特种陶瓷整理版
特种陶瓷简介
10.2.1.1 氧化铝陶瓷
• 是以α-Al2O3为主晶相的陶瓷材料,其Al2O3含量一般 在75-99%之间,并习惯以配料中Al2O3含量分类。 Al2O3含量在75%左右为“75瓷”,含量在85%为“85 瓷”,含量在95%的为“95瓷”,含量在99%的为“99 瓷”。 • 氧化物陶瓷用途最广的是氧化铝。它是唯一以单晶形式 广泛使用的氧化物陶瓷。然而以多晶氧化铝的用途占压 倒多数。以质量计算氧化铝基材料的主要市场为:
(4)气氛烧结
• 对在空气中很难烧结的制品,为防止其氧化,可在炉膛内通入一
定量的某种气体,在这种特定气氛下进行烧结称为气氛烧结。
(5)反应烧结
• 通过多孔坯体同气相或液相发生化学反应,使坯体质量增加,空 隙减少,并烧结成具有一定强度和尺寸精度的成品的一种烧结工艺。
(6)化学气相沉积法
• 将准备在其表面沉积一层瓷质薄膜的物质置于真空室中,加热至 一定温度后,然后将欲被覆涂料的气态化合物通过加热载体的表面。
一般不需要加工
炊具、餐具、陈设品
10.1 特种陶瓷工艺特点 10.2 高温结构陶瓷简介
10.3 发展中的特种陶瓷
10.1特种陶瓷工艺特点
• 主要从粉体制备、成型和烧结三方面来简述其工艺特点。
10.1.1粉体制备
制取方法有两大类:
机械破碎法,只占从属地位,不作介绍
物理化学法:通常包括固相法、液相法、气相法。
(3)流延法成型
• 将准备好的粉料内加粘结剂、增塑剂、分散剂、溶剂,然后进行混合,再将 料浆放入流延机料斗中,料浆从料斗下部流至流延机薄膜载体(传送带)上。 用刮刀控制厚度,再经红外线加热等方法烘干,得到膜坯,连同载体一起卷 轴待用。
料浆 刮刀 剥离成型薄膜 干燥炉
特种陶瓷
特种陶瓷,又称精细陶瓷,按其应用功能分类,大体可分为高强度、耐高温和复合结构陶瓷及电工电子功能陶瓷两大类。
在陶瓷坯料中加入特别配方的无机材料,经过1360度左右高温烧结成型,从而获得稳定可靠的防静电性能,成为一种新型特种陶瓷,通常具有一种或多种功能,如:电、磁、光、热、声、化学、生物等功能;以及耦合功能,如压电、热电、电光、声光、磁光等功能。
目录分类1.氧化物陶瓷2.氮化物陶瓷3.碳化物陶瓷4.硼化物陶瓷5.硅化物陶瓷6.氟化物陶瓷7.硫化物陶瓷8.其他制作工艺1.成形方法与结合剂的选择2.陶瓷注射成形和成形用结合剂3.陶瓷挤压成形和成形用结合剂发展新动向1.重要地位2.技术新发展3.应用新发展4.研究开发重点发展前景分类1.氧化物陶瓷2.氮化物陶瓷3.碳化物陶瓷4.硼化物陶瓷5.硅化物陶瓷6.氟化物陶瓷7.硫化物陶瓷8.其他制作工艺1.成形方法与结合剂的选择2.陶瓷注射成形和成形用结合剂3.陶瓷挤压成形和成形用结合剂发展新动向1.重要地位2.技术新发展3.应用新发展4.研究开发重点发展前景展开分类特种陶瓷特种陶瓷是二十世纪发展起来的,在现代化生产和科学技术的推动和培育下,它们"繁殖"得非常快,尤其在近二、三十年,新品种层出不穷,令人眼花缭乱。
按照化学组成划分有:氧化物陶瓷氧化物陶瓷:氧化铝、氧化锆、氧化镁、氧化钙、氧化铍、氧化锌、氧化钇、二氧化钛、二氧化钍、三氧化铀等。
氮化物陶瓷氮化物陶瓷:氮化硅、氮化铝、氮化硼、氮化铀等。
碳化物陶瓷碳化物陶瓷:碳化硅、碳化硼、碳化铀等。
硼化物陶瓷硼化物陶瓷:硼化锆、硼化镧等。
硅化物陶瓷硅化物陶瓷:二硅化钼等。
氟化物陶瓷氟化物陶瓷:氟化镁、氟化钙、三氟化镧等。
硫化物陶瓷硫化物陶瓷:硫化锌、硫化铈等。
其他还有砷化物陶瓷,硒化物陶瓷,碲化物陶瓷等。
除了主要由一种化合物构成的单相陶瓷外,还有由两种或两种以上的化合物构成的复合陶瓷。
例如,由氧化铝和氧化镁结合而成的镁铝尖晶石陶瓷,由氮化硅和氧化铝结合而成的氧氮化硅铝陶瓷,由氧化铬、氧化镧和氧化钙结合而成的铬酸镧钙陶瓷,由氧化锆、氧化钛、氧化铅、氧化镧结合而成的锆钛酸铅镧(PLZT)陶瓷等等。
特种陶瓷
相关应用
热敏陶瓷,电阻率明显随温度变化的一类功能陶瓷。 在工作温度范围内,零功率电阻随温度变化而变化的陶 瓷材料。主要用于制作热敏电阻器、温度传感器、加热 器以及限流元件等。
谢谢 大家的观赏
特种陶瓷
传 统 陶 瓷
特种陶瓷与传统陶瓷的区别
二、结构陶瓷简介
ቤተ መጻሕፍቲ ባይዱ
结构陶瓷,是指能作为工程结构材料使用 的陶瓷。是陶瓷材料的重要分支,约占整个陶 瓷市场的25%左右。结构陶瓷以耐高温、高强 度、超硬度、耐磨、抗腐蚀等机械力学性能为 主要特征,因此在冶金、宇航、能源、机械、 光学等领域有重要的应用。在这些应用领域用 非金属代替金属是总的趋势。结构陶瓷大致分 为氧化物系、非氧化物系和结构用的陶瓷基复 合材料。
一、特种陶瓷简介 二、结构陶瓷简介 三、功能陶瓷简介
一、特种陶瓷简介
陶瓷已经是人类生活和现代化建设中不可缺少的 材料之一。 具有高强、耐温、耐腐蚀特性或具有各种敏感特 性的陶瓷材料,由于其制作工艺、化学组成、显微结 构及特性不同于传统陶瓷,而又被称为特种陶瓷。 特种陶瓷又叫先进陶瓷、新型陶瓷、高性能陶瓷、 高技术陶瓷、精细陶瓷等。 习惯上将特种陶瓷分为两大类,即结构陶瓷和功能 陶瓷。
相关应用
氮化硅陶瓷,是一种重要的结构材料,它是一种超硬物质, 密度小、本身具有润滑性,并且耐磨损,除氢氟酸外,它不与其 他无机酸反应,抗腐蚀能力强;高温时也能抗氧化。而且它还能 抵抗冷热冲击,在空气中加热到1000以上,急剧冷却再急剧加热, 也不会碎裂。正是氮化硅具有如此良好的特性,人们常常用它来 制造轴承、汽轮机叶片、机械密封环、永久性模具等机械构件。
相关应用
压电陶瓷,一种能够将机械能和电能互相转换的功能陶 瓷材料,属于无机非金属材料。压电陶瓷利用其材料在机械 应力作用下,引起内部正负电荷中心相对位移而发生极化导 致材料两端表面出现符号相反的束缚电荷即压电效应而制作 ,具有敏感的特性,压电陶瓷主要用于制造超声换能器、水 声换能器、电声换能器、陶瓷滤波器、陶瓷变压器、陶瓷鉴 频器、高压发生器、红外探测器、声表面波器件、电光器件 引燃引爆装置和压电陀螺等。
特种陶瓷整理版
特种陶瓷整理版第一篇:特种陶瓷整理版绪论1名词解释特种陶瓷:采用高度精选的原料,具有能精确控制的化学组成,按照便于控制的制造技术加工的,便于进行结构设计,具有优异特性的陶瓷。
结构陶瓷:具有高硬、高强、耐磨、耐蚀、耐高温、润滑性好等性能,可用作机械结构零部件的陶瓷材料。
功能陶瓷:具有声、光、电、热、磁特性和化学、生物功能的陶瓷材料。
2简述特种陶瓷和传统陶瓷的区别①原材料不同。
传统陶瓷以天然矿物,如粘土、石英和长石等不加处理直接使用;而现代陶瓷则使用经人工合成的高质量粉体作起始材料,突破了传统陶瓷以粘土为主要原料的界线,代之以“高度精选的原料”。
②结构不同。
传统陶瓷的组成由粘土的组成决定,不同产地的陶瓷有不同的质地,所以由于原料的不同导致传统陶瓷材料中化学和相组成的复杂多样、杂质成分和杂质相较多而不易控制,显微结构粗劣而不够均匀,多气孔;先进陶瓷的化学和相组成较简单明晰,纯度高,即使是复相材料,也是人为调控设计添加的,所以先进陶瓷材料的显微结构一般均匀而细密。
③制备工艺不同。
传统陶瓷用的矿物经混合可直接用于湿法成型,如泥料的塑性成型和浆料的注浆成型,材料的烧结温度较低,一般为900℃-1400℃,烧成后一般不需加工;而先进陶瓷一般用高纯度粉体添加有机添加剂才能适合于干法或湿法成型,材料的烧结温度较高,根据材料不同从1200℃到2200℃,烧成后一般尚需加工。
在制备工艺上突破了传统陶瓷以炉窑为主要生产手段的界限,广泛采用诸如真空烧结、保护气氛烧结、热压、热等静压等先进手段。
④性能不同。
由于以上各点的不同,导致传统陶瓷和先进陶瓷材料性能的极大差异,不仅后者在性能上远优于前者,而且特种陶瓷材料还发掘出传统陶瓷材料所没有的性能和用途。
传统陶瓷材料一般限于日用和建筑使用,而特种陶瓷具有优良的物理力学性能,高强、高硬、耐磨、耐腐蚀、耐高温、抗热震,而且在热、光、声、电、磁、化学、生物等方面具有卓越的功能,某些性能远远超过现代优质合金和高分子材料。
特种陶瓷的相关介绍
特种陶瓷的相关介绍特种陶瓷是指在传统陶瓷基础上,通过改变原始的成分配比、成形工艺、烧成工艺等,制成性能优异、用途广泛、具有特殊需求的陶瓷材料。
下面将对特种陶瓷的种类、应用领域和制造工艺等进行介绍。
特种陶瓷的种类1.电子陶瓷:以氧化铝、氧化铝质玻璃、石英等为原料,制成用于半导体器件包装、介质等的电子陶瓷。
2.结构陶瓷:以氧化锆、氧化铝、碳化硅等为原料,经过加压模压、注射成型后,高温烧制而成的具有高强度、抗磨损性、耐腐蚀性等性能的结构陶瓷。
3.生物陶瓷:以氧化锆、氧化铝、磷酸三钙等为原料,经过特殊制造工艺后,制成用于人工关节、牙科医疗和植入式医疗等领域的生物陶瓷。
4.热媒体陶瓷:以氧化铝、氧化锆等为原料,经过特殊工艺处理,制成用于高温传热的热媒体陶瓷。
5.摩擦材料陶瓷:以氧化铝、氮化硅、氧化锆等为原料,经过特殊烧制工艺,制成用于汽车、飞机、铁路等领域摩擦材料的陶瓷。
特种陶瓷的应用领域1.电子领域:用于电容器、介质、射频器件、振荡器、陶瓷滤波器、压电陶瓷、声波陶瓷等领域。
2.医疗领域:用于人工关节、人牙种植体、口腔修复等领域的生物陶瓷。
3.环保领域:用于重金属和有害气体的吸附、污水处理、空气净化等领域的陶瓷。
4.新能源领域:用于氢能源技术、太阳能电池等领域的氧化锆陶瓷。
5.机械领域:用于轴承、密封、磨损件等机械领域的结构陶瓷。
特种陶瓷的制造工艺特种陶瓷的制造过程包括原料选取、配料、成型、烧结等多个工艺环节。
原料选取是关键环节,不同种类的特种陶瓷要选取不同的原料。
例如,生物陶瓷需要选用生物相容性好、生物安全性高的原料,并采用特殊的工艺进行处理,保证最终陶瓷的生物可接受性。
配料是根据要求的化学组成比配制粉末混合物的重要环节,粉末混合方法有湿法和干法两种。
成型是将混合后的陶瓷粉末通过模具成型的环节,通常包括压制、注射成型、挤出成型和印制等多种成型方式。
烧结是将成型后的陶瓷样品放入特殊的烧结设备中加热处理的环节,经过高温烧结,使得陶瓷颗粒结合更紧密、密度更高,从而得到更高的强度和硬度。
特种陶瓷及其功能应用简介
5、溶剂蒸发法(Solvent Evaporation)
• 酒精干燥法(Alchol Drying) • 冷冻干燥法(Freeze Drying) • 热石油干燥法(Hot-Petrol Drying) • 喷雾干燥法(Spray Drying)
9.2.2 成型
• 特种陶瓷的成形技术和方法对于制备 性能优良的制品具有重要意义。特种 陶瓷的成形技术与方法比起传统陶瓷 来说更加丰富、更加广泛,而且具有 不同的特点。特种陶瓷成形方法的选 择,是根据制品的性能要求、形状、 大小、厚薄、产量和经济效益等综合 确定的。
软模压制成形麻花钻 头的示意图
1-钢模模冲;2-钢模套; 3-塑料垫片;4-塑料模 具;5-硬质合金粉末;
6-模垫
3、热等静压
• 热等静压是一项有前景的技术,为陶瓷粉料的致密化提供了 最有效的方法,可用于生产高性能和高可靠型的净尺寸陶瓷。 它也可用于陶瓷和陶瓷之间、陶瓷与金属之间的固体-固体, 固体-粉料,粉料-粉料间的连接。
1、固相法:
• 化合或还原-化合法
– 直接化合的通式为: Me+X=MeX – 或用MeO代替Me, MeO+2X=MeX+XO↑ – 可以生产多种碳化物、硅化物、氮化物和氧化物粉
末。
• 制取硼化物的碳化硼法
– 4MeO+B4C+3C=4MeB+4CO – 或加入B2O3以降低反应产品中碳的含量: – 2MeO+B2O3+5C=2MeB+5CO – 或用金属还原剂代替碳: – 3MeO+3 B2O3+8Al(Mg,Ca,Si)=3MeB2+
9.2 特种陶瓷的基本制备工艺
• 9.2.1 粉末制备 • 9.2.2 成型 • 9.2.3 烧结 • 9.2.4 加工与精加工技术
特种陶瓷总结
脆性差
高硬度,耐磨 高熔点,耐高温 高强度 高化学稳定性 比重小,约为金属1/3
原因:
化学键差异造成的。 金属:金属键,没有方向性,塑性变形性能好 陶瓷:离子键和共价键,方向性强,结合能大,很难塑性形 变,脆性大,裂纹敏感性强
第一章 粉体性能及制备
特种陶瓷粉体要求
1) 化学成分纯度高,均匀性好 2) 相组成均匀,准确 3) 粒度小于1um,粒度分布范围窄 4) 颗粒形状为球形式自形晶形 5) 团聚程度低 6) 粉体流动性好
绪
论
2、特种陶瓷分类
⑴ 结构陶瓷
以耐高温、高强度、超硬度、耐磨损、抗腐蚀等机械力学性 能为主要特征。
⑵ 功能陶瓷
以电、磁、光、热和力学等性能及其相互转换为主要特征, 在通信电子、自动控制、集成电路、计算机、信息处理等方面 的应用日益普及。
⑶ 陶瓷基复合材料
陶瓷材料的最大缺点是韧性低,使用时会产生不可预测的突 然性断裂,陶瓷基复合材料主要是为了改善陶瓷韧性。
对于固定体 系E是固定的
吸 附 层
扩 散 层
可通过塑化 剂或者解凝 剂调整
当粒子和介质固定时,ζ和扩散层厚度成正比; 而ζ电位的增高,可提高团粒间的斥力,有助于克服范德华力和和 布朗运动,获得良好的悬浮性。
以Al203为例, Al203用盐酸处理后,在粒子表面生成三氯化铝 (AlCl3),三氯化铝立即水解,生成AlCl2+和AlCl2+离子,犹如Al203 粒子表面吸附了一层阳离子,使其成为一个带正电荷的胶粒,然后 胶粒吸附OH-而形成一个庞大的胶团。
相变增韧对多晶转变有什么要求?
相变增韧的多晶转变要求 ①高温相转变为低温相的体积膨胀要大 ②多晶转变可以通过改变晶体粒度、加入稳定 剂或增加压力等手段使之在室温下不能进行 ③相变速度要快 ④晶体本身要有高强度 ZrO2由四方相到单斜相的变化属于马氏体相变, 满足上述条件,因此不仅用在本身,也在其他 陶瓷有明显的效果。
特种陶瓷
。
特种陶瓷成形方法、结合剂种类和用 量 成形方法 结合剂举例 <;结合剂用量 (质量%) 千压法聚乙烯醇缩丁醛等 1~5 浇注法 丙烯基树脂类 1~3 挤压法 甲基纤维素等 5~15 注射法 聚丙烯等 10~25 等静压法 聚羧酸铵等 0~3
特种陶瓷由于拥有众多优异性能,因而用途广泛。现按材料的性能及种类简要
特种陶瓷具有高强度、高硬度、高韧性、 耐腐蚀、导电、绝缘、磁性、透光、半 导体以及压电、光电、电光、声光、磁 光等性能。由于性能特殊,这类陶瓷可 作为工程结构材料和功能材料应用于机 械、电子、化工、冶炼、能源、医学、 激光、核反应、宇航等方面本世纪初特 种陶瓷的国际市场规模预计将达到500亿 美元,因此许多科学家预言:特种陶瓷 在二十一世纪的科学技术发展中,必定 会占据十料性能 ; 由于汽车行驶的速度越来越快,使用的范围越来越广泛,其使用环境 将来越来越苛刻。在许多情况下以传统的金属材料制成的零件与部件已不 能满足汽车工业的发展,而将陶瓷制品用于汽车将具备很多优良的功能与 机械性能。如可以长期耐20g的振动功能;用于燃烧、排气 零件可以长期忍 耐50—60℃急热急冷;机械性能的可靠性高,故障率仅在10ˉ5以下;特种陶瓷 可与金属或其它材质接合性良好;可以大批量生产且价格低廉等等。 从事汽车材料的研究人员,经过长年的开发、研制、试验与工业化应 用证明:许多部位改用陶瓷材料后,其机械特性远远优于金属材料或其它 材料制成的零、部件。 2、丰富多样的特种陶瓷零、部件 氧化锆陶瓷质氧传感器可靠性很高。作为净化排气的部件,用它测定 排气中的o2浓度,再将该测定值反馈给发动机给气及燃料供给系统,以促 进内燃机的燃烧经常保持在充分燃烧状态。这样可以达到显著的节能效果。 由于采用的陶瓷材料全部的相位是完全立方晶型的稳定氧化锆、四方晶型 和单斜晶型混合的部分稳定氧化锆,在使用过程中机械性能优良,而且可 以减少许多由于摩擦产生的热,延长部件的使用时间。
特种陶瓷
专业无机非金属材料学号43080207姓名邱海龙氧化铝陶瓷1、氧化铝陶瓷概述氧化铝陶瓷是以Al2O3为主要原料,以刚玉(α-Al2O3)为主要矿物质组成的,是一种相当重要的陶瓷材料。
1.1陶瓷的类型和性能Al2O3陶瓷通常以配料或基体中Al2O3的含量来分类。
习惯上把Al2O3含量在99%左右的陶瓷称为“99瓷”,把含量在95%和90%左右的依次称为“95瓷”和“90瓷”。
含量在85%以上的陶瓷通常称为高铝瓷,含量99%以上的称为刚玉瓷或纯刚玉瓷。
Al2O3陶瓷,特别是高铝瓷的机械强度极高,导热性能良好,绝缘强度、电阻率高,介质损耗低,介电常数一般在8~10之间,电性能随温度和频率的变化比较稳定,特别是纯度(Al2O3含量)达99.5%的刚玉瓷,直到频率高达1010Hz以上时,tgδ(介质损耗)≤1*10-4。
图1.1、图1.2和图1.3为高铝瓷的介电性能随温度和频率的变化情况,图1.4为高铝瓷的热导率随温度的变化。
为了进行对比同时显示出BeO陶瓷性能随温度和频率的变化情况。
图1.1 高铝瓷及BeO瓷的介电常数随频率的变化图1.2 高铝瓷及BeO瓷的tgδ随频率的变化图1.3 高铝瓷及BeO瓷在106和1010Hz下的tgδ随频率的变化(1)95 Al2O3 (f=106);(2) 90.5 Al2O3 (f=106) ;(3) 95 Al2O3 (f=1010) ;(4) 99 BeO(f=1010) ;(5) 99.5 Al2O3(f=1010)图1.4 高铝瓷及BeO瓷的热导率随频率的变化从图1.4可以看出,与导热性能最好的BeO陶瓷相比,高铝瓷的热导率要低得多,但是,高铝瓷的热导率还是比较高,以95瓷而论,其室温下热导率21W /(m·K)就比滑石瓷的热导率2.1W/(m·K)高一个数量级。
高铝瓷的烧结温度较高,为了降低烧结温度,降低成本,国内外都研制并生产了Al2O3含量在75%~85%之间的陶瓷。
特种陶瓷
由于氧化铝熔点高达2050℃,导致氧化铝陶瓷的烧结温度普遍较高,从而使得氧化铝陶瓷的制造需要使用高温发热体或高质量的燃料以及高级耐火材料作窑炉和窑具,这在一定程度上限制了它的生产和更广泛的应用。因此,降低氧化铝陶瓷的烧结温度,降低能耗,缩短烧成周期,减少窑炉和窑具损耗,从而降低生产成本。
预烧方法不同、添加物不同、气氛不同,预烧质量也不一样。工业中预烧氧化铝时,通常要加入适量添加物,如 、 、 等,加入量一般为0.3%~3%,添加物可以降低预烧温度、促进晶型转化、排除Na2O等杂质。硼酸盐除碱效果好,氟化物可促进晶型转变,且收缩大、活性好。还原气氛也有利于排除Na2O等杂质。
预烧质量还与预烧温度有关:预烧温度偏低,则不能完全转变成 -Al2O3且电性能降低;若温度过高,粉料烧结, -Al2O3晶粒异常长大、硬度高,不易粉碎,且烧结活性低,制品难以烧结,不利于形成均匀的结构。一般情况下,Al2O3粉体煅烧温度控制在1400~1450℃。
湿化学法制备的Al2O3粉体粒径可达到纳米级,粒径分布范围窄,化学纯度高,晶体缺陷多。因此化学法粉体的表面能与活性比机械法粉体要高得多。采用这种超细Al2O3粉体作原料不仅能明显降低氧化铝瓷的烧结温度(可降150℃—300℃),而且可以获得微晶高强的高铝瓷材料。
4.2通过瓷料配方设计掺杂降低瓷体烧结温度
物料
-Al2O3
苏州土
CaCO3
BaCO3
烧骨石
ZrO2、CeO2、La2O3
Wt%
91
3
1.5
0.5
2
2
3.采用特殊烧成工艺降低瓷体烧结温度
采用热压烧结工艺,在对坯体加热的同时进行加压,那么烧结不仅是通过扩散传质来完成,此时塑性流动起了重要作用,坯体的烧结温度将比常压烧结低很多,因此热压烧结是降低Al2O3陶瓷烧结温度的重要技术之一。目前热压烧结法中有压力烧结法和高温等静压烧结法(HIP)二种。HIP法可使坯体受到各向同性的压力,陶瓷的显微结构比压力烧结法更加均匀。就氧化铝瓷而言,如果常压下普通烧结必须烧至1800℃以上的高温,热压20MPa烧结,在1000℃左右的较低温度下就已致密化了。热压烧结技术不仅显著降低氧化铝瓷的烧结温度,而且能较好地抑制晶粒长大,能够获得致密的微晶高强的氧化铝陶瓷,特别适合透明氧化铝陶瓷和微晶刚玉瓷的烧结。此外,由于氧化铝的烧结过程与阴离子的扩散速率有关,而还原气氛有利于阴离子空位的增加,可促进烧结的进行。因此,真空烧结、氢气气氛烧结等是实现氧化铝瓷低温烧结的有效辅助手段。
特种陶瓷复习资料
1、坯料的化学组成如下:Al2O3为92.0wt%,MgO为1.5wt%,SrO为1.0wt%,CaO为1.0wt%,SiO2为4.5wt%。
用原料氧化铝、纯滑石3MgO.4SiO2.H2O,碳酸锶、煅烧高岭Al2O32SiO2、氧化硅配制,根据化学组成,求出其质量百分组成。
〔Al2O3,SiO2,MgO,H2O分子量分别为101.9,60.0,40.3,18,碳酸锶中氧化锶含量为103.6/147.6,氧化钙分子量56,CO2分子量为44〕。
答案:需SrCO31.42克;需CaCO31.79克;需滑石4.7克;需补高岭2.77克;需补氧化铝90.73克;合计:1.42+1.79+4.7+2.77+90.73=101.41克配方质量百分组成为:Al2O3 89.47% SrCO3 1.40% CaCO3 1.77% 高岭2.73% 滑石4.63%2、以BaCO3、SrCO3、Pb3O4、Fe2O3配料,试计算钡锶复合铁氧体Ba0.45Sr0.45Pb0.1O.6Fe2O3配方的百分组成。
BaCO3、SrCO3、Pb3O4、Fe2O3的摩尔质量分别是197.3、147.6、685.6、159.7。
解BaCO3 0.45×197.3=88.79 7.82%SrCO3 0.45×147.6=66.24 5.83%Pb3O4 0.1×685.6÷3=22.85 2.01%Fe2O3 6×159.7=958.20 84.34%∑=1136.083、坯料的化学组成如下:Al2O3为93.0wt%,MgO为1.5wt%,SrO为1.0wt%,SiO2为4.5wt%。
用原料氧化铝、纯滑石3MgO.4SiO2.H2O,碳酸锶、XX高岭配制,根据化学组成,求出其质量百分组成。
〔Al2O3,SiO2,MgO,H2O分子量分别为101.9,60.0,40.3,18,碳酸锶中氧化锶含量为103.6/147.6〕。
特种陶瓷总结
特种陶瓷试题一、填空1. 陶瓷的断裂方式分为 穿晶断裂 和 沿晶断裂 。
2. 陶瓷的增韧方法有 相变增韧 、 颗粒弥散增韧 、 纤维(晶须)补强增韧 和 纳米陶瓷增强增韧。
3. 理想粉体的特点:形状规则(各向同性)一致 、 粒度均匀且细小 、不结块 、 纯度高 、 能控制相。
4. 特种陶瓷粉体的制备方法:机械法 和 合成法。
5. 混料加料的顺序为:先多后少再多。
6. 烧结温度低于 材料熔点。
7. 烧结过程的驱动力为 粉体过剩的表面能。
8. 烧结的定义:一种或者多种固体粉末经过成型,在加热到一定温度后开始收缩,在低于熔点的温度下变成致密、坚硬的烧结体,这种过程称为烧结。
9. 在热力学上,所谓烧结是指 系统总能量或Gibbs 自由能减少的过程。
10. 烧结,根据物质状态的不同分为 固相烧结 和 液相烧结。
11. 32O Al 有 α-32O Al 、β-32O Al 、γ-32O Al 三种晶相,其中α-32O Al 最稳定。
12. 四方氧化锆多晶体(TZP )是韧性最好的陶瓷。
13. SiC 俗称 金刚砂,是 共价键化合物,晶相有 α-SiC (六方),β-SiC(立方),其中α-SiC 是 高温稳定相,β-SiC 是低温稳定相。
14. 功能陶瓷 拥有声、光、电、热、磁、化学等的检测、转换、传输、处理和储存能力的陶瓷。
15. 陶瓷根据导电性分为 电绝缘陶瓷、电解质陶瓷、半导体陶瓷、导体陶瓷、超导体陶瓷。
二、简答1.原料煅烧的主要目的是什么?答:①去除原料中易挥发的杂质、化学结合和物理吸附的水分、气体、有机物等,从而提高原料纯度;②使原料颗粒致密化及结晶长大,这样可以减少在以后烧结中的收缩,提高产品的合格率;③完成同质异晶的晶型转变,形成稳定的晶相。
2.简述先进陶瓷材料的制备过程及要求。
答:①粉体的制备:要求使用人工合成的高质量粉体作起始材料。
②陶瓷的成型:要求使用高纯度粉体添加有机添加剂才能适用于干法或湿法成型。
特种陶瓷
4.1压电陶瓷简介
4.1.2 压电效应 4.1.2.1正压电效应 正压电效应―施加压力在压电晶体上, 会产生电荷。
4.1.2压电效应 4.1.2.2逆压电效应
逆压电效应——施加电压在压电晶 体上会产生应变。
4.2压电陶瓷的械振动转换成电信号 压电陶瓷在电场作用下产生的形变量很小 ,最多不超过本身尺寸的千万分之一 压电陶瓷频率稳定性好,精度高及适用频 率范围宽,而且体积小、不吸潮、寿命长 ,特别是在多路通信设备中能抗干扰性强
表1 特种陶瓷的分类及应用 种类 高温陶瓷 性能 1500℃以上高温短期使用 1200℃以上高温长期使用 高强韧性、超塑性等 热稳定性及化学稳定性好等 压电、光电、电光等 超导性能 磁导率和矫顽力大,硬度高 透明、红外光、荧光性能好 生物和化学功能 应用 空间和军事技术、航空航天发动 机、柴油机耐热部件等 航空航天、模具、轴承、密封环 、阀门、 化工设备、高速切削刀具、防弹 装甲等 电子工业(电子元器件) 电子、能源、信息、交通、生物 医学等 微波器件、量子无线电等 激光技术、发光材料、光导纤维 等 生物器官等
特种陶瓷 Special Ceramics
目录
1.特种陶瓷的简介及发展
2.特种陶瓷的分类
3.高韧性陶瓷 4.压电陶瓷 5.发展前景
1.特种陶瓷的简介及发展 特种陶瓷(Special Ceramics)也被称为 先进陶瓷、现代陶瓷、新型陶瓷、高性能陶 瓷、高技术陶瓷和精细陶瓷。 它主要是指以高纯度人工合成的无机化合 物为原料、采用现代材料工艺制备的、具有 独特和优异性能的陶瓷材料。 通常具有一种或多种功能,如:电、磁、 光、热、声、化学、生物等功能;以及耦合 功能,如压电、热电、电光、声光、磁光等 功能。
4.3压电陶瓷的一般工艺
特种陶瓷7-3
化学计量比: X1+X2=1, Y1+Y2=1 化合价:A1*X1+A2*X2=+2 B1*Y1+B2*Y2=+4 (Sr, Ba)TiO3、(Sr, Ba)ZrO3、 (Mg, Zn)TiO3、Pb(Zr, Ti)O3
6.6 铁电陶瓷
6.6.3 BaTiO3
6.6 铁电陶瓷
6.6.3 BaTiO3
氧八面体平面
6.6 铁电陶瓷
6.6.3 BaTiO3
立方相
正方相
6.6 铁电陶瓷
6.6.3 BaTiO3
电畴
180O
首尾相连 90O
6.6 铁电陶瓷
6.6.3 BaTiO3
6.6 铁电陶瓷
6.6.3 BaTiO3
6.6 铁电陶瓷
6.6.3 BaTiO3
性能特点
具有很高的介电常数,特别是在居里温度附近,高达 6000以上,远大于高频介质瓷。 介电常数随温度变化没有线性关系,不能用αε来描述与 温度的关系。 介电损耗因子高达0.01-0.02,是高频介质瓷的10倍。 居里温度120oC。
6.7.5 压敏陶瓷
6.7.5.2 ZnO压敏电阻
6.7 敏感陶瓷
6.7.5 压敏陶瓷
6.7.5.2 ZnO压敏电阻
6.7 敏感陶瓷
6.7.6 光敏陶瓷
6.7.6.1 概述
6.7 敏感陶瓷
6.7.6 光敏陶瓷
6.7.6.1 概述
6.7 敏感陶瓷
6.7.6 光敏陶瓷
6.7.6.1 概述
6.7 敏感陶瓷
特种陶瓷
第六章 功能陶瓷
磁性陶瓷 电介质陶瓷
功能陶瓷
压电陶瓷 敏感陶瓷 超导陶瓷 生物陶瓷
特种陶瓷复习资料。。。
绪论陶瓷是以粘土为主要原料以及各种天然矿物经过粉碎混炼、成型和煅烧制得的材料以及各种制品。
传统陶瓷:指硅酸盐类材料,按照性能特点和用途,主要包括日用器皿、建筑材料等。
特种陶瓷:在传统陶瓷的工艺基础上制备出的一系列具有力学、电、磁性、声、光、热或者生物等特殊功能的陶瓷材料。
传统陶瓷与特种陶瓷的区别?1、原材料不同传统陶瓷采用天然矿物而特种陶瓷则使用经人工合成的高质量粉体。
2、结构不同传统陶瓷结构由原材料的多样性决定,显微结构不均匀。
特种陶瓷结构简单明晰,纯度高,均匀细密。
3、制备工艺不同 传统陶瓷可直接用于湿法成型,烧结温度较低,烧成后一般不需加工。
特种陶瓷需添加有机添加剂才能成型,烧结温度较高,烧成后一般尚需加工。
4、性能(用途)不同 传统陶瓷一般限于日用和建筑使用。
特种陶瓷在力学、电、磁、声、光、热、生物等方面使用。
第一章理想粉体的要求:形状规则一致、粒径均匀且细小、不团聚结块、纯度高、相易控制特种陶瓷颗粒的要求:化学组成精确、化学组成均匀性好、纯度高、适当小的颗粒尺寸、球状颗粒且尺寸均匀单一、分散性好无团聚表征粉体的参数: 颗粒大小、颗粒分布、颗粒形态、表面能、填充性、烧结性。
粉体:是大量固体粒子的集合,表示物质的一种存在状态,既不同于气体、液体,也不完全同于固体。
所以许多学者认为,粉体是气、固、液三态之外的第四相。
粉体颗粒:一般是指物质本质结构不发生变化的情况下分散或细化而得到的物质基本颗粒。
第二章模压成型 :也叫干压成型,即将粉料加少量结合剂,先经造粒,然后将造粒后的粉料置于钢模中,在压力机上加压形成一定形状的坯体。
等静压成型:又叫静水压成型,它是利用液体介质不可压缩性和均匀传递压力性的一种成型方法。
有冷等静压和热等静压两种类型,冷等静压又分为湿式等静压和干式等静压。
模压与等静压工艺对比答:等静压成型与模压成型相比具有以下优点:①素坯密度高、均匀、缺陷少,烧成收缩比一般模压要低。
能压制具有凹形、空心、细长件以及其他复杂形状的零件,而模压成型只能做规则的形状 ②摩擦损耗小,成型压力较低 ③压力从各个方面传递,压坯密度分布均匀、压坯强度高 ④模具成本低廉缺点:尺寸和形状不易精确控制,生产效率低,不易实现自动化。
特种陶瓷
1、采用高度精选的原料,具有能精确控制的化学组成,按照便于进行结构设计及控制的方法进行制造、加工的,具有优异特性的陶瓷。
特种陶瓷有很多种叫法,例如:精细陶瓷、技术陶瓷、现代陶瓷、新型陶瓷等等。
2、粘土在陶瓷生产中的作用:1)粘土的可塑性是陶瓷坯泥赖以成型的基础。
2)粘土使注浆泥料与釉料具有悬浮性与稳定性。
3)粘土一般呈细分散颗粒,同时具有结合性。
4)粘土是陶瓷坯体烧结时的主体。
5)粘土是形成陶器主体结构和瓷器中莫来石晶体的主要来源。
4、特种陶瓷分类:按特性和用途分⑴结构陶瓷⑵功能陶瓷⑶陶瓷基复合材料5、特种陶瓷性能(和金属材料相比)优点:高硬度,耐磨;高熔点,耐高温;高强度;高化学稳定性;比重小,约为金属1/3缺点:脆性大研究热点:如何提高陶瓷的韧性成为世界瞩目的陶瓷材料研究领域的核心课题!!!原因:化学键差异造成的。
金属:金属键,没有方向性,塑性变形性能好陶瓷:离子键和共价键,方向性强,结合能大,很难塑性形变,脆性大,裂纹敏感性强6、提高陶瓷韧性的方法1)利用金属的延展性2)利用晶须或者纤维增韧3)利用相变增韧4)纳米陶瓷增韧7、特种陶瓷用途特陶可以“上天入地”,“上天”指特种陶瓷应用于航天科技行业,“入地”指特种陶瓷可以应用于汽车等行业。
陶瓷刹车盘、陶瓷刀具、陶瓷装甲金刚石:作为世界上最硬的物质,是一种天然“陶瓷”。
8、陶瓷发动机优势①提高发动机热效率。
②减少辅助功率消耗,发动机结构简化。
③适应多种燃料燃烧④降低噪声,减少排气污染⑤减轻质量⑥资源丰富。
9、特种陶瓷研究方向探求材料的组成、结构与性能之间的关系组分一确定,工艺过程是控制材料结构的主要手段陶瓷的显微结构对材料性能影响很大,而材料的显微结构在很大程度上依赖于粉体特性。
1、粉体:作为物质的一种存在状态,粉体不同于气体、液体,也不完全同于固体;它是大量固体粒子的集合体,具有很多固体的属性,如物质结构,密度等等;颗粒间存在宏观空隙,颗粒间结合力较弱;同时它具有固体所不具有的流动性。
【精品文章】特种陶瓷的分类方法及应用领域
特种陶瓷的分类方法及应用领域
特种陶瓷是有别于日用陶瓷、建筑陶瓷、卫生陶瓷等传统陶瓷对的一类新型陶瓷的总称。
它主要是指以高纯度人工合成的无机化合物为原料,采用现代材料工艺制备的、具有独特和优异性能的陶瓷材料。
特种陶瓷的品种类目比较繁多,应用也很广泛,下文将为大家简单整理一下特种陶瓷的一些分类方法及其应用领域。
1、按材质分类
按材质可将特种陶瓷分为两大类:氧化物陶瓷及非氧化物陶瓷,具体分类及典型材料见下表1。
表1 对特种陶瓷按材质分类
2、按特性分类
如果按材料的特性可将特种陶瓷分为三大类,分别是:结构陶瓷、功能陶瓷、陶瓷基复合材料。
a、结构陶瓷。
主要是利用以陶瓷材料的耐高温、耐腐蚀、耐磨损及化学性质稳定等特点比如高温结构陶瓷;陶瓷刀具、磨料磨具、陶瓷密封件、陶瓷轴承、研磨体等等高硬耐磨结构陶瓷;人工齿、人工骨等生物结构陶瓷。
b、功能陶瓷。
利用某些陶瓷材料所具有的特殊电、磁、热、光、生物等性能。
具体分类见下表2、3、4、5。
表2 电功能陶瓷材料及用途举例
表3 磁功能陶瓷材料及用途
表4光功能陶瓷材料及用途。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1名词解释特种陶瓷:采用高度精选的原料,具有能精确控制的化学组成,按照便于控制的制造技术加工的,便于进行结构设计,具有优异特性的陶瓷。
粉体颗粒:指在物质的本质结构不发生改变的情况下,分散或细化而得到的固态基本颗粒。
团聚体:由一次颗粒通过表面力吸引或化学键键合形成的颗粒,它是很多一次颗粒的集合体。
胶粒:即胶体颗粒。
胶粒尺寸小于100nm,并可在液相中形成稳定胶体而无沉降现象。
6什么是固相法、气相法、液相法,简述工艺流程固相法就是以固态物质为出发原料,通过一定的物理与化学过程来制备陶瓷粉体的方法。
固相原料——配料——混合——合成——粉碎——粉体气相法是直接利用气体或者通过各种手段将物质变成气体,使之在气体状态下发生物理变化或化学反应,最后在冷却过程中凝聚长大形成粉体的方法。
蒸发-凝聚法(PVD):原料——高温气化——急冷——粉体蒸发-凝聚法是将原料加热至高温(用电弧或等离子流等加热),使之气化,接着在电弧焰和等离子焰与冷却环境造成的较大温度梯度条件下急冷,凝聚成微粒状物料的方法。
气相化学反应法(CVD):金属化合物蒸气——化学反应——粉体气相化学反应法是挥发性金属化合物的蒸气通过化学反应合成所需物质的方法。
液相合成法也称湿化学法或溶液法。
溶液法从均相的溶液出发,将相关组分的溶液按所需的比例进行充分的混合,再通过各种途径将溶质与溶剂分离,得到所需要组分的前驱体,然后将前驱体经过一定的分解合成处理,获得特种陶瓷粉体,可以细分为脱溶剂法、沉淀法、溶胶-凝胶法、水热法等。
溶液制备——溶液混合——脱水——前驱体——分解合成——粉体7常用的气相法有哪些,各有何特点(3个)一种是系统中不发生化学反应的蒸发-凝聚法(PVD),另一种是气相化学反应法(CVD)。
第三章特种陶瓷成型工艺1.简述烧结过程烧结前,陶瓷粉料在外部压力作用下,形成一定形状的、具有一定机械强度的多孔坯体。
在烧结前期,陶瓷生坯中一般含有百分之几十的气孔,颗粒之间只有点接触。
在表面能减少的推动力下,物质通过不同的扩散途径向颗粒间的颈部和气孔部位填充,使颈部渐渐长大,并逐步减少气孔所占的体积,细小的颗粒之间开始逐渐形成晶界,并不断扩大晶界的面积,使坯体变得致密化。
在这个相当长的过程中,连通气孔不断缩小;两个颗粒之间的晶界与相邻晶界相遇,形成晶界网络;晶界移动,晶粒逐步长大。
其结果是气孔缩小,致密化程度提高,直至气孔相互不再连通,形成孤立的气孔分布于几个晶粒相交的位置。
这时坯体的密度达到理论密度的90%以上。
接着进入烧结后期阶段,孤立的气孔扩散填充,使致密化继续进行,同时晶粒继续均匀长大,一般气孔随晶界一起移动,直至致密化,得到致密的陶瓷材料。
2.常用的烧结方法,各有何特点1、低温烧结这种方法可以降低能耗,使产品价格降低。
2、热压烧结如果加热粉体的同时进行加压,那么烧结主要取决于塑性流动,而不是扩散。
对于同一材料而言,压力烧结与常压烧结相比,烧结温度低得多,而且烧结体中气孔率也低。
另外,由于在较低的温度下烧结,就抑制了晶粒成长,所得的烧结体致密,且具有较高的强度(晶粒细小的陶瓷,强度较高)。
3、气氛烧结对于空气中很难烧结的制品(如透光体或非氧化物),为防止其氧化等可采用气氛烧结。
4、其他烧结方法(1)电场烧结(可获得有压电性的陶瓷样品(2) 超高压烧结其特点是,不仅能够使材料迅速达到高密度,具有细晶粒(小于1μm),而且使晶体结构甚至原子、电子状态发生变化,从而赋予材料在通常烧结或热压烧结工艺下所达不到的性能。
而且可以合成新型的人造矿物。
此工艺比较复杂,对模具材料、真空密封技术以及原料的细度和纯度均要求较高。
(3) 活化烧结它具有降低烧结温度,缩短烧结时间、改善烧结效果等优点。
(4) 活化热压烧结是一种高效率的热压技术。
3.烧结过程易出现的主要问题应力集中,裂纹,收缩,塌陷,气孔,结石4.试述烧结过程中的物质传递机理在高温过程中,由于表面曲率不同,必然在系统的不同部位有不同的蒸气压,于是通过气相有一种传质趋势,这种传质过程仅仅在高温下蒸气压较大的系统内进行,如氧化铅、氧化铍和氧化铁的烧结。
物质将从蒸气压高的凸形颗粒表面蒸发,通过气相传递而凝聚到蒸气压低的凹形颈部,从而使颈部逐渐被填充。
蒸发-凝聚传质的特点是烧结时颈部区域扩大,球的形状改变为椭圆,气孔形状改变,但球与球之间的中心距不变,也就是在这种传质过程中坯体不发生收缩。
气孔形状的变化对坯体一些宏观性质有可观的影响,但不影响坯体密度。
气相传质过程要求把物质加热到可以产生足够蒸气压的温度。
对于几微米的粉末体,要求蒸气压最低为10~1Pa,才能看出传质的效果。
而烧结氧化物材料往往达不到这样高的蒸气压,如A1203在1200℃时蒸气压只有10-41Pa,因而一般硅酸盐材料的烧结中这种传质方式并不多见。
在高温下挥发性小的陶瓷原料,其物质主要通过表面扩散和体积扩散进行传递,烧结是通过扩散来实现的。
目前主要的扩散机理:(1)直接交换。
相邻同种离子交换位置。
由于这种扩散的活化能大,一般情况下很难发生。
(2)空穴迁移。
靠近空穴的离子,移动到空穴位置,相当于空穴沿相反方向移动。
(3)间隙迁移。
在间隙位置的离子,通过空的间隙位置进行移动。
(4)准间隙迁移。
间隙离子把正常位置的离子推到其它的间隙位置,占据正常的晶格位置。
(5)循环移动。
离子作为一个集团同时移动,由于引起点阵畸变小,扩散活化能也小。
在扩散传质中要达到颗粒中心距离缩短必须有物质向气孔迁移,气孔作为空位源,空位进行反向迁移。
颗粒点接触处的应力促使扩散传质中物质的定向迁移。
颗粒不同部位空位浓度不同,颈表面张应力区空位浓度大于晶粒内部,受压应力的颗粒接触中心空位浓度最低。
空位浓度差是自颈到颗粒接触点大于颈至颗粒内部。
系统内不同部位空位浓度的差异对扩散时空位的漂移方向是十分重要的。
扩散首先从空位浓度最大部位(颈表面)向空位浓度最低的部位(颗粒接触点)进行。
其次是颈部向颗粒内部扩散。
空位扩散即原子或离子的反向扩散。
因此,扩散传质时,原子或离子由颗粒接触点向颈部迁移,达到气孔充填的结果。
扩散可以沿颗粒表面进行,也可以沿着两颗粒之间的界面进行或在晶粒内部进行,我们分别称为表面扩散、界面扩散和体积扩散。
不论扩散途径如何,扩散的终点是颈部。
当晶格内结构基元(原子或离子)移至颈部,原来结构基元所占位置成为新的空位,晶格内其它结构基元补充新出现的空位,就这样以“接力”方式物质向内部传递而空位向外部转移。
空位在扩散传质中可以在以下三个部位消失:自由表面、内界面(晶界)和位错。
随着烧结进行,晶界上的原子(或离子)活动频繁,排列很不规则,因此晶格内空位一旦移动到晶界上,结构基元的排列只需稍加调整空位就易消失。
随着颈部填充和颗粒接触点处结构基元的迁移出现了气孔的缩小和颗粒中心距逼近。
表现在宏观上则气孔率下降和坯体的收缩。
液相烧结的基本原理与固相烧结有类似之处,推动力仍然是表面能。
不同的是烧结过程与液相量、液相性质、固相在液相中的溶解度、润湿行为有密切关系。
因此,液相烧结动力学的研究比固相烧结更为复杂。
(1)粘性流动在液相含量很高时,液相具有牛顿型液体的流动性质,这种粉体的烧结比较容易通过粘性流动而达到平衡。
除有液相存在的烧结出现粘性流动外,弗仑克认为,在高温下晶体颗粒也具有流动性质,它与非晶体在高温下的粘性流动机理是相同的。
在高温下物质的粘性流动可分为两个阶段:第一阶段,物质在高温下形成粘性流体,相邻颗粒中心互相逼近,增加接触面积,接着发生颗粒间的粘合作用和形成一些封闭气孔;第二阶段,封闭气孔的粘性压紧,即小气孔在玻璃相包围压力作用下,由于粘性流动而密实化。
而决定烧结致密化速率主要有三个参数:颗粒起始粒径、粘度、表面张力。
原料的起始粒度与液相粘度这两项主要参数是相互配合的,它们不是孤立地起作用,而是相互影响的。
为了使液相和固相颗粒结合更好,液相粘度不能太高,若太高,可用加入添加剂降低粘度及改善固-液相之间的润湿能力。
但粘度也不能太低,以免颗粒直径较大时,重力过大而产生重力流动变形。
也就是说,颗粒应限制在某一适当范围内,使表面张力的作用大于重力的作用,所在液相烧结中,必须采用细颗粒原料且原料粒度必须合理分布。
(2)塑性流动在高温下坯体中液相含量降低,而固相含量增加,这时烧结传质不能看成是牛顿型流体,而是属于塑性流动的流体,过程的推动力仍然是表面能。
为了尽可能达到致密烧结,应选择尽可能小的颗粒、粘度及较大的表面能。
在固-液两相系统中,液相量占多数且液相粘度较低时,烧结传质以粘性流动为主,而当固相量占多数或粘度较高时则以塑性流动为主。
实际上,烧结时除有不同固相、液相外,还有气孔存在,因此实际情况要复杂得多。
塑性流动传质过程中纯固相烧结中同样也存在,可以认为晶体在高温、高压作用下产生流动是由于晶体晶面的滑移,即晶格间产生位错,而这种滑移只有超过某一应力值才开始。
在烧结时固、液两相之间发生如下传质过程:细小颗粒(其溶解度较高)以及一般颗粒的表面凸起部分溶解进入液相,并通过液相转移到粗颗粒表面(这里溶解度较低)而沉淀下来。
这种传质过程发生于具有下列条件的物系中:有足量的液相生成;液相能润湿固相;固相在液相中有适当的溶解度。
而传质过程是以下列方式进行的:首先,随着烧结温度提高,出现足够量液相。
固相颗粒分散在液相中,在液相毛细管的作用下,颗粒相对移动,发生重新排列,得到一个更紧密的堆积,结果提高了坯体的密度。
这一阶段的收缩量与总收缩的比取决于液相的数量。
当液相数量大于35%(体积)时,这一阶段是完成坯体收缩的主要阶段,其收缩率相当于总收缩率的60%左右。
第二,被薄的液膜分开的颗粒之间搭桥,在接触部位有高的局部应力导致塑性变形和蠕变。
这样促进颗粒进一步重排。
第三,是通过液相的重结晶过程。
这一阶段特点是细小颗粒和固体颗粒表面凸起部分的溶解,通过液相转移并在粗颗粒表面上析出。
在颗粒生长和形状改变的同时,使坯体进一步致密化。
颗粒之间有液相存在时颗粒互相压紧,颗粒间有压力作用下又提高了固体物质在液相中的溶解度。
如:Si3N4是高度共价键结合的化合物,共价键程度约占70%,体扩散系数(bulk diffu-sion coefficient)不到10-7cm2/s,因此纯Si3N4很难进行固相烧结,而必须加入添加剂,如MgO,Y2O3,Al2O3等,这样在高温时它们和α-Si3N4颗粒表面的SiO2形成硅酸盐液相,并能润湿和溶解α-Si3N4,在烧结温度下,析出β- Si3N4。
外加剂(添加剂)对烧结有何影响外加剂与烧结主体形成固溶体、成液相、化合物、外加剂阻止多晶转变、外加剂起到扩大烧结范围的作用。