BC OA ,所以BCOA 是平行四边形,所以//AB OC ,又AB ⊄平面POC ,OC ⊂平面POC ,所以//AB 平面POC ;(2),//BC OD BC OD =,所以BCDO 是平行四边形,所以//OB DC ,OB CD =,而CD AD ⊥,所以OB AD ⊥,以,,OB OD OP 为,,x y z 轴建立空间直角坐标系,如图,则(1,0,0)B ,(0,1,0)A -,(0,0,1)P ,(1,1,0)AB = ,(0,1,1)= AP ,设平面ABP 的一个法向量为(,,)n x y z = ,则00n AB x y n AP y z ⎧⋅=+=⎨⋅=+=⎩ ,取1x =,则1,1y z =-=,即(1,1,1)n =- ,易知平面APD 的一个法向量是(1,0,0)m = ,所以13cos ,313m n m n m n ⋅<>===⨯ ,所以二面角B AP D --的余弦值为33.【点睛】方法点睛:本题考查证明线面平行,求二面角.求二面角的方法:(1)几何法(定义法):根据定义作出二面角的平面角并证明,然后解三角形得出结论;(2)空间向量法:建立空间直角坐标系,写出各点为坐标,求出二面角两个面的法向量,由两个平面法向量的夹角得二面角(它们相等或互补).18.在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到950m .以上(含950m .)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m ):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,9.35,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X 是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X 的数学期望E (X );(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)(1)0.4(2)75(3)丙【分析】(1)由频率估计概率即可(2)求解得X 的分布列,即可计算出X 的数学期望.(3)计算出各自获得最高成绩的概率,再根据其各自的最高成绩可判断丙夺冠的概率估计值最大.【小问1详解】由频率估计概率可得甲获得优秀的概率为0.4,乙获得优秀的概率为0.5,丙获得优秀的概率为0.5,故答案为0.4【小问2详解】设甲获得优秀为事件A 1,乙获得优秀为事件A 2,丙获得优秀为事件A 31233(0)()0.60.50.520P X P A A A ===⨯⨯=,123123123(1)()()()P X P A A A P A A A P A A ==++80.40.50.50.60.50.50.60.50.520=⨯⨯+⨯⨯+⨯⨯=,123123123(2)()()()P X P A A A P A A A P A A A ==++70.40.50.50.40.50.50.60.50.520=⨯⨯+⨯⨯+⨯⨯=,1232(3)()0.40.50.520P X P A A A ===⨯⨯=.∴X 的分布列为X0123P 320820720220∴38727()0123202020205E X =⨯+⨯+⨯+⨯=【小问3详解】丙夺冠概率估计值最大.因为铅球比赛无论比赛几次就取最高成绩.比赛一次,丙获得9.85的概率为14,甲获得9.80的概率为110,乙获得9.78的概率为16.并且丙的最高成绩是所有成绩中最高的,比赛次数越多,对丙越有利.19.已知椭圆()2222:10x y C a b a b +=>>过点(,且离心率为12.设A ,B 为椭圆C 的左、右顶点,P 为椭圆上异于A ,B 的一点,直线AP ,BP 分别与直线:4l x =相交于M ,N 两点,且直线MB 与椭圆C 交于另一点H .(1)求椭圆C 的标准方程;(2)求证:直线AP 与BP 的斜率之积为定值;(3)判断三点A ,H ,N 是否共线:并证明你的结论.(1)22143x y +=(2)定值为34-,证明见解析.(3)三点A ,H ,N 共线,证明见解析.【分析】(1)首先根据题意得到22212b c a a b c ⎧=⎪⎪=⎨⎪=+⎪⎩,再解方程组即可.(2)设00(,)P x y ,()2,0A -,()2,0B ,再计算AP BP k k ⋅即可.(3)分别计算AH k 和AN k ,根据AN AH k k =,A 为公共点,即可证明A ,H ,N 三点共线.【小问1详解】由题知:2222121b a c b a c a b c ⎧==⎧⎪⎪⎪=⇒=⎨⎨⎪⎪=⎩=+⎪⎩,所以椭圆C :22143x y +=.【小问2详解】由题知:AP k ,BP k 存在,且不为零,设00(,)P x y ,()2,0A -,()2,0B ,则2200143x y +=,即()200344x y -=.()202000220000343422444AP BP x y y y k k x x x x -⋅=⋅===-+---.所以直线AP 与BP 的斜率之积为定值34-.【小问3详解】A ,H ,N 三点共线,证明如下:设直线AP :()2y k x =+,则直线BP :()324=--y x k,将4x =代入直线AP ,BP 得:()4,6M k ,34,2N k ⎛⎫- ⎪⎝⎭,6342BM k k k ==-,设直线HM :()32y k x =-,联立()()22222211124848404332x y k x k x k y k x ⎧+=⎪⇒+-+-=⎨⎪=-⎩,设()11,H x y ,则2124842121k x k -=+,解得212242121k x k -=+,所以()1121232121k y k x k -=-=+,即22224212,121121k k H k k ⎛⎫-- ⎪++⎝⎭,所以31264AN k k k-==-,22212112124242121AH kk k k k k -+==--++,所以AN AH k k =,A 为公共点,所以A ,H ,N 三点共线.20.已知函数()e 1xf x ax =--.(1)当1a =时,求()f x 的极值;(2)若()2f x x ≥在[)0,x ∈+∞上恒成立,求实数a 的取值范围.(1)()f x 有极小值(0)0f =,无极大值;(2)(],e 2-∞-【分析】(1)求出函数的导数,判断出函数的单调性,即可求出极值;(2)由题可得2e 10x x ax ---≥在[0,)+∞上恒成立,易得0x =时满足,当0x >时,e 1x a x x x ⎛⎫≤-+ ⎪⎝⎭在(0,)+∞上恒成立,构造函数e 1()x g x x x x ⎛⎫=-+ ⎪⎝⎭,求出导数,判断()g x 的单调性,得出min ()e 2g x =-,即可求出a 的取值范围.【详解】(1)当1a =时,()e 1x f x x =--,所以()e 1x f x '=-,当0x <时()0f x '<;当0x >时()0f x '>,所以()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增,所以当0x =时函数()f x 有极小值(0)0f =,无极大值.(2)因为2()f x x ≥在[0,)+∞上恒成立,所以2e 10x x ax ---≥在[0,)+∞上恒成立,当0x =时00≥恒成立,此时R a ∈,当0x >时e 1x a x x x ⎛⎫≤-+ ⎪⎝⎭在(0,)+∞上恒成,令e 1()x g x x x x ⎛⎫=-+ ⎪⎝⎭,则2222(1)e (1)e (1)1()xx x x x x g x x x x ⎡⎤--+⎛⎫--⎣⎦'=-= ⎪⎝⎭,由(1)知0x >时()(0)0f x f >=,即e (1)0x x -+>,当01x <<时()0g x '<;当1x >时()0g x '>,所以()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,所以当1x =时,min ()e 2g x =-,所以e 2a ≤-,综上可知,实数a 的取值范围是(],e 2-∞-.【点睛】思路点睛:不等式恒成立问题一般采用分离参数法求参数范围,若不等式(),0f x λ≥()x D ∈(λ是实参数)恒成立,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈恒成立,进而转化为()max g x λ≥或()()min g x x D λ≤∈,求()g x 的最值即可.21.设m 为正整数,若无穷数列{}n a 满足(1,2,,;1,2,)ik i ik a a i i m k +=+== ,则称{}n a 为m P 数列.(1)数列{}n 是否为1P 数列?说明理由;(2)已知,,,,n s n a t n ⎧=⎨⎩为奇数为偶数其中,s t 为常数.若数列{}n a 为2P 数列,求,s t ;(3)已知3P 数列{}n a 满足10a <,82a =,666(1,2,)k k a a k +<= ,求n a .(1)是1P 数列,理由见解析;(2)1,0t s =-=;(3)6n a n =-.【分析】(1)根据1P 数列的性质判断即可;(2)根据2P 数列的性质,求出123,,a a a 即可;(3)根据3P 数列的性质,利用所给的条件,合理演绎即可.【小问1详解】∵()()11111(1)11n n n a a n a ⨯-+⨯-==-+=+()2n ≥,∴()()111111n n a a ⨯-+⨯-=+,符合1P 的定义,故数列n a n =是1P 数列;【小问2详解】依题意,2a t =,13a a s ==,因为n a 是2P 数列,2111111a a a t t ⨯+==+=+=,1t ∴=-,3121211a a a t s ⨯+==+=+=,0s ∴=;【小问3详解】∵n a 是3P 数列,817171a a a ⨯+∴==+,823262a a a ⨯+==+,76122a a ∴+=+=…①,9181813a a a ⨯+==+=,9323633a a a ⨯+==+=…②由①②得670,1a a ==,∴猜想n a 是首项为-5,公差为1的等差数列,即6n a n =-,检验:111611k k k a a k a ⨯++==-+=+,∴是1P 数列;222222262622k k k a a k k a ⨯++==+-=-+=+,∴是2P 数列;3333363633k k a k k a +=+-=-+=+,∴是3P 数列,并且66666,6666k k a k a k k +=-=+-=,(1,2,3,k = ),∴666k k a a +<,150a =-<符合题意,故6n a n =-,综上,n a n =是1P 数列,1t =-,0s =,6n a n =-.。
四川省资阳市乐至县吴仲良中学2021-2022学年高三数学文月考试题含解析
![四川省资阳市乐至县吴仲良中学2021-2022学年高三数学文月考试题含解析](https://img.taocdn.com/s3/m/c110e180b8d528ea81c758f5f61fb7360b4c2b0e.png)
四川省资阳市乐至县吴仲良中学2021-2022学年高三数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知命题“,有成立”,则为A. ,有成立B. ,有成立C. ,有成立D. ,有成立参考答案:C略2. 设△ABC的内角A,B,C所对的边分别为a,b,c,且C=,a+b=12,则△ABC面积的最大值为()A.8 B.9 C.16 D.21参考答案:B【考点】三角形中的几何计算.【分析】根据基本不等式求得ab的范围,进而利用三角形面积公式求得.【解答】解:∵ab≤()2=36,当且仅当a=b=6时,等号成立,∴S△ABC=absinC≤×36×=9,故选:B.3. 若函数y=log2(x2-2x-3)的定义域、值域分别是M、N,则()A.[-1, 3] B.(-1, 3) C.(0, 3] D.[3, +∞)参考答案:A略4. 下列函数中,在其定义域内既是偶函数又在上单调递增的函数是()A. B. C. D.参考答案:C5. 的值是A. B.C. D.参考答案:C6. 若复数z=2i+,其中i是虚数单位,则复数z的模为( )A.B.C.D.2参考答案:C【考点】复数求模.【专题】数系的扩充和复数.【分析】化简复数为a+bi的形式,然后求解复数的模.【解答】解:复数z=2i+=2i+=2i+1﹣i=1+i.|z|=.故选:C.【点评】本题考查复数的乘除运算,复数的模的求法,考查计算能力.7. 不等式的解集是()A. B.C.(1,2) D.参考答案:答案:B8. 已知函数有且仅有两个不同的零点,,则( ) A .当时,, B .当时,,C .当时,,D .当时,,参考答案:B略9. 刘徽的《九章算术注》中有这样的记载:“邪解立方有两堑堵,邪解堑堵,其一为阳马,一为鳖臑,阳马居二,鳖臑居一,不易之率也.”意思是说:把一块立方体沿斜线分成相同的两块,这两块叫做堑堵,再把一块堑堵沿斜线分成两块,大的叫阳马,小的叫鳖臑,两者体积比为2:1,这个比率是不变的,如图是一个阳马的三视图,则其表面积为( )A .2B .2+C .3+D .3+参考答案:B【考点】由三视图求面积、体积.【分析】根据几何体的三视图知该几何体是底面为正方形, 且一侧棱垂直于底面的四棱锥,结合图形求出它的表面积. 【解答】解:根据几何体的三视图知,该几何体是底面为正方形, 且一侧棱垂直于底面的四棱锥,如图所示; 根据图中数据,计算其表面积为 S=S 正方形ABCD +S △PAB +S △PBC +S △PCD +S △PAD =12+×1×1+×1×+×1×+×1×1=2+.故选:B .10. 已知命题p :?x∈R,x 2﹣3x+2=0,则?p 为( ) A .?x ?R ,x 2﹣3x+2=0 B .?x∈R,x 2﹣3x+2≠0 C .?x∈R,x 2﹣3x+2=0 D .?x∈R,x 2﹣3x+2≠0参考答案:D【考点】四种命题;命题的否定.【分析】根据命题p :“?x∈R,x 2﹣3x+2=0”是特称命题,其否定为全称命题,将“存在”改为“任意的”,“=“改为“≠”即可得答案.【解答】解:∵命题p :“?x∈R,x 2﹣3x+2=0”是特称命题 ∴?p:?x∈R,x 2﹣3x+2≠0故选D .二、 填空题:本大题共7小题,每小题4分,共28分 11. 已知,且的夹角为锐角,则的取值范围是______。
四川省成都市实验外国语学校2024-2025学年高三上学期10月月考数学试题(含答案)
![四川省成都市实验外国语学校2024-2025学年高三上学期10月月考数学试题(含答案)](https://img.taocdn.com/s3/m/8cfb39a3710abb68a98271fe910ef12d2bf9a908.png)
成都市实验外国语学校高三10月月考数学试题总分:150考试时间:120分钟一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.命题“,使”的否定是( )A .,使B .不存在,使C .,D .,2.已知等差数列的前项和为,若,且,则( )A .60B .72C .120D .1443.若,则( )A .3B .4C .9D .164,侧面展开图的扇形圆心角为的圆锥侧面积为( )A .B .C .D .5.小王每次通过英语听力测试的概率是,且每次通过英语听力测试相互独立,他连续测试3次,那么其中恰有1次通过的概率是( )A .B .C .D .6.已知,是方程的两个根,则( )A .B .C .D .7.当阳光射入海水后,海水中的光照强度随着深度增加而减弱,可用表示其总衰减规律,其中是消光系数,(单位:米)是海水深度,(单位:坎德拉)和(单位:坎德拉)分别表示在深度处和海面的光强.已知某海域5米深处的光强是海面光强的,则该海域消光系数的值约为(参考数据:,)()A .0.2B .0.18C .0.1D .0.148.已知函数,方程有四个不同根,,,,且满足,则的取值范围是( )x ∃∈R 210x x +-=x ∃∈R 210x x +-≠x ∈R 210x x +-=x ∀∉R 210x x +-≠x ∀∈R 210x x +-≠{}n a n n S 21024a a +=36a =8S =24log log 2m n +=2m n =2π39π6π23292273949tan 23︒tan 37︒2230x mx +-=m =--0eKDD I I -=K D D I 0I D 40%K ln 20.7≈ln 5 1.6≈()22log ,012,04x x f x x x x ⎧>⎪=⎨++≤⎪⎩()f x a =1x 2x 3x 4x 1234x x x x <<<221323432x x x x x x +-A .B .C .D .二、多选题:本题共3小题,共18分。
四川省成都2024-2025学年高三上学期10月月考数学试题含答案
![四川省成都2024-2025学年高三上学期10月月考数学试题含答案](https://img.taocdn.com/s3/m/7d483edfd5d8d15abe23482fb4daa58da0111cfb.png)
成都高2022级十月月考数学试卷(答案在最后)命题人:注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分;2.本堂考试时间120分钟,满分150分;3.答题前考生务必先将自已的姓名、学号填写在答题卡上,并用2B 铅笔填涂;4.考试结束后将答题卡交回.第I 卷(选择题部分,共58分)一、单项选择题:本题共8个小题,每小题5分,共40分,在每小题给出的四个选项中只有一项是符合题目要求的.1.已知集合{|28}xA x =>,2{|280}B x x x =--≤,则()R A B ⋂=ð()A.[]2,3- B.(]2,3-C.[]4,3- D.[)4,3-【答案】A 【解析】【分析】解不等式化简集合,A B ,再利用补集、交集的定义求解即得.【详解】集合3{|22}(3,)x A x =>=+∞,则R (,3]A =-∞ð,又{|(2)(4)0}[2,4]B x x x =+-≤=-,所以()[]R 2,3A B =- ð.故选:A2.命题2:0,10p x x ax ∀>-+>的否定是()A.20,10x x ax ∀>-+≤B.20,10x x ax ∀≤-+>C.20,10x x ax ∃>-+≤D.20,10x x ax ∃≤-+≤【答案】C 【解析】【分析】由全称量词命题的否定形式即可求.【详解】命题2:0,10p x x ax ∀>-+>的否定是:20,10x x ax ∃>-+≤.故选:C3.已知m ∈R ,n ∈R ,则“228m n +>”是“4mn >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据不等式的性质可得必要性,举反例可说明不充分性,即可求解.【详解】当4mn >时,2228m n mn +≥>,故228m n +>,故“228m n +>”是“4mn >”的必要条件,当228m n +>时,比如1,4m n ==-,但是40mn =-<,故“228m n +>”是“4mn >”的不充分条件,故“228m n +>”是“4mn >”的必要不充分条件,故选:B4.函数()()21cos 2πe 1xf x x ⎛⎫=-- ⎪+⎝⎭的图像大致为()A. B.C. D.【答案】A 【解析】【分析】根据奇偶性以及π02x <<时()f x 的正负即可判断.【详解】函数()f x 的定义域为R ,且()e 1cos e 1x x f x x -=+,()()()e 11e cos cos e 11e x xx xf x x x f x -----=-==-++ ,()f x \是奇函数,排除选项C 和D ,当π02x <<时,()0f x >,排除选项B .故选:A .5.若,,R a b c ∈,且,0,a b c a b c >>++>则下列命题正确的是()A.11a b> B.11b ba a+<+C.33c a < D.若0ac <,则22cb ab <【答案】C 【解析】【分析】运用特殊值,结合作差法逐个判断即可.【详解】由于,0,a b c a b c >>++>对于A ,设4,2,1,421,4210,a b c ===>>++>则111142a b =<=,故A 错误;对于B ,设()4,0,1,401,4010,a b c ===->>-++->则11015b ba a+=>=+,故B 错误;对于C ,()()()2332221324a c a c a ac ca c a c c ⎛⎫⎛⎫-=-++=-++ ⎪ ⎪ ⎪⎝⎭⎝⎭,由于a c >,则0a c ->.2213024a c c ⎛⎫++> ⎪⎝⎭,则330a c ->.则33c a <.故C 正确.对于D ,设()4,0,1,401,4010,a b c ===->>-++->40ac =-<,则220cb ab ==,故D 错误;故选:C.6.下列说法正确的有是()A.若函数()f x 为奇函数,则()00f =;B.函数()11f x x =-在()(),11,-∞+∞ 上是单调减函数;C.若函数()21y f x =+的定义域为[]2,3,则函数()f x 的定义域为1,12⎡⎤⎢⎥⎣⎦;D.将()2y f x =的图像向右平移12个单位,可得()21y f x =-的图像【答案】D 【解析】【分析】对于A ,根据奇函数的性质,结合反例,可得答案;对于B ,根据单调性的性质,结合反例,可得答案;对于C ,根据定义域的定义,结合抽象函数的性质,可得答案;对于D ,根据函数平移的运算,可得答案.【详解】对于A ,若()1f x x=,则该函数为奇函数,但在0x =出无意义,故A 错误;对于B ,由2112-<-<<,则()112213f -==---,()12121f ==-,则()()22f f -<,故B 错误;对于C ,由函数()21y f x =+,23x ≤≤,则5217x ≤+≤,所以函数()f x 的定义域为[]5,7,故C 错误对于D ,将()2y f x =的图像向右平移12个单位,可得()12212y f x f x ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭的图象,故D 正确.故选:D.7.已知定义在R 上的函数()f x 满足()(2)f x f x =-,()()0f x f x +-=,且在[0,1]上有1()4xf x ⎛⎫= ⎪⎝⎭,则(2020.5)f =()A.116-B.116C.14D.12【答案】D 【解析】【分析】由已知条件可知()f x 为奇函数且周期为4,利用函数的周期,结合其区间解析式即可求(2020.5)f 的值.【详解】由()()0f x f x +-=知:()()f x f x -=-,即()f x 为奇函数,∵()(2)f x f x =-,有(2)()()f x f x f x +=-=-,∴(4)(2)()f x f x f x +=-+=,故()f x 为周期为4的函数,在[0,1]上有1()4xf x ⎛⎫= ⎪⎝⎭,所以121111(2020.5)(4505)()()2242f f f =⨯+===,故选:D【点睛】本题考查了函数的性质,根据函数的奇偶性、周期性以及区间解析式求函数值,属于基础题.8.定义{}min ,,p q r 表示,,p q r 中的最小值.已知实数,,a b c 满足0,2a b c abc ++==,则()A.{}min ,,a b c 的最大值是2B.{}min ,,a b c 的最大值是C.{}max ,,a b c 的最小值是2D.{}max ,,a b c【答案】C 【解析】【分析】由题先分析出实数a ,b ,c 一正两负,然后利用基本不等式放缩求出最大值的最小值即可.【详解】因为2abc =,0a b c ++=,所以在a ,b ,c 中,2个为负数,1个为正数,不妨设0c >,则max{,,}a b c c =.因为()()a b c ≤-+-=,所以24c ab ≤,因为0c >,2abc =,所以224c c ≤,324c ≥,则2c ≥,故{}max ,,a b c 的最小值是2,无最大值.故选:C.二、多项选择题:本题共3个小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求;全部选对的得6分,部分选对得部分分,有选错的得0分.9.已知正数x 、y ,满足2x y +=,则下列说法正确的是()A.xy 的最大值为1B.+的最大值为2C.21x y+的最小值为 D.2211x y x y +++的最小值为1【答案】ABD 【解析】【分析】对于AB ,利用基本不等式及其推论即可判断;对于CD ,利用换元法与基本不等式“1”的妙用即可判断.【详解】对于A ,因为0,0,2x y x y >>+=,所以2x y =+≥1xy ≤,当且仅当x y =且2x y +=,即1x y ==时,等号成立,所以xy 的最大值为1,故A 正确;对于B ,因为()2222222()2()0a ba b a b ab a b +-+=+-=-≥,所以()222()2a b a b +≤+,当且仅当a b =时,等号成立,所以()222224x y ⎡⎤≤+=+=⎣⎦2≤,当且仅当=且2x y +=,即1x y ==时,等号成立,的最大值为2,故B 正确;对于C ,211213()313222212y x x y x y y y x x ++⎛⎛⎫⎛⎫=+=++≥+=+ ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当2y xx y=且2x y +=,即42x y =-=-时等号成立,所以21x y +的最小值为32+,故C 错误;对于D ,令1s x =+,1t y =+,则1x s =-,1y t =-,24s t x y +=++=,0,0s t >>,所以()()22221111112211s t x y s t x y s t s t s t--+=+=-++-+=+++()11111221444t s s t s t s t ⎛⎛⎫⎛⎫=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当s t =且4s t +=,即2s t ==,即1x y ==时,等号成立,所以2211x y x y +++的最小值为1,故D 正确.故选:ABD.【点睛】方法点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.10.函数21()222x x f x +=-+的定义域为M ,值域为[1,2],下列结论中一定成立的结论的序号是()A.(,1]M ⊆-∞B.[2,1]M ⊇- C.1M ∈ D.0M∈【答案】ACD 【解析】【分析】先研究值域为[]1,2时函数的定义域,再研究使得值域为[]1,2得函数的最小值的自变量的取值集合,研究函数值取1,2时对应的自变量的取值,由此可判断各个选项.【详解】由于[]212()222(21)11,2xx x f x +=-+=-+∈,[]2(21)0,1x ∴-∈,[]211,1x ∴-∈-,[]20,2x ∴∈,(],1x ∴∈-∞,即函数21()222x x f x +=-+的定义域为(],1-∞当函数的最小值为1时,仅有0x =满足,所以0M ∈,故D 正确;当函数的最大值为2时,仅有1x =满足,所以1M ∈,故C 正确;即当[]0,1M =时,函数的值域为[]1,2,故(],1M ⊆-∞,故[2,1]M ⊇-不一定正确,故A 正确,B 错误;故选:ACD【点睛】关键点睛:本题考查函数的定义域及其求法,解题的关键是通过函数的值域求出函数的定义域,再利用元素与集合关系的判断,集合的包含关系判断,考查了学生的逻辑推理与转化能力,属于基础题.11.若1823,23a b +==,则以下结论正确的有()A.1b a -> B.112a b+>C .34ab >D.22b a<【答案】BC 【解析】【分析】由对数定义求出,a b ,再根据不等式的性质判断.作差并利用二次函数性质得出结论.【详解】由题意得2log 31a =-,228log 3log 33b ==-,213log 9b a --=-,而2log 93>,∴10b a --<,A 错误;∵0,0a b >>,2a b +=,a b ≠,∴1+1=12(+p(1+1)=12(2++)>+=2,B 正确;2222222(log 31)(3log 3)(log 3)4log 33(log 32)1ab =--=-+-=--+,又2>log 23>log 222=32,∴233(1)124ab >--+=,C 正确;2222222222(3log 3)2(log 31)(log 3)8log 311(log 34)5b a -=---=-+=--,又2223log 3log 27log 325=<=,即25log 33<,257log 34433->-=-,∴2−2=(log 23−4)2−5>−−5=49>0,∴22b a >,D 错误.故选:BC .第II 卷(非选择题部分,共92分)三、填空题:本题共3个小题,每小题5分,共15分.12.计算10247((96-+--=______.【答案】12##0.5【解析】【分析】根据给定条件,利用指数运算计算即得.【详解】11022247331(([()]12196222-+--=+-=-=.故答案为:1213.已知函数2()log (1)f x x =+,若1a b -<<,且()()f a f b =,则2a b ++的取值范围是__________.【答案】(2,)+∞【解析】【分析】去绝对值,结合对数运算及对勾函数的单调性即可求解.【详解】函数2()log (1)f x x =+,当0x ≥时,2()log (1)=+f x x ,当10x -<<时,2()log (1)f x x =-+,则()f x 在(1,)+∞单调递增,在(1,0)-单调递减,故10a -<<,0b >,由()()f a f b =,则22log (1)log (1)a b +=+,即22log (1)log (1)a b -+=+,所以2log (1)(1)0a b ++=,即(1)(1)1a b ++=,则111b a +=+,所以12(1)(1)(1)(1)a b a b a a ++=+++=+++,令1x a =+,则01x <<,则设函数1()g x x x=+,任取12,(0,1)x x ∈,不妨设1201x x <<<,因为()()12121211g x g x x x x x -=+--()()1212121x x x x x x --=,当1201x x <<<,所以120x x -<,120x x >,1210x x -<,所以()()12121210x x x x x x -->,所以()()120g x g x ->,即()()12g x g x >,所以()g x 在区间(0,1)上单调递减.则当1x →时,(1)2f →,当x →+∞时,()f x →+∞,故2a b ++的取值范围是(2,)+∞故答案为:()2,+∞14.已知不等式ln ln x x m x x n -≥+对0x ∀>恒成立,则当nm取最大值时,m =__________.【答案】e 【解析】【分析】由题设0m ≠,结合()ln y x m x =-、y x n =+的性质及不等式恒成立得0m >,再构造()()ln f x x m x x =--,利用导数研究其最小值得2000()()m f x f x m x x ≥=--且01(,)e x ∈+∞,根据不等式恒成立得200m m x n x --≥,应用基本不等式求nm最大值并确定取值条件0m x =,此时有000()ln x m x x n -=+恒成立即可求参数值.【详解】由()ln x m x x n -≥+,且0m ≠,若0m <,则()ln y x m x =-在x 趋向于0时,函数值趋向-∞,而y x n =+趋向于n ,此时()ln x m x x n -≥+在(0,)x ∈+∞上不能恒成立,所以0m >,令()()ln f x x m x x =--且(0,)x ∈+∞,则ln ()x x mf x x-'=,令()ln g x x x m =-且(0,)x ∈+∞,则()ln 1g x x '=+,所以10e x <<时()0g x '<,()g x 递减,1e x >时()0g x '>,()g x 递增,则11()()0e e g x g m ≥=--<,且1(0,)e x ∈时()0g x <,x 趋向正无穷时()g x 趋向正无穷,故01(,)ex ∃∈+∞,使000()ln 0g x x x m =-=,即00ln m x x =,所以0(0,)x x ∈时()0g x <,即()0f x '<,0(,)x x ∈+∞时()0g x >,即()0f x '>,所以0(0,)x x ∈上()f x 递减,0(,)x x ∈+∞上()f x 递增,则20000000()()ln ln m f x f x x x m x x m x x ≥=--=--,要使ln ln x x m x x n -≥+对0x ∀>恒成立,只需0()f x n ≥恒成立,所以200m m x n x --≥,即00111x n m m x m ≤--≤-=-,当且仅当0x m x m=,即0m x =时等号成立,结合已知参数比值取最大值,此时0()()f x f m m n ==-=,则0000ln ln 1x x m x x ==⇒=,故0e x =,即0e m x ==.故答案为:e【点睛】关键点点睛:首先确定0m >,再构造()()ln f x x m x x =--研究最小值,根据不等式恒成立有min 0()()f x f x n =≥,结合0()f x n =等号成立条件求参数m 的值.四、解答题:本题共5个小题,共70分,其中15题13分,16、17题每题15分,17、18题每题17分,解答应写出文字说明、证明过程或演算步骤.15.在ABC V 中,内角A ,B ,C 的对边分别是a ,b ,c ,且满足sin cos 6b A a B π⎛⎫=- ⎪⎝⎭(1)求B ∠;(2)若2b =,求ABC V 周长的取值范围.【答案】(1)π3B =(2)(]4,6【解析】【分析】(1)由正弦定理和余弦差角公式,辅助角公式得到πsin 03B ⎛⎫-= ⎪⎝⎭,结合()0,πB ∈,即可求解;(2)由余弦定理和基本不等式,结合三角形两边之和大于第三边,得到24a c <+≤,得到周长的取值范围.【小问1详解】由正弦定理得πsin sin sin cos 6B A A B ⎛⎫=-⎪⎝⎭,故11sin sin sin cos sin sin cos sin sin 2222B A A B B A B A B ⎛⎫=+=+ ⎪⎪⎝⎭,所以1sin sin sin cos 22B A A B =,因为()0,πA ∈,sin 0A ≠,所以13πsin cos sin 0223B B B ⎛⎫-=-= ⎪⎝⎭,因为()0,πB ∈,所以π3B =;【小问2详解】由(1)可知,π3B =,222a c b ac +-=,又2b =,所以224a c ac +=+,由基本不等式得:222a c ac +≥,即42ac ac +≥,所以4ac ≤,当且仅当2a c ==时,等号成立.又()22223416a c a c ac ac +=++=+≤,即04a c <+≤,又2a c b +>=,所以24a c <+≤,所以46a b c <++≤,即ABC V 周长的取值范围是(]4,6.16.如图,在正三棱柱111ABC A B C -中,11,4,AB AA D ==是1AA 中点,E 在棱1BB 上,且13BE B E =.(1)求证:平面1C DE ⊥平面11AA C C ;(2)求平面1C DE 与平面ABC 的夹角的余弦值.【答案】(1)证明见解析(2)5【解析】【分析】(1)证明平面1C DE ⊥平面11AA C C ,只需在平面1C DE 内找到一条直线与平面11AA C C 垂直即可,a 根据线面垂直的判定定理易证⊥EF 平面11AA C C .(2)建立空间直角坐标系,分别求出平面1C DE 与平面ABC 的法向量,然后根据空间角的向量求法求解即可.【小问1详解】设1C D 的中点为F ,过F 作1GG ∥1AA 分别交11,AC A C 于1,G G ,连接EF 、11B G ,则1,G G 分别为11,AC A C 的中点,所以11112FG A D ==,由1114,3BB AA BE B E ===,得11B E =,即11FG B E =,又因为1FG ∥1B E ,所以四边形11B EFG 是平行四边形,所以EF ∥11B G ,因为1G 是11A C 的中点,111A B C △为正三角形,所以1111B G AC ⊥,由正三棱柱的性质得,1AA ⊥底面111A B C ,且11B G ⊂底面111A B C ,所以1111111,B G AA AC AA A ⊥⋂=,111,A C AA ⊂平面11AA C C ,所以11B G ⊥平面11AA C C .又因为EF ∥11B G ,所以⊥EF 平面11AA C C ,EF ⊂平面1C DE ,所以平面1C DE ⊥平面11AA C C .【小问2详解】以BC 中点O 为原点,(11,,OA OC OO O 为11B C 中点)分别为x 轴,y 轴,z 轴,建立空间直角坐标系O xyz -,则1311,0,2,0,,3,0,,4222D E C ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,易得平面ABC 的一个法向量 1=0,0,1,设向量 s s 为平面1C DE 一个法向量,()1131,,2,0,1,122C D C E ⎛⎫=--=-- ⎪ ⎪⎝⎭,则由21210,0n C D n CE ⋅=⋅=,得120,022x y z y z --=+=,令1z =,得)21,1n =-,设平面1C DE 与平面ABC 的夹角为θ,则12125cos 5n n n n θ⋅==⋅ .所以平面1C DE 与平面ABC的夹角的余弦值为5.17.已知函数()()()2212ln ,21ln ,2g x x ax x f x x a x a x a a =--=-+++∈R (1)若[]12,2,6x x ∀∈时()()()1212120g x g x x x x x ->≠-,求实数a 的取值范围.(2)当a ∈R 时,讨论()f x 的单调性.【答案】(1)(],1-∞(2)答案见解析【解析】【分析】(1)根据题意,函数()g x 在[]26,上单调递增,利用导数,并分离参数a 的取值范围;(2)利用导数,分类讨论函数单调性.【小问1详解】依题意可得当[]2,6x ∈时,()0g x '≥恒成立,所以20x a x--≥在[]2,6x ∈上恒成立,即2a x x ≤-在[]2,6x ∈上恒成立,则min 2a x x ⎛⎫≤- ⎪⎝⎭,令()[]2,2,6h x x x x =-∈,由()2210h x x=+>',知ℎ在[]26,上单调递增,从而()min ()21a h x h ≤==.经检验知,当1a =时,函数()g x 不是常函数,所以a 的取值范围是(],1-∞.【小问2详解】()()221ln f x x a x a x a =-+++,定义域为0,+∞,()()()()21221x x a a f x x a x x--=-++=',令()0f x '=,得12x =或x a =.①当0a ≤时,当10,2x ⎛⎫∈ ⎪⎝⎭时,()()0,f x f x '<单调递减,当1,2x ∞⎛⎫∈+ ⎪⎝⎭时,()()0,f x f x '>单调递增;②当102a <<时,当()0,x a ∈和1,2x ∞⎛⎫∈+ ⎪⎝⎭时,()()0,f x f x '>单调递增,当1,2x a ⎛⎫∈ ⎪⎝⎭时,()()0,f x f x '<单调递减;③当12a =时,′≥0对()0,x ∞∀∈+恒成立,所以()f x 在0,+∞单调递增;④当12a >时,当10,2x ⎛⎫∈ ⎪⎝⎭和(),x a ∞∈+时,()()0,f x f x '>单调递增,当1,2x a ⎛⎫∈ ⎪⎝⎭时,()()0,f x f x '<单调递减.综上所述:当0a ≤时,()f x 在10,2⎛⎫ ⎪⎝⎭单调递减,在1,2∞⎛⎫+ ⎪⎝⎭单调递增;当102a <<时,()f x 在1,2a ⎛⎫ ⎪⎝⎭单调递减,在()0,a 和1,2∞⎛⎫+ ⎪⎝⎭单调递增;当12a =时,()f x 在0,+∞单调递增;当12a >时,()f x 在1,2a ⎛⎫ ⎪⎝⎭单调递减,在10,2⎛⎫⎪⎝⎭和(),a ∞+单调递增.18.如图,已知椭圆2222:1(0)x y C a b a b+=>>过点()3,1P ,焦距为,斜率为13-的直线l 与椭圆C 相交于异于点P 的,M N 两点,且直线,PM PN 均不与x 轴垂直.(1)求椭圆C 的方程;(2)若10MN =,求MN 的方程;(3)记直线PM 的斜率为1k ,直线PN 的斜率为2k ,证明:12k k 为定值.【答案】(1)221124x y +=(2)123y x =--(3)证明见解析【解析】【分析】(1)根据条件列方程组求解即可;(2)设直线l 的方程为13y x m =-+,与椭圆联立,由弦长公式求得MN 的方程;(3)将韦达定理代入12k k 中计算结果为定值.【小问1详解】由题意得2222291122a b c a b c ⎧+=⎪⎪⎪=⎨⎪=+⎪⎪⎩解得322a b c ⎧=⎪=⎨⎪=⎩,故椭圆C 的方程为221124x y +=.【小问2详解】设直线l 的方程为13y x m =-+,()()1122,,,M x y N x y 由22131124y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩得22469360x mx m -+-=,由()22Δ(6)14440m m =-->,得33m -<<,则212123936,24m m x x x x -+==.102MN ===解得2m =或2m =-当2m =时,直线1:23l y x =-+经过点()3,1P ,不符合题意,舍去;当2m =-时,直线l 的方程为123y x =--.【小问3详解】直线PM ,PN 均不与x 轴垂直,所以123,3x x ≠≠,则0m ≠且2m ≠,所以()()1212121212111111333333x m x m y y k k x x x x ⎛⎫⎛⎫-+--+- ⎪⎪--⎝⎭⎝⎭=⋅=----()()()212121212111(1)9339x x m x x m x x x x --++-=-++()222221936131(1)3619432936391833942m m m m m m m m m m -⋅--⋅+--===---⋅+为定值.19.设函数()e xf x ax =-,其中a ∈R .(1)讨论函数()f x 在[)1,+∞上的极值;(2)过点()1,0P 可作函数()f x 的两条切线,求a 的取值范围;(3)若函数()f x 有两零点()1212,x x x x <,且满足1211x x λλ+>+,求正实数λ的取值范围.【答案】(1)答案见解析(2)0ea <<(3)[)1,+∞【解析】【分析】(1)求出()e xf x a '=-,分e a ≤、e a >讨论,可得答案;(2)先设出切点()000,e xQ x ax -,再写出切线的方程,利用切线过()1,0P 得到关于0x 的方程()002e x a x =-,构造函数()()0002e ,x g x x =-从而将切线的个数问题转化成()0y g x =与y a =有2个交点问题,从而得解;(3)由零点存在定理可知120ln x a x <<<,而题设1212e e 0x x ax ax -=-=,消去a 可得221121e e e x x x x x x -==,令211x t x =>,且21ln t x x =-,求出2x ,1x ,将其代入1211x x λλ+>+得(1)(1)()ln 01t F t t t λλ+-=->+,再利用导数分1λ≥、01λ<<讨论可得答案.【小问1详解】由()e x f x ax =-知()e xf x a '=-,1)当e a ≤时,且有[)()()1,,0,x f x f x ∞∈+≥'单调递增,故无极值;2)当e a >时,有()()()1,ln ,0,x a f x f x ∈<'单调递减,而()()()ln ,,0,x a f x f x ∞'∈+>单调递增,故()()()ln ln ,f x f a a a a f x ==-极小值无极大值.综上,当e a ≤时,()f x 无极值;当e a >时,()f x 极小值为()ln ,a a f x -无极大值;【小问2详解】设点为()000,e xQ x ax -为函数()f x 图象上一点,则以点Q 为切点的切线l 方程为:()()()0000e e xxy ax ax x --=--,又l 过点()1,0P 则:()()()00000e e 1xxax a x --=--,即()002e xa x =-,令()()0002e ,xg x x =-则()()0001e xg x x =-',当01x <时()00gx '>,则()0g x 为增函数;当01x >时()00g x '<,则()0g x 为减函数,则()()0max 1e g x g ==,0x →+∞时,()00;gx x ∞∞→-→-时,()00g x →,故0e a <<.【小问3详解】由(1)可知当e a >时,()()ln 1ln 0f a a a =-<,()010f =>,且(),x f x ∞∞→+→+,由零点存在定理可知120ln x a x <<<,而题设可知1212e e 0x xax ax -=-=,消去a 可得221121e e e x x xx x x -==,令211x t x =>,且21ln t x x =-,即21ln ln ,11t t t x x t t ==--,将其代入1211x x λλ+>+,整理可令得()()()11ln 01t F t t t λλ+-=->+,而()()()2222111(1)(1)(1)t t F t t t t t λλλλ'--+=-=++,1)当1λ≥时,且()1,t ∈+∞,有()()22(1)0,(1)t F t F t t t λ-≥>+'单调递增,()()10F t F >=,满足题设;2)当01λ<<时,且211,t λ⎛⎫∈ ⎪⎝⎭,有()()0,F t F t '<单调递减,()()10F t F <=,不满足题设;综上,λ的取值范围为[)1,+∞【点睛】关键点点睛:第三问解题关键点是,将问题化为函数()()()11ln 01t F t t t λλ+-=->+,从而得解.。
山东省邹平双语学校二区2022届高三上学期第一次月考数学(文)试题 Word版含答案
![山东省邹平双语学校二区2022届高三上学期第一次月考数学(文)试题 Word版含答案](https://img.taocdn.com/s3/m/201272ea4bfe04a1b0717fd5360cba1aa8118c34.png)
邹平双语学校2021—2022第一学期第一次月考试题(1、2区) 高三 班级 数学(文科)试题(时间:120分钟,分值:150分)一.选择题(每题5分,共12小题)1.设集合A={1,2,3},B={2,3,4},则A ∪B=( ) A .{1,2,3,4} B .{1,2,3} C .{2,3,4} D .{1,3,4} 2.已知cosα=﹣,α是第三象限的角,则sinα=( ) A .﹣B .C .﹣D .3.命题p :“∃x 0∈R“,x 02﹣1≤0的否定¬p 为( ) A .∀x ∈R ,x 2﹣1≤0 B .∀x ∈R ,x 2﹣1>0 C .∃x 0∈R ,x 02﹣1>0 D .∃x 0∈R ,x 02﹣1<0 4.函数y=sin2x +cos2x 的最小正周期为( )A .B .C .πD .2π5.已知函数f (x )=a x (a >0,a ≠1)在[1,2]上的最大值和最小值的和为6,则a=( ) A .2B .3C .4D .56.设非零向量,满足|+|=|﹣|则( ) A .⊥B .||=||C .∥D .||>||7.已知函数f (x )=3x ﹣()x ,则f (x )( )A .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数 8.设函数f (x )=cos (x +),则下列结论错误的是( )A .f (x )的一个周期为﹣2πB .y=f (x )的图象关于直线x=对称C .f (x +π)的一个零点为x=D .f (x )在(,π)单调递减9.已知函数f (x )=sinx ﹣cosx ,且f′(x )=2f (x ),则tan2x 的值是( ) A .﹣B .C .﹣D .10.已知曲线C 1:y=cosx ,C 2:y=sin (2x +),则下面结论正确的是( )A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 211.函数y=f (x )的导函数y=f′(x )的图象如图所示,则函数y=f (x )的图象可能是( )A .B .C .D .12.函数y=的部分图象大致为( )A .B.C .D .二.填空题(每题5分,共4小题)13.已知集合A={1,2},B={a ,a 2+3}.若A ∩B={1},则实数a 的值为 . 14.设f (x )=xlnx ,若f′(x 0)=2,则x 0的值为 .15.函数f (x )=sin 2x +cosx ﹣(x ∈[0,])的最大值是 .班级:____________ 姓名:_____________ 考号:________________________16.A:x1,x2是方程ax2+bx+c=0(a≠0)的两实数根;B:x1+x2=﹣,则A是B的条件.三.解答题(共6小题,70分)17.(10分))已知命题p:x∈A,且A={x|a﹣1<x<a+1},命题q:x∈B,且B={x|x2﹣4x+3≥0}(Ⅰ)若A∩B=∅,A∪B=R,求实数a的值;(Ⅱ)若p是q的充分条件,求实数a的取值范围.18.(12分))已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).(Ⅰ)求f()的值.(Ⅱ)求f(x)的最小正周期及单调递增区间.19.(12分)已知直线l是曲线y=x3在点(1,1)处的切线,(1)求l的方程;(2)求直线l与x轴、直线x=2所围成的三角形的面积.20.(12分).在△ABC中,角A,B,C的对边分别是a、b、c,已知,,且.(Ⅰ)求角A 的大小;(Ⅱ)若b=3,△ABC的面积,求a的值.21.(12分))某厂生产产品x件的总成本c(x)=1200+x3(万元),已知产品单价P(万元)与产品件数x满足:p2=,生产100件这样的产品单价为50万元.(1)设产量为x件时,总利润为L(x)(万元),求L(x)的解析式;(2)产量x定为多少件时总利润L(x)(万元)最大?并求最大值(精确到1万元).22.(12分))已知函数.(1)当a=1时,∃x0∈[1,e]使不等式f(x0)≤m,求实数m的取值范围;(2)若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax的下方,求实数a的取值范围.邹平双语学校2021—2022第一学期第一次月考试题(1、2区) 高三班级数学(文科)试题答案一.选择题(共12小题)1.设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4}B.{1,2,3}C.{2,3,4}D.{1,3,4}【分析】集合A={1,2,3},B={2,3,4},求A∪B,可并集的定义直接求出两集合的并集.【解答】解:∵A={1,2,3},B={2,3,4},∴A∪B={1,2,3,4}故选A.【点评】本题考查并集及其运算,解题的关系是正确理解并集的定义及求并集的运算规章,是集合中的基本概念型题.2.已知cosα=﹣,α是第三象限的角,则sinα=()A .﹣B .C .﹣D .【分析】利用同角三角函数的基本关系、以及三角函数在各个象限中的符号,求得sinα的值.【解答】解:∵cosα=﹣,α是第三象限的角,则sinα=﹣=﹣,故选:C.【点评】本题主要考查同角三角函数的基本关系、以及三角函数在各个象限中的符号,属于基础题.3.命题p:“∃x0∈R“,x02﹣1≤0的否定¬p为()A.∀x∈R,x2﹣1≤0 B.∀x∈R,x2﹣1>0C.∃x0∈R,x02﹣1>0 D.∃x0∈R,x02﹣1<0【分析】直接写出特称命题的否定得答案.【解答】解:命题p:“∃x0∈R“,x0﹣1≤0为特称命题,其否定为全称命题,∴¬p为∀x∈R,x2﹣1>0.故选:B.【点评】本题考查特称命题的否定,留意命题的否定的格式是关键,是基础题.4.函数y=sin2x+cos2x的最小正周期为()A .B .C.πD.2π【分析】利用帮助角公式,化简函数的解析式,进而依据ω值,可得函数的周期.【解答】解:∵函数y=sin2x+cos2x=2sin(2x +),∵ω=2,∴T=π,故选:C【点评】本题考查的学问点是三角函数的周期性及其求法,难度不大,属于基础题.5.已知函数f(x)=a x(a>0,a≠1)在[1,2]上的最大值和最小值的和为6,则a=()A.2 B.3 C.4 D.5【分析】依据指数函数的单调性在定义域是要么递增,要么递减,即看求解.【解答】解:依据指数函数的性质:当x=1时,f(x)取得最大值,那么x=2取得最小值,或者x=1时,f(x)取得最小值,那么x=2取得最大值.∴a+a2=6.∵a>0,a≠1,∴a=2.故选:A.【点评】本题考查了指数函数的性质的运用,属于基础题.6.设非零向量,满足|+|=|﹣|则()A .⊥B.||=||C .∥D.||>||【分析】由已知得,从而=0,由此得到.【解答】解:∵非零向量,满足|+|=|﹣|,∴,解得=0,∴.故选:A.【点评】本题考查两个向量的关系的推断,是基础题,解题时要认真审题,留意向量的模的性质的合理运用.【点评】本题考查对数的运算法则,解题时要认真审题,认真解答.7.已知函数f(x)=3x ﹣()x,则f(x)()A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数【分析】由已知得f(﹣x)=﹣f (x),即函数f(x)为奇函数,由函数y=3x为增函数,y=()x为减函数,结合“增”﹣“减”=“增”可得答案.【解答】解:f(x)=3x ﹣()x=3x﹣3﹣x,∴f(﹣x)=3﹣x﹣3x=﹣f(x),即函数f(x)为奇函数,又由函数y=3x为增函数,y=()x为减函数,故函数f(x)=3x ﹣()x为增函数,故选:A.【点评】本题考查的学问点是函数的奇偶性,函数的单调性,是函数图象和性质的综合应用,难度不大,属于基础题.8.设函数f(x)=cos(x +),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x )在(,π)单调递减【分析】依据三角函数的图象和性质分别进行推断即可.【解答】解:A.函数的周期为2kπ,当k=﹣1时,周期T=﹣2π,故A正确,B.当x=时,cos(x +)=cos (+)=cos=cos3π=﹣1为最小值,此时y=f(x)的图象关于直线x=对称,故B正确,C当x=时,f (+π)=cos (+π+)=cos=0,则f(x+π)的一个零点为x=,故C 正确,D .当<x<π时,<x +<,此时函数f(x)不是单调函数,故D错误,故选:D【点评】本题主要考查与三角函数有关的命题的真假推断,依据三角函数的图象和性质是解决本题的关键.9.已知函数f(x)=sinx﹣cosx,且f′(x)=2f(x),则tan2x的值是()A .﹣B .C .﹣D .【分析】求出f(x)的导函数,依据f′(x)=2f(x)列出关系式,计算即可求出tan2x的值.【解答】解:求导得:f′(x)=cosx+sinx,∵f′(x)=2f(x),∴cosx+sinx=2(sinx﹣cosx),即3cosx=sinx,∴tanx=3,则tan2x===﹣.故选C【点评】此题考查了三角函数的化简求值,以及导数的运算,娴熟把握求导公式是解本题的关键.10.已知曲线C1:y=cosx,C2:y=sin(2x +),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【分析】利用三角函数的伸缩变换以及平移变换转化求解即可.【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x +)=cos(2x +)=sin(2x +)的图象,即曲线C2,故选:D.【点评】本题考查三角函数的图象变换,诱导公式的应用,考查计算力量.11.函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A .B .C .D .【分析】依据导数与函数单调性的关系,当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,依据函数图象,即可推断函数的单调性,然后依据函数极值的推断,即可推断函数极值的位置,即可求得函数y=f(x)的图象可能【解答】解:由当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,则由导函数y=f′(x)的图象可知:f(x)先单调递减,再单调递增,然后单调递减,最终单调递增,排解A,C,且其次个拐点(即函数的极大值点)在x轴上的右侧,排解B,故选D【点评】本题考查导数的应用,考查导数与函数单调性的关系,考查函数极值的推断,考查数形结合思想,属于基础题.12.函数y=的部分图象大致为()A . B .C D .【分析】推断函数的奇偶性排解选项,利用特殊值推断即可.【解答】解:函数y=,可知函数是奇函数,排解选项B,当x=时,f ()==,排解A,x=π时,f(π)=0,排解D.故选:C.【点评】本题考查函数的图形的推断,三角函数化简,函数的奇偶性以及函数的特殊点是推断函数的图象的常用方法.二.填空题(共4小题)13.已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为1.【分析】利用交集定义直接求解.【解答】解:∵集合A={1,2},B={a,a2+3}.A∩B={1},∴a=1或a2+3=1,解得a=1.故答案为:1.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,留意交集定义及性质的合理运用.14.设f(x)=xlnx,若f′(x0)=2,则x0的值为e.【分析】先依据乘积函数的导数公式求出函数f(x)的导数,然后将x0代入建立方程,解之即可.【解答】解:f(x)=xlnx∴f'(x)=lnx+1则f′(x0)=lnx0+1=2解得:x0=e故答案为:e【点评】本题主要考查了导数的运算,以及乘积函数的导数公式的运用,属于基础题之列.15.函数f(x)=sin2x +cosx ﹣(x∈[0,])的最大值是1.【分析】同角的三角函数的关系以及二次函数的性质即可求出.【解答】解:f(x)=sin2x+cosx﹣=1﹣cos2x+cosx﹣,令cosx=t且t∈[0,1],则y=﹣t2+t+=﹣(t﹣)2+1,当t=时,f(t)max=1,即f(x)的最大值为1,故答案为:1【点评】本题考查了同角的三角函数的关系以及二次函数的性质,属于基础题16.A:x1,x2是方程ax2+bx+c=0(a≠0)的两实数根;B:x1+x2=﹣,则A是B的充分条件.【分析】A⇒B验证充分性x1,x2是方程ax2+bx+c=0(a≠0)的两实数根,可推出x1+x2=﹣,而必要性不肯定成立,故得是充分条件【解答】解:由题意若x1,x2是方程ax2+bx+c=0(a≠0)的两实数根,由根与系数的关系肯定可以得出x1+x2=﹣,故A⇒B成立;若x1+x2=﹣,成立,不能得出x1,x2是方程ax2+bx+c=0(a≠0)的两实数根,由于此方程有根与否要用推断式进行推断,须考虑a,b,c三个字母,故B⇒A不肯定成立;故可得,A是B的充分条件故答案为充分【点评】本题考查必要条件充分条件充要条件的推断,求解的关键是正确理解充分条件与必要条件的定义,以及二次方程有根的条件.三.解答题(共6小题)17.已知命题p:x∈A,且A={x|a﹣1<x<a+1},命题q:x∈B,且B={x|x2﹣4x+3≥0}(Ⅰ)若A∩B=∅,A∪B=R,求实数a的值;(Ⅱ)若p是q的充分条件,求实数a的取值范围.【分析】(Ⅰ)把集合B化简后,由A∩B=∅,A∪B=R,借助于数轴列方程组可解a的值;(Ⅱ)把p 是q的充分条件转化为集合A和集合B之间的关系,运用两集合端点值之间的关系列不等式组求解a的取值范围.【解答】解:(Ⅰ)B={x|x2﹣4x+3≥0}={x|x≤1,或x≥3},A={x|a﹣1<x <a+1},由A∩B=∅,A∪B=R ,得,得a=2,所以满足A∩B=∅,A∪B=R的实数a的值为2;(Ⅱ)因p 是q的充分条件,所以A ⊆B,且A ≠∅,所以结合数轴可知,a+1≤1或a﹣1≥3,解得a≤0,或a≥4,所以p是q的充分条件的实数a的取值范围是(﹣∞,0]∪[4,+∞).【点评】本题考查了充分条件,考查了集合关系的参数取值问题,集合关系的参数取值问题要转化为两集合端点值的大小比较,是易错题.18.已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).(Ⅰ)求f()的值.(Ⅱ)求f(x)的最小正周期及单调递增区间.【分析】利用二倍角公式及帮助角公式化简函数的解析式,(Ⅰ)代入可得:f()的值.(Ⅱ)依据正弦型函数的图象和性质,可得f(x)的最小正周期及单调递增区间【解答】解:∵函数f(x)=sin2x﹣cos2x﹣2sinx cosx=﹣sin2x﹣cos2x=2sin(2x+)(Ⅰ)f()=2sin(2×+)=2sin=2,(Ⅱ)∵ω=2,故T=π,即f(x)的最小正周期为π,由2x+∈[﹣+2kπ,+2kπ],k∈Z得:x∈[﹣+kπ,﹣+kπ],k∈Z,故f(x)的单调递增区间为[﹣+kπ,﹣+kπ]或写成[kπ+,kπ+],k∈Z.【点评】本题考查的学问点是三角函数的化简求值,三角函数的周期性,三角函数的单调区间,难度中档.19.已知直线l是曲线y=x3在点(1,1)处的切线,(1)求l的方程;(2)求直线l与x轴、直线x=2所围成的三角形的面积.【分析】(1)求出导数,求出切线的斜率,由点斜式方程,即可得到曲线在点P(1,1)处的切线方程;(2)y=0时,x=;x=2时,y=4,即可求直线l与x轴、直线x=2所围成的三角形的面积.【解答】解:(1)y=x3的导数为y′=3x2,则曲线在点P(1,1)处的切线斜率为3,即有曲线在点P(1,1)处的切线方程为y﹣1=3(x﹣1),即3x﹣y﹣2=0;(2)y=0时,x=;x=2时,y=4,∴直线l与x轴、直线x=2所围成的三角形的面积为=.【点评】本题考查导数的几何意义:曲线在该点处的切线的斜率,考查直线方程的求法,考查运算力量,属于基础题.20.在△ABC中,角A,B,C的对边分别是a、b、c ,已知,,且.(Ⅰ)求角A的大小;(Ⅱ)若b=3,△ABC 的面积,求a的值.【分析】(Ⅰ)利用向量平行,列出方程,通过两角和与差的三角函数,化简求解角A的大小;(Ⅱ)利用三角形的面积,求出c,然后利用余弦定理求解a即可.【解答】解:(Ⅰ)∵,∴(2c﹣b)•cosA﹣a•cosB=0,∴cosA•(2sinC﹣sinB)﹣sinA•cosB=0,即2cosAsinC﹣cosAsinB﹣sinA•cosB=0,∴2cosAsinC=cosAsinB+sinA•cosB,∴2cosAsinC=s in(A+B),即2cosAsinC=sinC,∵sinC≠0∴2cosA=1,即又0<A<π∴,(Ⅱ)∵b=3,由(Ⅰ)知∴,,∴c=4,由余弦定理有a2=b2+c2﹣2bccosA=,∴.【点评】本题考查向量与三角函数相结合求解三角形的几何量,考查余弦定理的应用,是基础题.21.某厂生产产品x件的总成本c(x)=1200+x3(万元),已知产品单价P(万元)与产品件数x满足:p2=,生产100件这样的产品单价为50万元.(1)设产量为x件时,总利润为L(x)(万元),求L(x)的解析式;(2)产量x定为多少件时总利润L(x)(万元)最大?并求最大值(精确到1万元).【分析】(1)由题可知生产100件这样的产品单价为50万元,所以把x=100,P=50代入到p2=中求出k的值确定出P的解析式,然后依据总利润=总销售额﹣总成本得出L(x)即可;(2)令L′(x)=0求出x的值,此时总利润最大,最大利润为L(25).【解答】解:(1)由题意有,解得k=25×104,∴,∴总利润=;(2)由(1)得,令,令,得,∴t=5,于是x=t2=25,则x=25,所以当产量定为25时,总利润最大.这时L(25)≈﹣416.7+2500﹣1200≈883.答:产量x定为25件时总利润L(x)最大,约为883万元.【点评】考查同学依据实际问题选择函数关系的力量,及利用导数求函数最值的方法的力量.22.已知函数.(1)当a=1时,∃x0∈[1,e]使不等式f(x0)≤m,求实数m的取值范围;(2)若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax的下方,求实数a的取值范围.【分析】(I)将a的值代入f(x),求出f(x)的导函数;,将∃x0∈[1,e]使不等式f(x0)≤m 转化为f(x)的最小值小于等于m,利用[1,e]上的函数递增,求出f(x)的最小值,令最小值小于等于m即可.(II)将图象的位置关系转化为不等式恒成立;通过构造函数,对新函数求导,对导函数的根与区间的关系进行争辩,求出新函数的最值,求出a的范围.【解答】解:(I)当a=1时,,可知当x∈[1,e]时f(x)为增函数,最小值为,要使∃x0∈[1,e]使不等式f(x0)≤m,即f(x)的最小值小于等于m,故实数m 的取值范围是(2)已知函数.若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax的下方,等价于对任意x∈(1,+∞),f(x)<2ax,即恒成立.设.即g(x)的最大值小于0.(1)当时,,∴为减函数.∴g(1)=﹣a ﹣≤0∴a ≥﹣∴(2)a≥1时,.为增函数,g(x)无最大值,即最大值可无穷大,故此时不满足条件.(3)当时,g(x )在上为减函数,在上为增函数,同样最大值可无穷大,不满足题意.综上.实数a 的取值范围是.【点评】解决不等式恒成立及不等式有解问题一般都转化为函数的最值问题,通过导数求函数的最值,进一步求出参数的范围.第页,共页第页,共页。
广东省江门市陈经纶中学2021-2022学年高三数学文月考试题含解析
![广东省江门市陈经纶中学2021-2022学年高三数学文月考试题含解析](https://img.taocdn.com/s3/m/ee022054ac02de80d4d8d15abe23482fb4da021c.png)
广东省江门市陈经纶中学2021-2022学年高三数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知集合,,则()A.B.C.D.参考答案:D略2. 已知S n是数列{a n}的前n项和,且,则()A. 20B. 25C. 30D. 35参考答案:D【分析】先由得到数列是等差数列,再根据,即可求出结果.【详解】因为是数列的前项和,且,所以,因此数列是公差为的等差数列,又,所以,因此.故选D【点睛】本题主要考查等差数列的性质、以及等差数列的前项和,熟记等差数列的性质以及前项和公式即可,属于常考题型.3. 从4名男生和3名女生中选出4人参加市中学生知识竞赛活动,若这4人中必须既有男生又有女生,不同的选法共有(A)140种(B)120种(C)35种(D)34种参考答案:D 略4. 如右图,某几何体的三视图均为边长为l的正方形,则该几何体的体积是()A. B. C.1 D.参考答案:A5. 设全集.已知四棱锥的三视图如右图所示,则四棱锥的四个侧面中的最大面积是A.B.C. D.参考答案:A四棱锥如图所示:,,所以四棱锥的四个侧面中的最大面积是6.6. 已知是定义在R上的奇函数,它的最小正周期为T,则的值为A.0 B. C.TD.参考答案:A解析:因为的周期为T,所以,又是奇函数,所以,所以则7. 已知,现有下列命题:其中的所有正确命题的序号是()(A)(B)(C)(D)参考答案:C 8. 用C(A)表示非空集合A中的元素个数,定义.若,,且|A-B|=1,由a的所有可能值构成的集合为S,那么C(S)等于( )A.1 B.2 C.3 D.4参考答案:A略9. 在等比数列{}中,若是方程则=()A. B .- C. D. 3参考答案:C略10.已知等比数列{a n}的前n项为S n,S3 = 3,S6 = 27,则此等比数列的公比q等于()A.2 B.-2 C. D.-参考答案:答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 已知向量=(2,1),=(x,﹣6),若⊥,则|+|= .参考答案:5【考点】平面向量数量积的运算.【专题】方程思想;分析法;平面向量及应用.【分析】由向量垂直的条件:数量积为0,可得x=3,再由向量模的公式,计算即可得到所求.【解答】解:向量=(2,1),=(x,﹣6),若⊥,则?=2x﹣6=0,解得x=3,即有+=(5,﹣5),则|+|==5,故答案为:5.【点评】本题考查向量的垂直的条件:数量积为0,考查向量的模的计算,属于基础题.12. 已知f(x)是定义域为R的偶函数,当x≥0时,那么,不等式的解集是.参考答案:13. 、若函数的最小值为3,则实数=参考答案:或略14. 已知则的最大值是_____________.;参考答案:略15. 方程表示焦点在轴的椭圆时,实数的取值范围是____________ 参考答案:16. 若关于,的不等式组(为常数)所表示的平面区域的面积等于2,则的值为 .参考答案:317. 在△ABC中,a=1,b=2,cosC=,sinA= .参考答案:【考点】余弦定理;正弦定理.【专题】转化思想;综合法;解三角形.【分析】利用余弦定理可得c,cosA,再利用同角三角函数基本关系式即可得出.【解答】解:由余弦定理可得:c2=12+22﹣=4,解得c=2.∴cosA===,又A∈(0,π),∴sinA===.故答案为:.【点评】本题考查了余弦定理、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.三、解答题:本大题共5小题,共72分。
江苏盐城五校联考2025届高三10月月考数学试题+答案
![江苏盐城五校联考2025届高三10月月考数学试题+答案](https://img.taocdn.com/s3/m/cc808f56591b6bd97f192279168884868762b89b.png)
(总分150江苏盐城五校联考2024/2025学年度第一学期联盟校第一次学情调研检测高三年级数学试题分考试时间120分钟)注意事项:1.本试卷中所有试题必须作答在答题纸上规定的位置,否则不给分.2.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题纸上.3.作答非选择题时必须用黑色字迹0.5毫米签字笔书写在答题纸的指定位置上,作答选择题必须用2B 铅笔在答题纸上将对应题目的选项涂黑。
如需改动,请用橡皮擦干净后,再选涂其它答案,请保持答题纸清洁,不折叠、不破损。
一、选择题(本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}2340A x x x =--≤,{}20B x x =∈->N ,则A B = ()A.{3,4}B.{0,1}C.{}1,0,1- D.{2,3,4}2.半径为2的圆上长度为4的圆弧所对的圆心角是()A.1B.2C.4D.83.已知0x >,0y >,则()A .ln ln ln ln 777x y x y+=+ B.()ln ln ln 777x y x y +=⋅C.ln ln ln ln 777x y x y⋅=+ D.()ln ln ln 777xy x y=⋅4.若正数,x y 满足2220x xy -+=,则x y +的最小值是()A.B.2C. D.25.已知()1sin 3αβ-=,tan 3tan αβ=,则()sin αβ+=()A.16B.13C.12D.236.若函数f (x )=()12,152,1a x x lgx x ⎧-+≤⎨-->⎩是在R 上的减函数,则a 的取值范围是()A.[)61-,B.()1-∞,C.()61-,D.()6-∞-,7.已知函数()()sin cos 06πf x x x ωωω⎛⎫=++> ⎪⎝⎭在[]0,π内有且仅有3个零点,则ω的取值范围是()A .811,33⎡⎫⎪⎢⎣⎭B .811,33⎛⎤⎥⎝⎦C .1013,33⎛⎤⎥⎝⎦D .1013,33⎡⎫⎪⎢⎣⎭8.已知1,1a b >>.设甲:e e b a a b =,乙:b a a b =,则()A.甲是乙的必要条件但不是充分条件B.甲是乙的充分条件但不是必要条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件二、选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)9.下列导数运算正确的是()10.已知函数()tan πf x x =,将函数()y f x =的图象向左平移13个单位长度,然后纵坐标不变,横坐标伸长为原来的2倍,得到函数()g x 的图象,则下列描述中正确的是().A.函数()g x 的图象关于点2,03⎛⎫-⎪⎝⎭成中心对称 B.函数()g x 的最小正周期为2C.函数()g x 的单调增区间为51,33k k ⎛⎫-++ ⎪⎝⎭,k ∈ZD.函数()g x 的图象没有对称轴11.已知实数a ,b 是方程()230x k x k --+=的两个根,且1a >,1b >,则()A.ab 的最小值为9B.22a b +的最小值为18C.3111a b +-- D.4a b +的最小值为12三、填空题(本题共3小题,每小题5分,共15分)12.命题“2024,lg x x ∀≥<”的否定为__________.13.若过点()0,0的直线是曲线()210y x x =+>和曲线ln 1ay x a x =-++的公切线,则a =________.14.已知函数()21y f x =+-为定义在R 上的奇函数,则()405112024i f i =-=∑______.四、解答题(本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤)15.(本题13分)已知函数44()cos 2sin cos sin f x x x x x =--.(1)求()f x 的最小正周期;(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求()f x 的最小值以及取得最小值时x 的集合.16.(本题15分)已知定义在R 上的奇函数()221x x af x -=+,其中0a >.(1)求函数()f x 的值域;(2)解不等式:()()2231f x f x +≤+17.(本题15分)如图所示,在平面直角坐标系xOy 中,角α和角π2π023βαβ⎛⎫<<<< ⎪⎝⎭的顶点与坐标原点重合,始边与x 轴的非负半轴重合,终边分别与单位圆交于点A 、B 两点,点A 的横坐标为35,点C 与点B 关于x 轴对称.(1)求2πcos 22sin cos 2ααα⎛⎫- ⎪⎝⎭+的值;(2)若63cos 65AOC ∠=-,求cos β的值.18.(本题17分)已知函数()12ln f x x x=+,()g x ax =.(1)求()f x 的单调区间;(2)当[1,)x ∈+∞时,()()g x f x ≥,求实数a 的取值范围;19.(本题17分)设集合A 为非空数集,定义{|,,},{|,,}A x x a b a b A A x x a b a b A +-==+∈==-∈.(1)若集合{}1,1A =-,直接写出集合A +及A -;(2)若集合{}12341234,,,,A x x x x x x x x =<<<且A A -=,求证1423x x x x +=+;(3)若集合{|02024,N}A x x x ⊆≤≤∈且A A +-⋂=∅,求A 中元素个数的最大值.2024/2025学年度第一学期联盟校第一次学情调研检测高三年级数学参考答案及评分标准1-8BBDADAAB 9-11ACD,ABD,ABC12-142024,lg x x ∃≥≥,4,405115.(1)44()cos 2sin cos sin f x x x x x =-- ,2222(cos sin )(cos sin )sin 2x x x x x =-+-,cos 2sin 2x x =-,)4x π=+,7分故()f x 的最小正周期T π=;8分(2)由[0,]2x π∈可得2[44x ππ+∈,5]4π,10分当得24x ππ+=即38x π=时,函数取得最小值.所以38x π⎧⎫∈⎨⎬⎩⎭,时()min f x =13分16.(1)()f x 为定义在上的奇函数,()0020021af -∴==+,1a ∴=,2分当1a =时,()()21122121x xx x f x f x -----===-++,符合题意,()21212121x x xf x --∴==+++,20x > ,22021x-\-<<+,()11f x ∴-<<,∴的值域为−1,1;7分(2)由(1)有()10f x +>,8分∴原不等式可化为()()()21231f x f x f x ⎡⎤⎡⎤⋅++≤+⎣⎦⎣⎦,令()f x t =,则2210t t --≤,112t ∴-≤≤,即1211221x --≤+≤+,12分123x ∴≥,21log 3x ∴≥,14分∴不等式的解集为21log ,3∞⎡⎫+⎪⎢⎣⎭.15分17.(1)因为A 点的横坐标为35,且1OA =,A 点在第一象限,所以A 点纵坐标为45,所以3cos 5α=,4sin 5α=.2分所以2222πcos 2sin 22sin cos 2sin cos sin ααααααα⎛⎫- ⎪⎝⎭=++-2422sin cos 2sin 853cos cos 35ααααα⨯====.7分(2)因为63cos 65AOC ∠=-,由图可知:16sin 65AOC ∠=.9分而2,k AOC k βπα-+=-∠∈Z ,故2πAOC k αβ+=∠+(Z k ∈)⇒2πAOC k βα=∠-+(Z k ∈),12分所以()()cos cos 2πcos AOC k AOC βαα=∠-+=∠-cos cos sin sin AOC AOC αα=∠+∠633164565565513⎛⎫=-⨯+⨯=- ⎪⎝⎭.15分18.(1)由题意可知:()f x 的定义域为0,+∞,且()222121x f x x x x='-=-,2分令'>0,解得12x >;令'<0,解得102x <<;所以()f x 的单调递增区间为1,2∞⎛⎫+⎪⎝⎭,单调递减区间为10,2⎛⎫⎪⎝⎭.6分(2)设()()()12ln h x g x f x ax x x=-=--,当[1,)x ∈+∞时,()()g x f x ≥,即()0h x ≥对任意[1,)x ∈+∞恒成立,取1x =,解得1a ≥;若1a ≥,则()112ln 2ln h x ax x x x x x=--≥--,设()12ln ,1m x x x x x =--≥,则()()22212110x m x x x x-='=-+≥,可知()m x 在[1,)+∞上单调递增,则()()10m x m ≥=,此时()0h x ≥,符合题意;综上所述:实数a 的取值范围为[1,)+∞.17分19.(1)由{}1,1A =-,112,110,112--=--+=+=,故{2,0,2}A +=-;|1(1)||11|0,|11||1(1)|2---=-=--=--=,故{0,2}A -=.3分(2)由于集合{}12341234,,,,A x x x x x x x x =<<<且A A -=,所以A -中也只包含四个元素,即213141{0,,,}A x x x x x x -=---6分剩下的324321x x x x x x -=-=-,所以1423x x x x +=+;7分(3)设{}12,,k A a a a = 满足题意,其中12,k a a a <<< 1121312312......2,k k k k k k a a a a a a a a a a a a a a -<+<+<<+<+<+<<+<所以21,A k +≥-1121311...,k a a a a a a a a -<-<-<<-所以||A k -≥,因为,A A +-⋂=∅由容斥原理31,A A A A k +-+-⋃=+≥-A A +- 中最小的元素为0,最大的元素为2,k a 所以21,k A A a +-⋃≤+则()*31214049N ,k k a k -≤+≤∈所以1350k ≤,当{675,676,677,...,2024}A =时满足题意,证明如下:设{,1,2,...,2024}A m m m =++且N m ∈,则{2,21,22,...,4048}A m m m +=++,{0,1,2,...,2024}A m -=-,依题意有2024202423m m m -<⇒>,故m 的最小值为675,于是当675m =时A 中元素最多,即{675,676,677,...,2024}A =时满足题意,综上所述,集合A中元素的个数的最大值是1350.17分。
重庆南开中学2021届高三数学10月月考试题 文(含解析)(1)
![重庆南开中学2021届高三数学10月月考试题 文(含解析)(1)](https://img.taocdn.com/s3/m/6b18348bd5d8d15abe23482fb4daa58da0111c77.png)
重庆南开中学2021届高三10月月考数学(文)试题(解析版)本试卷是高三文科试卷,以基础知识和大体技术为为主导,在注重考查运算能力和分析问题解决问题的能力,知识考查注重基础、注重常规、注重骨干知识,兼顾覆盖面.试题重点考查:不等式、复数、导数、圆锥曲线、数列、函数的性质及图象、三角函数的性质、三角恒等变换与解三角形、等;考查学生解决实际问题的综合能力,是份较好的试卷.【题文】一.选择题:本大题共10小题,每题5分,共50分。
在每题给出的四个备选项中,只有一项为哪一项符合题目要求的.【题文】1.已知A ,B 为两个集合,假设命题:p x A ∀∈,都有2x B ∈,则 A.:p x A ⌝∃∈,使得2x B ∈ B.:p x A ⌝∃∉,使得2x B ∈ C.:p x A ⌝∃∈,使得2x B ∉D.:p x A ⌝∃∉,使得2x B ∉【知识点】命题及其关系A2【答案解析】C 假设命题:p x A ∀∈,都有2x B ∈,那么:p x A ⌝∃∈,使得2x B ∉, 应选C 。
【思路点拨】依照命题的关系确信非P 。
【题文】2. 已知向量(5,6)a =-,(6,5)b =,那么a 与b A.垂直B.不垂直也不平行C .平行且同向D .平行且反向【知识点】平面向量的数量积及应用F3【答案解析】A 因为a b ⋅=(-5)⨯6+6⨯5=0,因此a b ⊥,应选A 。
【思路点拨】依照向量的数量积为0,因此a b ⊥。
【题文】3.设集合{}2|20M x x x =--<,{}|2,N y y x x M ==∈,则集合()R C MN =A.()2,4-B.()1,2-C.(][),12,-∞-+∞D.()(),24,-∞-+∞【知识点】集合及其运算A1【答案解析】C 由题意得M={x 12x -<<},N={x 24x -<<}那么M N ⋂=M, 因此()R C MN =(][),12,-∞-+∞应选C.【思路点拨】先求出M ,N 再求 M N ⋂再求出结果。
四川省成都市四川音乐学院附属中学2021-2022学年高三数学文月考试题含解析
![四川省成都市四川音乐学院附属中学2021-2022学年高三数学文月考试题含解析](https://img.taocdn.com/s3/m/2cebe685e43a580216fc700abb68a98271feacaa.png)
四川省成都市四川音乐学院附属中学2021-2022学年高三数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若集合,且,则集合可能是()A. B. C. D.参考答案:考点:1.集合的包含关系;2.集合的基本运算.2. 已知圆b及抛物线,过圆心P作直线,此直线与上述两曲线的四个交点,自左向右顺次记为A,B,C,D,如果线段AB,BC,CD的长按此顺序构成一个等差数列,则直线的斜率为A. B. C. D.参考答案:A略3. 已知为常数,函数有两个极值点,则()A. B.C. D.参考答案:C 4. 已知双曲线,O为坐标原点,F为双曲线的右焦点,以OF为直径的圆与双曲线的渐近线交于一点A,若,则双曲线C的离心率为()A.2 B. C. D.参考答案:A5. (坐标系与参数方程选做题)若以直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,则线段的极坐标为()A. B. C.D.参考答案:A所以选A。
3.填空题:本大题共4小题,每小题5分,共20分.12.10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是________.【答案】【解析】6. “”成立的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件参考答案:D略7. 函数的最小正周期是()参考答案:B8. 已知是所在平面内一点,为边中点,且,那么A. B. C.D.参考答案:A9. 若函数存在极值,且这些极值的和不小于,则的取值范围为()A. B. C.D.参考答案:C10. 巳知角a的终边与单位圆交于点,则sin2a的值为( )A. B.- C. - D.参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,若该几何体的各个顶点在某一个球面上,则该球面的表面积为.参考答案:48π【考点】球内接多面体;简单空间图形的三视图.【分析】判断几何体的特征,正方体中的三棱锥,利用正方体的体对角线得出外接球的半径求解即可.【解答】解:三棱锥补成正方体,棱长为4,三棱锥与正方体的外接球是同一球,半径为R==2,∴该球的表面积为4π×12=48π,故答案为:48π.【点评】本题综合考查了空间思维能力,三视图的理解,构造几何体解决问题,属于中档题.12. 过点(-1,2)的直线l被圆截得的弦长为,则直线l的斜率为__________。
广东省阳春市2022届高三上学期10月月考数学试题(word版含答案)
![广东省阳春市2022届高三上学期10月月考数学试题(word版含答案)](https://img.taocdn.com/s3/m/19c85bb7fe4733687f21aad5.png)
广东省阳春市2022届高三上学期10月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知全集{}|lg(1)0U x x =->,集合{}|28xA x =>,则UA ( ) A .(]3,-∞B .(]2,3C .(]1,3D .[]1,32.十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若,,a b c ∈R ,则下列命题正确的是( ) A .若0ab ≠且a b <,则11a b> B .若01a <<,则3a a <C .若0a b >>,则11b ba a+<+ D .若c b a <<且0ac <,则22cb ab <3.函数f (x )=e x -ex ,x ∈R 的单调递增区间是( ) A .(0,+∞) B .(-∞,0) C .(-∞,1)D .(1,+∞)4.函数()log 42a y x =++(0a >,且1a ≠)的图象恒过定点A ,且点A 在角θ的终边上,则sin 2θ= A .513-B .513C .1213-D .12135.已知函数()()()f x x a x b =--(其中a b >)的图象如图所示,则函数()x g x a b =+的图像是( )A .B .C .D .6.荀子《劝学》中说:“不积跬步,无以至千里;不积小流,无以成江海.”所以说学习是日积月累的过程,每天进步一点点,前进不止一小点.我们可以把365(11%)+看作是每天的“进步”率都是1%,一年后是3651.0137.7834≈;而把365(11%)-看作是每天“退步”率都是1%,一年后是3650.990.0255.≈若“进步”的值是“退步”的值的100倍,大约经过(参考数据:lg101 2.0043≈,lg99 1.9956)≈ ( )天. A .200天B .210天C .220天D .230天7.若对任意的()0,x ∈+∞,()ln 21ax x -≥恒成立,则实数a 的最小值是( ) A .2B .3C .4D .58.已知奇函数f (x )的定义域为(,),22ππ-且()'f x 是f (x )的导函数.若对任意(,0),2x π∈-都有()cos ()sin 0,f x x f x x '+<则满足()2cos ()3f f πθθ<⋅的θ的取值范围是( )A .(,)23ππ- B .(,)(,)2332ππππ--⋃ C .(,)33ππ-D .(,)32ππ二、多选题9.下列说法正确的是( )A .命题“x ∀∈R ,21x >-”的否定是“x ∃∈R ,21x <-”B .命题“(3,)x ∃∈-+∞,29x ≤”的否定是“(3,)x ∀∈-+∞,29x >”C .“22x y >”是“x y >”的必要而不充分条件D .“0m <”是“关于x 的方程2x 2x m 0-+=有一正一负根”的充要条件 10.已知角θ和ϕ都是任意角,若满足2,2k k Z πθϕπ+=+∈,则称θ与ϕ“广义互余”.若()1sin 4πα+=-,则下列角β中,可能与角α“广义互余”的有( )A .sin β=B .()1cos 4πβ+=C .tan β=D .tan β=11.已知函数()1ln f x x x x=-+,则下列结论正确的是( ) A .()f x 恰有2个零点B .()f x 在⎫+∞⎪⎪⎝⎭上是增函数C .()f x 既有最大值,又有最小值D .若120x x >,且()()120f x f x +=,则121=x x12.已知函数()1f x +关于点()1,0-对称,对任意x ∈R ,都有()()11f x f x -=+成立,且当12x x ≠,[]12,0,1x x ∈时,都有()()()12120x x f x f x -->⎡⎤⎣⎦,则下列结论正确的有( )A .()()()()()123201920200f f f f f +++++=B .函数()5y f x =+为偶函数C .函数()f x 在[]2020,0-上有1011个零点D .函数()f x 在[]2020,2021上为减函数三、填空题13.已知函数1222,1()log ,1x x f x x x ⎧+≤⎪=⎨>⎪⎩,则()()1f f =___________.14.请写出一个使得函数()2()2xf x x ax e =++既有极大值又有极小值的实数a 的值___________.15.已知函数()af x x x =+,其中a R ∈,若关于x 的方程()12123x f a -=+有三个不同的实数解,则实数a 的取值范围是______.四、双空题16.已知不等式20ax bx c ++<的解集为{}23x x <<,则bc =__________,252b c a +++的最小值为__________.五、解答题17.已知函数()3f x x ax =+.(1)若3a =-,求()f x 的极大值(2)曲线()f x 若在0x =处的切线与曲线()ln g x x =-相切,求a 的值. 18.已知{}n a 是各项均为正数的等比数列,12a =,32216a a .(1)求数列{}n a 的通项公式;(2)设2log n n b a =,求数列11n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和n T .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年高三10月月考数学文试题含答案
理科数学测试卷共4页。
满分150分。
考试时间120分钟。
注意事项:
1.本试卷分为第I卷(选择题)和第II卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦擦干净后,再选涂其它答案标号框。
写在本试卷上无效。
3.回答第II卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷
一、选择题:本大题12小题,每小题5分,共60分。
在每小题给出的四个备选项中.只有一项是符合题目要求的。
(1)设,则=
(A) 4 (B) 2 (C)0 (D)
(2)己知,,则
(A) (B) (C) (D)
(3)命题“对,都有”的否定为
(A)对,都有
(B)在R上的最小值小于在R上的最大值
(C)使得
(D)使得
(4)已知函数,则=
(A) 2 (B) 4 (C) 6 (D) 8
(5)已知函数且曲线在处的切线为,则曲线在处的切线的斜率为
(A) 2 (B) 4 (C) 6 (D) 8
(6)某三棱锥的三视图如图所示,则该三棱锥的体积为
(A) (B) (C) (D) 1
(7)已知函数对任意满足,且当时,,设,
,,则
(A) (B) (C) (D)
(8)函数的部分图象大致为
(A) (B) (C) (D)
(9)已知函数若,则的取值范围是
(A) (B) (C) (D)
(10)己知,,则=
(A) (B) (C) (D)
(11)已知函数,则关于的方程的解个数不可能为
(A) 3 (B) 4 (C) 5 (D) 6
(12)设函数,若有且仅有一个正实数,使得对任意的正实数都成立,则=
(A) (B) 1 (C) 2 (D)3
第II卷
本卷包括必考题和选考题两部分。
第13题~第21题为必考题,每个试题考生都必须做。
第22题~第23题为选考题,考生根据要求做答。
二、填空题:本大题共4小题,每小题5分,共20分。
(13)若是的充分不必要条件,则实数的取值范围为
(14)设实数满足,则的取值范围是
(15)己知直三棱柱的各顶点都在球的球面上,且,,若球的体积为,则这个直三棱柱的体积等于
(16)若过点可作曲线的切线恰有两条,则的最小值为
三、解答题:解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)
设函数
(I)求的单调区间;
(II)求函数在区间上的最小值。
(18)(本小题满分12分)
已知函数,,,其中,
(I)求
(II)若且,求的取值范围.
(19)(本小题满分12分)
如图在四棱锥中,底面是等腰梯形,且平面,,,平行四边形的四个顶点分别在棱的中点.(I)求证:四边形是矩形;
(II)求四棱锥的体积
(20)(本小题满分12分)
已知椭圆C的中心在原点,以坐标轴为对称轴,且经过两点,.
(I)求椭圆C的方程;
(II)设椭圆C在A、B两点的切线分别为、,P为椭圆C上任意一点,点P到直线、的距
离分别为、,证明:存在直线,使得点P 到的距离d (其中)满足恒为定值,并求出这一定值.
(21)(本小题满分12分) 设函数211()ln (1)1(0)22
f x a x ax a x a a =-++-+-≠ (I )若,讨论函数的单调性并求极值;
(II )若在恒成立,求实数的取值范围.
请从下面所给的22、23三题中选定一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答第一题评分;多答按所答第一题评分。
(22)(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为、直线的参数方程为(t 为参数)设直线与圆C 交于A ,B 两点,点P 的直角坐际为. (I )求直线与圆C 的直角坐标方程;
(II )求的值
(23)(本小题满分10分)选修4-5不等式选讲
设,.
(I )若的最大值为,解关于的不等式;
(II )若存在实数使关于的方程有解,求实数的取值范围.。