全国各地中考数学常考试题(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

马上就要中考了,祝大家中考都考上一个理想的高中!欢迎同学们下载,希望能帮助到你们!

全国各地中考数学常考试题(含答案)

一、函数与几何综合的压轴题

1.(2018安徽芜湖)如图①,在平面直角坐标系中,AB、CD都垂直于x轴,垂足分别为B、D且AD与B相交于E点.已知:A(-2,-6),C(1,-3)

(1)求证:E点在y轴上;

(2)如果有一抛物线经过A,E,C三点,求此抛物线方程.

(3)如果AB位置不变,再将DC水平向右移动k(k>0)个单位,此时AD与BC相交

于E ′点,如图②,求△AE ′C 的面积S 关于k 的函数解析式.

[解] (1)(本小题介绍二种方法,供参考)

方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴,EO DO EO BO AB DB CD DB

''''== 又∵DO ′+BO ′=DB ∴1EO EO AB DC

''+= ∵AB =6,DC =3,∴EO ′=2

图①

图②

又∵DO EO DB AB ''=,∴2316

EO DO DB AB ''=⨯=⨯= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上

方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2①

再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ②

联立①②得02

x y =⎧⎨=-⎩ ∴E 点坐标(0,-2),即E 点在y 轴上

(2)设抛物线的方程y =ax 2+bx +c (a ≠0)过A (-2,-6),C (1,-3)

E (0,-2)三点,得方程组42632a b c a b c c -+=-⎧⎪++=-⎨⎪=-⎩

解得a =-1,b =0,c =-2

∴抛物线方程y =-x 2-2

(3)(本小题给出三种方法,供参考)

由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。

同(1)可得:

1E F E F AB DC

''+= 得:E ′F =2 方法一:又∵E ′F ∥AB E F DF AB DB '⇒=,∴13

DF DB = S △AE ′C = S △ADC - S △E ′DC =11122223

DC DB DC DF DC DB •-•=• =13DC DB •=DB=3+k

S=3+k 为所求函数解析式

方法二:∵ BA ∥DC ,∴S △BCA =S △BDA

∴S △AE ′C = S △BDE ′()1132322

BD E F k k '=•=+⨯=+ ∴S =3+k 为所求函数解析式.

证法三:S △DE ′C ∶S △AE ′C =DE ′∶AE ′=DC ∶AB =1∶2

同理:S △DE ′C ∶S △DE ′B =1∶2,又∵S △DE ′C ∶S △ABE ′=DC 2∶AB 2=1∶4 ∴()2213992

AE C ABCD S S AB CD BD k '∆==⨯+•=+梯形 ∴S =3+k 为所求函数解析式.

2. (2018广东茂名)已知:如图,在直线坐标系中,以点M (1,0)为圆心、直径AC 为22的圆与y 轴交于A 、D 两点.

(1)求点A 的坐标;

(2)设过点A 的直线y =x +b 与x 轴交于点B.探究:直线AB 是否⊙M 的切线?并对你的结论加以证明;

(3)连接BC ,记△ABC 的外接圆面积为S 1、⊙M 面积为S 2,若421h S S =,抛物线 y =ax 2+bx +c 经过B 、M 两点,且它的顶点到x 轴的距离为h .求这条抛物线的解析式.

[解](1)解:由已知AM =2,OM =1,

相关文档
最新文档