经济应用数学习题及答案

合集下载

经济应用数学二(线性代数)

经济应用数学二(线性代数)

一、单项选择题 共 32 题1、 若A 为4阶方阵,且|A|=5,则|3A|=( )。

A . 15B . 60C . 405D . 452、 下列命题中正确的是( )。

A .任意n 个n +1维向量线性相关;B . 任意n 个n +1维向量线性无关;C . 任意n + 1个n维向量线性相关;D . 任意n + 1个n 维向量线性无关. 3、 方阵A 满足A3=0,则(E+A+A 2)(E-A)=( )。

A . EB . E-AC . E+AD . A4、A . 解向量B . 基础解系C . 通解D . A 的行向量5、 n 维向量组α1,α2,…αs (3≤ s≤ n ) 线性无关的充要条件是α1,α2,…αs 中( )。

A . 任意两个向量都线性无关B . 存在一个向量不能用其余向量线性表示C . 任一个向量都不能用其余向量线性表示D . 不含零向量6、 对于两个相似矩阵,下面的结论不正确的是 ( )。

A . 两矩阵的特征值相同;B . 两矩阵的秩相等;C . 两矩阵的特征向量相同;D . 两矩阵都是方阵。

7、 设λ=-3是方阵A 的一个特征值,则A 可逆时,A -1的一个特征值是 ( )。

A . -3B . 3C .D .8、一个四元正定二次型的规范形为()。

A .B .C .D .9、设A和B都是n阶矩阵,且|A+AB|=0,则有()。

A . |A|=0B . |E+B|=0C . |A|=0 或|E+B|=0D . |A|=0且|E+B|=010、矩阵A的秩为r,则知()。

A . A中所有r阶子式不为0;B . A中所有r+1阶子式都为0;C . r阶子式可能为0,r+1阶子式可能不为0;D . r-1阶子式都为0。

11、设A是m×k矩阵, B是m×n矩阵, C是s×k矩阵, D是s×n矩阵,且k≠n, 则下列结论错误的是()。

A .B T A是n×k矩阵B .C T D是n×k矩阵C . BD T是m×s矩阵D . D T C是n×k矩阵12、设A , B均为n 阶方阵, 下面结论正确的是()。

{财务管理财务知识}经济应用数学经济应用数学微积分

{财务管理财务知识}经济应用数学经济应用数学微积分

{财务管理财务知识}经济应用数学经济应用数学微积分经济应用数学——微积分部分习题解答(参考)习题一(P37)1.设函数求:f(0),f(-1),f(),f(a+1)解:分析:即求当x为0,-1,,(a+1)时的函数值。

f(0)==-1;f(-1)==f()=;f(a+1)=3.下列各组函数是否表示相同的函数?为什么?(1)y=lg与y=2lgx(2)y=1与y=sinx+cosx(3)y=与y=x+1(4)y=-x与y=-x解:分析:相同函数的条件是D与f相同。

(定义域与对应规则)(1)不同,D不同(2)相同定义域与对应法则相同(3)不同,D不同(4)不同对应法则不同(当x=-1,对应y不同)4.求下列函数的定义域:(1)y=(2)y=(3)y=lg(4)y=lglg(x+1)(5)y=arcsin(6)y=tan(2x+1)(2x+1)解:求定义域应记住:①分母≠0②a≥0③x﹥0④三角函数的限制。

(1)y=解D:x≠0[或(-)(2)y=(4)lglg(x+1)解:D:-1≤x﹤1解:D:(0,+∞)(3)y=lg(5)y=arcsin解:D:[-2,1解:D:[-1,3](6)y=tan(2x+1)解:2x+1D:x5.判断下列函数的奇偶性。

(1)f(x)=(3)f(x)=lg(x+解:f(-x)==f(x)解:f(-x)=lg(-x+f(x)是偶函数。

=lg=lg=lg(x+=-lg(x+)=-f(x)f(x)是奇函数。

(4)f(x)=xe解:f(-x)=-xe≠f(x)[也≠-f(x)]f(x)是非奇非偶函数。

(5)f(x)=log解:f(-x)=log分析:判断奇偶函数=log((1)f(-x)=f(x),f(x)是偶函数=-log(2)f(-x)=-f(x),f(x)是奇函数=-f(x)否则非奇非偶。

f(x)是奇函数。

(6)设f(x)=求f(0),f(-1),f(1),f(-2),f(2),并作出函数图像。

经济应用数学习题及答案

经济应用数学习题及答案

经济应用数学习题及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN经济应用数学习题第一章 极限和连续 填空题1. sin lim x x x→∞=0 ; 2.函数 x y ln =是由 u y =,v u ln =,x v =复合而成的; 3当 0x → 时,1cos x - 是比 x 高 阶的无穷小量。

4. 当 0x → 时, 若 sin 2x 与 ax 是等价无穷小量,则 a =25. 2lim(1)x x x →∞-=2-e选择题 1.02lim5arcsin x xx →= ( C )(A ) 0 (B )不存在 (C )25(D )1 2.()f x 在点 0x x = 处有定义,是 ()f x 在 0x x =处连续的( A )(A )必要条件 (B )充分条件 (C )充分必要条件 (D )无关条件 计算题 1.求极限 20cos 1lim2x x x →-解:20cos 1lim 2x x x →-=414sin lim 0-=-→x x x 2. x x x 10)41(lim -→=41)41(40)41(lim ---→=-e x x x 3.201lim x x e x x →--112lim 0-=-=→x e x x导数和微分 填空题1若 )(x u 与 )(x v 在 x 处可导,则 ])()(['x v x u =2'')]([)()()()(x v x v x u x v x u -2.设)(x f 在0x 处可导,且A x f =')(0,则hh x f h x f h )3()2(lim 000--+→用A 的代数式表示为A 5 ;32)(x e x f =,则xf x f x )1()21(lim--→= 4e - 。

2(12)(1)'()2,lim2'(1)4x x f x f f x xe f ex →--==-=-解选择题1. 设 )(x f 在点 0x 处可导,则下列命题中正确的是 ( A ) (A ) 000()()limx x f x f x x x →-- 存在 (B ) 000()()lim x x f x f x x x →--不存在(C ) 00()()limx x f x f x x →+-存在 (D ) 00()()lim x f x f x x∆→-∆不存在2. 设)(x f 在0x 处可导,且0001lim(2)()4x x f x x f x →=--,则0()f x '等于( D )(A ) 4 (B ) –4 (C ) 2 (D ) –2 3. 3设 ()y f x = 可导,则 (2)()f x h f x -- = ( B )(A ) ()()f x h o h '+ (B ) 2()()f x h o h '-+ (C ) ()()f x h o h '-+ (D ) 2()()f x h o h '+ 4.设 (0)0f = ,且 0()limx f x x → 存在,则 0()lim x f x x→ 等于( B )(A )()f x ' (B )(0)f ' (C )(0)f (D )1(0)2f '5.函数 )(x f e y =,则 ="y ( D ) (A ) )(x f e (B ) )(")(x f e x f(C ) 2)()]('[x f e x f (D ) )}(")]('{[2)(x f x f e x f +6函数 x x x f )1()(-=的导数为( D )(A )x x x )1(- (B ) 1)1(--x x (C )x x x ln (D ) )]1ln(1[)1(-+--x x xx x 7函数 xx x f =)( 在 0=x 处( D )(A )连续但不可导 (B ) 连续且可导 (C )极限存在但不连续 (D ) 不连续也不可导计算与应用题1. 设 ln()y xy = 确定 y 是 x 的函数,求 dxdy 解: )(1)(1)][ln(''''xy y xyxy xy xy y +=== )1('''-=+=⋅y x yy xy y y xy2. 2设 x y e y ln = 确定 y 是 x 的函数,求 dxdy 解:''ln (ln )y yy dy y e y y x xdx x e x ⋅=⋅+=- 3. 3求 13cos x y e x -= 的微分解:'131313(3cos sin )(3cos sin )x x x dy y dx e x e x dx e x x dx ---==--=-+4. 4求 2xe y x= 的微分;解:222'222(21)x x x e x e e x y x x --== 22(21)x e x dy dx x -= 5设sin 10()20ax x e x f x xa x ⎧+-≠⎪=⎨⎪=⎩在(,)-∞+∞上连续,求a 的值。

经济应用数学试题及答案

经济应用数学试题及答案

经济应用数学试题及答案一、选择题(每题2分,共20分)1. 下列函数中,哪一个是偶函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = |x|D. f(x) = sin(x)答案:C2. 在线性规划问题中,目标函数的最优值可能在:A. 可行域的顶点B. 可行域的边界C. 可行域的内部D. 所有上述情况答案:D3. 假设某公司生产两种产品,产品1的利润为每单位10元,产品2的利润为每单位20元。

如果公司每天只能生产100单位的产品,且生产产品1需要2小时,产品2需要1小时,而公司每天有200小时的生产时间。

该公司应该如何分配生产时间以最大化利润?A. 只生产产品1B. 只生产产品2C. 生产50单位产品1和50单位产品2D. 生产100单位产品2答案:D4. 以下哪个选项不是边际成本的概念?A. 增加一单位产量的成本B. 总成本对产量的导数C. 固定成本D. 总成本的增加量除以产量的增加量答案:C5. 假设某公司的成本函数为C(x) = 3x^2 + 2x + 5,其中x是生产量。

该公司要生产多少单位的产品才能使平均成本最小?A. x = 0B. x = 1C. x = 2D. x = 3答案:B6. 在完全竞争市场中,长期均衡时,市场价格等于:A. 边际成本B. 平均成本C. 总成本D. 固定成本答案:B7. 以下哪个选项是关于消费者剩余的描述?A. 消费者支付的价格与他们愿意支付的价格之间的差额B. 消费者实际支付的价格C. 消费者购买的商品数量D. 消费者购买商品的总成本答案:A8. 如果一个市场的需求曲线是线性的,斜率为-2,那么需求的价格弹性是多少?A. 0.5B. -1C. -2D. 2答案:C9. 以下哪个选项不是经济利润的特点?A. 包括正常利润B. 考虑了机会成本C. 等于会计利润D. 可能为负值答案:C10. 在多阶段生产过程中,以下哪个选项不是生产者面临的决策类型?A. 投入品的选择B. 生产技术的选择C. 产品价格的确定D. 产出水平的确定答案:C二、简答题(每题10分,共20分)1. 解释什么是边际效用递减原理,并给出一个生活中的实例。

经济数学试题及答案

经济数学试题及答案

经济数学试题及答案一、选择题1. 假设市场需求曲线为Qd=100-2P,市场供给曲线为Qs=-20+4P,求平衡价格和平衡数量。

答案:平衡价格为20,平衡数量为40。

2. 若某商品的需求弹性为-2,需求量为10时,价格为20,求需求量变化1%时的价格变化百分比。

答案:需求量变化1%时,价格变化百分比为2%。

3. 某企业生产一种商品,已知其总生产成本函数为C(Q)=100+2Q+0.5Q^2,求当产量为10时,平均成本和边际成本。

答案:当产量为10时,平均成本为25,边际成本为13。

二、计算题1. 已知一家工厂的生产函数为Q=10L^0.5K^0.5,其中L为劳动力投入,K为资本投入。

若工厂每年投入的劳动力为100人,资本为400万元,劳动力每人每年工作2000小时,资本的年利率为10%,求工厂的年产量和总成本。

答案:工厂的年产量为2万单位,总成本为500万元。

2. 假设某商品的总收益函数为R(Q)=500Q-0.5Q^2,总成本函数为C(Q)=100+40Q,求当产量为20时,利润最大化的产量和利润。

答案:当产量为20时,利润最大化的产量为10,利润为250。

三、证明题1. 某商品的边际收益递减法则是指随着生产规模的扩大,每增加一单位产量所带来的边际收益递减。

证明边际收益递减法则成立。

证明:当企业的产品产量增加时,企业需要增加投入以提高产量,但边际收益会递减。

假设某企业当前产量为Q,边际收益为MR,增加一单位产量后,产量为Q+1,边际收益为MR+ΔMR。

由于边际收益递减,ΔMR<0。

所以,边际收益递减法则成立。

四、应用题某公司生产A、B两种产品,已知产品A每单位成本为10元,产品B每单位成本为20元。

市场上A、B产品的需求量分别为1000和500,价格分别为15和25。

若公司希望通过调整价格来提高总利润,应如何调整?答案:根据产品的成本和需求量,计算可得产品A的利润为5000元((15-10)*1000),产品B的利润为2500元((25-20)*500)。

经济应用数学(西南财经大学专升本)

经济应用数学(西南财经大学专升本)
D .该向量组有若干个极大无关组.
参考答案:B
6、
A .解向量
B .基础解系
C .通解
D . A的行向量
参考答案:A
7、t满足( )时, 线性无关。
A . t≠1;
B . t=1;
C . t≠0;
D . t=0.
参考答案:A
二、计算题共4题,完成0题
1、求向量组 的一个极大无关组,并把其余向量用此极大无关组线性表示。
一、单项选择题共7题,完成0题
1、n维向量组α1,α2,…αs(3≤ s≤ n)线性无关的充要条件是α1,α2,…αs中()。
A .任意两个向量都线性无关
B .存在一个向量不能用其余向量线性表示
C .任一个向量都不能用其余向量线性表示
D .不含零向量
参考答案:C
2、如果两个同维的向量组等价,则这两个向量组( )。
因为向量组α1,α2,α3,…αt线性无关,所以:
k1+k2+…+kt=0,
k2+…+kt=0,
……,
kt=0,
所以k1=k2=…=kt=0矛盾。故向量组α1,α1+α2, … ,α1+α2+ …+αt线性无关。
2、设向量组α1,α2,α3线性无关,证明:向量组α1+α2,α2+α3,α3+α1线性无关。
参考答案:B
7、当( )时,A = 是正交阵。
A . a = 1, b = 2, c = 3
B . a = b = c = 1
C .
D .
参考答案:C
8、设A , B均为n阶方阵,下面结论正确的是( )。
A .若A ,B均可逆,则A + B可逆

经济数学(导数的应用习题及答案)

经济数学(导数的应用习题及答案)

第四章 导数的应用习题 4-11. 验证下列各函数在所给区间上是否满足罗尔定理,如果满足,试求出定理中的ξ.(1)()f x =3x x -,[-1,1] (2)()f x =321x - [-1,1]解 (1) 因为函数3()f x x x =-是多项式函数,所以()f x 在[-1,1]上连续,在(-1,1)内可导, 且 (1)(1)0,f f -==故该函数在[-1,1]上满足罗尔定理条件,则至少存在一点(1,1)ξ∈-,使得2'()310 f ξξ=-=即ξ=(2)不满足.因为'()f x =,所以()f x 在x =0处不可导,故函数在[-1,1]上不满足罗尔定理的条件.2.验证下列各函数在所给区间上是否满足拉格朗日中值定理.如果满足,试求出定理中的ξ.(1) 311)(-+=x x f [2,9](2)101()[0,3]113x x f x x x -+≤≤⎧=⎨-<≤⎩,,解 (1)因为函数()1f x =+()f x 在[2,9]上连续,在(2,9)内可导, 满足拉格朗日中值定理的条件, 则至少存在一点(2,9)ξ∈, 使得(9)(2)'()(92)f f f ξ-=-即1ξ=+ (负值舍去).(2) 因为()11f x x x =-=在处不可导,故不满足拉格朗日中值定理.3. 验证柯西中值定理对函数3()2f x x x =++及2()1g x x =+在区间[0,1]上的正确性,并求出相应的ξ值.解 因为3()2f x x x =++及2()1g x x =+是多项式函数,所以()f x 与 ()g x 在区间[0,1]上连续,在(0,1)内可导,且在(0,1)内,02)('≠=x x g 故满足柯西中值定理条件,则至少存在一点(0,1)ξ∈,使得(1)(0)'()(1)(0)'()1(13f f fg g g ξξξξ-=-==即舍去).4. 证明方程51030x x ++=有且只有一个实根.证 设5()103f x x x =++ 先证方程()f x = 0根的存在性. 因为lim (),lim ()()x x f x f x f x →-∞→+∞=-∞=+∞,而在区间(-∞,+∞)上连续,所以)(x f 在R 上满足零值定理条件,于是方程)(x f = 0在R 内至少有一个根.再证方程)(x f =0根的唯一性.假设方程)(x f =0至少有两个根βα,,即.0)()(==βαf f 则)(x f 在],[βα上满足罗尔定理条件,所以至少存在一点,0)('),,(=∈ξβαξf 使得即50104=+ξ显然这样的ξ是不存在的,故假设不成立.所以方程51030x x ++=有且只有一个实根.5. 证明不等式:(1)ln(1) (0)(2)1,x x x x x e ex>+>>>当时有证 (1)设)1ln()(t t f +=,不难验证在)(t f 在[0,x ] 上满足拉格朗日中值定理条件,则至少存在一点ξ( 0<ξ<x ),使得1ln(1)1x x x ξ+=⋅<+即 ln(1)x x >+.(2)设()tf t e =,显然()f t 在[1,x ] 上满足拉格朗日中值定理条件, 则至少存在一点ξ(1x ξ<<),使得(1)x e e e x ξ-=-又因为te tf =)(是单调增函数,且1<ξ<x ,所以不等式xe e e <<ξ于是有不等式(1) .x x e e e x e ex ->->即6. 证明恒等式:222arctan arcsin1xx x π+=+(x ≥1).证 令22()2arctan arcsin(1)1xf x x x x =+≥+则222'()1f x x=++因为当1x >时,2(1)0,x -<2(1)x =-- 所以当1x >时,222'()01f x x ==+由拉格朗日中值定理推论1可知,()f x ≡c(x ≥1),取x =1,有(1)f =2arctan1+arcsin1=π且函数()f x 在x =1处连续,所以1lim ()(1)x f x c f π+→===即当x ≥1时,222arctan arcsin1xx x π+=+.7. 不求导数判断函数()(1)(2)(3)f x x x x =---的导数'()0f x = 有几个实根及根的范围.解 不难验证,函数()f x 在区间[1,2],[2,3]上都满足罗尔定理条件, 故方程'()f x =0至少有两个实根,它们分别在区间(1,2),(2,3)内.8.设()f x 在(a ,b )内二阶可导,且1()f x =2()f x =3()f x ,而a <1x <2x <3x <b ,则在(1x ,3x )内至少存在一点ξ,使得"()0f ξ=.证 因为 a <1x <2x <3x <b , 1()f x =2()f x =3()f x , 所以在区间[1x ,2x ]、[2x ,3x ]上分别满足罗尔中值定理条件。

《-经济数学》应用题及参考答案

《-经济数学》应用题及参考答案

《-经济数学》应用题及参考答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN《经济数学》一、判断题1. 已知函数)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数,则m 的值是( ) A. 1 B. 2 C. 3 D. 42. 若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( )A. )2()1()23(f f f <-<-B. )2()23()1(f f f <-<-C. )23()1()2(-<-<f f fD. )1()23()2(-<-<f f f 4. 设)(x f 是定义在R 上的一个函数,则函数)()()(x f x f x F --=在R 上一定是( ) A. 奇函数 B. 偶函数 C. 既是奇函数又是偶函数 D. 非奇非偶函数5. 下列函数中,在区间()0,1上是增函数的是( ) A.x y = B. x y -=3 C. x y 1= D. 42+-=x y二、填空题1.已知生产某种产品的成本函数为C (q ) = 80 + 2q ,则当产量q = 50时,该产品的平均成本为. 2.已知某商品的需求函数为q = 180 – 4p ,其中p 为该商品的价格,则该商品的收入函数R (q ) =.三、应用题1.设生产某种产品x 个单位时的成本函数为:x x x C 625.0100)(2++=(万元),求:(1)当10=x 时的总成本、平均成本和边际成本; (2)当产量x 为多少时,平均成本最小2.某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求规律为q p =-100010(q 为需求量,p 为价格).试求:(1)成本函数,收入函数; (2)产量为多少吨时利润最大?3.设某工厂生产某产品的固定成本为50000元,每生产一个单位产品,成本增加100元.又已知需求函数p q 42000-=,其中p 为价格,q 为产量,这种产品在市场上是畅销的,问价格为多少时利润最大?并求最大利润.4.某厂生产某种产品q 件时的总成本函数为C (q ) = 20+4q +0.01q 2(元),单位销售价格为p = 14-0.01q (元/件),问产量为多少时可使利润达到最大?最大利润是多少.5.某厂每天生产某种产品q 件的成本函数为9800365.0)(2++=q q q C (元).为使平均成本最低,每天产量应为多少此时,每件产品平均成本为多少6.已知某厂生产q 件产品的成本为C q q q ()=++25020102(万元).问:要使平均成本最少,应生产多少件产品参考答案一、选择题1. B 奇次项系数为0,20,2m m -==2. D 3(2)(2),212f f =--<-<-4. A ()()()()F x f x f x F x -=--=-5. A 3y x =-在R 上递减,1y x =在(0,)+∞上递减,24y x =-+在(0,)+∞上递减,二、填空题1. 3.62. 45q – 0.25q 2三、简答题1.解(1)因为总成本、平均成本和边际成本分别为:x x x C 625.0100)(2++=625.0100)(++=x x x C ,65.0)(+='x x C所以,1851061025.0100)10(2=⨯+⨯+=C 5.1861025.010100)10(=+⨯+=C ,116105.0)10(=+⨯='C(2)令 025.0100)(2=+-='x x C ,得20=x (20-=x 舍去) 因为20=x 是其在定义域内唯一驻点,且该问题确实存在最小值,所以当=x20时,平均成本最小.2.解 (1)成本函数C q ()= 60q +2000.因为 q p =-100010,即p q =-100110, 所以 收入函数R q ()=p ⨯q =(100110-q )q =1001102q q -. (2)因为利润函数L q ()=R q ()-C q () =1001102q q --(60q +2000) = 40q -1102q -2000 且 'L q ()=(40q -1102q -2000')=40- 0.2q 令'L q ()= 0,即40- 0.2q = 0,得q = 200,它是L q ()在其定义域内的唯一驻点. 所以,q = 200是利润函数L q ()的最大值点,即当产量为200吨时利润最大. 3.解 C (p ) = 50000+100q = 50000+100(2000-4p )=250000-400pR (p ) =pq = p (2000-4p )= 2000p -4p 2利润函数L (p ) = R (p ) - C (p ) =2400p -4p 2 -250000,且令)(p L '=2400 – 8p = 0得p =300,该问题确实存在最大值. 所以,当价格为p =300元时,利润最大. 最大利润 1100025000030043002400)300(2=-⨯-⨯=L (元). 4.解 由已知201.014)01.014(q q q q qp R-=-== 利润函数22202.0201001.042001.014q q q q q q C R L --=----=-= 则q L 04.010-=',令004.010=-='q L ,解出唯一驻点250=q . 因为利润函数存在着最大值,所以当产量为250件时可使利润达到最大,且最大利润为1230125020250025002.02025010)250(2=--=⨯--⨯=L (元)5. 解 因为 C q ()=C q q ()=05369800.q q ++ (q >0) 'C q ()=(.)05369800q q ++'=0598002.-q 令'C q ()=0,即0598002.-q =0,得q 1=140,q 2= -140(舍去). q 1=140是C q ()在其定义域内的唯一驻点,且该问题确实存在最小值.所以q 1=140是平均成本函数C q ()的最小值点,即为使平均成本最低,每天产量应为140件. 此时的平均成本为C ()140=05140369800140.⨯++=176 (元/件) 6.解 (1) 因为 C q ()=C q q ()=2502010q q ++ 'C q ()=()2502010q q ++'=-+2501102q令'C q ()=0,即-+=25011002q ,得q 1=50,q 2=-50(舍去), q 1=50是C q ()在其定义域内的唯一驻点. 所以,q 1=50是C q ()的最小值点,即要使平均成本最少,应生产50件产品.。

经济应用数学基础(一)-微积分-课后习题答案_高

经济应用数学基础(一)-微积分-课后习题答案_高

第一章 函 数习 题 一(A)1.解下列不等式,并用区间表示解集合(其中δ>0):(1)(x-2)2>9; (2)|x+3|>|x-1|;(3)|x-x0|<δ;(4)0<|x-x0|<δ.解 (1)由(x-2)2>9得|x-2|>3,从而解得x-2>3 或 x-2<-3由此得 x>5或x<-1.因此,解集合为(-∞,-1)∪(5,+∞)(2)由绝对值的几何意义知,不等式|x+3|>|x-1|表示点x与-3的距离大于点x与1的距离,如下图所示:因此,该不等式的解集合为(-1,+∞)(3)由|x-x0|<δ得-δ<x-x0<δ,由此得x0-δ<x<x0+δ,因此,解集合为(x0-δ,x0+δ)(4)由0<|x-x0|知x≠x0,由|x-x0|<δ知x0-δ<x<x0+δ.因此,解集合为(x0-δ,x0)∪(x0,x0+δ)2.证明如下不等式:(1)|a-b|≤|a|+|b|;(2)|a-b|≤|a-c|+|c-b|证 (1)由绝对值性质(4),有|a-b|≤|a|+|-b|=|a|+|b|.(2)|a-b|=|a-c+c-b|≤|a-c|+|c-b|.3.判断下列各对函数是否相同,并说明理由:(1)y=x与y=x2;(2)y=1-x2+x与y=(1-x)(2+x);(3)y=1与y=sin2x+cos2x;(4)y=2cosx与y=1+cos2x;(5)y=ln(x2-4x+3)与y=ln(x-1)+ln(x-3);(6)y=ln(10-3x-x2)与y=ln(2-x)+ln(5+x).解 (1)因y=x2=|x|与y=x的对应规则不同(值域也不同),故二函数不相同.(2)因y=1-x2+x与y=(1-x)(2+x)的定义域均为D f=[-2,1],故此二函数相同.(3)因sin2x+cos2x≡1,x∈(-∞,+∞),故此二函数相同.(4)因y=1+cos2x=2cos2x=2|cosx|与y=2cosx的对应规则不同,可知此二函数不相同.(5)因y=ln(x2-4x+3)=ln[(x-1)(x-3)]的定义域为D f=(-∞,1)∪(3,+∞);y=ln(x-1)+ln(x-3)的定义域为D f=(3,+∞).因此,此二函数不相同.(6)因y=ln(10-3x-x2)=ln[(2-x)(5+x)]与y=ln(2-x)+ln(5+x)的定义域均为D f=(-5,2),故此二函数相同.4.求下列函数的定义域:(1)y=x2+x-2; (2)y=sin(x);(2)y=9-x2+1ln(1-x);(4)y=lnx2-9x10;(5)y=1x-3x+10x-10;(6)y=(x-1)(x-3)x-3.解 (1)使该函数有定义的x应满足条件:x2+x-2=(x-1)(x+2)≥0由此解得x≥1或x≤-2.因此,该函数定义域为D f=(-∞,2]∪[1,+∞).(2)使该函数有定义的x应满足条件:x≥0 且 sinx≥0而由sinx≥0得2kπ≤x≤(2k+1)π,k=0,1,2,….因此,该函数的定义域为D f=∪∞k=0[(2kπ)2,(2k+1)π2].(3)使该函数有定义的x应满足如下条件:9-x2≥0, 1-x>0, 1-x≠1解得 |x|≤3且x<1且x≠0.因此,该函数定义域为D f=[-3,0)∪(0,1).(4)使该函数有定义的x应满足条件:x2-9x10≥1由此得 x2-9x-10=(x+1)(x-10)≥0,解得x≥10或x≤-1因此,该函数定义域为D f=(-∞,-1]∪[10,+∞)(5)使该函数有定义的x应满足如下条件:x-3≠0, x-10≠0, x+10x-10≥0由此解得x>10或x≤-10.因此,该函数定义域为D f=(-∞,-10]∪(10,+∞).(6)使该函数有定义的x应满足条件:x-3≠0, (x-1)(x-2)x-3≥0即(x-1)(x-2)≥0 且 x-3>0痴x>3(x-1)(x-2)≤0 且 x-3<0痴1≤x≤2因此,该函数定义域为D f=[1,2]∪(3,+∞).5.已知函数f(x)=q-x2,|x|≤3x2-9,|x|>3求函数值f(0),f(±3),f(±4),f(2+a).解 因为x=0,x=±3时,|x|≤3,所以f(0)=9=3, f(±3)=9-(±3)2=0又因为x=±4时,|x|>3,所以f(±4)=(±4)2-9=7当|2+a|≤3即-5≤a≤1时,f(2+a)=q-(2+a)2=(1-a)(5+a)当|2+a|>3即a>1或a<-5时,f(2+a)=(2+a)2-9=(a-1)(a+5)所以f(2+a)=(1-a)(5+a),-5≤a≤1(a-1)(5+a),a<-5或a>1.6.讨论下列函数的单调性:(1)y=1+6x-x2; (2)y=e|x|.解 (1)易知该函数定义域为D f=[0,6].设x1,x2∈(0,6), x1<x2则f(x1)-f(x2)=6x1-x21-6x2-x22=(6x1-x21)-(6x2-x22)6x1-x21+6x2-x22=6(x1-x2)-(x21-x22)6x1-x21+6x2-x22=[6-(x1+x2)](x1-x2)6x1-x21+6x2-x22<0,0<x1<x2<3>0,3<x1<x2<6所以该函数在区间(0,3)上单调增加,在区间(3,6)上单调减少.另解,因6x-x2=9-(x-3)2,所以y=1+6x-x2是圆(x-3)2+(y-1)2=32的上半圆.由此可知,该函数在(0,3)上单调增加,在(3,6)上单调减少.(2)因y=e|x|=ex,x≥0e-x,x<0所以,该函数在[0,+∞)上单调增加,在(-∞,0]上单调减少.7.讨论下列函数是否有界:(1)y =x 21+x2; (2)y =e-x 2;(3)y =sin1x;(4)y =11-x.解 (1)因为|y |=x21+x 2=1-11+x2≤1所以,该函数有界.(2)因为|y |=e-x 2=1ex 2≤1e0=1所以,该函数有界.(3)因为sin1x≤1(x ≠0),所以,该函数有界.(4)对任意给定的正数M >0,令x 0=1-12M≠1,则|y (x 0)|=11-1-12M=2M >M此式表明,对任意给定的M >0,存在点x 0∈D f ,使|y (x 0)|>M .因此,该函数无界.8.讨论下列函数的奇偶性:(1)f (x )=x sinx +cosx ; (2)y =x 5-x 3-3;(3)f (x )=ln(x +1-x 2);(4)f (x )=1-x ,x <0,1,x =0,1+x ,x >0.解 (1)因为f (-x )=(-x )sin(-x )+cos(-x )=x sinx +cosx =f (x ),x ∈(-∞,+∞)所以,该函数为偶函数.(2)因为f (-x )=-x 5+x 3-3≠f (x )或-f (x )所以,该函数既不是偶函数,也不是奇函数.(3)因为f (-x )=ln(-x +1+x 2)=ln(1+x 2)-x2x +1+x2=-ln(x+1+x2)=-f(x), x∈(-∞,+∞)所以,该函数为奇函数.(4)因为x>0(即-x<0)时, f(-x)=1-(-x)=1+xx<0(即-x>0)时, f(-x)=1+(-x)=1-x所以f(-x)=1-x,x<01,x=01+x,x>0=f(x)因此,该函数为偶函数.9.判别下列函数是否是周期函数,若是周期函数,求其周期:(1)f(x)=sinx+cosx; (2)f(x)=|sinx|;(3)f(x)=xcosx;(4)f(x)=1+sinπx.解 (1)因为f(x)=sinx+cosx=2sinx+π4所以f(x+2π)=2sinx+2π+π4=2sinx+π4=f(x)因此,该函数为周期函数,周期为2π.(2)因f(x+π)=|sin(x+π)|=|-sinx|=|sinx|=f(x)所以,该函数为周期函数,周期为π.(3)因cosx是以2π为周期的周期函数,但是f(x+2π)=(x+2π)cos(x+2π)=(x+2π)cosx≠xcosx=f(x)所以,该函数不是周期函数.(4)因为f(x+2)=1+sin(x+2)π=1+sinπx=f(x)所以,该函数为周期函数,周期为2.10.求下列函数的反函数及其定义域:(1)y=1-x1+x; (2)y=12(ex-e-x);(3)y=1+ln(x-1);(4)y=53x-5;(5)y=2sinx3, x∈-π2,π2;(6)y=2x-1,0<x≤12-(x-2)2,1<x≤2.解 (1)由y=1-x1+x 解出x,得x=1-y1+y因此,反函数为y=1-x1+x其定义域为D(f-1)=(-∞,-1)∪(-1,+∞)(2)由所给函数解出ex,得ex=y±1+y2=y+1+y2(因为ex>0,所以舍去“-”号)由此得x=ln(y+1+y2)因此反函数为y=ln(x+1+x2)其定义域为D(f-1)=(-∞,+∞).(3)所给函数定义域为D(f)=(1,+∞),值域为Z(f)=(-∞,+∞).由所给函数解出x,得x=1+ey-1,故反函数为y=1+ex-1其定义域为D(f-1)=(-∞,+∞).(4)所给函数定义域、值域分别为D(f)=(-∞,+∞), Z(f)=(-∞,+∞)由所给函数解出x,得x=13(y5+5), y∈Z(f)=(-∞,+∞)所以,反函数为y=13(x5+5)其定义域为D(f-1)=Z(f)=(-∞,+∞)(5)由所给函数解出x,得x=3arcsiny2所以,反函数为y=3arcsinx2其定义域为D(f-1)=Z(f)=[-1,1].(6)由所给函数可知:当0<x≤1时,y=2x-1,y∈(-1,1];当1<x≤2时,y=2-(x-2)2,y∈(1,2];由此解出x,得x=12(1+y),-1<y≤12-2-y,1<y≤2 (舍去“+”号,因1<x≤2)因此,反函数为y=12(1+x),-1<x≤12-2-x,1<x≤2其定义域为D(f-1)=Z(f)=(-1,2].11.分析下列函数由哪些基本初等函数复合而成:(1)y=loga x; (2)y=arctan[tan2(a2+x2)];(3)y=e2x/(1-x2);(4)y=cos2x2-x-1.解 (1)所给函数由对数函数y=loga u与幂函数u=x复合而成;(2)所给函数由反正切函数y=arctanu、幂函数u=v2、正切函数v=tanw 和多项式函数w=a2+x2复合而成;(3)所给函数由指数函数y=eu和有理分式函数u=2x1+x2复合而成;(4)所给函数由幂函数y=u2、余弦函数u=cosv、幂函数v=w与多项式函数w=x2-x-1复合而成.12.设销售某种商品的总收入R是销售量x的二次函数,且已知x=0,10,20时,相应的R=0,800,1200,求R与x的函数关系.解 设总收入函数为R(x)=ax2+bx+c(a≠0)已知R(0)=0 所以c=0又知R(10)=800, R(20)=1200即有100a+10b=800, 400a+20b=1200整理后,得联立方程组10a+b=80, 20a+b=60由此解得 a=-2,b=100.因此,总收入函数为R(x)=100x-2x2=x(100-2x).13.某种电视机每台售价为2000元时,每月可售出3000台,每台售价降为1800元时,每月可多售出600台,求该电视机的线性需求函数.解 设该电视机的线性需求函数为Q=a-bp则由已知条件有Q(2000)=a-2000b=3000Q(1800)=a-1800b=3600由此解得a=9000,b=3.因此,该商品的线性需求函数为Q=9000-3p.14.已知某商品的需求函数与供给函数分别由下列方程确定:3p+Q2d+5Q d-102=0p-2Q2s+3Q s+71=0试求该商品供需均衡时的均衡价格p e和均衡数量Q e.解 供需均衡的条件为Q d=Q s=Q e,对应均衡价格为p e,于是有3p3+Q2e+5Q-102=0p e-2Q2e+3Q e+71=0由其中第二个方程得p e=2Q2e-3Q3-71 (倡)将上式代入第一个方程,得7Q2e-4Q e-315=0由此解得Q e=7(舍去负根).将Q e=7代入(倡)得p e=6.因此,该商品供需均衡时,均衡价格p e=6,均衡数量Q e=7.(B)1.填空题:(1)已知函数f(x)的定义域为(0,1],则函数f(ex)的定义域为,函数f x-14+f x+14的定义域为;(2)已知函数f(x)=x1+x2,则f(sinx)=;(3)已知函数f(x)=x1-x,则f[f(x)]=,f{f[f(x)]}=;(4)已知f(3x-2)=x2,则f(x)=;(5)已知某商品的需求函数、供给函数分别为:Q d=100-2p, Q s=-20+10p,则均衡价格p e=,均衡数量Q e=;答 (1)(-∞,0],14,34; (2)sinx|cosx|;(3)x1-2x,x1-3x;(4)19(x+2)2;(5)10,80.解 (1)由0<ex≤1得x∈(-∞,0],由0<x-14≤1且0<x+14≤1,得x∈14,34;(2)f(sinx)=sinx1-sin2x=sinxcos2x=sinx·|cosx|;(3)f[f(x)]=f(x)1-f(x)=x1-2x,f{f[f(x)]}=f[f(x)]1-f[f(x)]=x1-3x;(4)令t=3x-2,则x=13(t+2),于是f(t)=f(3x-2)=x2=13(t+2)2=19(t+2)2所以f(x)=19(x+2)2(5)由Q d=Q s=Q e,得100-2p e=-20+10p e解得 p e=10,从而Q e=80.2.单项选择题:(1)若函数y=x+2与y=(x+2)2表示相同的函数,则它们的定义域为.(A)(-∞,+∞); (B)(-∞,2];(C)[-2,+∞);(D)(-∞,-2].(2)设f (x )=1,|x |<1,0,|x |>1,则f {f [f (x )]}=.(A)0;(B)1(C)1,|x |<1,0,|x |≥1;(D)1,|x |≥1,0,|x |<1.(3)y =sin1x在定义域内是.(A)周期函数;(B)单调函数;(C)偶函数;(D)有界函数.(4)设函数f (x )在(-∞,+∞)内有定义,下列函数中,必为偶函数.(A)y =|f (x )|;(B)y =[f (x )]2;(C)y =-f (-x );(D)y =f (x 2)cosx .(5)设函数f (x )在(-∞,+∞)内有定义,且f (x +π)=f (x )+sinx ,则f (x ).(A)是周期函数,且周期为π;(B)是周期函数,且周期为2π;(C)是周期函数,且周期为3π;(D)不是周期函数.答 (1)C; (2)C; (3)D; (4)D; (5)B.解 (1)由(x +2)2=|x +2|=x +2≥0可知x ≥-2,故选(C).(2)因f [f (x )]=1,|f (x )|<10,|f (x )|≥1=1,|x |≥10,|x |<1f {f [f (x )]}=1,|f [f (x )]|<10,|f [f (x )]|≥1=1,|x |<10,|x |≥1故选(C).(3)因sin1x≤1,橙x ≠0,故选(D).(4)因f ((-x )2)cos(-x )=f (x 2)cosx ,故选(D).(5)因f (x +2π)=f (x +π)+sin(x +π)=f (x )+sinx -sinx =f (x )故f (x )为周期函数,且周期为2π,选(B).3.设f2x +12x -2-12f (x )=x ,求f (x ).解 令t =2x +12x -2,则x =2t +12t -2,代入所给方程,得f (t )-12f 2t +12t -2=2t +12t -2其中,由所给方程有f2t +12t -2=t +12f (t )于是得f (t )-12t +12f (t )=2t +12t -2由此得f (t )=23t 2+t +1t -1因此f (x )=23x 2+x +1x -1.4.证明下列各题:()若函数f (x ),g (x )在D 上单调增加(或单调减少),则函数h (x )=f (x )+g (x )在D 上单调增加(或单调减少).(2)若函数f (x )在区间[a ,b ],[b ,c ]上单调增加(或单调减少),则f (x )在区间[a ,c ]上单调增加(或单调减少).证 (1)对任意的x 1,x 2∈D ,且x 1<x 2,因f (x ),g (x )单调增加(减少),故有f (x 1)<f (x 2) (f (x 1)>f (x 2))g (x 1)<g (x 2) (g (x 1)>g (x 2))于是h (x 1)=f (x 1)+g (x 1)<f (x 2)+g (x 2)=h (x 2)(h (x 1)>h (x 2))所以,h (x )=f (x )+g (x )在D 上单调增加(减少).(2)对任意的x1,x2∈[a,c],x1<x2,若 a≤x1<x2≤b或b≤x1<x2≤c,则由题设有f(x1)<f(x2) (或f(x1)>f(x2))若 a≤x1≤b<x2≤c,则由题设有f(x1)≤f(b)<f(x2) (或f(x1)≥f(b)>f(x2))综上所述,f(x)在[a,c]上单调增加(或单调减少).5.设函数f(x)与g(x)在D上有界,试证函数f(x)±g(x)与f(x)g(x)在D 上也有界.证 因f(x)与g(x)在D上有界,故存在常数M1>0与M2>0,使得|f(x)|<M1, |g(x)|<M2, 橙x∈D.令M=M1+M2>0,则有|f(x)±g(x)|≤|f(x)|+|g(x)|<M1+M2=M,橙x∈D因此,f(x)±g(x)在D上有界.再令M=M1M2,则有|f(x)g(x)|=|f(x)||g(x)|<M1M2=M,橙x∈D因此,f(x)g(x)在D上有界.6.证明函数f(x)=xsinx在(0,+∞)上无界.证 要证f(x)=xsinx在(0,+∞)上无界,只需证明:对任意给定的常数M>0,总存在x0∈(0,+∞),使得|x0sinx0|>M.事实上,对任意给定的M>0,令x0=π2+2(1+[M])π∈(0,+∞)([M]为M的整数部分),则有|f(x0)|=π2+2(1+[M])π·sinπ2+2(1+[M])π=π2+2(1+[M])πsinπ2=π2+2(1+[M])π>M于是,由M>0的任意性可知,f(x)=xsinx在(0,+∞)上无界.7.已知函数函数f(x)满足如下方程af(x)+bf1x=c x,x≠0其中a,b,c为常数,且|a|≠|b|.求f (x ),并讨论f (x )的奇偶性.解 由所给方程有af1x+bf (x )=cx于是,解方程组af (x )+bf 1x=c xaf1x+bf (x )=cx可得f (x )=ac -bcx 2(a 2-b 2)x因为f (-x )=ac -bc (-x )2(a 2-b 2)(-x )=-ac -bcx2(a 2-b 2)x=-f (x )所以,f (x )为奇函数.8.某厂生产某种产品1000吨,当销售量在700吨以内时,售价为130元/吨;销售量超过700吨时,超过部分按九折出售.试将销售总收入表示成销售量的函数.解 设R (x )为销售总收入,x 为销售量(单位:吨).依题设有当0≤x ≤700时,售价p =130(元/吨);当700<x ≤1000时,超过部分(x -700)的售价为p =130×0.9=117(元/吨).于是,销售总收入函数为R (x )=130x , 0≤x ≤700130×700+117×(x -700), 700<x ≤1000=130x ,0≤x ≤700117x +9100,700<x ≤1000可见销售总收入R (x )为销售量x 的分段函数.9.某手表厂生产一只手表的可变成本为15元,每天固定成本为2000元,每只手表的出厂价为20元,为了不亏本,该厂每天至少应生产多少只手表?解 设每天生产x 只手表,则每天总成本为C (x )=15x +2000因每只手表出厂价为20元,故每天的总收入为20x (元),若要不亏本,应满足如下关系式:20x ≥15x +2000解得x≥400(只)即,若要不亏本,每天至少应生产400只手表.10.某玩具厂每天生产60个玩具的成本为300元,每天生产80个玩具的成本为340元,求其线性成本函数.该厂每天的固定成本和生产一个玩具的可变成本各为多少?解 设线性成本函数为C(x)=ax+b其中C(x)为总成本,x为每天的玩具生产量.由题设有C(60)=60a+b=300(元)C(80)=80a+b=340(元)由此解得a=2, b=180因此,每天的线性成本函数为C(x)=2x+180其中a=2元为生产一个玩具的可变成本,b=180元为每天的固定成本.第二章 极限与连续习 题 二(A)1.观察判别下列数列的敛散性;若收敛,求其极限值:(1)u n=5n-3n; (2)u n=1ncosnπ;(3)u n=2+-12n;(4)u n=1+(-2)n;(5)u n=n2-1n;(6)u n=a n(a为常数).解 (1)将该数列具体写出来为2,72,4,174,225,…,5-3n,…观察可知u n→5(n→∞).因此,该数列收敛,其极限为5.(2)因为u n=1ncosnπ=1n(-1)n=1n→0(n→∞)所以,该数列收敛,其极限为0.(3)因为u n-2=-12n=12n→0(n→∞)所以,该数列收敛,其极限为2.(4)该数列的前五项分别为:-1,5,-7,17,-31,…观察可知u n→∞(n→∞).因此,该数列发散.(5)该数列的前五项分别为0,32,83,154,245,…观察可知u n→∞(n→∞).所以,该数列发散.(6)当a<1时,u n=a n→0(n→∞);当a>1时,u n=a n→∞(n→∞);当a=1时,u n=1→1(n→∞);当a=-1时,u n=(-1)n,发散因此,a<1时,数列收敛,其极限为0;a=1时,数列收敛,其极限为1;a ≤-1或a>1时,数列发散.2.利用数列极限的定义证明下列极限:(1)limn→∞-13n=0; (2)limn→∞n2+1n2-1=1;(3)limn→∞1n+1=0;(4)limn→∞n2+a2n=1(a为常数).证 (1)对任意给定的ε>0(不妨设0<ε<1),要使u n-0=13n<ε只需n>log31ε (∵0<ε<1,∴log31ε>0)取正整数N=1+log31ε>log31ε,则当n>N时,恒有-13n-0<ε因此limn→∞-13n=0.(2)对任意给定的ε>0,要使u n-1=n2+1n2-1-1=2n2-1=2n+1·1n-1≤1n-1<ε只需n>1+1ε.取正整数N=1+1ε,则当n>N时,恒有n2+1n2-1-1<ε由此可知limn →∞n 2+1n 2-1=1.(3)对任意给定的ε>0,要使u n -0=1n +1-0=1n +1<1n<ε只需n >1ε2.取正整数N =1ε2+1,则当n >N >1ε2时,恒有1n +1-0<ε.由此可知limn→∞1n +1=0.(4)对任意给定的ε>0,要使u n -1=n 2+a2n -1=a2n (n 2+a 2+n )<a22n2<ε只需n >a2ε.取正整数N =a 2ε+1,则当n >N >a2ε时,恒有n 2+a2n-1<ε因此limn →∞n 2+a2n=1.3.求下列数列的极限:(1)limn →∞3n +5n 2+n +4; (2)limn →∞(n +3-n );(3)limn →∞(1+2n+3n+4n)1/n;(4)limn →∞(-1)n+2n(-1)n +1+2n +1;(5)limn →∞1+12+122+…+12n ;(6)limn →∞1+12+122+…+12n1+14+142+…+14n.解 (1)因为3n +5n 2+n +4=3+5n1+1n +4n 2→3(n →∞)所以limn→∞3n +5n 2+n +4=3.(2)因为n +3-n =3n +3+n →0(n →∞)所以limn →∞(n +3-n )=0.(3)因为(1+2n+3n+4n)1/n=414n+24n+34n+11/n→4(n →∞)所以limn→∞(1+2n+3n+4n)1/n=4.(4)因为(-1)n+2n(-1)n +1+2n +1=12·-12n+1-12n +1+1→12(n →∞)所以limn →∞(-1)n+2n(-1)n +1+2n +1=12.(5)因为 1+12+122+…+12n =1-12n +11-12=21-12n +1→2(n →∞)所以limn →∞1+12+122+…+12n =2.(6)因为1+12+122+…+12n =21-12n +1,1+14+142+…+14n =1-14n -11-14=431-14n +1于是1+12+122+…+12n 1+14+142+…+14n =32·1-12n +11-14n +1→32(n →∞)所以limn →∞1+12+122+…+12n1+14+142+…+14n=32.4.利用函数极限的定义,证明下列极限:(1)limx →3(2x -1)=5; (2)limx →2+x -2=0;(3)limx →2x 2-4x -2=4;(4)limx →1-(1-1-x )=1.证 (1)对任意给定的ε>0,要使(2x -1)-5=2x -3<ε只需取δ=ε2>0,则当0<x -3<δ时,恒有(2x -1)-5=2x -3<2δ=ε因此limx →3(2x -1)=5.(2)对任意给定的ε>0,要使x -2-0=x -2<ε只零取δ=ε2>0,则当0<x -2<δ时,恒有x -2-0=x -2<δ=ε所以limx →2+x -2=0.(3)对任意给定的ε>0,要使(x ≠2)x 2-4x -2-4=(x +2)-4=x -2<ε只需取δ=ε>0,则当0<x -2<δ时,恒有x 2-4x -2-4=x -2<δ=ε因此limx →2x 2-4x -2=4.(4)对任意给定的ε>0,要使(1-1-x )-1=1-x <ε只需0<1-x <ε2取δ=ε2>0,则当0<1-x <δ时,恒有(1-1-x )-1=1-x <δ=ε因此limx →1-(1-1-x )=1.5.讨论下列函数在给定点处的极限是否存在?若存在,求其极限值:(1)f (x )=1-1-x ,x <1,在x =1处;x -1,x >0(2)f (x )=2x +1,x ≤1,x 2-x +3,1<x ≤2,x 3-1,2<x ,在x =1与x =2处.解 (1)因为f (1-0)=limx →1-f (x )=limx →1-(1-1-x )=1f (1+0)=limx →1+f (x )=limx →1+(x -1)=0这表明f (1-0)≠f (1+0).因此,limx →1f (x )不存在.(2)在x =1处,有f (1-0)=limx →1-(2x +1)=3.f (1+0)=limx →1+(x 2-x +3)=3.因f (1-0)=f (1+0)=3,所以,limx →1f (x )=3(存在);在x =2处,有f (2-0)=limx →2-(x 2-x +3)=5f (2+0)=limx →2+(x 3-1)=7因f(2-0)≠f(2+0),所以limx→2f(x)不存在.6.观察判定下列变量当x→?时,为无穷小:(1)f(x)=x-2x2+2; (2)f(x)=ln(1+x);(3)f(x)=e1-x;(4)f(x)=1ln(4-x).解 (1)因为当x→2或x→∞时,x-2x2+2→0因此,x→2或x→∞时,x-2x2+2为无穷小.(2)因为当x→0时,ln(1+x)→0因此,x→0时,ln(1+x)为无穷小.(3)因为当x→+∞时,e1-x=eex→0,因此,x→+∞时,e1-x为无穷小.(4)因为当x→4-或x→-∞时,1ln(4-x)→0因此,x→4-或x→-∞时,1ln(4-x)为无穷小.7.观察判定下列变量当x→?时,为无穷大:(1)f(x)=x2+1x2-4; (2)f(x)=ln1-x;(3)f(x)=e-1/x;(4)f(x)=1x-5.解 (1)因为当x→±2时,x2-4x2+1→0因此当x→±2时,x2+1x2-4→∞所以,x→±2时,x2+1x2-4为无穷大.(2)因为当x→1时,1-x→0+当x→∞时,-x→+∞因此当x→1时,ln1-x→-∞当x→∞时,ln1-x→+∞所以,x→1或x→∞时,ln1-x为无穷大.(3)因为limn→0--1x=+∞所以limx→0-e-1/x=+∞由此可知,x→0-时,e-1/x为无穷大.(4)因为limx→5+x-5=0所以limx→5+1x-5=+∞由此可知,x→5+时,1x-5为无穷大.8.求下列函数的极限:(1)limx→3(3x3-2x2-x+2); (2)limx→05+42-x;(3)limx→16x-5x+4x-16;(4)limx→0(x+a)2-a2x(a为常数);(5)limx→0x2+a2-ax2+b2-b(a,b为正的常数);(6)limx→1x+x2+…+x n-nx-1(提示:x+x2+…+x n-n=(x-1)+(x2-1)+…+(x n-1))解 (1)由极限的线性性质,得原式=3limx→3x3-2limx→3x2-limx→3x+2=3x33-2×32-3+2=62(2)因为limx→0(2-x)=2≠0,所以原式=5+limx →042-x =5+4limx →0(2-x )=5+42=7.(3)因为x -5x +4=(x -4)(x -1),x -16=(x -4)(x +4).所以原式=limx →16(x -4)(x -1)(x -4)(x +4)=limx →16x -1x +4=38.(4)因为(x +a )2-a 2=x (x +2a ),所以原式=limx →0x (x +2a )x=limx →0(x +2a )=2a .(5)原式=limx →0(x 2+a 2-a )(x 2+a 2+a )(x 2+a 2+b )(x 2+b 2-b )(x 2+b 2+b )(x 2+a 2+a )=limx →0x 2(x 2+b 2+b )x 2(x 2+a 2+a )=limx →0x 2+b 2+bx 2+a 2+a=b a(6)因为 x +x 2+…+x n-n =(x -1)+(x 2-1)+…+(x n-1)=(x -1)[1+(x +1)+…+(xn -1+xn -2+…+1)]所以原式=limx →1(x -1)[1+(x +1)+…+(xn -1+xn -2+…+1)]x -1=limx →1[1+(x +1)+…+(x n -1+xn -2+…+1)]=1+2+…+n =12n (n +1).9.求下列函数的极限:(1)limx →∞[x 2+1-x 2-1]; (2)limx →∞(x -1)10(3x -1)10(x +1)20;(3)limx →+∞5x 3+3x 2+4x 6+1;(4)limx →∞(x +31-x 3);(5)limx →+∞x (3x -9x 2-6);(6)limx →+∞(a x+9)-a x+4(a >0).解 (1)原式=limx →∞2x 2+1+x 2-1=0.(2)原式=limx→∞1-1x103-1x 101+1x20=310(3)原式=limx →+∞5+(3/x )+(4/x 3)1+(1/x 3)=5.(4)因为(x +31-x 3)[x 2-x31-x 3+(31-x 3)2]=x 3-(31-x 3)3=1所以原式=limx→∞1x 2-x 31-x 3+(31-x 3)2=0.(5)因为x (3x -9x 2-6)=x (3x -9x 2-6)(3x +9x 2-6)3x +9x 2-6=x [9x 2-(9x 2-6)]3x +9x 2-6=6x3x +9x 2-6所以原式=limx →+∞6x3x +9x 2-6=limx →+∞63+9-(6/x 2)=1(6)原式=limx →+∞5a x+9+a x+4=1,0<a <110-5,a =10,a >1.10.求下列各题中的常数a 和b :(1)已知limx →3x -3x 2+ax +b=1;(2)已知limx →+∞(x 2+x +1-ax -b )=k (已知常数).解 (1)由于分子的极限limx →3(x -3)=0,所以分母的极限也应为0(否则原式=0≠1),即有limx →3(x 2+ax +b )=9+3a +b =0另一方面,因分子=x -3,故分母x 2+ax +b =(x -3)(x -c ),于是原式=limx →3x -3(x -3)(x -c )=limx →31x -c =13-c=1由此得c =2.于是得x 2+ax +b =(x -3)(x -2)=x 2-5x +6由此得a =-5,b =6(2)原式可变形为原式=limx →+∞[x 2+x +1-(ax +b )][x 2+x +1+(ax +b )]x 2+x +1+ax +b=limx →+∞(1-a 2)x 2+(1-2ab )x +(1-b 2)x 2+x +1+ax +b显然应有1-a 2=0,即有a =±1.于是原式=limx →+∞(1-2ab )x +(1-b 2)x 2+x +1+ax +b=limx →+∞1-2ab +(1-b 2)/x1+(1/x )+(1/x 2)+a +(b /x )=1-2ab1+a=k (a ≠-1)由上式可知,a ≠-1,于是a =1,从而有1-2b2=k 痴b =12-k .11.已知f (x )=2+x1+x(1-x )/(1-x )(1)limx →0f (x ); (2)limx →1f (x ); (3)limx →∞f (x ).解 令g (x )=2+x 1+x ,h (x )=1-x1-x.(1)因为limx →0g (x )=2,limx →0h (x )=1所以limx →0f (x )=limx →0g (x )h (x )=21=2.(2)因为 limx →1g (x )=32>0limx →1h (x )=limx →1(1-x )(1+x )(1-x )(1+x )=limx →111+x =12所以limx →1f (x )=limx →1g (x )h (x )=3212(3)因为limx →∞g (x )=limx →∞1+(2/x )1+(1/x )=1>0limx →∞h (x )=limx→∞(1/x )-(1-x )(1/x )-1=0所以limx →∞f (x )=limx→∞g (x )h (x )=10=1.12.求下列极限:(1)limx →0sin3x sin2x ; (2)limx →0tan5xsin2x ;(3)limx →0arctan4x arcsin2x;(4)limx →∞x sin1x;(5)limx →0sin2(2x )x2;(6)limx →0tan3x -sin2xx;(7)limx →01-cosxx sinx;(8)limx →0ax -sinbxtankx(a ,b ,k >0).解 (1)原式=limx →0sin3x3x·2x sin2x ·32=32.(2)原式=limx →0tan5x 5x ·2x sin2x ·52=52.(3)原式=limx →0arctan4x 4x ·2x arcsin2x ·42=2.(4)令u =1x,则x →∞时u →0.于是原式=limu →0sinu u=1.(5)原式=limx →0sin2(2x )(2x )2·4=4limx →0sin2x 2x 2=4.(6)原式=3limx →0tan3x 3x -2limx →0sin2x2x =3-2=1(7)因为1-cosx ~12x 2(x →0),所以原式=12limx →0x 2x sinx =12limx →0x sinx =12(8)原式=limx →0a k ·kx tankx -b k ·sinbx bx ·kxtankx=a k -b k =a -bk.13.求下列极限:(1)limx →∞1-1xx; (2)limx →∞1+5xx;(3)limx →0(1-sinx )1/x;(4)limx →0(1+3x )1/x;(5)limx →01-x22/x;(6)limx →∞x -2x +2x.解(1)原式=limx→∞1+1-x-x-1=1e.(2)原式=limx→∞1+1x /5x /55=e5.(3)令u =sinx ,则x →0时,u →0.于是原式=limu →0(1+u )1/u u /arcsin(-u )=e-1.(4)原式=limx →0[(1+3x )1/(3x )]3=e3(5)原式=limx →01-x 2-2/x-1=e-1(6)原式=limx →∞1-4x +2x=limx→∞1-4x +2-(x +2)/4-4x /(x +2)=e-4另解,令u =-x +24,则x =-4u -2,且u →∞(x →∞时),于是原式=limu →∞1+1u-4u -2=limu →∞1+1uu -4·limu →∞1+1u-2=e-4.14.求下列极限:(1)limx →0(cosx )1/(1-cosx ); (2)limx →0(sec2x )cot2x;(3)limx →π/2(1+cosx )5secx;(4)limx →0sinx -tanxsinx3;(5)limx →0(sinx 3)tanx1-cosx 2;(6)limx →π/61-2sinxsin(x -π/6);(7)limx →π/4(tan2x )tanπ4-x .解(1)令u =1-cosx ,则cosx =1-u ,且u →0(x →0时),因此原式=limu →0(1-u )1/u=e-1.(2)令u =cot2x ,则sec2x =1+1cot2x=1+1u ,且x →0时,u →+∞.因此原式=limu →+∞1+1uu=e(3)令u =cosx ,则secx =1u ,且x →π2时,u →0.因此原式=limu →0(1+u )5/u=limu →0(1+u )1/u 5=e5.(4)因为x →0时,sinx ~x ,sinx 3~x 3,cosx -1~-x22所以 原式=limx →0sinx (cosx -1)cosx ·sinx3=limx →0x ·(-x 2/2)x 3cosx=-12limx →01cosx =-12.(5)因为x →0时,sinx 3~x 3,tanx ~x ,1-cosx 2~12(x 2)2,所以原式=limx →0x 3·xx 4/2=2(6)令u =x -π6,则x →π6时,u →0,且有sinx =sinu +π6=12(3sinu +cosu )于是有 原式=limu →01-(3sinu +cosu )sinu=limu →01-cosu sinu -3=limu →0u 2/2sinu-3=-3.(7)因为tan2x =sin2x cos2x =sin2xcos2x -sin2xtanπ4-x =sinπ4-x cosπ4-x =cosx -sinx cosx +sinx所以tan2x tanπ4-x =sin2x cos2x -sin2x ·cosx -sinx cosx +sinx =sin2x (cosx +sinx )2从而原式=limx →π/4sin2x (cosx +sinx )2=122+222=12.15.讨论下列函数的连续性:(1)f (x )=x1-1-x ,x <0,x +2,x ≥0;(2)f (x )=e1/x,x <0,0,x =0,1xln(1+x 2),x >0.解 (1)由题设知f (0)=2,且f (0-0)=limx →0-x 1-1-x=limx →0-x (1+1-x )x =2f (0+0)=limx →0+(x +2)=2可见limx →0f (x )=2=f (0).所以,该函数在x =0处连续.另一方面,x1-1-x 在(-∞,0)内为初等函数,连续;x +2在(0,+∞)内为线性函数,连续.综上所述,该函数在(-∞,+∞)内连续.(2)因f (0)=0,且 f (0-0)=limx →0-e1/x=0, f (0+0)=limx →0+1xln(1+x 2)=limx →0+x ln(1+x 2)1/x 2=0·1=0所以 limx →0f (x )=0=f (0).因此,该函数在x =0处连续.另一方面,e1/x在(-∞,0)内连续,1xln(1+x 2)在(0,+∞)内连续.综上所述,该函数在(-∞,+∞)内连续.16.指出下列函数的间断点及其类型;如为可去间断点,将相应函数修改为连续函数;作出(1)、(2)、(3)的图形:(1)f (x )=1-x21+x ,x ≠-1,0,x =-1;(2)f (x )=x 2,x ≤0,lnx ,x >0;(3)f (x )=x x ; (4)f (x )=x sin1x.解 (1)由题设知f (-1)=0,而limx →-1f (x )=limx →-11-x 21+x =limx →-1(1-x )=2≠f (0)所以,x =-1为该函数的可去间断点.令f (-1)=2,则f ~(x )=1-x 21+x ,x ≠-12,x =-1=1-x在(-∞,+∞)内连续.f (x )的图形如图2.1所示.图2.1图2.2(2)由题设有f (0)=0,而f (0-0)=limx →0-x 2=0,f (0+0)=limx →0+lnx =-∞所以,x =0为该函数的无穷间断点.f (x )的图形如图2.2所示.(3)该函数在x =0处无定义,而f (0-0)=limx →0-xx =limx →0-x-x =-1,f (0+0)=limx →0+x x=limx →0+x x=1.图2.3因为左、右极限均存在但不相等,所以,x =0为该函数的跳跃间断点.f (x )的图形如图2.3所示.(4)该函数在x =0处无定义.因limx →0f (x )=limx →0x sin1x=0,故x =0为该函数的可去间断点.若令f (0)=0,则函数f ~(x )=x sin1x,x ≠00,x =0在(-∞,+∞)内连续.17.确定下列函数的定义域,并求常数a ,b ,使函数在定义域内连续:(1)f (x )=1x sinx ,x <0,a ,x =0,x sin1x+b ,x >0;(2)f (x )=ax +1,x ≤1,x 2+x +b ,x>1;(3)f (x )=1-x 2,-45<x <35,a +bx ,其他.解 (1)D f =(-∞,+∞).因f (x )在D f 的子区间(-∞,0)与(0,+∞)内均为初等函数.因此,f (x )在(-∞,0)∪(0,+∞)内连续.现讨论f (x )在分界点x =0处的连续性.已知f (0)=a ,而且f (0-0)=limx →0-sinxx =1,f (0+0)=limx →0+x sin1x+b =b 当f (0-0)=f (0+0)=f (0)时,即当a =b =1时,f (x )在x =0处连续.综上所述,当a =b =1时,该函数在其定义域(-∞,+∞)内连续.(2)D f =(-∞,+∞).因为f (-1)=1-a ,且f (-1-0)=limx →(-1)-(x 2+x +b )=bf (-1+0)=limx →(-1)+(ax +1)=1-a 所以,当a +b =1时,f (x )在x =-1处连续.又因f (1)=1+a ,且f (1-0)=limx →1-(ax +1)=a +1f (1+0)=limx →1+(x 2+x +b )=2+b所以,当a +1=2+b ,即a -b =1时,f (x )在x =1处连续.综上所述,当a +b =1且a -b =1,即a =1,b =0时,f (x )在x =-1和x =1处连续,从而f (x )在其定义域(-∞,+∞)内连续.(3)D f =(-∞,+∞).因f -45=a -45b ,且f -45-0=limx →-45-(ax +b )=a -45b f -45+0=limx →-45+1-x 2=35所以,当a -45b =35,即5a -4b =3时,f (x )在点x =-45处连续.又因f35=a +35b ,且f35-0=limx →35-1-x 2=45f35+0=limx →35+(a +bx )=a +35b 所以,当a +35b =45,即5a +3b =4时,f (x )在点x =35处连续.综上所述,当5a -4b =3且5a +3b =4,即a =57,b =17时,f(x)在x=-45与x=35处连续,从而f(x)在其定义域(-∞,+∞)内连续.(B)1.填空题:(1)limn→∞1n2+1(n+1)2+…+1(2n)2= ;(2)limx→0ln(x+a)-lnax(a>0)= ;(3)limx→a+x-a+x-ax2-a2(a>0)= ;(4)若limx→+∞xx n+1-(x-1)n+1=k≠0,n为正整数,则n= ,k= ;(5)x→0时,1+x-1-x是x的 无穷小;(6)设f(x)=sinx·sin1x,则x=0是f(x)的 间断点;(7)设f(x)=x x,则x=0是f(x)的 间断点;(8)函数f(x)=1x2-5x+6的连续区间是 .答 (1)0; (2)1a; (3)12a;(4)2008,12008; (5)等价;(6)可去; (7)跳跃; (8)(-∞,2)∪(3,+∞).解 (1)因为14n≤1n2+1(n+1)2+…+1(2n)2≤1n且limn→∞14n=0,limn→∞1n=0.所以,由夹逼定理可知,原式=0.(2)原式=limx→0ln1+x a1/x=1alimx→0ln1+x a a/x=1alnlimx→01+x a a/x=1alne=1a.(3)因为x-a+x-ax2-a2=x-ax+a(x+a)+1x+a且limx→a+x-ax+a(x+a)=0,limx→a+1x+a=12a所以,原式=12a.(4)因为x n+1-(x-1)n+1=[x-(x-1)][x n+x n-1(x-1)+…+x(x-1)n-1+(x-1)n]=x n1+1-1x+…+1-1x n-1+1-1x n所以,由题设有原式=limx→+∞x2008-n1+1-1x+…+1-1x n-1+1-1x n=k≠0显然,要上式成立,应有2008-n=0,即n=2008.从而原式=limx→+∞11+1-1x+…+1-1x n-11-1x n=1n=k所以,k=1n=12008.(5)因为limx→01+x-1-xx=limx→021+x+1-x=1所以,x→0时,1+x-1-x是x的等价无穷小.(6)因为limx→0sinx·sin1x=limx→0sinx x·limx→0xsin1x=1×0=0.所以,x=0是f(x)的可去间断点(令f(0)=0,即可).(7)因为f (0-0)=limx →0--x x =-1,f (0+0)=limx →0+xx=1左、右极限存在,但不相等,故x =0为跳跃间断点.(8)该函数有定义的条件是x 2-5x +6=(x -2)(x -3)>0由此得x <2或x >3.因此,该函数的连续区间为(-∞,2)或(3,+∞).2.单项选择题:(1)函数f (x )在点x 0处有定义,是极限limx →x 0f (x )存在的 .(A)必要条件; (B)充分条件;(C)充分必要条件;(D)无关条件.(2)下列“结论”中,正确的是 .(A)无界变量一定是无穷大;(B)无界变量与无穷大的乘积是无穷大;(C)两个无穷大的和仍是无穷大;(D)两个无穷大的乘积仍是无穷大.(3)设函数f (x )=1,x ≠1,0,x =1,则limx →1f (x )= .(A)0; (B)1; (C)不存在; (D)∞.(4)若limx →2x 2+ax +bx 2-3x +2=-1,则 .(A)a =-5,b =6; (B)a =-5,b =-6;(C)a =5,b =6;(D)a =5,b =-6.(5)设f (x )=1-x 1+x,g (x )=1-3x ,则当x →1时, .(A)f (x )与g (x )为等价无穷小;(B)f (x )是比g (x )高阶的无穷小;(C)f (x )是比g (x )低阶的无穷小;(D)f (x )与g (x )为同阶但不等价的无穷小.(6)下列函数中,在定义域内连续的是 .(A)f (x )=cosx ,x ≤0,sinx ,x >0; (B)f (x )=1x,x >0,x ,x ≤0;(C)f (x )=x +1,x ≤0,x -1,x >0;(D)f (x )=1-e-1/x 2,x ≠0,1,x =0.(7)下列函数在区间(-∞,1)∪[3,+∞]内连续的是 .(A)f (x )=x 2+2x -3; (B)f (x )=x 2-2x -3;(C)f (x )=x 2-4x +3;(D)f (x )=x 2+4x +3.(8)若f (x )在区间 上连续,则f (x )在该区间上一定取得最大、最小值.(A)(a ,b ); (B)[a ,b ]; (C)[a ,b ); (D)(a ,b ].答 (1)D; (2)D; (3)B;(4)A;(5)D; (6)D; (7)C; (8)B.解 (1)limx →x 0f (x )是否存在与f (x )在点x 0是否有定义无关,故应选(D).(2)(A)、(B)、(C)都不正确.例如n →∞时n sinn 是无界变量,而不是无穷大;n →∞时,n sinn 是无界变量,n 是无穷大,而n ·n sinn =n 2sinn 是无界变量,不是无穷大;n →∞时,n 与-n 都是无穷大,但n +(-n )=0是一常量,不是无穷大.(D)正确.例如,设limu →∞u 0=∞, limu →∞v n =∞则对任意给定的M >0,存在正整数N 1,N 2,使当n =N 1,n >N 2时,恒有u n>M ,v n >M取N =max{N 1,N 2},则当n >N 时,恒有u n v n=u n ·v n>M ·M =M2这表明limn →∞u n v n =∞.(3)易知f (1-0)=f (1+0)=1,从而limx →1f (x )=1,故应选(B).(4)因为limx →2(x 2-3x +2)=limx →2(x -2)(x -1)=0,因此,分子的极限也应为0,即应有x 2+ax +b =(x -2)(x -c )=x 2-(2+c )x +2c由此得a =-(2+c ),b =2c于是,由题设有limx →2x 2+ax +b x 2-3x +2=limx →2(x -2)(x -c )(x -2)(x -1)=limx →2x -cx -1=2-c =-1由此得c =3,从而得a =-5,b =6.故应选(A).(5)因为。

经济应用数学(习题参考详细答案)

经济应用数学(习题参考详细答案)

经济应用数学(习题参考详细答案)————————————————————————————————作者:————————————————————————————————日期:2习题参考答案第1章 函数、极限与连续习题1.11.(1)不同,因为它们的定义域不同;(2)不同,因为它们的定义域和对应法则都不同. 2.(1)[2,1)(1,2]-U ;(2)(3,3)-.3.2,41,1. 4.(1)12,,ln 2+===x v v u u y ; (2)13,sin ,2+===x v v u u y ;(3)x u u y ln 1,5+==; (4)52,sin ,,2+==-==x t t v v u e y u. 5.(100)2000C =,(100)20C =. 6.2214)(x x x R -=. 7.(1)25000;(2)13000;(3)1000. 8.()1052p Q p =+⨯. 9.130,(0700)9100117,(7001000)x x y x x ≤≤⎧=⎨+<≤⎩. 习题1.21.(1)0; (2)0; (3)1; (4)0; (5)24; (6)41; (7)1; (8)41; (9)0; (10)∞. 2.(1)无穷大; (2)无穷大; (3)无穷小; (4)无穷小; (5)无穷小; (6)无穷大; (7)无穷大; (8)无穷大.2 3.(1)2;(2)1;(3)53;(4)4e ;(5)e1;(6)21e ;(7)4;(8)0.4.0lim ()lim ()lim ()1x x x f x f x f x +-→→→===-.习题1.31.(1)32;(2)2sin 2;(3)0;(4)2;(5)21;(6)∞. 2.不连续;图形略. 3.2=k .因为函数()f x 在其定义域内连续,即在0=x 也联系,则()0lim (0)x f x f →=,即()()0lim lim x x f x f x k ++→→==,0lim ()2x f x -→=,所以2=k . 4.略.习题1.41.本利和1186.3元,利息186.3元;本利和1164.92元,利息164.92元. 2.1173.51元;xey ⋅-=1.06000,4912.39元,4444.91元,3639.19元,2979.51元.第1章 复习题1.(-2,2),图形略. 2.(1)13,-==x u u y ;(2)x u u y 21,3+==; (3)x u u y ln 2,10+==;(4)2,,x v e u e y vu===-;(5)x v v u u y ===,ln ,;(6)x t t w w v v u u y 2,cos ,,lg ,22=====. 3.(1)()1200010C q q =+;(2)()30R q q =;(3)()2012000L q q =-. 4.280,(0900)22450400,(9002000)q q R q q ⎧=⎨+<⎩≤≤≤. 5.1,(04)1.5,(410)2,(1020)s P s p <<⎧⎪=⎨⎪<⎩≤≤≤,图形略.3 6.1-.7.(1)9-; (2)∞; (3)0; (4)0; (5)2; (6)0; (7)5; (8)2; (9)5e ; (10)8-e . 8.1k =. 9.a π=.10.221R Q Q =++.11.150,(0300)142.52250,(300800)1358250,(8001000)q q R q q q q ⎧⎪=+<⎨⎪+<⎩≤≤≤≤.12.800001000Q P =-.13.3000100Q P =+;平衡状态时,70,10000P Q ==. 14.(600)1000400L =;.第2章 导数与微分习题2.11.(1)1-;(2)51. 2.(1)3ln 1x y =';(2)3132-='x y ;(3)32x y -=';(4)2523--='x y ;(5)2121-='x y ;(6)3734--='x y ; (7)2ln 1x y =';(8)x y sin -='.3.033633=--+πy x .4.切线方程:02=-+y x ;法线方程:x y =. 5.切线方程:01-=+y x ;法线方程:03=-+y x .4 习题2.21.(1)4|2='=x y ; (2)1sin 2|0='=x y ; (3)32|1-='=x y ; (4)213|-=='e y x ; (5)2|21-='=x y ; (6)92|1-='=x y . 2.(1)x x y 2cos 432+='; (2)xe y x 122+='; (3)2)cos 1(sin cos 1t t t y +++=';(4)xx y ln 121+=';(5)xx x x y 3)12(-+=';(6))63cos(6+='x y ;(7)x x x x x y tan sec sec 3tan 32++='; (8)x x y 2sin cos 22-='; (9)x e x y x 52cos 42sin 2+⋅=';(10))sin 2(sec cos 22x x y ⋅='; (11)xx ex x y 221)2ln 1(2⋅++=';(12)xe xe y x e 11++⋅='-. 3.(1)yx y x dx dy 22+-=; (2))2cos(sin )2cos(2cos y x y x y x y dx dy +++-=. 4.0222=-+y x .5.(1)x y x y x y x y cos ,sin ,cos ,sin )4(=='''-=''-='; (2)x x x y cos sin 2--=''.6.切线方程:022=--y x ;法线方程:012=-+y x .习题2.31.(1)dx x x dy )26(2-=; (2)dx x x dy )sin (cos -=;5 (3)dx xx x dy 2ln 2-=; (4)dx x e x dy x2)1(-=;(5)dx e dy x 2.04.0=; (6)dx x x dy )32(sec )32tan(42++=.2.(1)221x ; (2)x sin ; (3)||ln x ; (4)x 2.3.11.75.习题2.41.(1)2;(2)1;(3)a cos ;(4)n m ;(5)3;(6)21-;(7)21;(8)∞+.2.(1)1; (2)0.习题2.51.(1)在)2,(-∞内单调增加,在),2(∞+内单调减少,有极大值为7)2(=f ; (2)在),(∞+-∞内单调增加,无极值; (3)在),(∞+-∞内单调增加,无极值;(4)在),1()0,(∞+-∞Y 内单调减少,在)1,0(内单调增加,有极小值为0)0(=f ,有极大值为1)1(-=e f .2.(1)最大值为69)4(=f ,最小值为61)6(-=-f ; (2)最大值为2)1(=f ,最小值为26)3(-=f ; (3)最大值为2)2(ππ=-f ,最小值为2)2(ππ-=f .3.当销售量80=x 时,平均成本最低为40)80(=C 元.4.当学费降低15次,即学费降为325元时,这个培训班可获得最大收益,最大收益为422500元.5.当每周泵的销售量33=x 个时,每周取得利润最大约为662.31元.习题2.61.(1)凹区间为)1,(-∞,凸区间为),1(∞+,拐点为)2,1(; (2)凹区间为),2(∞+,凸区间为)2,(-∞,拐点为)3,2(; (3)凹区间为),1(∞+,凸区间为)1,(-∞,拐点为)6,1(;(4)凹区间为)1,1(-,凸区间为),1()1,(∞+--∞Y ,拐点为)2ln ,1(-和)2ln ,1(; (5)凸区间为),0()0,(∞+-∞Y ,无拐点;6 (6)凹区间为)2,(-∞,凸区间为),2(∞+,无拐点.2.平均成本函数在)80,0(内单调减少,在),80(∞+内单调增加,有极小值为40)80(=C ,在),0(∞+内是凹的.3.收益函数曲线在)6,0[内单调增加,在]80,6(内单调减少,有极大值为44.73)6(=R ,在)80,0(内是凸的.习题2.71.(20)160L =元,(20)8L =元,(20)6L '=元.2.(1)2()0.092S t t t '=++;(2)(5)29.25S =(百万元),(5)9.25S '=(百万元);(3)(5)29.25S =表明5个月的销售总量为29.58百万元;(5)9.25S '=表明若再多销售1个月,将多销售9.25百万元.3.(1)23780()N x x '=;(2)(10)37.837N '=≈(只),表明当广告费用为1万美元时,若多投入1千美元的广告费,将再多销售船只37只;(20)9.459N '=≈(只),表明当广告费用为2万美元时,若再多投入1千美元的广告费,将多销售船只9只.4.(1)179.9美元;(2)180美元. 5.约108.27元. 6.(1)13EQ P EP =-;(2)11|3P EQ EP ==-,3|1P EQ EP ==-,55|3P EQ EP ==-.7.3EQ P EP P =+,31|2P EQ EP ==.8.(1)24EQ P EP P =--; (2)61|3P EQ EP ==-;(3)因为62|03P ER EP ==>,所以在6P =时,若价格上涨1%,总收益增加0.67%. (4)12P =时,总收益最大,最大总收益是(12)72R =. 第2章 复习题1.(1)212sin(31)y x x '=-+;(2)41y x '=+; (3)34)1(2x x y -=';(4)2222(1)x x y x -+'=-;7 (5)222sec tan (1)2sec (1)x x x x xy x +-'=+;(6)sin 22cos 2x y e x '=;(7)2(1)[2cot (1)csc ]y x x x x '=+-+;(8)22ln(1)1x x y x --=-.2.222(24)x d yx x e dx=++.3.(1)21x x y e y ye '=-+; (2)32xy y '=-.4.求下列函数的微分. (1)2(622)dy x x dx =+-; (2)(sin 22cos2)dy x x x dx =+;(3)222(1)x dy x x edx -=-; (4)2332(1)x dy dx x =-.5.切线方程:870x y --=;法线方程:890x y +-=.6.在(,0)(1,)-∞+∞U 内单调增加,在(0,1)内单调减少,有极大值为(0)0f =,有极小值为3(1)2f =-.7.在(0,24)内单调增加,在(24,)+∞内单调减少,有极大值为(24)6916f =;凹区间为(0,12),凸区间为(12,)+∞,拐点为(12,3460).8.生产50000个单位时,获得的利润最大,最大利润为30000)50000(=L . 9.455100dP x Pdx x P+=-+,其实际含义为:当需求量为x 时,若需求量再增加一个单位,则价格将减少455100dP x Pdx x P+=-+元. 10.280()(2)N t t '=+,其实际意义是:当对一个新工人进行t 天培训后,若再多培训一天,该工人就能多装配280()(2)N t t '=+个元件.11.(1)生产量3Q =时,平均成本最小为(3)6C =元. (2)边际成本2()15123C Q Q Q '=-+,显然(3)(3)6C C '==元. (3)1Q ECEQ ==0.6,其经济意义为:当生产量1Q =时,若生产量增加1%,则成本将增加0.6%.8 第3章 不定积分与定积分习题3.11.(1)C x +661; (2)C x x ++2717; (3)C x+22ln 1;(4)C x x ++-sin cos ; (5)C x +22ln 81;(6)C x x ++3||ln ;(7)C x +2774;(8)C x x ++23223;(9)C x x +-232931092;(10)C x x x ++-838522325;(11)C x x +-sin 3||ln 2;(12)C x x e x +-+sin 32; (13)C x x x +++65225;(14)C x x x +++-3271344; (15)C x x x++--||ln 21;(16)C x x x x +--+23327323172.2.()f x 2)21(2x e x --=. 3.2ln +=x y (21ex ≥). 4.2125Q Q R -=. 5.20005212++=x x C . 习题3.21.(1)41(53)20x C ++; (2)31(32)6x C --+;(3)1sin(31)3x C ++;(4)1cos(12)2x C -+;(5)2313x e C ++;(6)2x e C --+;(7)212x e C +;(8)2214x e C --+;(9)21cos(2)2x C -++;(10)322(sin )3x C +;(11)2xeC + ;(12)2xe C --+.2.(1)532224(2)(2)53x x C +-++;(2)26ln(3)x x C -++;(3)5322210(35)(35)4527x x C -+-+; (4)3ln 322x x C ---+;(5)322(3)633x x C -+-+;(6)23ln(123)x x C --+-+.3.(1)3311ln 39x x x C -+;(2)221124x x xe e C -+;(3)ln3x x x C -+;(4)1(cos sin )2x x x e C ++.习题3.31.(1)32; (2)52; (3)214a π; (4)0. 2.(1)⎰102dx x ≥⎰13dx x ;(2)⎰10dx e x ≥⎰12dx e x ;(3)⎰10dx e x ≥⎰+1)1(dx x ;(4)⎰20πxdx ≥⎰2sin πxdx .习题3.41.(1)2243; (2)0; (3)2183740--; (4)e e -3;(5)331-; (6)3340; (7)34; (8)487. 2.245.3.⎰-=503001.030201dx e p x .4.146250元.习题3.51.(1)313; (2)431121121)(π--; (3)32---e e ; (4))1(211--e ; (5))1(23-e ; (6))2cos 1(cos 21-.2.(1)52ln 8-; (2)2ln )1ln(1++-e ; (3)35; (4)15216532+-.3.(1)0; (2)0; (3)332π; (4)22π-. 4.(1)121--e ;(2))(251+-πe . 习题3.61.(1)31; (2)2; (3)21; (4)0.2.1.习题3.71.50424.0)(2++=x x x C .2.4200)(2x x x R -=,17500)100(=R 元,175)100(=R 元/单位.3.t e t S 08.05050)(--=,18.3)6(≈S 辆. 4.约8.97万元. 5.(1)40;(2)总收益为5200美元,平均单位收益为130美元/kg ,总成本为4200美元,总利润是1000美元.习题3.81.(1)一阶; (2)二阶; (3)五阶; (4)四阶.2.(1)C x y +=221; (2)C x y +-=21;(3))ln(C e y x +=; (4)1-⋅=x C xy ;(5)22332x e C y -⋅+=; (6))21(122C e x y x +-=-.3.(1)xe e y =; (2))1(212x y --=.第3章 复习题1.(1)C x ++-)1(cos 212;(2)C x +-4)53(121;(3)C x x +++-+)22ln(422; (4)C x x +-)41(ln 44.2.(1)21; (2)24; (3))25(6-; (4))3132(313+e .3.1. 4.40000. 5.约1.53美元.6.10ln0.216-≈,在[0,16]内的全部利润约87.82百元. 7.总成本函数为2()215200C x x x =++; 总利润函数为2()442200L x x x =--;11=x 个单位时,获得最大利润,最大利润是42)11(=L .8.(1)C x y =+-)1)(1(; (2))(2C e e y x x +-=-; (3)4)1(21+=x y ,. 第4章 矩 阵习题4.1略.习题4.21.11,3,2,7,5-====-=z u w y x .2.⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=111325325310373432316317383Z . 3.5211114208235-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦4.15461021⎡⎤⎢⎥-⎣⎦5.(1)505176213-⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦;(2)1235-⎡⎤⎢⎥⎣⎦;(3)[]13161922; (4)20742769-⎡⎤⎢⎥---⎣⎦;(5)123246369⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦;(6)[]70. 8.(1)12190544-⎡⎤⎢⎥-⎣⎦;(2)26751110614-⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥⎣⎦;(3)1111580391241424201225218--⎡⎤⎢⎥-⎢⎥⎢⎥--⎢⎥-⎣⎦; (4)5303128⎡⎤⎢⎥-⎣⎦;(5)5313028⎡⎤⎢⎥-⎣⎦.运费 耗费 9.420000130000382000119000320001000001122000349000⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦一班二班三班总计 10.[]64601600010540钾氨磷习题4.31.(1)113-1-200-7470000000000⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,2R =; (2)120001130024000⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦,3R =; (3)12390236596410022⎡⎤⎢⎥--⎢⎥-⎢⎥⎢⎥-⎢⎥⎣⎦,3R =;(4)1312074800210000--⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦,3R =. 2.(1)2;(2)2;(3)4;(4)3.3.(1)8=k ;(2)8≠k ,(3)k 不存在.习题4.41.因为AB =BA =E ,所以B 是A 的逆矩阵.2.11,510x y =-=.3.(1)2550291111⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦;(2)414457568⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦;(3)2015215911-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦414457568⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦. 4.(1)1-A143153164--⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦;(2)1-A 不存在,(3)15111444411112222111144441111A -⎡⎤--⎢⎥⎢⎥⎢⎥-⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥--⎣⎦;(4)1-A 1153222421731222⎡⎤--⎢⎥⎢⎥=-⎢⎥⎢⎥-⎢⎥⎣⎦. 5.A =18315511115511055⎡⎤--⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦. 6.1200020002B AB -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦.第4章 复习题一、1.().,,2,1;,,2,1,,n j m i b a t n s m ij ij ΛΛ=====2.t l m k s n ===,,. 3.()TA 1-. 4.B ,A . 5.非零行的行数.二、1.(d); 2.(b)(d); 3.(a); 4.(c)(d).三、1.3071845232⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦.2.()3R A =,()1R B =.3.38172777122221935222Z ⎡⎤---⎢⎥⎢⎥⎢⎥=---⎢⎥⎢⎥⎢⎥---⎢⎥⎣⎦.第5章 线性方程组习题5.21.(1)123783x x x =⎧⎪=⎨⎪=-⎩;(2)无解;(3)123000x x x =⎧⎪=⎨⎪=⎩;(4)1233252x kx k x k ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩;(5)1123212331425351622623x k k k x k k k x k x k x k =++-⎧⎪=---+⎪⎪=⎨⎪=⎪⎪=⎩;(6)12342,3,1,0.x x x x =⎧⎪=-⎪⎨=⎪⎪=⎩.2. (1)4m =,1233x k x k x k =-⎧⎪=⎨⎪=⎩; (2)3m =,1233525x k x k x k ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩.3.(1)5m ≠; (2)5,2m k =≠-; (3)5,2m k ==-. 4.(1)02p q ≠≠或时方程组无解;(2)02p q ==且时有解,解为11232123314253522263x k k k x k k k x k x kx k =++-⎧⎪=---+⎪⎪=⎨⎪=⎪⎪=⎩5.5=m ,1122123142164555373555x k k x k k x k x k ⎧=--+⎪⎪⎪=-+⎨⎪=⎪⎪=⎩.6.(1)7349121714Z ⎡⎤--⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦;(2)22308Z -⎡⎤=⎢⎥⎣⎦. 第5章 复习题一、1.111111111,n n m mn m mn m a a a a b aa a ab ⎛⎫⎛⎫⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭LL MM MM M LL,无解,有唯一解,有无穷多组解,无解,未知数个数,小于2.(1)无解(2)有无穷多组解(3)有唯一解 3.3124121,2.x x x x x x =++⎧⎨=+⎩二、1. (d);2. (c). 三、04122112Z ⎡⎤⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥-⎣⎦四、1.11221331427188373x k k x k k x k x k =-+⎧⎪=-+-⎪⎨=⎪⎪=⎩;2.1234,321.2x x x ⎧⎪=⎪⎪=-⎨⎪⎪=⎪⎩;3.1231,1,1.x x x =⎧⎪=-⎨⎪=-⎩;4. 1230,0,0.x x x =⎧⎪=⎨⎪=⎩; 5.112321324332x k k k x k x k x k =-+⎧⎪=⎪⎨=⎪⎪=⎩.五、11221231422223x k k x k k x k x k =++⎧⎪=--+⎪⎨=⎪⎪=⎩.第6章 线性规划初步习题6.11.设生产1A 产品1x 万瓶,生产2A 产品2x 万瓶,获得利润L 美元. 则该问题的数学模型为:12max 80003000L x x =+12121212535003008020000..1249000,0x x x x s t x x x x +⎧⎪+⎪⎨+⎪⎪⎩≤≤≤≥≥其矩阵形式为:max ..0L CX AX B s t X =≤⎧⎨≥⎩其中:[]80003000C =,12x X x ⎡⎤=⎢⎥⎣⎦,5330080124A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,50020000900B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦. 2.设A 需要1x 个单位,B 需要2x 个单位,总费用为F . 则该问题的数学模型为:121212min 20030024.0,0F x x x x s t x x =++⎧⎨⎩≥≥≥其矩阵形式为:min ..0F CX AX B s t X =⎧⎨⎩≥≥ 其中:[]200300C =,12x X x ⎡⎤=⎢⎥⎣⎦,[]12A =,[4]B =.3.设第i 月的进货量为1i x 千件,售货量为2i x 千件(3,2,1=i ),利润为L 美元.则该问题的数学模型为:111221223132max 8969910L x x x x x x =-+-+-+111112211112212231300300..3000(1,2,3;1,2)ij x x x x s t x x x x x x i j ⎧⎪-+⎪⎨-+-+⎪⎪==⎩≤≤≤≥ 其矩阵形式为:max ..0L CX AX B s t X =⎧⎨⎩≤≥其中:[]8969910C =---,111221223132x x x X x x x ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,100000111000111110A ⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦,300300300B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦.习题6.21.(1)最优解为12032x x ⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎣⎦,最优值为min 3S =-.(2)无最优解.(3)无穷多组最优解为满足8221=+x x 且介于点(2,3)和(4,2)件的线段上的所有点,最优值为16max =S .第6章 复习题1.设生产A 产品1x 个单位,生产B 产品2x 个单位,获得利润L 元. 则该问题的数学模型为:12max 800010000L x x =+ 12121212128940058320..642804123500,0x x x x s t x x x x x x +⎧⎪+⎪⎪+⎨⎪+⎪⎪⎩≤≤≤≤≥≥其矩阵形式为:max ..0L CX AX B s t X =⎧⎨⎩≤≥其中:[]800010000C =,12x X x ⎡⎤=⎢⎥⎣⎦,895864412A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,400320280350B ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦. 2.设工厂i 给工地j 的砖量为ij x 万块(其中:1,2i =分别表示工厂A 、B ,1,2,3j =分别表示工地甲、乙、丙),总运费为F 元.则该问题的数学模型为:111213212223min 5060706011027F x x x x x x =+++++112112221323111213212223171815..23270(1,2;1,2,3)ij x x x x x x s t x x x x x x x i j +=⎧⎪+=⎪⎪+=⎪⎨++=⎪⎪++=⎪≥==⎪⎩ 其矩阵形式为:min ..0F CX AX B s t X ==⎧⎨≥⎩其中:[5060706011027]C =,⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=232221131211x x x x x x X ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=111000000111100100010*********A ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=2723151817B3.设第i 个煤矿运往第j 个城市的煤量为ij x 千吨(其中:1,2,3i =分别表示甲、乙、丙三个煤矿,1,2,3,4j =分别表示A 、B 、C 、D 四个城市),总运费为F 元.则该问题的数学模型为:111213142122232431323334min 1211181191111131014137F x x x x x x x x x x x x =+++++++++++41142143131132133134149115..4780)1,2,3;1,2,3,4)j j j j j j i i i i i i i i ij x x x x s t x x x x i j =======⎧=⎪⎪⎪=⎪⎪⎪⎪=⎪⎪⎪=⎪⎨⎪⎪=⎪⎪⎪=⎪⎪⎪=⎪⎪≥==⎪⎩∑∑∑∑∑∑∑ 其矩阵形式为:min ..0F CX AX B s t X ==⎧⎨≥⎩其中:[1211181191111131014137]C =,111213142122232431323334x x x x x x X x x x x x x ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,111100000000000011110000000000001111100010001000010001000100001000100010000100010001A ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,49115478B ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦.4.设i A 机床生产j B 工件的数量为ij x (1,2;1,2,3i j ==),总加工费为S 元. 则该问题的数学模型为:111213212223min 139********S x x x x x x =+++++1121122213231112132122230.40.54001.1 1.26001.3500..0.41018000.5 1.2 1.39000(1,2;1,2,3)ij x x x x x x s t x x x x x x x i j +=⎧⎪+=⎪⎪+=⎪⎨++≤⎪⎪++≤⎪≥==⎪⎩ 其矩阵形式为:min ..0F CX AX Bs t AeqX BeqX =⎧⎪=⎨⎪⎩≤≥ 其中:[1391011128]C =,111213212223x x x X x x x ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,0.4 1.110000000.5 1.2 1.3A ⎡⎤=⎢⎥⎣⎦,800900B ⎡⎤=⎢⎥⎣⎦, 0.4000.5000 1.100 1.2000100 1.3Aeq ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,400600500Beq ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦5.用图解法求下列各题.(1)最优解为1220x x ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,最优值为max 4S =.(2)无最优解为.(3)无穷多组最优解为满足121x x +=且介于点(1,0)和点(0,1)间的线段上的所有点.第7章 随机事件与概率习题7.11.(1){}0t t Ω=≥;(2)设}{个次品取到正品前抽取了i A i =(0,1,2,3,4i =),则01234{,,,,}A A A A A Ω=;(3)设}{次中得一等奖第i A i =(1,2,i =L ),则12{,,}A A Ω=L . 2.(1)AB ; (2)A ; (3)ABC ABC ABC ⋃⋃; (4)ABC ; (5)A B C ⋃⋃; (6)A B C ⋃⋃或ABC ; (7)ABC 或A B C ⋃⋃;(8)ABC ABC ABC ABC ⋃⋃⋃.3.(1)321A A A ;(2)321A A A ⋃⋃;(3)321321321A A A A A A A A A ⋃⋃;(4)321321321321A A A A A A A A A A A A ⋃⋃⋃.4.(1)[0,3); (2)[0,2); (3)(,0)[2,)-∞⋃+∞; (4)φ.习题7.21.14. 2.(1)13; (2)215; (3)815.3.(1)61; (2)b ; (3)0.84; (4)1511; (5)0.7; (6)0.6. 4.(1)61; (2)65.5.(1)158; (2)97.6.(|)0.3P B S =. 7.0.64.8.(1)0.42;(2)0.88;(3)0.46. 9.(1)89110;(2)81100.10.35.11.0.592.12.0.4,0.5,0.6,0.6,0.75. 13.0.93.第7章 复习题1.12B A A =;12C A A =;1212()()D A A A A =⋃;12E A A =⋃.其中B C D 、、两两互不相容,C 与E 为对立事件.2.因为B A ⊂,所以()()P B P A <. 3.(1)2845; (2)145; (3)15; (4)1645; (5)1745; (6)4445. 4.0.97;0.03. 5.0.75;0.25.6.(1)0.988;(2)0.012;(3)0.83.7.(1)44%;(2)15%;(3)2.25%;(4)0.25%;(5)13.6%;(6)13.3%. 8.(1)0.27;(2)0.15.9.(1)0.45,0.24,0.14;(2)0.83;(3)0.54. 10.0.78. 11.0.72.12.(1)0.74;(2)0.56.第8章 随机变量分布及其数字特征习题8.11.设随机变量0,()1,()X ⎧=⎨⎩没投中投中,则(0)0.6P X ==,(1)0.4P X ==.2.设取出产品的等级为随机变量X , X 取1、2、3分别表示产品等级为一、二、三级,则4(1)7P X ==,2(2)7P X ==,1(3)7P X ==.习题8.21.(1)是概率分布.因为满足离散型随机变量分布律的性质;(2)25.0)30(==XP;(3)35.0)25(=≤XP;(4)4.0)30(=>XP.2.(1)P (X=100) =0.25;(2)7.0)0(=>XP;(3)4.0)100(=≥XP.3.X-1 2 6)(XP0.1 0.3 0.6 4.X0 1 2P(X)213815381195.(1)X0 1 2) (X P 194949(2)X0 1 2) (X P115815256.0.14;0.95.7.0.009;0.998;7,0.617.8.(1)25.0=C;(2)0.25,0.75;(3)F (X)=0,10.25,13 0.5,3 4.51, 4.5xxxx<-⎧⎪-<⎪⎨<⎪⎪⎩≤≤≥.9.0.000008.习题8.31.(1)a =3;(2)95. 2.(1)0.2325;(2)0.5479. 3.(1)常数k=4;(2)0.5392.4.(1)c=61;(2)127;(3)()F x =20,211,241231,4x x x x <⎧⎪⎪-<⎨⎪⎪⎩≤≥.5.(1)0.4773;(2)0.0227;(3)0.9545. 6. 1.96λ=.7.(1)0.475;(2)0.025.8.(1)0.09176;(2)12475支/周.习题8.41.47. 2.(1)31; (2)32; (3)2435.3.(1)c =6; (2)61; (3)67.4.0.3. 5.2.6.k =4;α=3.7.(1)445;(2)盈利57500元.习题8.51.163. 2.数学期望为0.3;方差为0.319. 3.E (X )=9元;D (X )=3.4. 4.(1)31;(2)454;(3)4516.5.(1)12-;(2)20.6.(1)4.1;(2)3.93,1.98. 7.7.8.(1)5;(2)17;(3)0. 9.a =0.6,b=1.2, D ( X )=0.08.第8章 复习题1.1()(1,2,3,4,5,6)6P X k k ===; 0,(1)1,(12)61,(23)31(),(34)22,(45)35,(56)61,(6)x x x F x x x x x <⎧⎪⎪≤<⎪⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪⎪≤<⎪⎪≥⎪⎩2.(1)0.11;(2)0.96.3.(1)不是;(2)是. 4.0.9324. 5.0.3935. 6.(1)61;(2)21625. 7.(1)K =0.5;(2)1.414. 8.(1)0.483;(2)0.983. 9.50.85.10.(1)0.1056;(2)0.1056. 11.(1)0.5;(2)0.25;(3)43;(4)29. 12.(1)0;(2)1. 13.开发该软件.14.(1)()145,()140E X E Y ==,选择中型扩建. (2)()2725,()12400D X D Y ==,选择中型扩建. 15.(1)X 1 2 3 4 5 P4%39%29%21%7%(2)() 2.88E X =;(3)() 1.0256,() 1.013D X D X =≈.16.(1)X 1 2 3 4 5 P7/296/293/296/297/29(2)()3E X =,()11.34D X ≈;(3)略.第9章 数理统计初步习题9.1略.习题9.21.(1290,1304).2.(1271,1323).3.(2.08, 2.42).4.(18,20).5.(17.9,91.1).习题9.31.产品合格. 2.产品合格. 3.不正常. 4.广告不真实. 5.有变化.习题9.41.(1)略;(2)ˆ 6.45 1.58=-;(3)变量x与y存在显著线性相关关系.y x2.x与y存在显著线性相关关系;ˆ41.320.53=+.y x第9章复习题1.(1)(93.54,136.72);(26.4,46.84);(2)略.2.该校3年级男生平均身高与全国一致,身高差异程度没有拉大.3.该生产线不正常.4.这两种药品对血压影响是相同的.5.该基金的风险没有增大.6.(71.15, 80.45).7.(1)ˆ66.6 1.36=+;(2)y与xx存在显著线性相关关系.y x8.(1)y与x存在显著线性相关关系;(2)ˆ 4.950.18=-+.y x29目录习题参考答案 (1)第1章函数、极限与连续 (1)第1章复习题 (2)第2章导数与微分 (3)第3章不定积分与定积分 (8)第4章矩阵 (11)第4章复习题 (14)第5章线性方程组 (15)第6章线性规划初步 (17)第7章随机事件与概率 (23)第8章随机变量分布及其数字特征 (24)第9章数理统计初步 (28)。

经济应用数学(习题参考答案解析)

经济应用数学(习题参考答案解析)
则该问题的数学模型为:
其矩阵形式为:
其中: , , , .
2.设工厂 给工地 的砖量为 万块(其中: 分别表示工厂A、B, 分别表示工地甲、乙、丙),总运费为 元.则该问题的数学模型为:
其矩阵形式为:
其中: ,
, ,
3.设第 个煤矿运往第j个城市的煤量为 千吨(其中: 分别表示甲、乙、丙三个煤矿, 分别表示A、B、C、D四个城市),总运费为F元.则该问题的数学模型为:
习题参考答案

习题
1.(1)不同,因为它们的定义域不同;
(2)不同,因为它们的定义域和对应法则都不同.
2.(1) ;(2) .
3. .
4.(1) ;(2) ;
(3) ;(4) .
5. , .
6. .
7.(1)25000;(2)13000;(3)1000.
8. .
9. .
习题
1.(1)0;(2)0;(3)1;(4)0;(5)24;
习题
1.(1)2;(2)1;(3) ;(4) ;(5)3;(6) ;(7) ;(8) .
2.(1)1;(2)0.
习题
1.(1)在 内单调增加,在 内单调减少,有极大值为 ;
(2)在 内单调增加,无极值;
(3)在 内单调增加,无极值;
(4)在 内单调减少,在 内单调增加,有极小值为 ,
有极大值为 .
2.(1)最大值为 ,最小值为 ;
(2)最大值为 ,最小值为 ;
(3)最大值为 ,最小值为 .
3.当销售量 时,平均成本最低为 元.
4.当学费降低15次,即学费降为325元时,这个培训班可获得最大收益,最大收益为422500元.
5.当每周泵的销售量 个时,每周取得利润最大约为662.31元.

《经济数学》应用题及参考答案

《经济数学》应用题及参考答案

《经济数学》应用题1.已知生产某种产品的成本函数为C(q) = 80 + 2q,则当产量q = 50时,该产品的平均成本为2.已知某商品的需求函数为q = 180 -4p,其中p为该商品的价格,则该商品的收入函数R(q)=23•设生产某种产品x个单位时的成本函数为:C(x) 100 0.25x 6x (万元),求:(1 )当x 10时的总成本、平均成本和边际成本;(2)当产量x为多少时,平均成本最小?4•某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求规律为q 1000 10 p ( q为需求量,p为价格).试求:(1)成本函数,收入函数;(2)产量为多少吨时利润最大?5.设某工厂生产某产品的固定成本为50000元,每生产一个单位产品,成本增加100元.又已知需求函数q 2000 4p,其中p为价格,q为产量,这种产品在市场上是畅销的,问价格为多少时利润最大?并求最大利润.6.某厂生产某种产品q件时的总成本函数为C(q) = 20+4q+0.01q2(元),单位销售价格为p = 14-0.01q(元/件),问产量为多少时可使利润达到最大?最大利润是多少7•某厂每天生产某种产品q件的成本函数为C(q) 0.5q236q 9800 (元).为使平均成本最低,每天产量应为多少?此时,每件产品平均成本为多少?28 .已知某厂生产q件产品的成本为C(q) 250 20q —(万元).问:要使平均成本最少,应10生产多少件产品?9. 投产某产品的固定成本为36(万元),且边际成本为C(X)=2x + 40(万元/百台).试求产量由4百台增至6百台时总成本的增量,及产量为多少时,可使平均成本达到最低10. a已知某产品的边际成本C (x)=2 (元/件),固定成本为0,边际收益R (x)=12- 0.02x,问产量为多少时利润最大?在最大利润产量的基础上再生产50件,利润将会发生什么变化?11 . b生产某产品的边际成本为C (x)=8x(万元/百台),边际收入为R (x)=100-2x (万元/百台),其中x为产量,问产量为多少时,利润最大?从利润最大时的产量再生产2百台,利润有什么变化?12.已知某产品的边际成本为 C (x) 4x 3 (万元/百台),x 为产量(百台),固定成本为18(万元), 求最低平均成本.13. c 设生产某产品的总成本函数为 C(x) 3 X (万元),其中x 为产量,单位:百吨.销售 x 百吨时的边际收入为 R (x)15 2x (万元/百吨),求:(1)利润最大时的产量;(2)在利润最大时的产量的基础上再生产1百吨,利润会发生什么变化?参考答案1 2=40q - q -2000101 2L (q) =(40q - q -2000) =40- 0.2q10L (q) = 0,即40- 0.2q = 0,得q = 200,它是L(q)在其定义域内的唯一驻点.所以,q = 200是利润函数L (q)的最大值点,即当产量为 200吨时利润最大.解 C(p) = 50000+100q = 50000+100(2000-4p)=250000- 400pR(p) =pq = p(2000-4p)= 2000 p-4p 2利润函数 L(p) = R(p) - C(p) =2400p-4p 2 -250000,且令L ( p) =2400 -8p = 0得p =300,该问题确实存在最大值.所以,当价格为p =300元时,利润最大.C(x) C(x)100 100 x0.25x 2 0.25x 6x6, C(x)0.5x 6所以,C(10) 100 0.25 102 6 10 185— 100C(10)0.25 10 6 18.10C (10) 0.5 10 6 11—100(2) 令 C (x) 20.25 x0, 得x 20 ( x 20 因为x 20是其在定义域内唯一驻点,且该问题确实存在最小值, 解(1)因为总成本、平均成本和边际成本分别为: 所以当X 20时,平均成本最小.成本函数 C(q)= 60q +2000.舍去)解 (1) 1.2. 3.645q -0.25q 23.4.因为所以 (2) 1q,10 1 1 2q ) q =100q q . 10 101 2q 1000 10 p ,即 p 100收入函数R(q) = p q =( 100因为利润函数 L(q) = R(q) - C(q) = 100qq 2-( 60q +2000) 5.2最大利润 L(300) 2400 3004 3002 250000 11000 (元)•2 6•解 由已知 R qp q(140.01q) 14q 0.01q222利润函数 L R C 14q 0.01q 20 4q 0.01q 10q 20 0.02q则 L 10 0.04q ,令 L10 0.04q 0,解出唯一驻点 q 250.2 =0,得 q 1=140, qq 1 =140是C(q)在其定义域内的唯一驻点,且该问题确实存在最小值所以q 1=140是平均成本函数 C(q)的最小值点,即为使平均成本最低,每天产量应为 140件.此时的平均成本为q 1=50是C(q)在其定义域内的唯一驻点.所以,q 1=50是C(q)的最小值点,即要使平均成本最少,应生产 50件产品.x = 6是惟一的驻点,而该问题确实存在使平均成本达到最小的值 到最小.10•解因为边际利润L (x) R (x) C (x)=12-0.02x - = 10-0.02x令 L (x) = 0,得 x = 500x = 500是惟一驻点,而该问题确实存在最大值.所以,当产量为500件时,利润最大当产量由500件增加至550件时,利润改变量为因为利润函数存在着最大值,所以当产量为 且最大利润为L(250)250件时可使利润达到最大,7.解因为10 25020 0.02C(q) =-C (q) =0.5qq25022500 20 1250 1230 (元)C (q)=(0.5q369800 q 9800 )=0.5q36 9800T~q令C(q)=0,即 0.598008.C(140) = 0.5 14036解(1)因为 C(q) =C(H^250qC(q) = (空q令C(q)=0,即驾丄q 1020 q q 20 )=10 9800 =176 (元 /件)140q10 250 1 q 2 10 0,得 q 1=50, q 2=-50 (舍去),q 2 = - 140 (舍去).9. 解当产量由4百台增至66百台时,总成本的增量为 640)dx = (x 40x) = 100 (万元)C(x) x0C (x)dxC0=x240x 36=x 4036C(x)x 36 c 120,解得 x 6.x.所以产量为6百台时可使平均成本达5502 | 550L (100.02x)dx(10x 0.01x )=500 - 525 = - 25 (元)500 \/\4 500即利润将减少25元.11. 解 L (x) =R (x)-C (x) = (100 -2x) -8x =100 -10x 令 L (x)=0,得 x = 10 (百台) 又x = 10是L(x)的唯一驻点, 时,利润最大.12•解:因为总成本函数为当 x = 0 时,C(0) =18,即 C(x)= 2x 2又平均成本函数为 得 c =183x 18C(x) A(x)2xx⑵ 当产量由7百吨增加至8百吨时,8L 了(14 2x)dx (14x x即利润将减少1万元.12又 L 10L(x)dx121O (100 10x)dx(100x 5x 2)12 1020即从利润最大时的产量再生产 2百台,利润将减少 20万元.C(x)(4x 23)dx =2x 3x令A(x) 2卑 x 该题确实存在使平均成本最低的产量 .所以当x = 3时,平均成本最低. 18 A(3) 2 3 3 —313•解:(1)因为边际成本为 C (x) 令 L (x)0,得 x = 7 0,解得x = 3 (百台)9 (万元/百台) 1,边际利润L (x) R (x) 最底平均成本为 C (x) = 14 -2x 由该题实际意义可知,x = 7为利润函数 大. L(x)的极大值点,也是最大值点.因此,当产量为7百吨时利润最 该问题确实存在最大值,故 x = 10 是L(x)的最大值点,即当产量为10 (百台)183 — x利润改变量为87 =112 -64-98 + 49 = - 1 (万元)。

经济应用数学习题及答案

经济应用数学习题及答案

经济应用数学习题及答案第一题一个公司的销售额达到1.2亿,利润率为8%,求利润。

答:利润 = 销售额 × 利润率 = 1.2亿 × 8% = 960万元第二题某公司上月销售额为5000万元,其中60%为现金销售,40%为赊销,赊销部分的收款率为70%,求该公司上个月的现金收入。

答:现金销售额 = 5000万元 × 60% = 3000万元赊销额 = 5000万元 × 40% = 2000万元赊销收款额 = 2000万元 × 70% = 1400万元现金收入 = 现金销售额 + 赊销收款额 = 3000万元 + 1400万元 = 4400万元第三题某机构对某市场的调查显示,该市场消费者的需求函数为:Q=1000-4P,供给函数为Q=2P,求市场均衡价格和数量。

答:将需求和供给方程相等,得到:1000-4P = 2P6P = 1000P = 166.67将P=166.67代入供给函数,得到:Q = 2PQ = 2 × 166.67Q = 333.33因此,市场均衡价格为166.67,市场均衡数量为333.33。

第四题有一部电视剧首播收视率为8.5%,加上网络播放和重播后,总收视率达到20%,求网络播放和重播所占收视率的比例。

答:令网络播放和重播所占比例为x,则有:8.5% + x = 20%x = 11.5%因此,网络播放和重播所占收视率的比例为11.5%。

第五题某工厂的总成本函数为C=1000+20Q+0.01Q^2,其中Q为产量。

求当产量为2000时的边际成本和平均成本。

答:求得总成本函数对Q的一阶导数和二阶导数,如下:C’ = 20 + 0.02QC’’ = 0.02当Q=2000时,边际成本为:C’(2000) = 20 + 0.02 × 2000 = 60(单位:元/件)平均成本为:AC = C/Q = (1000+20Q+0.01Q^2)/Q将Q=2000代入得:AC = (1000+20×2000+0.01×2000^2)/2000 = 41(单位:元/件)因此,当产量为2000时的边际成本为60元/件,平均成本为41元/件。

经济应用数学基础(一)-微积分-课后习题答案_高

经济应用数学基础(一)-微积分-课后习题答案_高

第一章 函 数习 题 一(A)1.解下列不等式,并用区间表示解集合(其中δ>0):(1)(x-2)2>9; (2)|x+3|>|x-1|;(3)|x-x0|<δ;(4)0<|x-x0|<δ.解 (1)由(x-2)2>9得|x-2|>3,从而解得x-2>3 或 x-2<-3由此得 x>5或x<-1.因此,解集合为(-∞,-1)∪(5,+∞)(2)由绝对值的几何意义知,不等式|x+3|>|x-1|表示点x与-3的距离大于点x与1的距离,如下图所示:因此,该不等式的解集合为(-1,+∞)(3)由|x-x0|<δ得-δ<x-x0<δ,由此得x0-δ<x<x0+δ,因此,解集合为(x0-δ,x0+δ)(4)由0<|x-x0|知x≠x0,由|x-x0|<δ知x0-δ<x<x0+δ.因此,解集合为(x0-δ,x0)∪(x0,x0+δ)2.证明如下不等式:(1)|a-b|≤|a|+|b|;(2)|a-b|≤|a-c|+|c-b|证 (1)由绝对值性质(4),有|a-b|≤|a|+|-b|=|a|+|b|.(2)|a-b|=|a-c+c-b|≤|a-c|+|c-b|.3.判断下列各对函数是否相同,并说明理由:(1)y=x与y=x2;(2)y=1-x2+x与y=(1-x)(2+x);(3)y=1与y=sin2x+cos2x;(4)y=2cosx与y=1+cos2x;(5)y=ln(x2-4x+3)与y=ln(x-1)+ln(x-3);(6)y=ln(10-3x-x2)与y=ln(2-x)+ln(5+x).解 (1)因y=x2=|x|与y=x的对应规则不同(值域也不同),故二函数不相同.(2)因y=1-x2+x与y=(1-x)(2+x)的定义域均为D f=[-2,1],故此二函数相同.(3)因sin2x+cos2x≡1,x∈(-∞,+∞),故此二函数相同.(4)因y=1+cos2x=2cos2x=2|cosx|与y=2cosx的对应规则不同,可知此二函数不相同.(5)因y=ln(x2-4x+3)=ln[(x-1)(x-3)]的定义域为D f=(-∞,1)∪(3,+∞);y=ln(x-1)+ln(x-3)的定义域为D f=(3,+∞).因此,此二函数不相同.(6)因y=ln(10-3x-x2)=ln[(2-x)(5+x)]与y=ln(2-x)+ln(5+x)的定义域均为D f=(-5,2),故此二函数相同.4.求下列函数的定义域:(1)y=x2+x-2; (2)y=sin(x);(2)y=9-x2+1ln(1-x);(4)y=lnx2-9x10;(5)y=1x-3x+10x-10;(6)y=(x-1)(x-3)x-3.解 (1)使该函数有定义的x应满足条件:x2+x-2=(x-1)(x+2)≥0由此解得x≥1或x≤-2.因此,该函数定义域为D f=(-∞,2]∪[1,+∞).(2)使该函数有定义的x应满足条件:x≥0 且 sinx≥0而由sinx≥0得2kπ≤x≤(2k+1)π,k=0,1,2,….因此,该函数的定义域为D f=∪∞k=0[(2kπ)2,(2k+1)π2].(3)使该函数有定义的x应满足如下条件:9-x2≥0, 1-x>0, 1-x≠1解得 |x|≤3且x<1且x≠0.因此,该函数定义域为D f=[-3,0)∪(0,1).(4)使该函数有定义的x应满足条件:x2-9x10≥1由此得 x2-9x-10=(x+1)(x-10)≥0,解得x≥10或x≤-1因此,该函数定义域为D f=(-∞,-1]∪[10,+∞)(5)使该函数有定义的x应满足如下条件:x-3≠0, x-10≠0, x+10x-10≥0由此解得x>10或x≤-10.因此,该函数定义域为D f=(-∞,-10]∪(10,+∞).(6)使该函数有定义的x应满足条件:x-3≠0, (x-1)(x-2)x-3≥0即(x-1)(x-2)≥0 且 x-3>0痴x>3(x-1)(x-2)≤0 且 x-3<0痴1≤x≤2因此,该函数定义域为D f=[1,2]∪(3,+∞).5.已知函数f(x)=q-x2,|x|≤3x2-9,|x|>3求函数值f(0),f(±3),f(±4),f(2+a).解 因为x=0,x=±3时,|x|≤3,所以f(0)=9=3, f(±3)=9-(±3)2=0又因为x=±4时,|x|>3,所以f(±4)=(±4)2-9=7当|2+a|≤3即-5≤a≤1时,f(2+a)=q-(2+a)2=(1-a)(5+a)当|2+a|>3即a>1或a<-5时,f(2+a)=(2+a)2-9=(a-1)(a+5)所以f(2+a)=(1-a)(5+a),-5≤a≤1(a-1)(5+a),a<-5或a>1.6.讨论下列函数的单调性:(1)y=1+6x-x2; (2)y=e|x|.解 (1)易知该函数定义域为D f=[0,6].设x1,x2∈(0,6), x1<x2则f(x1)-f(x2)=6x1-x21-6x2-x22=(6x1-x21)-(6x2-x22)6x1-x21+6x2-x22=6(x1-x2)-(x21-x22)6x1-x21+6x2-x22=[6-(x1+x2)](x1-x2)6x1-x21+6x2-x22<0,0<x1<x2<3>0,3<x1<x2<6所以该函数在区间(0,3)上单调增加,在区间(3,6)上单调减少.另解,因6x-x2=9-(x-3)2,所以y=1+6x-x2是圆(x-3)2+(y-1)2=32的上半圆.由此可知,该函数在(0,3)上单调增加,在(3,6)上单调减少.(2)因y=e|x|=ex,x≥0e-x,x<0所以,该函数在[0,+∞)上单调增加,在(-∞,0]上单调减少.7.讨论下列函数是否有界:(1)y =x 21+x2; (2)y =e-x 2;(3)y =sin1x;(4)y =11-x.解 (1)因为|y |=x21+x 2=1-11+x2≤1所以,该函数有界.(2)因为|y |=e-x 2=1ex 2≤1e0=1所以,该函数有界.(3)因为sin1x≤1(x ≠0),所以,该函数有界.(4)对任意给定的正数M >0,令x 0=1-12M≠1,则|y (x 0)|=11-1-12M=2M >M此式表明,对任意给定的M >0,存在点x 0∈D f ,使|y (x 0)|>M .因此,该函数无界.8.讨论下列函数的奇偶性:(1)f (x )=x sinx +cosx ; (2)y =x 5-x 3-3;(3)f (x )=ln(x +1-x 2);(4)f (x )=1-x ,x <0,1,x =0,1+x ,x >0.解 (1)因为f (-x )=(-x )sin(-x )+cos(-x )=x sinx +cosx =f (x ),x ∈(-∞,+∞)所以,该函数为偶函数.(2)因为f (-x )=-x 5+x 3-3≠f (x )或-f (x )所以,该函数既不是偶函数,也不是奇函数.(3)因为f (-x )=ln(-x +1+x 2)=ln(1+x 2)-x2x +1+x2=-ln(x+1+x2)=-f(x), x∈(-∞,+∞)所以,该函数为奇函数.(4)因为x>0(即-x<0)时, f(-x)=1-(-x)=1+xx<0(即-x>0)时, f(-x)=1+(-x)=1-x所以f(-x)=1-x,x<01,x=01+x,x>0=f(x)因此,该函数为偶函数.9.判别下列函数是否是周期函数,若是周期函数,求其周期:(1)f(x)=sinx+cosx; (2)f(x)=|sinx|;(3)f(x)=xcosx;(4)f(x)=1+sinπx.解 (1)因为f(x)=sinx+cosx=2sinx+π4所以f(x+2π)=2sinx+2π+π4=2sinx+π4=f(x)因此,该函数为周期函数,周期为2π.(2)因f(x+π)=|sin(x+π)|=|-sinx|=|sinx|=f(x)所以,该函数为周期函数,周期为π.(3)因cosx是以2π为周期的周期函数,但是f(x+2π)=(x+2π)cos(x+2π)=(x+2π)cosx≠xcosx=f(x)所以,该函数不是周期函数.(4)因为f(x+2)=1+sin(x+2)π=1+sinπx=f(x)所以,该函数为周期函数,周期为2.10.求下列函数的反函数及其定义域:(1)y=1-x1+x; (2)y=12(ex-e-x);(3)y=1+ln(x-1);(4)y=53x-5;(5)y=2sinx3, x∈-π2,π2;(6)y=2x-1,0<x≤12-(x-2)2,1<x≤2.解 (1)由y=1-x1+x 解出x,得x=1-y1+y因此,反函数为y=1-x1+x其定义域为D(f-1)=(-∞,-1)∪(-1,+∞)(2)由所给函数解出ex,得ex=y±1+y2=y+1+y2(因为ex>0,所以舍去“-”号)由此得x=ln(y+1+y2)因此反函数为y=ln(x+1+x2)其定义域为D(f-1)=(-∞,+∞).(3)所给函数定义域为D(f)=(1,+∞),值域为Z(f)=(-∞,+∞).由所给函数解出x,得x=1+ey-1,故反函数为y=1+ex-1其定义域为D(f-1)=(-∞,+∞).(4)所给函数定义域、值域分别为D(f)=(-∞,+∞), Z(f)=(-∞,+∞)由所给函数解出x,得x=13(y5+5), y∈Z(f)=(-∞,+∞)所以,反函数为y=13(x5+5)其定义域为D(f-1)=Z(f)=(-∞,+∞)(5)由所给函数解出x,得x=3arcsiny2所以,反函数为y=3arcsinx2其定义域为D(f-1)=Z(f)=[-1,1].(6)由所给函数可知:当0<x≤1时,y=2x-1,y∈(-1,1];当1<x≤2时,y=2-(x-2)2,y∈(1,2];由此解出x,得x=12(1+y),-1<y≤12-2-y,1<y≤2 (舍去“+”号,因1<x≤2)因此,反函数为y=12(1+x),-1<x≤12-2-x,1<x≤2其定义域为D(f-1)=Z(f)=(-1,2].11.分析下列函数由哪些基本初等函数复合而成:(1)y=loga x; (2)y=arctan[tan2(a2+x2)];(3)y=e2x/(1-x2);(4)y=cos2x2-x-1.解 (1)所给函数由对数函数y=loga u与幂函数u=x复合而成;(2)所给函数由反正切函数y=arctanu、幂函数u=v2、正切函数v=tanw 和多项式函数w=a2+x2复合而成;(3)所给函数由指数函数y=eu和有理分式函数u=2x1+x2复合而成;(4)所给函数由幂函数y=u2、余弦函数u=cosv、幂函数v=w与多项式函数w=x2-x-1复合而成.12.设销售某种商品的总收入R是销售量x的二次函数,且已知x=0,10,20时,相应的R=0,800,1200,求R与x的函数关系.解 设总收入函数为R(x)=ax2+bx+c(a≠0)已知R(0)=0 所以c=0又知R(10)=800, R(20)=1200即有100a+10b=800, 400a+20b=1200整理后,得联立方程组10a+b=80, 20a+b=60由此解得 a=-2,b=100.因此,总收入函数为R(x)=100x-2x2=x(100-2x).13.某种电视机每台售价为2000元时,每月可售出3000台,每台售价降为1800元时,每月可多售出600台,求该电视机的线性需求函数.解 设该电视机的线性需求函数为Q=a-bp则由已知条件有Q(2000)=a-2000b=3000Q(1800)=a-1800b=3600由此解得a=9000,b=3.因此,该商品的线性需求函数为Q=9000-3p.14.已知某商品的需求函数与供给函数分别由下列方程确定:3p+Q2d+5Q d-102=0p-2Q2s+3Q s+71=0试求该商品供需均衡时的均衡价格p e和均衡数量Q e.解 供需均衡的条件为Q d=Q s=Q e,对应均衡价格为p e,于是有3p3+Q2e+5Q-102=0p e-2Q2e+3Q e+71=0由其中第二个方程得p e=2Q2e-3Q3-71 (倡)将上式代入第一个方程,得7Q2e-4Q e-315=0由此解得Q e=7(舍去负根).将Q e=7代入(倡)得p e=6.因此,该商品供需均衡时,均衡价格p e=6,均衡数量Q e=7.(B)1.填空题:(1)已知函数f(x)的定义域为(0,1],则函数f(ex)的定义域为,函数f x-14+f x+14的定义域为;(2)已知函数f(x)=x1+x2,则f(sinx)=;(3)已知函数f(x)=x1-x,则f[f(x)]=,f{f[f(x)]}=;(4)已知f(3x-2)=x2,则f(x)=;(5)已知某商品的需求函数、供给函数分别为:Q d=100-2p, Q s=-20+10p,则均衡价格p e=,均衡数量Q e=;答 (1)(-∞,0],14,34; (2)sinx|cosx|;(3)x1-2x,x1-3x;(4)19(x+2)2;(5)10,80.解 (1)由0<ex≤1得x∈(-∞,0],由0<x-14≤1且0<x+14≤1,得x∈14,34;(2)f(sinx)=sinx1-sin2x=sinxcos2x=sinx·|cosx|;(3)f[f(x)]=f(x)1-f(x)=x1-2x,f{f[f(x)]}=f[f(x)]1-f[f(x)]=x1-3x;(4)令t=3x-2,则x=13(t+2),于是f(t)=f(3x-2)=x2=13(t+2)2=19(t+2)2所以f(x)=19(x+2)2(5)由Q d=Q s=Q e,得100-2p e=-20+10p e解得 p e=10,从而Q e=80.2.单项选择题:(1)若函数y=x+2与y=(x+2)2表示相同的函数,则它们的定义域为.(A)(-∞,+∞); (B)(-∞,2];(C)[-2,+∞);(D)(-∞,-2].(2)设f (x )=1,|x |<1,0,|x |>1,则f {f [f (x )]}=.(A)0;(B)1(C)1,|x |<1,0,|x |≥1;(D)1,|x |≥1,0,|x |<1.(3)y =sin1x在定义域内是.(A)周期函数;(B)单调函数;(C)偶函数;(D)有界函数.(4)设函数f (x )在(-∞,+∞)内有定义,下列函数中,必为偶函数.(A)y =|f (x )|;(B)y =[f (x )]2;(C)y =-f (-x );(D)y =f (x 2)cosx .(5)设函数f (x )在(-∞,+∞)内有定义,且f (x +π)=f (x )+sinx ,则f (x ).(A)是周期函数,且周期为π;(B)是周期函数,且周期为2π;(C)是周期函数,且周期为3π;(D)不是周期函数.答 (1)C; (2)C; (3)D; (4)D; (5)B.解 (1)由(x +2)2=|x +2|=x +2≥0可知x ≥-2,故选(C).(2)因f [f (x )]=1,|f (x )|<10,|f (x )|≥1=1,|x |≥10,|x |<1f {f [f (x )]}=1,|f [f (x )]|<10,|f [f (x )]|≥1=1,|x |<10,|x |≥1故选(C).(3)因sin1x≤1,橙x ≠0,故选(D).(4)因f ((-x )2)cos(-x )=f (x 2)cosx ,故选(D).(5)因f (x +2π)=f (x +π)+sin(x +π)=f (x )+sinx -sinx =f (x )故f (x )为周期函数,且周期为2π,选(B).3.设f2x +12x -2-12f (x )=x ,求f (x ).解 令t =2x +12x -2,则x =2t +12t -2,代入所给方程,得f (t )-12f 2t +12t -2=2t +12t -2其中,由所给方程有f2t +12t -2=t +12f (t )于是得f (t )-12t +12f (t )=2t +12t -2由此得f (t )=23t 2+t +1t -1因此f (x )=23x 2+x +1x -1.4.证明下列各题:()若函数f (x ),g (x )在D 上单调增加(或单调减少),则函数h (x )=f (x )+g (x )在D 上单调增加(或单调减少).(2)若函数f (x )在区间[a ,b ],[b ,c ]上单调增加(或单调减少),则f (x )在区间[a ,c ]上单调增加(或单调减少).证 (1)对任意的x 1,x 2∈D ,且x 1<x 2,因f (x ),g (x )单调增加(减少),故有f (x 1)<f (x 2) (f (x 1)>f (x 2))g (x 1)<g (x 2) (g (x 1)>g (x 2))于是h (x 1)=f (x 1)+g (x 1)<f (x 2)+g (x 2)=h (x 2)(h (x 1)>h (x 2))所以,h (x )=f (x )+g (x )在D 上单调增加(减少).(2)对任意的x1,x2∈[a,c],x1<x2,若 a≤x1<x2≤b或b≤x1<x2≤c,则由题设有f(x1)<f(x2) (或f(x1)>f(x2))若 a≤x1≤b<x2≤c,则由题设有f(x1)≤f(b)<f(x2) (或f(x1)≥f(b)>f(x2))综上所述,f(x)在[a,c]上单调增加(或单调减少).5.设函数f(x)与g(x)在D上有界,试证函数f(x)±g(x)与f(x)g(x)在D 上也有界.证 因f(x)与g(x)在D上有界,故存在常数M1>0与M2>0,使得|f(x)|<M1, |g(x)|<M2, 橙x∈D.令M=M1+M2>0,则有|f(x)±g(x)|≤|f(x)|+|g(x)|<M1+M2=M,橙x∈D因此,f(x)±g(x)在D上有界.再令M=M1M2,则有|f(x)g(x)|=|f(x)||g(x)|<M1M2=M,橙x∈D因此,f(x)g(x)在D上有界.6.证明函数f(x)=xsinx在(0,+∞)上无界.证 要证f(x)=xsinx在(0,+∞)上无界,只需证明:对任意给定的常数M>0,总存在x0∈(0,+∞),使得|x0sinx0|>M.事实上,对任意给定的M>0,令x0=π2+2(1+[M])π∈(0,+∞)([M]为M的整数部分),则有|f(x0)|=π2+2(1+[M])π·sinπ2+2(1+[M])π=π2+2(1+[M])πsinπ2=π2+2(1+[M])π>M于是,由M>0的任意性可知,f(x)=xsinx在(0,+∞)上无界.7.已知函数函数f(x)满足如下方程af(x)+bf1x=c x,x≠0其中a,b,c为常数,且|a|≠|b|.求f (x ),并讨论f (x )的奇偶性.解 由所给方程有af1x+bf (x )=cx于是,解方程组af (x )+bf 1x=c xaf1x+bf (x )=cx可得f (x )=ac -bcx 2(a 2-b 2)x因为f (-x )=ac -bc (-x )2(a 2-b 2)(-x )=-ac -bcx2(a 2-b 2)x=-f (x )所以,f (x )为奇函数.8.某厂生产某种产品1000吨,当销售量在700吨以内时,售价为130元/吨;销售量超过700吨时,超过部分按九折出售.试将销售总收入表示成销售量的函数.解 设R (x )为销售总收入,x 为销售量(单位:吨).依题设有当0≤x ≤700时,售价p =130(元/吨);当700<x ≤1000时,超过部分(x -700)的售价为p =130×0.9=117(元/吨).于是,销售总收入函数为R (x )=130x , 0≤x ≤700130×700+117×(x -700), 700<x ≤1000=130x ,0≤x ≤700117x +9100,700<x ≤1000可见销售总收入R (x )为销售量x 的分段函数.9.某手表厂生产一只手表的可变成本为15元,每天固定成本为2000元,每只手表的出厂价为20元,为了不亏本,该厂每天至少应生产多少只手表?解 设每天生产x 只手表,则每天总成本为C (x )=15x +2000因每只手表出厂价为20元,故每天的总收入为20x (元),若要不亏本,应满足如下关系式:20x ≥15x +2000解得x≥400(只)即,若要不亏本,每天至少应生产400只手表.10.某玩具厂每天生产60个玩具的成本为300元,每天生产80个玩具的成本为340元,求其线性成本函数.该厂每天的固定成本和生产一个玩具的可变成本各为多少?解 设线性成本函数为C(x)=ax+b其中C(x)为总成本,x为每天的玩具生产量.由题设有C(60)=60a+b=300(元)C(80)=80a+b=340(元)由此解得a=2, b=180因此,每天的线性成本函数为C(x)=2x+180其中a=2元为生产一个玩具的可变成本,b=180元为每天的固定成本.第二章 极限与连续习 题 二(A)1.观察判别下列数列的敛散性;若收敛,求其极限值:(1)u n=5n-3n; (2)u n=1ncosnπ;(3)u n=2+-12n;(4)u n=1+(-2)n;(5)u n=n2-1n;(6)u n=a n(a为常数).解 (1)将该数列具体写出来为2,72,4,174,225,…,5-3n,…观察可知u n→5(n→∞).因此,该数列收敛,其极限为5.(2)因为u n=1ncosnπ=1n(-1)n=1n→0(n→∞)所以,该数列收敛,其极限为0.(3)因为u n-2=-12n=12n→0(n→∞)所以,该数列收敛,其极限为2.(4)该数列的前五项分别为:-1,5,-7,17,-31,…观察可知u n→∞(n→∞).因此,该数列发散.(5)该数列的前五项分别为0,32,83,154,245,…观察可知u n→∞(n→∞).所以,该数列发散.(6)当a<1时,u n=a n→0(n→∞);当a>1时,u n=a n→∞(n→∞);当a=1时,u n=1→1(n→∞);当a=-1时,u n=(-1)n,发散因此,a<1时,数列收敛,其极限为0;a=1时,数列收敛,其极限为1;a ≤-1或a>1时,数列发散.2.利用数列极限的定义证明下列极限:(1)limn→∞-13n=0; (2)limn→∞n2+1n2-1=1;(3)limn→∞1n+1=0;(4)limn→∞n2+a2n=1(a为常数).证 (1)对任意给定的ε>0(不妨设0<ε<1),要使u n-0=13n<ε只需n>log31ε (∵0<ε<1,∴log31ε>0)取正整数N=1+log31ε>log31ε,则当n>N时,恒有-13n-0<ε因此limn→∞-13n=0.(2)对任意给定的ε>0,要使u n-1=n2+1n2-1-1=2n2-1=2n+1·1n-1≤1n-1<ε只需n>1+1ε.取正整数N=1+1ε,则当n>N时,恒有n2+1n2-1-1<ε由此可知limn →∞n 2+1n 2-1=1.(3)对任意给定的ε>0,要使u n -0=1n +1-0=1n +1<1n<ε只需n >1ε2.取正整数N =1ε2+1,则当n >N >1ε2时,恒有1n +1-0<ε.由此可知limn→∞1n +1=0.(4)对任意给定的ε>0,要使u n -1=n 2+a2n -1=a2n (n 2+a 2+n )<a22n2<ε只需n >a2ε.取正整数N =a 2ε+1,则当n >N >a2ε时,恒有n 2+a2n-1<ε因此limn →∞n 2+a2n=1.3.求下列数列的极限:(1)limn →∞3n +5n 2+n +4; (2)limn →∞(n +3-n );(3)limn →∞(1+2n+3n+4n)1/n;(4)limn →∞(-1)n+2n(-1)n +1+2n +1;(5)limn →∞1+12+122+…+12n ;(6)limn →∞1+12+122+…+12n1+14+142+…+14n.解 (1)因为3n +5n 2+n +4=3+5n1+1n +4n 2→3(n →∞)所以limn→∞3n +5n 2+n +4=3.(2)因为n +3-n =3n +3+n →0(n →∞)所以limn →∞(n +3-n )=0.(3)因为(1+2n+3n+4n)1/n=414n+24n+34n+11/n→4(n →∞)所以limn→∞(1+2n+3n+4n)1/n=4.(4)因为(-1)n+2n(-1)n +1+2n +1=12·-12n+1-12n +1+1→12(n →∞)所以limn →∞(-1)n+2n(-1)n +1+2n +1=12.(5)因为 1+12+122+…+12n =1-12n +11-12=21-12n +1→2(n →∞)所以limn →∞1+12+122+…+12n =2.(6)因为1+12+122+…+12n =21-12n +1,1+14+142+…+14n =1-14n -11-14=431-14n +1于是1+12+122+…+12n 1+14+142+…+14n =32·1-12n +11-14n +1→32(n →∞)所以limn →∞1+12+122+…+12n1+14+142+…+14n=32.4.利用函数极限的定义,证明下列极限:(1)limx →3(2x -1)=5; (2)limx →2+x -2=0;(3)limx →2x 2-4x -2=4;(4)limx →1-(1-1-x )=1.证 (1)对任意给定的ε>0,要使(2x -1)-5=2x -3<ε只需取δ=ε2>0,则当0<x -3<δ时,恒有(2x -1)-5=2x -3<2δ=ε因此limx →3(2x -1)=5.(2)对任意给定的ε>0,要使x -2-0=x -2<ε只零取δ=ε2>0,则当0<x -2<δ时,恒有x -2-0=x -2<δ=ε所以limx →2+x -2=0.(3)对任意给定的ε>0,要使(x ≠2)x 2-4x -2-4=(x +2)-4=x -2<ε只需取δ=ε>0,则当0<x -2<δ时,恒有x 2-4x -2-4=x -2<δ=ε因此limx →2x 2-4x -2=4.(4)对任意给定的ε>0,要使(1-1-x )-1=1-x <ε只需0<1-x <ε2取δ=ε2>0,则当0<1-x <δ时,恒有(1-1-x )-1=1-x <δ=ε因此limx →1-(1-1-x )=1.5.讨论下列函数在给定点处的极限是否存在?若存在,求其极限值:(1)f (x )=1-1-x ,x <1,在x =1处;x -1,x >0(2)f (x )=2x +1,x ≤1,x 2-x +3,1<x ≤2,x 3-1,2<x ,在x =1与x =2处.解 (1)因为f (1-0)=limx →1-f (x )=limx →1-(1-1-x )=1f (1+0)=limx →1+f (x )=limx →1+(x -1)=0这表明f (1-0)≠f (1+0).因此,limx →1f (x )不存在.(2)在x =1处,有f (1-0)=limx →1-(2x +1)=3.f (1+0)=limx →1+(x 2-x +3)=3.因f (1-0)=f (1+0)=3,所以,limx →1f (x )=3(存在);在x =2处,有f (2-0)=limx →2-(x 2-x +3)=5f (2+0)=limx →2+(x 3-1)=7因f(2-0)≠f(2+0),所以limx→2f(x)不存在.6.观察判定下列变量当x→?时,为无穷小:(1)f(x)=x-2x2+2; (2)f(x)=ln(1+x);(3)f(x)=e1-x;(4)f(x)=1ln(4-x).解 (1)因为当x→2或x→∞时,x-2x2+2→0因此,x→2或x→∞时,x-2x2+2为无穷小.(2)因为当x→0时,ln(1+x)→0因此,x→0时,ln(1+x)为无穷小.(3)因为当x→+∞时,e1-x=eex→0,因此,x→+∞时,e1-x为无穷小.(4)因为当x→4-或x→-∞时,1ln(4-x)→0因此,x→4-或x→-∞时,1ln(4-x)为无穷小.7.观察判定下列变量当x→?时,为无穷大:(1)f(x)=x2+1x2-4; (2)f(x)=ln1-x;(3)f(x)=e-1/x;(4)f(x)=1x-5.解 (1)因为当x→±2时,x2-4x2+1→0因此当x→±2时,x2+1x2-4→∞所以,x→±2时,x2+1x2-4为无穷大.(2)因为当x→1时,1-x→0+当x→∞时,-x→+∞因此当x→1时,ln1-x→-∞当x→∞时,ln1-x→+∞所以,x→1或x→∞时,ln1-x为无穷大.(3)因为limn→0--1x=+∞所以limx→0-e-1/x=+∞由此可知,x→0-时,e-1/x为无穷大.(4)因为limx→5+x-5=0所以limx→5+1x-5=+∞由此可知,x→5+时,1x-5为无穷大.8.求下列函数的极限:(1)limx→3(3x3-2x2-x+2); (2)limx→05+42-x;(3)limx→16x-5x+4x-16;(4)limx→0(x+a)2-a2x(a为常数);(5)limx→0x2+a2-ax2+b2-b(a,b为正的常数);(6)limx→1x+x2+…+x n-nx-1(提示:x+x2+…+x n-n=(x-1)+(x2-1)+…+(x n-1))解 (1)由极限的线性性质,得原式=3limx→3x3-2limx→3x2-limx→3x+2=3x33-2×32-3+2=62(2)因为limx→0(2-x)=2≠0,所以原式=5+limx →042-x =5+4limx →0(2-x )=5+42=7.(3)因为x -5x +4=(x -4)(x -1),x -16=(x -4)(x +4).所以原式=limx →16(x -4)(x -1)(x -4)(x +4)=limx →16x -1x +4=38.(4)因为(x +a )2-a 2=x (x +2a ),所以原式=limx →0x (x +2a )x=limx →0(x +2a )=2a .(5)原式=limx →0(x 2+a 2-a )(x 2+a 2+a )(x 2+a 2+b )(x 2+b 2-b )(x 2+b 2+b )(x 2+a 2+a )=limx →0x 2(x 2+b 2+b )x 2(x 2+a 2+a )=limx →0x 2+b 2+bx 2+a 2+a=b a(6)因为 x +x 2+…+x n-n =(x -1)+(x 2-1)+…+(x n-1)=(x -1)[1+(x +1)+…+(xn -1+xn -2+…+1)]所以原式=limx →1(x -1)[1+(x +1)+…+(xn -1+xn -2+…+1)]x -1=limx →1[1+(x +1)+…+(x n -1+xn -2+…+1)]=1+2+…+n =12n (n +1).9.求下列函数的极限:(1)limx →∞[x 2+1-x 2-1]; (2)limx →∞(x -1)10(3x -1)10(x +1)20;(3)limx →+∞5x 3+3x 2+4x 6+1;(4)limx →∞(x +31-x 3);(5)limx →+∞x (3x -9x 2-6);(6)limx →+∞(a x+9)-a x+4(a >0).解 (1)原式=limx →∞2x 2+1+x 2-1=0.(2)原式=limx→∞1-1x103-1x 101+1x20=310(3)原式=limx →+∞5+(3/x )+(4/x 3)1+(1/x 3)=5.(4)因为(x +31-x 3)[x 2-x31-x 3+(31-x 3)2]=x 3-(31-x 3)3=1所以原式=limx→∞1x 2-x 31-x 3+(31-x 3)2=0.(5)因为x (3x -9x 2-6)=x (3x -9x 2-6)(3x +9x 2-6)3x +9x 2-6=x [9x 2-(9x 2-6)]3x +9x 2-6=6x3x +9x 2-6所以原式=limx →+∞6x3x +9x 2-6=limx →+∞63+9-(6/x 2)=1(6)原式=limx →+∞5a x+9+a x+4=1,0<a <110-5,a =10,a >1.10.求下列各题中的常数a 和b :(1)已知limx →3x -3x 2+ax +b=1;(2)已知limx →+∞(x 2+x +1-ax -b )=k (已知常数).解 (1)由于分子的极限limx →3(x -3)=0,所以分母的极限也应为0(否则原式=0≠1),即有limx →3(x 2+ax +b )=9+3a +b =0另一方面,因分子=x -3,故分母x 2+ax +b =(x -3)(x -c ),于是原式=limx →3x -3(x -3)(x -c )=limx →31x -c =13-c=1由此得c =2.于是得x 2+ax +b =(x -3)(x -2)=x 2-5x +6由此得a =-5,b =6(2)原式可变形为原式=limx →+∞[x 2+x +1-(ax +b )][x 2+x +1+(ax +b )]x 2+x +1+ax +b=limx →+∞(1-a 2)x 2+(1-2ab )x +(1-b 2)x 2+x +1+ax +b显然应有1-a 2=0,即有a =±1.于是原式=limx →+∞(1-2ab )x +(1-b 2)x 2+x +1+ax +b=limx →+∞1-2ab +(1-b 2)/x1+(1/x )+(1/x 2)+a +(b /x )=1-2ab1+a=k (a ≠-1)由上式可知,a ≠-1,于是a =1,从而有1-2b2=k 痴b =12-k .11.已知f (x )=2+x1+x(1-x )/(1-x )(1)limx →0f (x ); (2)limx →1f (x ); (3)limx →∞f (x ).解 令g (x )=2+x 1+x ,h (x )=1-x1-x.(1)因为limx →0g (x )=2,limx →0h (x )=1所以limx →0f (x )=limx →0g (x )h (x )=21=2.(2)因为 limx →1g (x )=32>0limx →1h (x )=limx →1(1-x )(1+x )(1-x )(1+x )=limx →111+x =12所以limx →1f (x )=limx →1g (x )h (x )=3212(3)因为limx →∞g (x )=limx →∞1+(2/x )1+(1/x )=1>0limx →∞h (x )=limx→∞(1/x )-(1-x )(1/x )-1=0所以limx →∞f (x )=limx→∞g (x )h (x )=10=1.12.求下列极限:(1)limx →0sin3x sin2x ; (2)limx →0tan5xsin2x ;(3)limx →0arctan4x arcsin2x;(4)limx →∞x sin1x;(5)limx →0sin2(2x )x2;(6)limx →0tan3x -sin2xx;(7)limx →01-cosxx sinx;(8)limx →0ax -sinbxtankx(a ,b ,k >0).解 (1)原式=limx →0sin3x3x·2x sin2x ·32=32.(2)原式=limx →0tan5x 5x ·2x sin2x ·52=52.(3)原式=limx →0arctan4x 4x ·2x arcsin2x ·42=2.(4)令u =1x,则x →∞时u →0.于是原式=limu →0sinu u=1.(5)原式=limx →0sin2(2x )(2x )2·4=4limx →0sin2x 2x 2=4.(6)原式=3limx →0tan3x 3x -2limx →0sin2x2x =3-2=1(7)因为1-cosx ~12x 2(x →0),所以原式=12limx →0x 2x sinx =12limx →0x sinx =12(8)原式=limx →0a k ·kx tankx -b k ·sinbx bx ·kxtankx=a k -b k =a -bk.13.求下列极限:(1)limx →∞1-1xx; (2)limx →∞1+5xx;(3)limx →0(1-sinx )1/x;(4)limx →0(1+3x )1/x;(5)limx →01-x22/x;(6)limx →∞x -2x +2x.解(1)原式=limx→∞1+1-x-x-1=1e.(2)原式=limx→∞1+1x /5x /55=e5.(3)令u =sinx ,则x →0时,u →0.于是原式=limu →0(1+u )1/u u /arcsin(-u )=e-1.(4)原式=limx →0[(1+3x )1/(3x )]3=e3(5)原式=limx →01-x 2-2/x-1=e-1(6)原式=limx →∞1-4x +2x=limx→∞1-4x +2-(x +2)/4-4x /(x +2)=e-4另解,令u =-x +24,则x =-4u -2,且u →∞(x →∞时),于是原式=limu →∞1+1u-4u -2=limu →∞1+1uu -4·limu →∞1+1u-2=e-4.14.求下列极限:(1)limx →0(cosx )1/(1-cosx ); (2)limx →0(sec2x )cot2x;(3)limx →π/2(1+cosx )5secx;(4)limx →0sinx -tanxsinx3;(5)limx →0(sinx 3)tanx1-cosx 2;(6)limx →π/61-2sinxsin(x -π/6);(7)limx →π/4(tan2x )tanπ4-x .解(1)令u =1-cosx ,则cosx =1-u ,且u →0(x →0时),因此原式=limu →0(1-u )1/u=e-1.(2)令u =cot2x ,则sec2x =1+1cot2x=1+1u ,且x →0时,u →+∞.因此原式=limu →+∞1+1uu=e(3)令u =cosx ,则secx =1u ,且x →π2时,u →0.因此原式=limu →0(1+u )5/u=limu →0(1+u )1/u 5=e5.(4)因为x →0时,sinx ~x ,sinx 3~x 3,cosx -1~-x22所以 原式=limx →0sinx (cosx -1)cosx ·sinx3=limx →0x ·(-x 2/2)x 3cosx=-12limx →01cosx =-12.(5)因为x →0时,sinx 3~x 3,tanx ~x ,1-cosx 2~12(x 2)2,所以原式=limx →0x 3·xx 4/2=2(6)令u =x -π6,则x →π6时,u →0,且有sinx =sinu +π6=12(3sinu +cosu )于是有 原式=limu →01-(3sinu +cosu )sinu=limu →01-cosu sinu -3=limu →0u 2/2sinu-3=-3.(7)因为tan2x =sin2x cos2x =sin2xcos2x -sin2xtanπ4-x =sinπ4-x cosπ4-x =cosx -sinx cosx +sinx所以tan2x tanπ4-x =sin2x cos2x -sin2x ·cosx -sinx cosx +sinx =sin2x (cosx +sinx )2从而原式=limx →π/4sin2x (cosx +sinx )2=122+222=12.15.讨论下列函数的连续性:(1)f (x )=x1-1-x ,x <0,x +2,x ≥0;(2)f (x )=e1/x,x <0,0,x =0,1xln(1+x 2),x >0.解 (1)由题设知f (0)=2,且f (0-0)=limx →0-x 1-1-x=limx →0-x (1+1-x )x =2f (0+0)=limx →0+(x +2)=2可见limx →0f (x )=2=f (0).所以,该函数在x =0处连续.另一方面,x1-1-x 在(-∞,0)内为初等函数,连续;x +2在(0,+∞)内为线性函数,连续.综上所述,该函数在(-∞,+∞)内连续.(2)因f (0)=0,且 f (0-0)=limx →0-e1/x=0, f (0+0)=limx →0+1xln(1+x 2)=limx →0+x ln(1+x 2)1/x 2=0·1=0所以 limx →0f (x )=0=f (0).因此,该函数在x =0处连续.另一方面,e1/x在(-∞,0)内连续,1xln(1+x 2)在(0,+∞)内连续.综上所述,该函数在(-∞,+∞)内连续.16.指出下列函数的间断点及其类型;如为可去间断点,将相应函数修改为连续函数;作出(1)、(2)、(3)的图形:(1)f (x )=1-x21+x ,x ≠-1,0,x =-1;(2)f (x )=x 2,x ≤0,lnx ,x >0;(3)f (x )=x x ; (4)f (x )=x sin1x.解 (1)由题设知f (-1)=0,而limx →-1f (x )=limx →-11-x 21+x =limx →-1(1-x )=2≠f (0)所以,x =-1为该函数的可去间断点.令f (-1)=2,则f ~(x )=1-x 21+x ,x ≠-12,x =-1=1-x在(-∞,+∞)内连续.f (x )的图形如图2.1所示.图2.1图2.2(2)由题设有f (0)=0,而f (0-0)=limx →0-x 2=0,f (0+0)=limx →0+lnx =-∞所以,x =0为该函数的无穷间断点.f (x )的图形如图2.2所示.(3)该函数在x =0处无定义,而f (0-0)=limx →0-xx =limx →0-x-x =-1,f (0+0)=limx →0+x x=limx →0+x x=1.图2.3因为左、右极限均存在但不相等,所以,x =0为该函数的跳跃间断点.f (x )的图形如图2.3所示.(4)该函数在x =0处无定义.因limx →0f (x )=limx →0x sin1x=0,故x =0为该函数的可去间断点.若令f (0)=0,则函数f ~(x )=x sin1x,x ≠00,x =0在(-∞,+∞)内连续.17.确定下列函数的定义域,并求常数a ,b ,使函数在定义域内连续:(1)f (x )=1x sinx ,x <0,a ,x =0,x sin1x+b ,x >0;(2)f (x )=ax +1,x ≤1,x 2+x +b ,x>1;(3)f (x )=1-x 2,-45<x <35,a +bx ,其他.解 (1)D f =(-∞,+∞).因f (x )在D f 的子区间(-∞,0)与(0,+∞)内均为初等函数.因此,f (x )在(-∞,0)∪(0,+∞)内连续.现讨论f (x )在分界点x =0处的连续性.已知f (0)=a ,而且f (0-0)=limx →0-sinxx =1,f (0+0)=limx →0+x sin1x+b =b 当f (0-0)=f (0+0)=f (0)时,即当a =b =1时,f (x )在x =0处连续.综上所述,当a =b =1时,该函数在其定义域(-∞,+∞)内连续.(2)D f =(-∞,+∞).因为f (-1)=1-a ,且f (-1-0)=limx →(-1)-(x 2+x +b )=bf (-1+0)=limx →(-1)+(ax +1)=1-a 所以,当a +b =1时,f (x )在x =-1处连续.又因f (1)=1+a ,且f (1-0)=limx →1-(ax +1)=a +1f (1+0)=limx →1+(x 2+x +b )=2+b所以,当a +1=2+b ,即a -b =1时,f (x )在x =1处连续.综上所述,当a +b =1且a -b =1,即a =1,b =0时,f (x )在x =-1和x =1处连续,从而f (x )在其定义域(-∞,+∞)内连续.(3)D f =(-∞,+∞).因f -45=a -45b ,且f -45-0=limx →-45-(ax +b )=a -45b f -45+0=limx →-45+1-x 2=35所以,当a -45b =35,即5a -4b =3时,f (x )在点x =-45处连续.又因f35=a +35b ,且f35-0=limx →35-1-x 2=45f35+0=limx →35+(a +bx )=a +35b 所以,当a +35b =45,即5a +3b =4时,f (x )在点x =35处连续.综上所述,当5a -4b =3且5a +3b =4,即a =57,b =17时,f(x)在x=-45与x=35处连续,从而f(x)在其定义域(-∞,+∞)内连续.(B)1.填空题:(1)limn→∞1n2+1(n+1)2+…+1(2n)2= ;(2)limx→0ln(x+a)-lnax(a>0)= ;(3)limx→a+x-a+x-ax2-a2(a>0)= ;(4)若limx→+∞xx n+1-(x-1)n+1=k≠0,n为正整数,则n= ,k= ;(5)x→0时,1+x-1-x是x的 无穷小;(6)设f(x)=sinx·sin1x,则x=0是f(x)的 间断点;(7)设f(x)=x x,则x=0是f(x)的 间断点;(8)函数f(x)=1x2-5x+6的连续区间是 .答 (1)0; (2)1a; (3)12a;(4)2008,12008; (5)等价;(6)可去; (7)跳跃; (8)(-∞,2)∪(3,+∞).解 (1)因为14n≤1n2+1(n+1)2+…+1(2n)2≤1n且limn→∞14n=0,limn→∞1n=0.所以,由夹逼定理可知,原式=0.(2)原式=limx→0ln1+x a1/x=1alimx→0ln1+x a a/x=1alnlimx→01+x a a/x=1alne=1a.(3)因为x-a+x-ax2-a2=x-ax+a(x+a)+1x+a且limx→a+x-ax+a(x+a)=0,limx→a+1x+a=12a所以,原式=12a.(4)因为x n+1-(x-1)n+1=[x-(x-1)][x n+x n-1(x-1)+…+x(x-1)n-1+(x-1)n]=x n1+1-1x+…+1-1x n-1+1-1x n所以,由题设有原式=limx→+∞x2008-n1+1-1x+…+1-1x n-1+1-1x n=k≠0显然,要上式成立,应有2008-n=0,即n=2008.从而原式=limx→+∞11+1-1x+…+1-1x n-11-1x n=1n=k所以,k=1n=12008.(5)因为limx→01+x-1-xx=limx→021+x+1-x=1所以,x→0时,1+x-1-x是x的等价无穷小.(6)因为limx→0sinx·sin1x=limx→0sinx x·limx→0xsin1x=1×0=0.所以,x=0是f(x)的可去间断点(令f(0)=0,即可).(7)因为f (0-0)=limx →0--x x =-1,f (0+0)=limx →0+xx=1左、右极限存在,但不相等,故x =0为跳跃间断点.(8)该函数有定义的条件是x 2-5x +6=(x -2)(x -3)>0由此得x <2或x >3.因此,该函数的连续区间为(-∞,2)或(3,+∞).2.单项选择题:(1)函数f (x )在点x 0处有定义,是极限limx →x 0f (x )存在的 .(A)必要条件; (B)充分条件;(C)充分必要条件;(D)无关条件.(2)下列“结论”中,正确的是 .(A)无界变量一定是无穷大;(B)无界变量与无穷大的乘积是无穷大;(C)两个无穷大的和仍是无穷大;(D)两个无穷大的乘积仍是无穷大.(3)设函数f (x )=1,x ≠1,0,x =1,则limx →1f (x )= .(A)0; (B)1; (C)不存在; (D)∞.(4)若limx →2x 2+ax +bx 2-3x +2=-1,则 .(A)a =-5,b =6; (B)a =-5,b =-6;(C)a =5,b =6;(D)a =5,b =-6.(5)设f (x )=1-x 1+x,g (x )=1-3x ,则当x →1时, .(A)f (x )与g (x )为等价无穷小;(B)f (x )是比g (x )高阶的无穷小;(C)f (x )是比g (x )低阶的无穷小;(D)f (x )与g (x )为同阶但不等价的无穷小.(6)下列函数中,在定义域内连续的是 .(A)f (x )=cosx ,x ≤0,sinx ,x >0; (B)f (x )=1x,x >0,x ,x ≤0;(C)f (x )=x +1,x ≤0,x -1,x >0;(D)f (x )=1-e-1/x 2,x ≠0,1,x =0.(7)下列函数在区间(-∞,1)∪[3,+∞]内连续的是 .(A)f (x )=x 2+2x -3; (B)f (x )=x 2-2x -3;(C)f (x )=x 2-4x +3;(D)f (x )=x 2+4x +3.(8)若f (x )在区间 上连续,则f (x )在该区间上一定取得最大、最小值.(A)(a ,b ); (B)[a ,b ]; (C)[a ,b ); (D)(a ,b ].答 (1)D; (2)D; (3)B;(4)A;(5)D; (6)D; (7)C; (8)B.解 (1)limx →x 0f (x )是否存在与f (x )在点x 0是否有定义无关,故应选(D).(2)(A)、(B)、(C)都不正确.例如n →∞时n sinn 是无界变量,而不是无穷大;n →∞时,n sinn 是无界变量,n 是无穷大,而n ·n sinn =n 2sinn 是无界变量,不是无穷大;n →∞时,n 与-n 都是无穷大,但n +(-n )=0是一常量,不是无穷大.(D)正确.例如,设limu →∞u 0=∞, limu →∞v n =∞则对任意给定的M >0,存在正整数N 1,N 2,使当n =N 1,n >N 2时,恒有u n>M ,v n >M取N =max{N 1,N 2},则当n >N 时,恒有u n v n=u n ·v n>M ·M =M2这表明limn →∞u n v n =∞.(3)易知f (1-0)=f (1+0)=1,从而limx →1f (x )=1,故应选(B).(4)因为limx →2(x 2-3x +2)=limx →2(x -2)(x -1)=0,因此,分子的极限也应为0,即应有x 2+ax +b =(x -2)(x -c )=x 2-(2+c )x +2c由此得a =-(2+c ),b =2c于是,由题设有limx →2x 2+ax +b x 2-3x +2=limx →2(x -2)(x -c )(x -2)(x -1)=limx →2x -cx -1=2-c =-1由此得c =3,从而得a =-5,b =6.故应选(A).(5)因为。

《经济应用数学》专科复习题及参考答案

《经济应用数学》专科复习题及参考答案

四 川 农 业 大 学 网 络 学 院《经济应用数学》专科复习题及参考答案一、是非题1·21cos 2)(x x x f -=的间断点为0x = 。

对 2·函数231)(22+--=x x x x f 的可去间断点是2=x 。

错3·1sin 1-++=x xx y 的连续区间为),1()1,(∞+-∞ 。

对 4·1ln 22-=x x y 的连续区间为),1()1,(∞+-∞ 。

错5.若 )(lim 0x f x x →存在,则必有)(lim )(lim .x f x f x x x x +-→→=。

对6.若)(lim )(lim 0x f x f x x x x +-→→==a ,则必有)(lim 0x f x x →=a 。

对7·设)(x f 在3x =可导,则3()(3)lim'(3)3x f x f f x →-=-。

对8·设)(x f 在0x 可导,则)(')()(lim0000x f x x x f x f x x =--→。

对9·当1→x 时,1sin 4-+x e x x是无穷大量 。

对10.某区间上的最小值一定是该区间上的极小值。

错11.若)('x C 为边际成本函数(x 为产量),则⎰xdx x C 0)('为总成本函数。

对12.xx x x x f sin cos )(22+⋅=为偶函数。

错13·x e y X +=32在),(+∞-∞ 上为单调减函数。

错14·x e y X 25+=在),(+∞-∞ 上为单调增函数。

对15.二无穷小量之和为无穷小量。

对16.某区间上的极大值就是该区间上的最大值。

错17.23312x x x y -+-=的定义域为),(∞+-∞。

错18.连续函数必是可导函数。

错19.若⎰xdx x R 0)('为总收益函数,则)('x R 为边际收益函数(x 为产量)。

00020高等数学(经济数学一微积分)答案

00020高等数学(经济数学一微积分)答案

经济应用数学一(微积分)综合测试题答案课程代码:00020一、单项选择题1-5DACAD 6-10BDDDC 11-15DBAAB 16-20ADCAC 21-25DDCCC 26-30CBCAB 二、计算题1.答案:原式2.答案:(型)3.答案:4.答案:5.答案:原式6.答案:原式7.答案:原式8.答案:9.答案:10.答案:11.答案:解函数在连续,因此12.答案:13.答案:14.答案:15.答案:方程两边对求导得:,,。

16.答案:解:因为x = 0处可导,所以在x = 0连续,于是所以:,又因为,所以。

17.答案:解18.答案:解:当时,单调减少, 当时,单调增加;故在x = 1处极小值。

19.答案:20.答案:解:原式=。

21.答案:解:22.答案:23.答案:24.答案:25.答案:26.答案:27.答案:28.答案:29.答案:30.答案:解:。

31.答案:解:,则,,所以、32.答案:方程两边对求导得:,,。

33.答案:34.答案:35.答案:两边同时对求导得到:,从而解得:。

36.答案:两边同时求导:,所以解得:,当时,,所以。

37.答案:解:。

38.答案:解:39.答案:三、填空题1.答案:2.答案:3.答案:4.答案:,5.答案:6.答案:7.答案:8.答案:一,可去9.答案:10.答案:11.答案:12.答案:1 13.答案:14.答案:递增15.答案:16.答案:17.答案:18.答案:19.答案:20.答案:2 21.答案:422.答案:0 23.答案:0 24.答案:充分四、应用题1.答案:解:利润函数为:(1),所以最优价格;(2)此时最优产量为:Q*=1000 – 10p*=400=1—(1—)(1—)(1—)=2.答案:解:利润函数:所以,(台),最优利润:(万元)3.答案:解:总利润函数为,令上述等于零,得到驻点。

驻点唯一且实际问题有最大值,所以日产量分别为6,8辆时,总利润最多,为L(6,8)=10万元。

高等数学在经济学中应用及习题

高等数学在经济学中应用及习题

P 0Q 供需平衡点Ck初始期发展期饱和期解:2,();29R Q Q R =-=5. 某工厂对棉花的需求函数由4.1PQ =0.11给出,(1)求其总收益函数R;(2)P(12),R(10), R(12),R(15),P(15),P(20)。

解:0.40.11,(15)0.0025,(12)0.0034,(20)0.0017,(10)0.044,R Q P P P R -=====(12)0.041,(15)0.037;R R ==6. 若工厂生产某种商品,固定成本200,000元,每生产一单位产品,成本增加1000元,求总成本函数。

解:()2000001000;C C Q Q ==+专题二连续复利问题注:若有一笔收益流的收入率为f(t) , 假设连续收益流以连续复利率r 计息, 从而总现值y=dte tf rtT-⎰0)((*)。

2. 一对夫妇准备为孩子存款积攒学费, 目前银行的存款的年利率为5% , 以连续复利计算, 若他们打算10年后攒够5万元, 计算这对夫妇每年应等额地为其孩子存入多少钱?解:设这对夫妇每年应等额地为其孩子存入A元(即存款流为f( t) = A ), 使得10年后存款总额的将来值达到5万元, 由公式(*)得50000)10(02.010=-⎰dte A t,C x(Total Cost Function)1. 总成本函数()在经营活动中的总成本(用字母C表示)与产品的产量(用字母x表示)密切相关,经过抽象简化,可以看成仅是产量的函数,即()C C x =在不考虑产品积压,假设供求平衡的条件下,x 为产品的产量=x 为产品的销售量。

()()01C x C C x =+其中:0C 表示固定成本,如设备维修费、企业管理费等等,()1C x 表示可变成本,如购买原材料、动力费等等。

平均成本:()()()10C x C x C C x x x x==+ 2. 总收入(或称总收益)函数()R x (用字母R 表示)(Total Receipt Function )()R R x =当产品的单价(price )为p ,x 为销售量时()()()()R p R p x R , x x x x x=⋅==即平均收益函数3. 总利润函数()L x (用字母L 表示)(Total Gain Function )()()() L L x R x C x tx ==--t x 为国家征税率, 为产量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经济应用数学习题第一章极限和连续填空题 1. sin lim x x x→∞=0 ; 2.函数 xy ln =是由uy =,v u ln =,xv =复合而成的;3当 0x → 时,1cos x - 是比 x高阶的无穷小量。

4.当 0x → 时, 若 sin 2x 与 ax 是等价无穷小量,则 a = 25. 2lim(1)x x x→∞-=2-e选择题1.02lim5arcsin x xx →= ( C )(A ) 0 (B )不存在 (C )25(D )12.()f x 在点 0x x = 处有定义,是 ()f x 在 0x x =处连续的( A )(A )必要条件 (B )充分条件 (C )充分必要条件 (D )无关条件计算题1.求极限 20cos 1lim2x x x →-解:20cos 1lim 2x x x →-=414sin lim 0-=-→x x x2. x x x 10)41(lim -→=41)41(40)41(lim ---→=-e x x x 3.201lim x x e x x →--112lim 0-=-=→x e x x导数和微分 填空题1若 )(x u 与 )(x v 在 x 处可导,则 ])()(['x v x u =2'')]([)()()()(x v x v x u x v x u - 2.设)(x f 在0x 处可导,且A x f =')(0,则hh x f h x f h )3()2(lim 000--+→用A 的代数式表示为A 5 ;32)(x e x f =,则xf x f x )1()21(lim--→= 4e - 。

2(12)(1)'()2,lim2'(1)4x x f x f f x xe f ex →--==-=-解选择题1. 设 )(x f 在点 0x 处可导,则下列命题中正确的是 ( A ) (A ) 000()()limx x f x f x x x →-- 存在 (B ) 000()()lim x x f x f x x x →--不存在(C ) 00()()limx x f x f x x →+-存在 (D ) 00()()lim x f x f x x∆→-∆不存在2. 设)(x f 在0x 处可导,且0001lim(2)()4x x f x x f x →=--,则0()f x '等于( D )(A ) 4 (B ) –4 (C ) 2 (D ) –2 3. 3设 ()y f x = 可导,则 (2)()f x h f x -- = ( B )(A ) ()()f x h o h '+ (B ) 2()()f x h o h '-+ (C ) ()()f x h o h '-+ (D ) 2()()f x h o h '+4.设 (0)0f = ,且 0()limx f x x → 存在,则 0()lim x f x x→ 等于( B )(A )()f x ' (B )(0)f ' (C )(0)f (D )1(0)2f '5.函数 )(x f e y =,则 ="y ( D )(A ) )(x f e (B ) )(")(x f e x f(C ) 2)()]('[x f e x f (D ) )}(")]('{[2)(x f x f e x f +6函数 x x x f )1()(-=的导数为( D )(A )x x x )1(- (B ) 1)1(--x x (C )x x x ln (D ) )]1ln(1[)1(-+--x x xx x 7函数 xx x f =)( 在 0=x 处( D )(A )连续但不可导 (B ) 连续且可导(C )极限存在但不连续 (D ) 不连续也不可导计算与应用题1. 设 ln()y xy = 确定 y 是 x 的函数,求 dxdy 解: )(1)(1)][ln(''''xy y xyxy xy xy y +=== )1('''-=+=⋅y x yy xy y y xy2. 2设 x y e y ln = 确定 y 是 x 的函数,求 dxdy 解:''ln (ln )y yy dy y e y y x xdx x e x ⋅=⋅+=- 3. 3求 13cos x y e x -= 的微分解:'131313(3cos sin )(3cos sin )x x x dy y dx e x e x dx e x x dx ---==--=-+4. 4求 2xe y x= 的微分;解:222'222(21)x x x e x e e x y x x --== 22(21)x e x dy dx x -=5设sin 10()20ax x e x f x xa x ⎧+-≠⎪=⎨⎪=⎩在(,)-∞+∞上连续,求a 的值。

00sin 1lim ()limax x x x e f x x→→+-= 0lim(cos )axx x ae →=+…………………………2分1a =+………………………………………2分又()f x 在(,)-∞+∞上连续,即0lim ()(0)2x f x f a →==…………2分21a a ∴=+1a ∴=……………………………………………………1分6设11,01(),0sin ,0x x x x f x ax kx x x ⎧-⎛⎫⎪> ⎪⎪+⎝⎭⎪==⎨⎪⎪<⎪⎩(其中0)k ≠ (1) 求()f x 在点0x =的左、右极限;(2) 当a 和k 取何值时,()f x 在点0x =连续。

(1)0sin lim ()lim x x kxf x k x--→→== …………………2分 111210001(1)lim ()lim()lim 1(1)xxx x x xx x e f x e x e x +++--→→→--====++……2分 (2)因为()f x 在x =处连续,满足lim ()lim ()(0)x x f x f x f -+→→==…………2分 所以2k a e -== ……………………1分导数的应用 填空题1. 设需求函数 (83)Q p P =- ,P 为价格,则需求弹性值2P EQ EP==2-2. 函数 33y x x =- 的单调递减区间是 ),(-11 二.选择题1.函数 sin y x = 在区间 [0, π]上满足罗尔定理的 ξ = ( C )(A ) 0 (B )4π(C ) 2π (D )π 2. 函数 ()y f x = 在点 0x x = 处取得极大值,则必有( D )(A ) 0()0f x '= (B ) 0()0f x ''< (C ) 0()0f x '= 且 0()0f x ''< (D ) 0()0f x '= 或不存在应用题1已知某商品的需求函数为x =125-5p ,成本函数为C (x )=100 + x + x 2,若生产的商品都能全部售出。

求:(1)使利润最大时的产量;(2) 最大利润时商品需求对价格的弹性及商品的售价。

222101251()()()10010051.224100 '()2.424010 "() 2.40,10''23(5,10,23,x xL x R x C x px x x x x x x x L x x x L x x x px x p x xηη=-=-=---=⋅---=-+-=-+=⇒==-<∴=⨯-===解()驻点唯一当时,利润最大。

(2)=当时则=)11.510=-2.某工厂生产某种产品 吨,所需要的成本 ()5200C x x =+ (万元),将其投放市场后,所得到的总收入为 2()100.01R x x x =- (万元)。

问该产品生产多少吨时,所获得利润最大, 最大利润是多少? 解:()()()L x R x C x =-=20.015200x x -+-,'()0.025L x x =-+令'()0L x = 得 250x ="()0.020L x =-< "(250)0L ∴<∴该产品生产250吨时所获利润最大,最大利润是 (250)425L =(万元)3.已知某产品的需求函数为105QP =-,成本函数为 202C Q =+ ,求产量为多少时利润最大?并验证是否符合最大利润原则。

解:()()()L Q R Q C Q =-2()102025Q P Q C Q Q Q =⋅-=--- '2()85L Q Q =-+,令 '()0L Q = 得 20Q =又 "2()05L Q =-< ,所以符合最大利润原则。

4某商店以单价100元购进一批服装,假设该服装的需求函数为400Q p =-(p 为销售价格)。

(12分)(1) 求收入函数()R Q ,利润函数()L Q ;(2) 求边际收入函数及边际利润函数;(3) 销售价格定为多少时,才能获得最大利润,并求出最大利润。

解:(1) 400p Q =-,()(400)R Q Qp Q Q ==-,………………2分 ()100C Q Q =,2()()()(400)100300L Q R Q C Q Q Q Q Q Q =-=--=-…………2分 (2) 边际收入函数为'()4002R Q Q =- ………………………1分 边际利润函数为'()3002L Q Q =- ………………………1分 (3) 令'()30020L Q Q =-=,得150Q =件。

…………………1分因''(150)20L =-<,所以当150Q =时,函数取得极大值, ……1分因为是唯一的极值点,所以就是最大值点,………………………1分 即400400150250p Q =-=-=元时,可获得最大利润。

……………1分最大利润为2(150)30022500L Q Q =-=元。

…………………2分第五章不定积分填空题1. 设 sin x e x + 是 )(x f 的一个原函数,则 ()f x ' =x e x sin -;2.=⎰dx xx ln 1ln ln x C+3. 若2()f x dx xC =+⎰ ,则2(1)xf x dx -=⎰422x x c-+;选择题1. 设 )()(x G x F '=',则 ( B )(A ) )()(x G x F = 为常数 (B ) )()(x G x F -为常数 (C ) 0)()(=-x G x F (D )dx x G dxddx x F dx d )()(⎰⎰= 2. 已知函数 ()f x 的导数是 sin x ,则 ()f x 的所有原函数是( B ) (A )cos x (B )cos x C -+ (C )sin x (D )sin x C + 3.若 22()x f x dx x e C =+⎰ ,则 ()f x = ( D )(A )22x xe (B )222x x e (C )2x xe (D )22(1)x xe x + 三计算1.求不定积分 3x xe dx ⎰原式=333111()333x x x xd e xe e dx =-=⎰⎰33111(3)333x x xe e d x -⋅⎰=331139x x xe e C -+2. 2. 211x dx x -+⎰解:原式2222111(1)1121x dx dx d x x x x =-=++++⎰⎰⎰211dx x -+⎰arctan x C =+3. 求解:2ln(1)t x t ==-令则原式=2211122211(1)(1)tdt dt dt t t t t t ⋅⋅==---+⎰⎰⎰11()11dt t t =--+⎰ln 1ln 1t t C =--++1ln1t C C t -=+=++4. 求 ln x xdx ⎰解:原式22222111111ln ()ln ln 22224xd x x x x dx x x x C x ==-⋅=-+⎰⎰定积分填空题1.1321sin x xdx -⎰= 02.30(sin )xt t dt '=⎰3sin x x3. dx x f dx d ba)(⎰ = 04设 )(x f 在 [,]a b 上连续,则⎰⎰-babadt t f dx x f )()( =521(ln )edx x x +∞=⎰16若1cos ()t xx e tdt Φ=⋅⎰,则'()x Φ= cos x e x -⋅7若⎰-=103)(x x dt t f ,则=)7(f112。

相关文档
最新文档