汕头市中考数学
广东省汕头市金山中学2024届中考联考数学试题含解析
广东省汕头市金山中学2024届中考联考数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.某市2010年元旦这天的最高气温是8℃,最低气温是﹣2℃,则这天的最高气温比最低气温高()A.10℃B.﹣10℃C.6℃D.﹣6℃2.下列计算正确的是()A.(a+2)(a﹣2)=a2﹣2 B.(a+1)(a﹣2)=a2+a﹣2C.(a+b)2=a2+b2D.(a﹣b)2=a2﹣2ab+b23.如图,△ABC是⊙O的内接三角形,∠BOC=120°,则∠A等于()A.50°B.60°C.55°D.65°4.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,﹣4),顶点C在x轴的负半轴上,函数y=kx(x<0)的图象经过菱形OABC中心E点,则k的值为()A.6 B.8 C.10 D.125.平面直角坐标系中的点P(2﹣m,12m)在第一象限,则m的取值范围在数轴上可表示为()A.B.C.D.6.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x(单位:环).下列说法中正确的是()A .若这5次成绩的中位数为8,则x =8B .若这5次成绩的众数是8,则x =8C .若这5次成绩的方差为8,则x =8D .若这5次成绩的平均成绩是8,则x =87.地球平均半径约等于6 400 000米,6 400 000用科学记数法表示为( )A .64×105B .6.4×105C .6.4×106D .6.4×1078.下列图形中,是中心对称但不是轴对称图形的为( )A .B .C .D .9.化简:x x y --y x y+,结果正确的是( ) A .1 B .2222x y x y +- C .x y x y -+ D .22x y +10.甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数( )的概率最大.A .3B .4C .5D .6二、填空题(共7小题,每小题3分,满分21分)1135_____. 12.有一枚质地均匀的骰子,六个面分别表有1到6的点数,任意将它抛掷两次,并将两次朝上面的点数相加,则其和小于6的概率是______.13.分式213a b 与21a b的最简公分母是_____. 14.将一次函数y =2x +4的图象向下平移3个单位长度,相应的函数表达式为_____.15.如图,CE 是▱ABCD 的边AB 的垂直平分线,垂足为点O ,CE 与DA 的延长线交于点E .连接AC ,BE ,DO ,DO 与AC 交于点F ,则下列结论:①四边形ACBE 是菱形;②∠ACD =∠BAE ;③AF :BE =2:1;④S 四边形AFOE :S △COD =2:1.其中正确的结论有_____.(填写所有正确结论的序号)16.如图,10块相同的长方形墙砖拼成一个长方形,设长方形墙砖的长为x 厘米,则依题意列方程为_________.17.如图,矩形ABCD 中,E 为BC 的中点,将△ABE 沿直线AE 折叠时点B 落在点F 处,连接FC ,若∠DAF =18°,则∠DCF =_____度.三、解答题(共7小题,满分69分)18.(10分)计算:()201254sin 603π-⎛⎫--++-︒ ⎪⎝⎭. 19.(5分)如图,ABC △是等腰三角形,AB AC =,36A ∠=.(1)尺规作图:作B 的角平分线BD ,交AC 于点D (保留作图痕迹,不写作法);(2)判断BCD 是否为等腰三角形,并说明理由.20.(8分)已知关于x 的一元二次方程x 2﹣(m+3)x+m+2=1.(1)求证:无论实数m 取何值,方程总有两个实数根;(2)若方程有一个根的平方等于4,求m 的值.21.(10分)如图,△ABC,△CDE 均是等腰直角三角形,∠ACB=∠DCE=90°,点E 在AB 上,求证:△CDA ≌△CEB .22.(10分)如图,在Rt △ABC 中,∠C =90°,AB 的垂直平分线交AC 于点D ,交AB 于点E .(1)求证:△ADE ~△ABC ;(2)当AC =8,BC =6时,求DE 的长.23.(12分)如图,在平面直角坐标系xOy 中,一次函数y =x 与反比例函数()0k y k x =≠的图象相交于点()3,A a .(1)求a 、k 的值;(2)直线x =b (0b >)分别与一次函数y =x 、反比例函数k y x=的图象相交于点M 、N ,当MN =2时,画出示意图并直接写出b 的值. 24.(14分)(1)化简:221m 2m 11m 2m 4++⎛⎫-÷ ⎪+-⎝⎭(2)解不等式组31234(1)9x x x +⎧>+⎪⎨⎪+->-⎩.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解题分析】用最高气温减去最低气温,再根据有理数的减法运算法则“减去一个数等于加上这个数的相反数”即可求得答案. 【题目详解】8-(-2)=8+2=10℃.即这天的最高气温比最低气温高10℃.故选A.2、D【解题分析】A、原式=a2﹣4,不符合题意;B、原式=a2﹣a﹣2,不符合题意;C、原式=a2+b2+2ab,不符合题意;D、原式=a2﹣2ab+b2,符合题意,故选D3、B【解题分析】由圆周角定理即可解答.【题目详解】∵△ABC是⊙O的内接三角形,∴∠A=12∠BOC,而∠BOC=120°,∴∠A=60°.故选B.【题目点拨】本题考查了圆周角定理,熟练运用圆周角定理是解决问题的关键.4、B【解题分析】根据勾股定理得到OA=2234+=5,根据菱形的性质得到AB=OA=5,AB∥x轴,求得B(-8,-4),得到E(-4,-2),于是得到结论.【题目详解】∵点A的坐标为(﹣3,﹣4),∴OA=2234+=5,∵四边形AOCB是菱形,∴AB=OA=5,AB∥x轴,∴B(﹣8,﹣4),∵点E是菱形AOCB的中心,∴E(﹣4,﹣2),∴k=﹣4×(﹣2)=8,故选B.【题目点拨】本题考查了反比例函数图象上点的坐标特征,菱形的性质,勾股定理,正确的识别图形是解题的关键.5、B【解题分析】根据第二象限中点的特征可得:2-m0 1m0 2>⎧⎪⎨>⎪⎩,解得:m2 m0<⎧⎨>⎩.在数轴上表示为:故选B.考点:(1)、不等式组;(2)、第一象限中点的特征6、D【解题分析】根据中位数的定义判断A;根据众数的定义判断B;根据方差的定义判断C;根据平均数的定义判断D.【题目详解】A、若这5次成绩的中位数为8,则x为任意实数,故本选项错误;B、若这5次成绩的众数是8,则x为不是7与9的任意实数,故本选项错误;C 、如果x=8,则平均数为15(8+9+7+8+8)=8,方差为15[3×(8-8)2+(9-8)2+(7-8)2]=0.4,故本选项错误; D 、若这5次成绩的平均成绩是8,则15(8+9+7+8+x )=8,解得x=8,故本选项正确; 故选D .【题目点拨】本题考查中位数、众数、平均数和方差:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差()()()()22221232...n x x x x x x x xS n -+-+-++-=,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.7、C【解题分析】由科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【题目详解】解:6400000=6.4×106, 故选C .点睛:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.8、C【解题分析】试题分析:根据轴对称图形及中心对称图形的定义,结合所给图形进行判断即可.A 、既不是轴对称图形,也不是中心对称图形,故本选项错误;B 、是轴对称图形,也是中心对称图形,故本选项错误;C 、不是轴对称图形,是中心对称图形,故本选项正确;D 、是轴对称图形,不是中心对称图形,故本选项错误.故选C .考点:中心对称图形;轴对称图形.9、B【解题分析】先将分母进行通分,化为(x+y )(x-y )的形式,分子乘上相应的分式,进行化简.【题目详解】()()()()222222x y x +xy xy-y x +y -=-=x-y x+y x+y x-y x+y x-y x -y 【题目点拨】本题考查的是分式的混合运算,解题的关键就是熟练掌握运算规则.10、C【解题分析】解:甲和乙盒中1个小球任意摸出一球编号为1、2、3、1的概率各为, 其中得到的编号相加后得到的值为{2,3,1,5,6,7,8}和为2的只有1+1;和为3的有1+2;2+1;和为1的有1+3;2+2;3+1;和为5的有1+1;2+3;3+2;1+1;和为6的有2+1;1+2; 和为7的有3+1;1+3; 和为8的有1+1.故p (5)最大,故选C .二、填空题(共7小题,每小题3分,满分21分)1115【解题分析】分析:直接利用二次根式的性质进行化简即可. 353555⨯155. 15 点睛:本题主要考查了分母有理化,正确掌握二次根式的性质是解题的关键.12、518【解题分析】列举出所有情况,看两个骰子向上的一面的点数和小于6的情况占总情况的多少即可.【题目详解】解:列表得:∴两个骰子向上的一面的点数和小于6的有10种,则其和小于6的概率是1053618=, 故答案为:518. 【题目点拨】本题考查了列表法与树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件.解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.13、3a 2b【解题分析】利用取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母求解即可.【题目详解】 分式213a b 与21a b的最简公分母是3a 2b .故答案为3a 2b . 【题目点拨】本题考查最简公分母,解题的关键是掌握求最简公分母的方法.14、y=2x+1【解题分析】分析:直接根据函数图象平移的法则进行解答即可.详解:将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数是y=2x+4-3=2x+1;故答案为y=2x+1.点睛:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.15、①②④.【解题分析】根据菱形的判定方法、平行线分线段成比例定理、直角三角形斜边中线的性质一一判断即可.【题目详解】∵四边形ABCD 是平行四边形,∴AB∥CD,AB=CD,∵EC垂直平分AB,∴OA=OB=12AB=12DC,CD⊥CE,∵OA∥DC,∴EA EO OAED EC CD===12,∴AE=AD,OE=OC,∵OA=OB,OE=OC,∴四边形ACBE是平行四边形,∵AB⊥EC,∴四边形ACBE是菱形,故①正确,∵∠DCE=90°,DA=AE,∴AC=AD=AE,∴∠ACD=∠ADC=∠BAE,故②正确,∵OA∥CD,∴AF OA1 CF CD2==,∴AF AF1AC BE3==,故③错误,设△AOF的面积为a,则△OFC的面积为2a,△CDF的面积为4a,△AOC的面积=△AOE的面积=1a,∴四边形AFOE的面积为4a,△ODC的面积为6a∴S四边形AFOE:S△COD=2:1.故④正确.故答案是:①②④.【题目点拨】此题考查平行四边形的性质、菱形的判定和性质、平行线分线段成比例定理、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.16、x+23x=75.【解题分析】试题解析:设长方形墙砖的长为x厘米,可得:x+23x=75.17、1.【解题分析】由折叠的性质得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,求出∠BAE=∠FAE=1°,由直角三角形的性质得出∠AEF=∠AEB=54°,求出∠CEF=72°,求出FE=CE,由等腰三角形的性质求出∠ECF=54°,即可得出∠DCF的度数.【题目详解】解:∵四边形ABCD是矩形,∴∠BAD=∠B=∠BCD=90°,由折叠的性质得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,∵∠DAF=18°,∴∠BAE=∠FAE=12×(90°﹣18°)=1°,∴∠AEF=∠AEB=90°﹣1°=54°,∴∠CEF=180°﹣2×54°=72°,∵E为BC的中点,∴BE=CE,∴FE=CE,∴∠ECF=12×(180°﹣72°)=54°,∴∠DCF=90°﹣∠ECF=1°.故答案为1.【题目点拨】本题考查了矩形的性质、折叠变换的性质、直角三角形的性质、等腰三角形的性质、三角形内角和定理等知识点,求出∠ECF的度数是解题的关键.三、解答题(共7小题,满分69分)18、8【解题分析】直接利用负整数指数幂的性质以及绝对值的性质、零指数幂的性质以及特殊角的三角函数值化简进而得出答案.【题目详解】原式=9﹣2+1﹣23=823-.【题目点拨】本题考查了实数运算,正确化简各数是解题的关键.19、(1)作图见解析 (2)BCD 为等腰三角形【解题分析】(1)作角平分线,以B 点为圆心,任意长为半径,画圆弧;交直线AB 于1点,直线BC 于2点,再以2点为圆心,任意长为半径,画圆弧,再以1点为圆心,任意长为半径,画圆弧,相交于3点,连接3点和O 点,直线3O 即是已知角AOB 的对称中心线.(2)分别求出BCD 的三个角,看是否有两个角相等,进而判断是否为等腰三角形.【题目详解】(1)具体如下:(2)在等腰ABC △中,36A ∠=,BD 为∠ABC 的平分线,故72ABC C ∠=∠=︒,36DBC ∠=︒,那么在DBC△中,72BDC ∠=︒∵72BDC C ∠=∠=︒∴BCD 是否为等腰三角形.【题目点拨】本题考查角平分线的作法,以及判定等腰三角形的方法.熟悉了解角平分线的定义以及等腰三角形的判定方法是解题的关键所在.20、(1)证明见解析;(2)m 的值为1或﹣2.【解题分析】(1)计算根的判别式的值可得(m+1)2≥1,由此即可证得结论;(2)根据题意得到 x=±2 是原方程的根,将其代入列出关于m 新方程,通过解新方程求得m 的值即可.【题目详解】(1)证明:∵△=[﹣(m+3)]2﹣2(m+2)=(m+1)2≥1,∴无论实数m 取何值,方程总有两个实数根;(2)解:∵方程有一个根的平方等于2,∴x=±2 是原方程的根,当x=2 时,2﹣2(m+3)+m+2=1.解得m=1;当x=﹣2 时,2+2(m+3)+m+2=1,解得m=﹣2.综上所述,m 的值为1 或﹣2.【题目点拨】本题考查了根的判别式及一元二次方程的解的定义,在解答(2)时要分类讨论,这是此题的易错点.21、见解析.【解题分析】试题分析:根据等腰直角三角形的性质得出CE=CD,BC=AC,再利用全等三角形的判定证明即可.试题解析:证明:∵△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,∴CE=CD,BC=AC,∴∠ACB﹣∠ACE=∠DCE﹣∠ACE,∴∠ECB=∠DCA,在△CDA与△CEB中,,∴△CDA≌△CEB.考点:全等三角形的判定;等腰直角三角形.22、(1)见解析;(2)154 DE=.【解题分析】(1)根据两角对应相等,两三角形相似即可判定;(2)利用相似三角形的性质即可解决问题.【题目详解】(1)∵DE⊥AB,∴∠AED=∠C=90°.∵∠A=∠A,∴△AED∽△ACB.(2)在Rt△ABC中,∵AC=8,BC=6,∴AB2268=+=1.∵DE垂直平分AB,∴AE=EB=2.∵△AED∽△ACB,∴DE AEBC AC=,∴568DE=,∴DE154=.【题目点拨】本题考查了相似三角形的判定和性质、勾股定理、线段的垂直平分线的性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.23、(1)3a=,k=2;(2)b=2或1.【解题分析】(1)依据直线y=x与双曲线kyx=(k≠0)相交于点()3A a,,即可得到a、k的值;(2)分两种情况:当直线x=b在点A的左侧时,由3x-x=2,可得x=1,即b=1;当直线x=b在点A的右侧时,由x3x-=2,可得x=2,即b=2.【题目详解】(1)∵直线y=x与双曲线kyx=(k≠0)相交于点()3A a,,∴3a=,∴()33A,,∴33k=,解得:k=2;(2)如图所示:当直线x=b在点A的左侧时,由3x-x=2,可得:x=1,x=﹣2(舍去),即b=1;当直线x=b在点A的右侧时,由x3x-=2,可得x=2,x=﹣1(舍去),即b=2;综上所述:b=2或1.【题目点拨】本题考查了利用待定系数法求函数解析式以及函数的图象与解析式的关系,解题时注意:点在图象上,就一定满足函数的解析式.24、(1)21m m -+;(2)﹣2<x <1 【解题分析】(1)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果; (2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【题目详解】(1)原式=21(2)(2)2m 2(1)1m m m m m m ++--⋅=+++; (2)不等式组整理得:12x x <⎧⎨>-⎩, 则不等式组的解集为﹣2<x <1.【题目点拨】此题考查计算能力,(1)考查分式的化简,正确将分子与分母分解因式及按照正确运算顺序进行计算是解题的关键;(2)是解不等式组,注意系数化为1时乘或除以的是负数时要变号.。
汕头市2020年中考数学试卷(II)卷
汕头市2020年中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题(本大题有10小题,每小题4分,共40分) (共10题;共40分)1. (4分)(2011·盐城) ﹣2的绝对值是()A . ﹣2B . ﹣C . 2D .2. (4分)据统计去年来国内旅游人数达到9.98亿人次,用科学记数法表示9.98亿正确的是()A . 9.98×107B . 9.98×108C . 0.998×109D . 99.8×1073. (4分)(2019·南关模拟) 如图是由个相同的小正方体组成的立体图形,这个立体图形的俯视图是()A .B .C .D .4. (4分) (2019九上·揭西期末) 布袋里有50个形状完全相同的小球,小红随机摸出一个球,记下颜色后放回摇匀,重复以上操作300次,发现摸到白色的球有61次,则布袋中白球的个数最有可能是()A . 5个B . 10个C . 15个D . 20个5. (4分)如图,∠BAC=110°若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是()A . 20°B . 40°C . 50°D . 60°6. (4分) (2017八上·金华期中) 如图,已知直线y1=x+m与y2=kx-1相交于点P(-1,1)关于x的不等式x+m>kx-1的解集是()A . x≥-1B . x>-1C . x≤-1D . x<-17. (4分)要得到二次函数y=-x2+2x-2的图象,需将y=-x2的图象()A . 向左平移2个单位,再向下平移2个单位B . 向右平移2个单位,再向上平移2个单位C . 向左平移1个单位,再向上平移1个单位D . 向右平移1个单位,再向下平移1个单位8. (4分)(2020·余姚模拟) 如图,将矩形ABCD绕着点A逆时针旋转得到矩形AEFG,点B的对应点E落在边CD上,且DE=EF,若AD= ,则的长为()A .B .C .D . π9. (4分) (2019七下·融安期中) 如图, ∠l=70°,直线a平移后得到直线b,则∠2-∠3=()A . 70°B . 180°C . 110°D . 80°10. (4分)如图,在梯形ABCD中,∠ABC=90º,AE∥CD交BC于E,O是AC的中点,AB=,AD=2,BC=3,下列结论:①∠CAE=30º;②AC=2AB;③S△ADC=2S△ABE;④BO⊥CD,其中正确的是()A . ①②③B . ②③④C . ①③④D . ①②③④二、填空题(本大题有6小题,每小题5分,共30分) (共6题;共30分)11. (5分)分解因式:﹣9=________。
广东省汕头市金平区2024届中考猜题数学试卷含解析
广东省汕头市金平区2024届中考猜题数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)1.实数a、b、c在数轴上的位置如图所示,则代数式|c﹣a|﹣|a+b|的值等于()A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b2.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是( )A.60B.65C.70D.753.下列运算正确的是()A.a2•a3=a6B.a3+a2=a5C.(a2)4=a8D.a3﹣a2=a4.如图,抛物线y=ax2+bx+c与x轴交于点A(-1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②-1≤a≤-;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n-1有两个不相等的实数根.其中结论正确的个数为( )A.1个B.2个C.3个D.4个5.下列各式计算正确的是()A.(b+2a)(2a﹣b)=b2﹣4a2B.2a3+a3=3a6 C.a3•a=a4D.(﹣a2b)3=a6b36.不等式组312840xx->⎧⎨-≤⎩的解集在数轴上表示为()A.B.C.D.7.如图,在平面直角坐标系中,线段AB的端点坐标为A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则K的值不可能是()A.-5 B.-2 C.3 D.58.下列计算正确的是()A.a2•a3=a6B.(a2)3=a6C.a6﹣a2=a4D.a5+a5=a109.如图,AB∥CD,E为CD上一点,射线EF经过点A,EC=EA.若∠CAE=30°,则∠BAF=()A.30°B.40°C.50°D.60°10.若x=-2是关于x的一元二次方程x2+32ax-a2=0的一个根,则a的值为()A.-1或4 B.-1或-4C.1或-4 D.1或4二、填空题(本大题共6个小题,每小题3分,共18分)11.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A.如图,在平面直角坐标系中,点A的坐标为(0,4),OAB沿x轴向右平移后得到O A B''',点A的对应点A'是直线45y x=上一点,则点B与其对应点B'间的距离为__________.B.比较sin53︒__________tan37︒的大小.12.对于二次函数y=x2﹣4x+4,当自变量x满足a≤x≤3时,函数值y的取值范围为0≤y≤1,则a的取值范围为__.-=2016,AO=2BO,则a+b=_____ 13.在数轴上,点A和点B分别表示数a和b,且在原点的两侧,若a b14.已知AD、BE是△ABC的中线,AD、BE相交于点F,如果AD=6,那么AF的长是_____.15.某校为了了解学生双休日参加社会实践活动的情况,随机抽取了100名学生进行调查,并绘成如图所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校双休日参加社会实践活动时间在2~2.5小时之间的学生数大约是全体学生数的________(填百分数).16.如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠P=46°,则∠BAC= ▲度.三、解答题(共8题,共72分)17.(8分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载,某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于24米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.求AB的长(结果保留根号);已知本路段对校车限速为45千米/小时,若测得某辆校车从A到B用时1.5秒,这辆校车是否超速?说明理由.(参考数3≈1.72≈1.4)18.(8分)如图,已知点A,C在EF上,AD∥BC,DE∥BF,AE=CF.(1)求证:四边形ABCD是平行四边形;(2)直接写出图中所有相等的线段(AE=CF除外).19.(8分)如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣32与x轴交于点A(1,0)和点B(﹣3,0).绕点A旋转的直线l:y=kx+b1交抛物线于另一点D,交y轴于点C.(1)求抛物线的函数表达式;(2)当点D在第二象限且满足CD=5AC时,求直线l的解析式;(3)在(2)的条件下,点E为直线l下方抛物线上的一点,直接写出△ACE面积的最大值;(4)如图2,在抛物线的对称轴上有一点P,其纵坐标为4,点Q在抛物线上,当直线l与y轴的交点C位于y轴负半轴时,是否存在以点A,D,P,Q为顶点的平行四边形?若存在,请直接写出点D的横坐标;若不存在,请说明理由.20.(8分)观察下列等式:22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③…第④个等式为;根据上面等式的规律,猜想第n个等式(用含n的式子表示,n是正整数),并说明你猜想的等式正确性.21.(8分)在平面直角坐标系xOy中,函数kyx=(0x>)的图象G经过点A(4,1),直线14l y x b=+∶与图象线段OA ,OC ,BC 围成的区域(不含边界)为W .①当1b =-时,直接写出区域W 内的整点个数;②若区域W 内恰有4个整点,结合函数图象,求b 的取值范围.22.(10分)P 是C 外一点,若射线PC 交C 于点A ,B 两点,则给出如下定义:若0PA PB 3<⋅≤,则点P 为C的“特征点”. ()1当O 的半径为1时.①在点()1P 2,0、()2P 0,2、()3P 4,0中,O 的“特征点”是______; ②点P 在直线y x b =+上,若点P 为O 的“特征点”.求b 的取值范围; ()2C 的圆心在x 轴上,半径为1,直线y x 1=+与x 轴,y 轴分别交于点M ,N ,若线段MN 上的所有点都不是C 的“特征点”,直接写出点C 的横坐标的取值范围.23.(12分)已知关于x 的一元二次方程x 2﹣(2k+1)x+k 2+k =1.(1)求证:方程有两个不相等的实数根;(2)当方程有一个根为1时,求k 的值.24.如图,已知O 的直径10AB =,AC 是O 的弦,过点C 作O 的切线DE 交AB 的延长线于点E ,过点A 作AD DE ⊥,垂足为D ,与O 交于点F ,设DAC ∠,CEA ∠的度数分别是α,β,且045α︒<<︒.(1)用含α的代数式表示β;参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解题分析】根据数轴得到b<a<0<c,根据有理数的加法法则,减法法则得到c-a>0,a+b<0,根据绝对值的性质化简计算.【题目详解】由数轴可知,b<a<0<c,∴c-a>0,a+b<0,则|c-a|-|a+b|=c-a+a+b=c+b,故选A.【题目点拨】本题考查的是实数与数轴,绝对值的性质,能够根据数轴比较实数的大小,掌握绝对值的性质是解题的关键.2、D【解题分析】由题意知:△ABC≌△DEC,∴∠ACB=∠DCE=30°,AC=DC,∴∠DAC=(180°−∠DCA)÷2=(180°−30°)÷2=75°.故选D.【题目点拨】本题主要考查了旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.3、C【解题分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘进行计算即可.【题目详解】A、a2•a3=a5,故原题计算错误;B、a3和a2不是同类项,不能合并,故原题计算错误;C、(a2)4=a8,故原题计算正确;D、a3和a2不是同类项,不能合并,故原题计算错误;故选:C.【题目点拨】此题主要考查了幂的乘方、同底数幂的乘法,以及合并同类项,关键是掌握计算法则.4、D【解题分析】利用抛物线开口方向得到a<0,再由抛物线的对称轴方程得到b=-2a,则3a+b=a,于是可对①进行判断;利用2≤c≤3和c=-3a可对②进行判断;利用二次函数的性质可对③进行判断;根据抛物线y=ax2+bx+c与直线y=n-1有两个交点可对④进行判断.【题目详解】∵抛物线开口向下,∴a<0,而抛物线的对称轴为直线x=-=1,即b=-2a,∴3a+b=3a-2a=a<0,所以①正确;∵2≤c≤3,而c=-3a,∴2≤-3a≤3,∴-1≤a≤-,所以②正确;∵抛物线的顶点坐标(1,n),∴x=1时,二次函数值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以③正确;∵抛物线的顶点坐标(1,n),∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,所以④正确.故选D.【题目点拨】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.5、C【解题分析】各项计算得到结果,即可作出判断.解:A 、原式=4a 2﹣b 2,不符合题意;B 、原式=3a 3,不符合题意;C 、原式=a 4,符合题意;D 、原式=﹣a 6b 3,不符合题意,故选C .6、A【解题分析】分别求得不等式组中两个不等式的解集,再确定不等式组的解集,表示在数轴上即可.【题目详解】312840x x ->⎧⎨-≤⎩①② 解不等式①得,x>1;解不等式②得,x>2;∴不等式组的解集为:x≥2,在数轴上表示为:故选A.【题目点拨】本题考查了一元一次不等式组的解法,正确求得不等式组中每个不等式的解集是解决问题的关键.7、B【解题分析】当直线y=kx-2与线段AB的交点为A点时,把A(-2,4)代入y=kx-2,求出k=-3,根据一次函数的有关性质得到当k≤-3时直线y=kx-2与线段AB有交点;当直线y=kx-2与线段AB的交点为B点时,把B(4,2)代入y=kx-2,求出k=1,根据一次函数的有关性质得到当k≥1时直线y=kx-2与线段AB有交点,从而能得到正确选项.【题目详解】把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,∴当直线y=kx-2与线段AB有交点,且过第二、四象限时,k满足的条件为k≤-3;把B(4,2)代入y=kx-2得,4k-2=2,解得k=1,∴当直线y=kx-2与线段AB有交点,且过第一、三象限时,k满足的条件为k≥1.即k≤-3或k≥1.所以直线y=kx-2与线段AB有交点,则k的值不可能是-2.故选B.【题目点拨】本题考查了一次函数y=kx+b(k≠0)的性质:当k>0时,图象必过第一、三象限,k越大直线越靠近y轴;当k<0时,图象必过第二、四象限,k越小直线越靠近y轴.8、B【解题分析】根据同底数幂乘法、幂的乘方的运算性质计算后利用排除法求解.【题目详解】A、a2•a3=a5,错误;B、(a2)3=a6,正确;C、不是同类项,不能合并,错误;D、a5+a5=2a5,错误;故选B.【题目点拨】本题综合考查了整式运算的多个考点,包括同底数幂的乘法、幂的乘方、合并同类项,需熟练掌握且区分清楚,才不容易出错.9、D【解题分析】解:∵EC=EA.∠CAE=30°,∴∠C=30°,∴∠AED=30°+30°=60°.∵AB∥CD,∴∠BAF=∠AED=60°.故选D.点睛:本题考查的是平行线的性质,熟知两直线平行,同位角相等是解答此题的关键.【解题分析】试题解析:∵x=-2是关于x 的一元二次方程22302x ax a +-=的一个根, ∴(-2)2+32a×(-2)-a 2=0,即a 2+3a-2=0, 整理,得(a+2)(a-1)=0,解得 a 1=-2,a 2=1.即a 的值是1或-2.故选A .点睛:一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.二、填空题(本大题共6个小题,每小题3分,共18分)11、5 >【解题分析】A :根据平移的性质得到OA′=OA ,OO′=BB′,根据点A′在直线45y x =求出A′的横坐标,进而求出OO′的长度,最后得到BB′的长度;B :根据任意角的正弦值等于它余角的余弦值将sin53°化为cos37°,再进行比较.【题目详解】A :由平移的性质可知,OA′=OA =4,OO′=BB′.因为点A′在直线45y x =上,将y =4代入45y x =,得到x =5.所以OO′=5,又因为OO′=BB′,所以点B 与其对应点B′间的距离为5.故答案为5.B :sin53°=cos (90°-53°)=cos37°,tan37°=sin 37?cos37?, 根据正切函数与余弦函数图像可知,tan37°>tan30°,cos37°>cos45°,即tan37°>3 ,cos37°<2,又∵32<,∴tan37°<cos37°,即sin53°>tan37°.故答案是>. 【题目点拨】本题主要考查图形的平移、一次函数的解析式和三角函数的图像,熟练掌握这些知识并灵活运用是解答的关键. 12、1≤a≤1【解题分析】解:∵二次函数y=x1﹣4x+4=(x﹣1)1,∴该函数的顶点坐标为(1,0),对称轴为:x=﹣42 22ba-=-=,把y=0代入解析式可得:x=1,把y=1代入解析式可得:x1=3,x1=1,所以函数值y的取值范围为0≤y≤1时,自变量x的范围为1≤x≤3,故可得:1≤a≤1,故答案为:1≤a≤1.【题目点拨】此题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.13、-672或672【解题分析】∵2016a=,∴a-b=±2016,∵AO=2BO,A和点B分别在原点的两侧∴a=-2b.当a-b=2016时,∴-2b-b=2016,解得:b=-672.∴a=−2×(-672)=1342,∴a+b=1344+(-672)=672.同理可得当a-b=-2016时,a+b=-672, ∴a+b=±672,故答案为:−672或672.14、4【解题分析】由三角形的重心的概念和性质,由AD、BE为△ABC的中线,且AD与BE相交于点F,可知F点是三角形ABC的重心,可得AF=23AD=23×6=4.故答案为4.点睛:此题考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.15、28%.【解题分析】用被抽查的100名学生中参加社会实践活动时间在2~2.5小时之间的学生除以抽查的学生总人数,即可得解.由频数分布直方图知,2~2.5小时的人数为100﹣(8+24+30+10)=28,则该校双休日参加社会实践活动时间在2~2.5小时之间的学生数大约是全体学生数的百分比为28100⨯100%=28%.故答案为:28%.【题目点拨】本题考查了频数分布直方图以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.16、1.【解题分析】由PA、PB是圆O的切线,根据切线长定理得到PA=PB,即三角形APB为等腰三角形,由顶角的度数,利用三角形的内角和定理求出底角的度数,再由AP为圆O的切线,得到OA与AP垂直,根据垂直的定义得到∠OAP为直角,再由∠OAP-∠PAB即可求出∠BAC的度数【题目详解】∵PA,PB是⊙O是切线,∴PA=PB.又∵∠P=46°,∴∠PAB=∠PBA=000 18046=672-.又∵PA是⊙O是切线,AO为半径,∴OA⊥AP.∴∠OAP=90°.∴∠BAC=∠OAP﹣∠PAB=90°﹣67°=1°.故答案为:1【题目点拨】此题考查了切线的性质,切线长定理,等腰三角形的性质,以及三角形的内角和定理,熟练掌握定理及性质是解本题的关键.三、解答题(共8题,共72分)17、(1);(2)此校车在AB路段超速,理由见解析.【解题分析】(1)结合三角函数的计算公式,列出等式,分别计算AD和BD的长度,计算结果,即可.(2)在第一问的基础上,结合时间关系,计算速度,判断,即可.【题目详解】解:(1)由题意得,在Rt△ADC中,tan30°==,解得AD=24.在Rt△BDC 中,tan60°==,解得BD=8所以AB=AD﹣BD=24﹣8=16(米).(2)汽车从A到B用时1.5秒,所以速度为16÷1.5≈18.1(米/秒),因为18.1(米/秒)=65.2千米/时>45千米/时,所以此校车在AB路段超速.【题目点拨】考查三角函数计算公式,考查速度计算方法,关键利用正切值计算方法,计算结果,难度中等.18、(1)见解析;(2)AD=BC,EC=AF,ED=BF,AB=DC.【解题分析】整体分析:(1)用ASA证明△ADE≌△CBF,得到AD=BC,根据一组对边平行且相等的四边形是平行四边形证明;(2)根据△ADE≌△CBF,和平行四边形ABCD的性质及线段的和差关系找相等的线段.解:(1)证明:∵AD∥BC,DE∥BF,∴∠E=∠F,∠DAC=∠BCA,∴∠DAE=∠BCF.在△ADE和△CBF中,E FAE CFDAE BCF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE≌△CBF,∴AD=BC,∴四边形ABCD是平行四边形.(2)AD=BC,EC=AF,ED=BF,AB=DC. 理由如下:∵△ADE≌△CBF,∴AD=BC,ED=BF. ∵AE=CF,∴EC=AF.∵四边形ABCD是平行四边形,∴AB=DC.19、(1)y =12x 2+x ﹣32;(2)y =﹣x +1;(3)当x =﹣2时,最大值为94;(4)存在,点D 的横坐标为﹣3或7或﹣7. 【解题分析】(1)设二次函数的表达式为:y =a (x +3)(x ﹣1)=ax 2+2ax ﹣3a ,即可求解;(2)OC ∥DF ,则1,5AC AO CD OF == 即可求解; (3)由S △ACE =S △AME ﹣S △CME 即可求解;(4)分当AP 为平行四边形的一条边、对角线两种情况,分别求解即可.【题目详解】(1)设二次函数的表达式为:y =a (x +3)(x ﹣1)=ax 2+2ax ﹣3a ,即:332a -=-,解得:12a =, 故函数的表达式为: 21322y x x =+-①; (2)过点D 作DF ⊥x 轴交于点F ,过点E 作y 轴的平行线交直线AD 于点M ,∵OC ∥DF ,∴1,5AC AO CD OF ==OF =5OA =5, 故点D 的坐标为(﹣5,6),将点A 、D 的坐标代入一次函数表达式:y =mx +n 得:650m n m n =-+⎧⎨=+⎩,解得:11.m n =-⎧⎨=⎩ 即直线AD 的表达式为:y =﹣x +1, (3)设点E 坐标为213,22x x x ⎛⎫+- ⎪⎝⎭, 则点M 坐标为(),1x x -+, 则221315122222EM x x x x x =-+--+=--+, ()211912244ACE AME CME S S S EM x ,=-=⨯⨯=-++ ∵104a =-<,故S △ACE 有最大值, 当x =﹣2时,最大值为94;(4)存在,理由:①当AP 为平行四边形的一条边时,如下图,设点D 的坐标为213,22t t t ⎛⎫+- ⎪⎝⎭, 将点A 向左平移2个单位、向上平移4个单位到达点P 的位置,同样把点D 左平移2个单位、向上平移4个单位到达点Q 的位置,则点Q 的坐标为215222t t t ⎛⎫-++ ⎪⎝⎭,, 将点Q 的坐标代入①式并解得:3t ;=- ②当AP 为平行四边形的对角线时,如下图,设点Q 坐标为213,22t t t ⎛⎫+- ⎪⎝⎭,点D 的坐标为(m ,n ), AP 中点的坐标为(0,2),该点也是DQ 的中点,则:20213222,2m t n t t +⎧=⎪⎪⎨++-⎪=⎪⎩ 即: 2111,22m t n t t =-⎧⎪⎨=--+⎪⎩将点D 坐标代入①式并解得:7m =.故点D 的横坐标为:3-77.【题目点拨】本题考查的是二次函数综合运用,涉及到图形平移、平行四边形的性质等,关键是(4)中,用图形平移的方法求解点的坐标,本题难度大.20、(1)52﹣2×4=42+1;(2)(n +1)2﹣2n =n 2+1,证明详见解析.【解题分析】(1)根据①②③的规律即可得出第④个等式;(2)第n 个等式为(n +1)2﹣2n =n 2+1,把等式左边的完全平方公式展开后再合并同类项即可得出右边.【题目详解】(1)∵22﹣2×1=12+1① 32﹣2×2=22+1②42﹣2×3=32+1③∴第④个等式为52﹣2×4=42+1,故答案为:52﹣2×4=42+1, (2)第n 个等式为(n +1)2﹣2n =n 2+1.(n +1)2﹣2n =n 2+2n +1﹣2n =n 2+1.【题目点拨】本题主要考查了整式的运算,熟练掌握完全平方公式是解答本题的关键.21、(1)4;(2)①3个.(1,0),(2,0),(3,0).②514b -≤<-或71144b <≤. 【解题分析】分析:(1)根据点A (4,1)在k y x=(0x >)的图象上,即可求出k 的值; (2)①当1b =-时,根据整点的概念,直接写出区域W 内的整点个数即可.②分a .当直线过(4,0)时,b .当直线过(5,0)时,c .当直线过(1,2)时,d .当直线过(1,3)时四种情况进行讨论即可.详解:(1)解:∵点A (4,1)在k y x =(0x >)的图象上. ∴14k =, ∴4k =.(2)① 3个.(1,0),(2,0),(3,0).② a .当直线过(4,0)时:1404b ⨯+=,解得1b =- b .当直线过(5,0)时:1504b ⨯+=,解得54b =-c .当直线过(1,2)时:1124b ⨯+=,解得74b = d .当直线过(1,3)时:1134b ⨯+=,解得114b =∴综上所述:514b -≤<-或71144b <≤. 点睛:属于反比例函数和一次函数的综合题,考查待定系数法求反比例函数解析式,一次函数的图象与性质,掌握整点的概念是解题的关键,注意分类讨论思想在解题中的应用.22、(1)①)1P 2,0、()2P 0,2;②22b 22-≤≤;(2)m 221>或,m 221<-. 【解题分析】()1①据若03PA PB <⋅≤,则点P 为C 的“特征点”,可得答案;②根据若03PA PB <⋅≤,则点P 为C 的“特征点”,可得2m ≤,根据等腰直角三角形的性质,可得答案; ()2根据垂线段最短,可得PC 最短,根据等腰直角三角形的性质,可得2CM PC =,根据若03PA PB <⋅≤,则点P 为C 的“特征点”,可得答案.【题目详解】解:()))1PA PB 2121211①⋅=⨯=-=,0PA PB 3∴<⋅≤, 点)1P 2,0是O 的“特征点”; ()()PA PB 212131⋅=-⨯+==,0PA PB 3∴<⋅≤,点()2P 0,?2是O 的“特征点”;()()PA PB 414115⋅=-⨯+=,PA PB 3∴⋅>,点()3P 4,0不是O 的“特征点”; 故答案为()1P 2,0、()2P 0,2 ②如图1,在y x b =+上,若存在O 的“特征点”点P ,点O 到直线y x b =+的距离m 2≤.直线1y x b =+交y 轴于点E ,过O 作OH ⊥直线1y x b =+于点H .因为OH 2=.在Rt DOE 中,可知OE 22=.可得1b 2 2.=同理可得2b 22=-.b ∴的取值范围是:22b 2 2.-≤≤()2如图2,设C 点坐标为()m,0,直线y x 1=+,CMP 45∠∴=.PC MN ⊥,CPM 90∠∴=,MC ∴=,PC MC 2=. MC m 1=+.)PC m 1==+)PA PC 1m 11=-=+-,)PB PC 1m 11=+=++ 线段MN 上的所有点都不是C 的“特征点”,PA PB 3∴⋅>,即))21m 11m 11(m 1)13222⎤⎤+-++=+->⎥⎥⎣⎦⎣⎦,解得m 1>或m 1<-,点C 的横坐标的取值范围是m 1>或,m 1<-.故答案为 :(1)①)1P 、()2P 0,2;②b -≤≤(2)m 1>或,m 1<-. 【题目点拨】本题考查一次函数综合题,解()1①的关键是利用若03PA PB <⋅≤,则点P 为C 的“特征点”;解()1②的关键是利用等腰直角三角形的性质得出OE 的长;解()2的关键是利用等腰直角三角形的性质得出()122PC MC m ==+,又利用了3PA PB ⋅>. 23、(2)证明见解析;(2)k 2=2,k 2=2.【解题分析】(2)套入数据求出△=b 2﹣4ac 的值,再与2作比较,由于△=2>2,从而证出方程有两个不相等的实数根; (2)将x =2代入原方程,得出关于k 的一元二次方程,解方程即可求出k 的值.【题目详解】(2)证明:△=b 2﹣4ac ,=[﹣(2k+2)]2﹣4(k 2+k ),=4k 2+4k+2﹣4k 2﹣4k ,=2>2.∴方程有两个不相等的实数根;(2)∵方程有一个根为2,∴22﹣(2k+2)+k 2+k =2,即k 2﹣k =2,解得:k 2=2,k 2=2.【题目点拨】本题考查了根的判别式以及解一元二次方程,解题的关键是:(2)求出△=b 2﹣4ac 的值;(2)代入x =2得出关于k 的一元二次方程.本题属于基础题,难度不大,解决该题型题目时,由根的判别式来判断实数根的个数是关键.24、(1)902βα=︒-;(2)103π 【解题分析】(1)连接OC ,根据切线的性质得到OC ⊥DE ,可以证明AD ∥OC ,根据平行线的性质可得DAC ACO ∠=∠,则根据等腰三角形的性质可得2DAE α∠=,利用90DAE E ∠+∠=︒,化简计算即可得到答案;(2)连接CF ,根据OA OC =,AG CG =可得OF AC ⊥,利用中垂线和等腰三角形的性质可证四边形AFCO 是平行四边形,得到△AOF 为等边三角形,由OA OC =并可得四边形AFCO 是菱形,可证AOF 是等边三角形,有∠FAO=60°,120AOC ∠=︒再根据弧长公式计算即可.【题目详解】解:(1)如图示,连结OC ,∵DE 是O 的切线,∴OC DE ⊥.又AD DE ⊥,∴90D OCE ∠=∠=︒,∴AD OC ,∴DAC ACO ∠=∠.∵OA OC =,∴OCA OAC ∠=∠.∴2DAE α∠=.∵90D ∠=︒,∴90DAE E ∠+∠=︒.∴290αβ+=︒,即902βα=︒-.(2)如图示,连结CF ,∵OA OC =,AG CG =,∴OF AC ⊥,∴FA FC =,∴FAC FCA CAO ∠=∠=∠,∴CF OA ∥,∵AF OC ∥,∴四边形AFCO 是平行四边形,∵OA OC =,∴四边形AFCO 是菱形,∴AF AO OF ==,∴AOF 是等边三角形,∴260FAO α∠==︒,∴120AOC ∠=︒,∵10AB =,∴AC 的长1205101803ππ⋅⋅==. 【题目点拨】本题考查的是切线的性质、菱形的判定和性质、弧长的计算,掌握切线的性质定理、弧长公式是解题的关键.。
汕头初三数学试题及答案
汕头初三数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2x + 3 = 5x - 1B. 2x + 3 = 5x + 1C. 2x + 3 = 5x - 2D. 2x + 3 = 5x + 2答案:B2. 哪个二次方程的解是x = 2?A. x^2 - 4x + 4 = 0B. x^2 - 4x + 3 = 0C. x^2 - 4x + 2 = 0D. x^2 - 4x + 1 = 0答案:A3. 一个圆的半径是5厘米,那么它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π答案:B4. 如果一个多边形的内角和是900度,那么这个多边形有多少条边?A. 5B. 6C. 7D. 8答案:C5. 函数y = 2x + 3的图象经过哪个点?A. (0, 3)B. (1, 5)C. (2, 7)D. (3, 9)答案:B6. 哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:A7. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 10答案:A8. 如果a和b互为倒数,那么ab的值是多少?A. 0B. 1C. -1D. 2答案:B9. 一个等腰三角形的底角是45度,那么顶角是多少度?A. 45B. 60C. 75D. 90答案:D10. 一个数的立方根是3,那么这个数是多少?A. 27B. 9C. 3D. 1答案:A二、填空题(每题3分,共30分)11. 一个数的绝对值是5,这个数可能是______。
答案:±512. 一个数的平方是36,这个数可能是______。
答案:±613. 一个直角三角形的两条直角边分别是3和4,那么斜边的长度是______。
答案:514. 一个等差数列的首项是2,公差是3,那么第5项是______。
答案:1715. 一个等比数列的首项是2,公比是2,那么第4项是______。
广东省汕头市中考数学试题(含答案).docx
2022年中考往年真题练习:汕头中考数学试卷一、挑选题(本大题共8小题,每小题4分,共32分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.- 5的绝对值是()A. 5B. - 5C. 1D. _ 15 5考点分绝对值。
析:分析:根据绝对值的性质求解.解答:解:根据负数的绝对值等于它的相反数,得| - 5|=5.故选A.点评:此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;。
的绝对值是0.2.地球半径约为6400000米,用科学记数法表示为.()A.0.64xl07B. 6.4xl06C. 64xl05D. 640xl04考点分科学记数法一表示'较大的数。
析:分析:科学记数法的形式为axlO11,其中1 <a<10, n为整数.解答:解:6400000=6. 4xl06.故选B.点评:此题考查用科学记数法表示较大的数,其规律为lM|a|<10, n为比原数的整数位数小1的正整数.3.数据8、8、6、5、6、1、6的众数是()A. 1B. 5C. 6D. 8考点分众数。
析:分析:众数指一组数据中出现次数最多的数据,根据众数的定义即可求解.解答:解:6出现的次数最多,故众数是6.故选C.点评:本题主要考查了众数的概念,注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的,比较简单.4.如图所示几何体的主视图是()c. rm考点分简单组合体的三视图。
析:分析:主视图是从立体图形的正面看所得到的图形,找到从正面看所得到的图形即可.注意所有的看到的棱都应表现在主视图中.解答:解:从正面看,此图形的主视图有3列组成,从左到右小正方形的个数是:1, 3, 1.故选:B.点评:本题主要考查了三视图的知识,主视图是从物体的正面看得到的视图,关键是掌握主视图所看的位置.5.下列平面图形,既是中心对称图形,又是轴对称图形的是()A.等腰三角形B.正五边形C.平行四边形D.矩形考点分中心对称图形;轴对称图形。
2024届广东省汕头市潮南区中考猜题数学试卷含解析
2024学年广东省汕头市潮南区中考猜题数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.若代数式3x x -的值为零,则实数x 的值为( ) A .x =0 B .x≠0 C .x =3 D .x≠32.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .4233π-B .8433π-C .8233π-D .843π- 3.把多项式ax 3﹣2ax 2+ax 分解因式,结果正确的是( )A .ax (x 2﹣2x )B .ax 2(x ﹣2)C .ax (x +1)(x ﹣1)D .ax (x ﹣1)24.山西有着悠久的历史,远在100 多万年前就有古人类生息在这块土地上.春秋时期,山西大部分为晋国领地,故山西简称为“晋”,战国初韩、赵、魏三分晋,山西又有“三晋”之称,下面四个以“晋”字为原型的Logo 图案中,是轴对称图形的共有( )A .B .C .D .5.在下列函数中,其图象与x 轴没有交点的是( )A .y=2xB .y=﹣3x+1C .y=x 2D .y=1x6.一元二次方程3x 2-6x+4=0根的情况是A .有两个不相等的实数根B .有两个相等的实数根C .有两个实数根D .没有实数根7.如图,在坐标系中放置一菱形OABC ,已知∠ABC=60°,点B 在y 轴上,OA=1,先将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60°,连续翻转2017次,点B 的落点依次为B 1,B 2,B 3,…,则B 2017的坐标为( )A .(1345,0)B .(1345.5,32)C .(1345,32)D .(1345.5,0)8.已知实数a 、b 满足a b >,则( )A .a 2b >B .2a b >C .a 2b 2->-D .2a 1b -<-9.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为( )A .5sin αB .5sin αC .5cosαD .5cos α10.如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a ,b ,c ,d 之间关系的式子中不正确的是( )A .a ﹣d =b ﹣cB .a+c+2=b+dC .a+b+14=c+dD .a+d =b+c二、填空题(共7小题,每小题3分,满分21分)11.如图,正方形ABCD 的边长为3,点E ,F 分别在边BCCD 上,BE=CF=1,小球P 从点E 出发沿直线向点F 运动,完成第1次与边的碰撞,每当碰到正方形的边时反弹,反弹时反射角等于入射角,则小球P 与正方形的边第2次碰撞到__边上,小球P 与正方形的边完成第5次碰撞所经过的路程为__.12.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,BE与CD相交于点G,且OE=OD,则AP的长为__________.13.如图,在平面直角坐标系xOy中,△ABC的顶点A、C在坐标轴上,点B的坐标是(2,2).将△ABC沿x轴向左平移得到△A1B1C1,点1B落在函数y=-6x.如果此时四边形11AAC C的面积等于552,那么点1C的坐标是________.14.已知AB=AC,tanA=2,BC=5,则△ABC的面积为_______________.15.下面是用棋子摆成的“上”字:如果按照以上规律继续摆下去,那么通过观察,可以发现:第n个“上”字需用_____枚棋子.16.分解因式:2x+xy=_______.17.如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB与CD相交于点P,则tan∠APD的值为______.三、解答题(共7小题,满分69分)18.(10分)解方程311(1)(2)xx x x-=--+.19.(5分)在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.(1)求证:AC是⊙O的切线;(2)若BF=6,⊙O的半径为5,求CE的长.20.(8分)如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.证明:△ADF是等腰三角形;若∠B=60°,BD=4,AD=2,求EC的长,21.(10分)某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.写出销售量y件与销售单价x元之间的函数关系式;写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?22.(10分)在如图的正方形网格中,每一个小正方形的边长均为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C 的坐标分别是(﹣2,0),(﹣3,3).(1)请在图中的网格平面内建立平面直角坐标系,写出点 B 的坐标;(2)把△ABC 绕坐标原点O 顺时针旋转90°得到△A1B1C1,画出△A1B1C1,写出点B 1的坐标;(3)以坐标原点 O 为位似中心,相似比为 2,把△A1B1C1 放大为原来的 2 倍,得到△A 2B 2C 2 画出△A 2B 2C 2,使它与△AB 1C 1 在位似中心的同侧;请在 x 轴上求作一点 P ,使△PBB1 的周长最小,并写出点 P 的坐标.23.(12分)如图,在ABCD 中,6090B ︒<∠<︒,且2AB =,4BC =,F 为AD 的中点,CE AB ⊥于点E ,连结EF ,CF .(1)求证:3EFD AEF ∠=∠;(2)当BE 为何值时,22CE CF -的值最大?并求此时sin B 的值.24.(14分)阅读材料:已知点00(,)P x y 和直线y kx b =+,则点P 到直线y kx b =+的距离d 可用公式0021kx y b d k -+=+计算.例如:求点(2,1)P -到直线1y x =+的距离.解:因为直线1y x =+可变形为10x y -+=,其中1,1k b ==,所以点(2,1)P -到直线1y x =+的距离为:00221(2)1122111kx y bd k -+⨯--+====++.根据以上材料,求:点(1,1)P 到直线32y x =-的距离,并说明点P 与直线的位置关系;已知直线1y x =-+与3y x =-+平行,求这两条直线的距离.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解题分析】根据分子为零,且分母不为零解答即可.【题目详解】 解:∵代数式3x x -的值为零, ∴x =0,此时分母x-3≠0,符合题意.故选A .【题目点拨】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为0,②分母的值不为0,这两个条件缺一不可.2、C【解题分析】连接OD ,根据勾股定理求出CD ,根据直角三角形的性质求出∠AOD ,根据扇形面积公式、三角形面积公式计算,得到答案.【题目详解】解:连接OD ,在Rt △OCD 中,OC =12OD =2, ∴∠ODC =30°,CD =2223OD OC +=∴∠COD =60°,∴阴影部分的面积=260418223=2336023π⨯-⨯⨯π- , 故选:C .【题目点拨】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.3、D【解题分析】先提取公因式ax,再根据完全平方公式把x2﹣2x+1继续分解即可.【题目详解】原式=ax(x2﹣2x+1)=ax(x﹣1)2,故选D.【题目点拨】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.4、D【解题分析】根据轴对称图形的概念求解.【题目详解】A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确.故选D.【题目点拨】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5、D【解题分析】依据一次函数的图象,二次函数的图象以及反比例函数的图象进行判断即可.【题目详解】A.正比例函数y=2x与x轴交于(0,0),不合题意;B.一次函数y=-3x+1与x轴交于(13,0),不合题意;C.二次函数y=x2与x轴交于(0,0),不合题意;D.反比例函数y=1x与x轴没有交点,符合题意;6、D【解题分析】根据∆=b2-4ac,求出∆的值,然后根据∆的值与一元二次方程根的关系判断即可.【题目详解】∵a=3,b=-6,c=4,∴∆=b2-4ac=(-6)2-4×3×4=-12<0,∴方程3x2-6x+4=0没有实数根.故选D.【题目点拨】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.7、B【解题分析】连接AC,如图所示.∵四边形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等边三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.画出第5次、第6次、第7次翻转后的图形,如图所示.由图可知:每翻转6次,图形向右平移2.∵3=336×6+1,∴点B1向右平移1322(即336×2)到点B3.∵B1的坐标为(1.5),∴B3的坐标为(1.5+1322,点睛:本题是规律题,能正确地寻找规律 “每翻转6次,图形向右平移2”是解题的关键.8、C【解题分析】根据不等式的性质进行判断.【题目详解】解:A 、a b >,但a 2b >不一定成立,例如:112>,1122=⨯故本选项错误; B 、a b >,但2a b >不一定成立,例如:12->-,122-⨯=-,故本选项错误;C 、a b >时,a 2b 2->-成立,故本选项正确;D 、a b >时,a b -<-成立,则2a 1b -<-不一定成立,故本选项错误;故选C .【题目点拨】考查了不等式的性质.要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.9、D【解题分析】利用所给的角的余弦值求解即可.【题目详解】∵BC =5米,∠CBA =∠α,∴AB =BC cos α=5cos α. 故选D .【题目点拨】本题主要考查学生对坡度、坡角的理解及运用.10、A【解题分析】观察日历中的数据,用含a的代数式表示出b,c,d的值,再将其逐一代入四个选项中,即可得出结论.【题目详解】解:依题意,得:b=a+1,c=a+7,d=a+1.A、∵a﹣d=a﹣(a+1)=﹣1,b﹣c=a+1﹣(a+7)=﹣6,∴a﹣d≠b﹣c,选项A符合题意;B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+1)=2a+9,∴a+c+2=b+d,选项B不符合题意;C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+1)=2a+15,∴a+b+14=c+d,选项C不符合题意;D、∵a+d=a+(a+1)=2a+1,b+c=a+1+(a+7)=2a+1,∴a+d=b+c,选项D不符合题意.故选:A.【题目点拨】考查了列代数式,利用含a的代数式表示出b,c,d是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、AB,2【解题分析】根据已知中的点E,F的位置,可知入射角的正切值为12,通过相似三角形,来确定反射后的点的位置.再由勾股定理就可以求出小球第5次碰撞所经过路程的总长度.【题目详解】根据已知中的点E,F的位置,可知入射角的正切值为12,第一次碰撞点为F,在反射的过程中,根据入射角等于反射角及平行关系的三角形的相似可得,第二次碰撞点为G,在AB上,且AG=16 AB,第三次碰撞点为H,在AD上,且AH=13 AD,第四次碰撞点为M,在DC上,且DM=13 DC,第五次碰撞点为N,在AB上,且BN=16 AB,第六次回到E点,BE=13 BC.由勾股定理可以得出EF=5,FG=325,GH=125,HM=5,MN=325,NE=125,故小球第5次经过的路程为:5+325+125+5+325=1125,故答案为AB,1125.【题目点拨】本题考查了正方形与轴对称的性质,解题的关键是熟练的掌握正方形与轴对称的性质.12、4.1【解题分析】解:如图所示:∵四边形ABCD是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=1,根据题意得:△ABP≌△EBP,∴EP=AP,∠E=∠A=90°,BE=AB=1,在△ODP和△OEG中,,∴△ODP≌△OEG(ASA),∴OP=OG,PD=GE,∴DG=EP,设AP=EP=x,则PD=GE=6﹣x,DG=x,∴CG=1﹣x,BG=1﹣(6﹣x)=2+x,根据勾股定理得:BC2+CG2=BG2,即62+(1﹣x)2=(x+2)2,解得:x=4.1,∴AP=4.1;故答案为4.1.13、(-5,112)【解题分析】分析:依据点B的坐标是(2,2),BB2∥AA2,可得点B2的纵坐标为2,再根据点B2落在函数y=﹣6x的图象上,即可得到BB2=AA2=5=CC2,依据四边形AA2C2C的面积等于552,可得OC=112,进而得到点C2的坐标是(﹣5,112).详解:如图,∵点B的坐标是(2,2),BB2∥AA2,∴点B2的纵坐标为2.又∵点B2落在函数y=﹣6x的图象上,∴当y=2时,x=﹣3,∴BB2=AA2=5=CC2.又∵四边形AA2C2C的面积等于552,∴AA2×OC=552,∴OC=112,∴点C2的坐标是(﹣5,112).故答案为(﹣5,112).点睛:本题主要考查了反比例函数的综合题的知识,解答本题的关键是熟练掌握反比例函数的性质以及平移的性质.在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度.1425255+ 88【解题分析】作CD⊥AB,由tanA=2,设AD=x,CD=2x,根据勾股定理5,则BD=5-1x(),然后在Rt△CBD中BC2=BD2+CD2,即52=4x2+25-1x⎡⎤⎣⎦(),解得x225+55S△ABC=12AB CD⨯=215252x x x⨯=25255+88【题目详解】如图作CD⊥AB,∵tanA=2,设AD=x,CD=2x,∴AC=5x,∴BD=5-1x(),在Rt△CBD中BC2=BD2+CD2,即52=4x2+25-1x⎡⎤⎣⎦(),x2=25+558,∴S△ABC=12AB CD⨯=215252x x x⨯⨯==25255+88【题目点拨】此题主要考查三角函数的应用,解题的关键是根据题意作出辅助线进行求解.15、4n+2【解题分析】∵第1个有:6=4×1+2;第2个有:10=4×2+2;第3个有:14=4×3+2;……∴第1个有:4n+2;故答案为4n+216、()x x+y.【解题分析】将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.【题目详解】直接提取公因式x即可:2x xy x(x y)+=+.17、1【解题分析】首先连接BE,由题意易得BF=CF,△ACP∽△BDP,然后由相似三角形的对应边成比例,易得DP:CP=1:3,即可得PF:CF=PF:BF=1:1,在Rt△PBF中,即可求得tan∠BPF的值,继而求得答案.【题目详解】如图:,连接BE,∵四边形BCED是正方形,∴DF=CF=CD,BF=BE,CD=BE,BE⊥CD,∴BF=CF,根据题意得:AC∥BD,∴△ACP∽△BDP,∴DP:CP=BD:AC=1:3,∴DP:DF=1:1,∴DP=PF=CF=BF,在Rt△PBF中,tan∠BPF==1,∵∠APD=∠BPF,∴tan∠APD=1.故答案为:1【题目点拨】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.三、解答题(共7小题,满分69分)18、原分式方程无解.【解题分析】根据解分式方程的方法可以解答本方程,去分母将分式方程化为整式方程,解整式方程,验证.【题目详解】方程两边乘(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3即:x2+2x﹣x2﹣x+2=3整理,得x=1检验:当x=1时,(x﹣1)(x+2)=0,∴原方程无解.【题目点拨】本题考查解分式方程,解题的关键是明确解放式方程的计算方法.19、(1)证明见解析;(2)CE=1.【解题分析】(1)根据等角对等边得∠OBE=∠OEB,由角平分线的定义可得∠OBE=∠EBC,从而可得∠OEB=∠EBC,根据内错角相等,两直线平行可得OE∥BC,根据两直线平行,同位角相等可得∠OEA=90°,从而可证AC是⊙O的切线.(2)根据垂径定理可求BH=12BF=3,根据三个角是直角的四边形是矩形,可得四边形OHCE是矩形,由矩形的对边相等可得CE=OH,在Rt△OBH中,利用勾股定理可求出OH的长,从而求出CE的长. 【题目详解】(1)证明:如图,连接OE,∵OB=OE,∴∠OBE=∠OEB,∵ BE平分∠ABC.∴∠OBE=∠EBC,∴∠OEB=∠EBC,∴OE∥BC,∵∠ACB=90°,∴∠OEA=∠ACB=90°,∴ AC是⊙O的切线.(2)解:过O作OH⊥BF,∴BH=12BF=3,四边形OHCE是矩形,∴CE=OH,在Rt△OBH中,BH=3,OB=5,∴,∴CE=1.【题目点拨】本题考查切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线和垂径定理以及勾股定理的运用,具有一定的综合性.20、(1)见解析;(2)EC=1.【解题分析】(1)由AB=AC,可知∠B=∠C,再由DE⊥BC,可知∠F+∠C=90°,∠BDE+∠B=90°,然后余角的性质可推出∠F=∠BDE,再根据对顶角相等进行等量代换即可推出∠F=∠FDA,于是得到结论;(2)根据解直角三角形和等边三角形的性质即可得到结论.【题目详解】(1)∵AB=AC,∴∠B=∠C,∵FE⊥BC,∴∠F+∠C=90°,∠BDE+∠B=90°,∴∠F=∠BDE,而∠BDE=∠FDA,∴∠F=∠FDA,∴AF=AD,∴△ADF是等腰三角形;(2)∵DE⊥BC,∴∠DEB=90°,∵∠B =60°,BD =1,∴BE =12BD =2, ∵AB =AC ,∴△ABC 是等边三角形,∴BC =AB =AD +BD =6,∴EC =BC ﹣BE =1.【题目点拨】本题主要考查等腰三角形的判定与性质、余角的性质、对顶角的性质等知识点,关键根据相关的性质定理,通过等量代换推出∠F =∠FDA ,即可推出结论.21、(1)201800y x =-+;(2)2203000108000w x x =-+-;(3)最多获利4480元.【解题分析】(1)销售量y 为200件加增加的件数(80﹣x )×20; (2)利润w 等于单件利润×销售量y 件,即W=(x ﹣60)(﹣20x+1800),整理即可;(3)先利用二次函数的性质得到w=﹣20x 2+3000x ﹣108000的对称轴为x=75,而﹣20x+1800≥240,x≤78,得76≤x≤78,根据二次函数的性质得到当76≤x≤78时,W 随x 的增大而减小,把x=76代入计算即可得到商场销售该品牌童装获得的最大利润.【题目详解】(1)根据题意得,y=200+(80﹣x )×20=﹣20x+1800, 所以销售量y 件与销售单价x 元之间的函数关系式为y=﹣20x+1800(60≤x≤80);(2)W=(x ﹣60)y=(x ﹣60)(﹣20x+1800)=﹣20x 2+3000x ﹣108000,所以销售该品牌童装获得的利润w 元与销售单价x 元之间的函数关系式为:W=﹣20x 2+3000x ﹣108000;(3)根据题意得,﹣20x+1800≥240,解得x≤78,∴76≤x≤78,w=﹣20x 2+3000x ﹣108000,对称轴为x=﹣30002(20)⨯-=75, ∵a=﹣20<0,∴抛物线开口向下,∴当76≤x≤78时,W 随x 的增大而减小,∴x=76时,W 有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元).所以商场销售该品牌童装获得的最大利润是4480元.【题目点拨】二次函数的应用.22、(1)(﹣4,1);(2)(1,4);(3)见解析;(4)P (﹣3,0).【解题分析】(1)先建立平面直角坐标系,再确定B 的坐标;(2)根据旋转要求画出△A 1B 1C 1,再写出点B 1的坐标;(3)根据位似的要求,作出△A 2B 2C 2;(4)作点B 关于x 轴的对称点B',连接B'B 1,交x 轴于点P ,则点P 即为所求.【题目详解】解:(1)如图所示,点B 的坐标为(﹣4,1);(2)如图,△A 1B 1C 1即为所求,点B 1的坐标(1,4);(3)如图,△A 2B 2C 2即为所求;(4)如图,作点B 关于x 轴的对称点B',连接B'B 1,交x 轴于点P ,则点P 即为所求,P (﹣3,0).【题目点拨】本题考核知识点:位似,轴对称,旋转. 解题关键点:理解位似,轴对称,旋转的意义.23、(1)见解析;(2)1BE =时,22CE CF -的值最大,15sin 4∠=B 【解题分析】(1)延长BA 、CF 交于点G ,利用可证△AFG ≌△DFC 得出CF GF =,AG DC =,根据CE AB ⊥,可证出12EF GC GF ==,得出AEF G ∠=∠,利用2AB =,4BC =,点F 是AD 的中点,得出2AG =,11222AF AD BC ===,则有AG AF =,可得出AFG AEF ∠=∠,得出2EFC AEF G AEF ∠=∠+∠=∠,即可得出结论;(2)设BE=x ,则2AE x =-,4EG x =-,由勾股定理得出222216CE BC BE x =-=-,222328CG EG CE x =+=-,得出282CF x =-,求出222(1)9CE CF x -=--+,由二次函数的性质得出当x=1,即BE=1时,CE 2-CF 2有最大值,21615CE x =-=,由三角函数定义即可得出结果.【题目详解】解:(1)证明:如图,延长CF 交BA 的延长线于点G ,∵F 为AD 的中点,∴AF FD =.在ABCD 中,AB CD ∥,∴G DCF ∠=∠.在AFG 和DFC △中,,,,G DCF AFG DFC AF FD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AFG DFC AAS △≌△,∴CF GF =,AG DC =,∵CE AB ⊥.∴12EF GC GF ==, ∴AEF G ∠=∠,∵2AB =,4BC =,点F 是AD 的中点,∴2AG =,11222AF AD BC ===. ∴AG AF =.∴AFG G ∠=∠.∴AFG AEF ∠=∠.在EFG 中,2EFC AEF G AEF ∠=∠+∠=∠,又∵CFD AFG ∠=∠,∴CFD AEF ∠=∠.∴23EFD EFC CFD AEF AEF AEF ∠=∠+∠=∠+∠=∠(2)设BE x =,则2AE x =-,∵2AG CD AB ===,∴224EG AE AG x x =+=-+=-,在Rt CEG △中,222216CE BC BE x =-=-,在Rt CEG △中,22222(4)16328CG EG CE x x x =+=-+-=-,∵CF GF =, ∴222111(328)82244CF CG CG x x ⎛⎫===-=- ⎪⎝⎭, ∴22222168228(1)9CE CF x x x x x -=--+=-++=--+,∴当1x =,即1BE =时,22CE CF -的值最大,∴CE ==在Rt BEC 中,sin 4CE B BC ∠== 【题目点拨】本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、等腰三角形的判定与性质等知识;证明三角形全等和等腰三角形是解题的关键.24、(1)点P 在直线32y x =-上,说明见解析;(2.【解题分析】解:(1) 求:(1)直线32y x =-可变为320x y --=,0d ==说明点P 在直线32y x =-上;(2)在直线1y x =-+上取一点(0,1),直线3y x =-+可变为30x y +-=则d ==.。
2024届广东省汕头市龙湖实验中学中考数学最后冲刺浓缩精华卷含解析
2024届广东省汕头市龙湖实验中学中考数学最后冲刺浓缩精华卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,AB∥CD,DB⊥BC,∠2=50°,则∠1的度数是()A.40°B.50°C.60°D.140°2.如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.1.其中合理的是()A.①B.②C.①②D.①③3.甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,下列说法错误的是()A.甲的速度是70米/分B.乙的速度是60米/分C.甲距离景点2100米D.乙距离景点420米4.如图,已知Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转,使点D落在射线CA上,DE的延长线交BC于F,则∠CFD的度数为()A.80°B.90°C.100°D.120°5.有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m﹣1;②1014043n n;③1014043n n;④40m+10=43m+1,其中正确的是()A.①②B.②④C.②③D.③④6.四根长度分别为3,4,6,(为正整数)的木棒,从中任取三根.首尾顺次相接都能组成一个三角形,则().A.组成的三角形中周长最小为9 B.组成的三角形中周长最小为10C.组成的三角形中周长最大为19 D.组成的三角形中周长最大为167.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,则可列方程组为()A.100131003x yx y+=⎧⎪⎨+=⎪⎩B.100131003x yx y+=⎧⎪⎨+=⎪⎩C.1003100x yx y+=⎧⎨+=⎩D.1003100x yx y+=⎧⎨+=⎩8.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0D .抛物线的对称轴是直线x =32 9.如图,I 是∆ABC 的内心,AI 向延长线和△ABC 的外接圆相交于点D ,连接BI ,BD ,DC 下列说法中错误的一项是( )A .线段DB 绕点D 顺时针旋转一定能与线段DC 重合B .线段DB 绕点D 顺时针旋转一定能与线段DI 熏合C .∠CAD 绕点A 顺时针旋转一定能与∠DAB 重合D .线段ID 绕点I 顺时针旋转一定能与线段IB 重合10.下列各式:①33+3=63;②177=1;③2+6=8=22;④243=22;其中错误的有( ). A .3个 B .2个 C .1个 D .0个11.如图,某小区计划在一块长为31m ,宽为10m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 1.若设道路的宽为xm ,则下面所列方程正确的是( )A .(31﹣1x )(10﹣x )=570B .31x+1×10x=31×10﹣570C .(31﹣x )(10﹣x )=31×10﹣570D .31x+1×10x ﹣1x 1=57012.如图,等腰直角三角形ABC 位于第一象限,2AB AC ==,直角顶点A 在直线y x =上,其中点A 的横坐标为1,且两条直角边AB ,AC 分别平行于x 轴、y 轴,若反比例函数k y x=的图象与ABC △有交点,则k 的取值范围是( ).A .12k <<B .13k ≤≤C .14k ≤<D .14k ≤≤二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知,正六边形的边长为1cm ,分别以它的三个不相邻的顶点为圆心,1cm 长为半径画弧(如图),则所得到的三条弧的长度之和为__________cm (结果保留π).14.如图,在矩形ABCD 中,AD=3,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE=EF ,则AB 的长为_____.15.在今年的春节黄金周中,全国零售和餐饮企业实现销售额约9260亿元,比去年春节黄金周增长10.2%,将9260亿用科学记数法表示为_____________.16.因式分解:2b 2a 2﹣a 3b ﹣ab 3=_____.17.如图,A 、B 是反比例函数y =(k>0)图象上的点,A 、B 两点的横坐标分别是a 、2a ,线段AB 的延长线交x 轴于点C ,若S △AOC =1.则k =_______.18.已知A 、B 两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线,由A 地到B 地匀速前行,甲、乙行进的路程s 与x (小时)的函数图象如图所示.(1)乙比甲晚出发___小时;(2)在整个运动过程中,甲、乙两人之间的距离随x 的增大而增大时,x 的取值范围是___.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在矩形ABCD 中,E 是BC 边上的点,AE BC DF AE ⊥=,,垂足为F .(1)求证:AF BE =;(2)如果21BE EC :=:,求CDF ∠的余切值. 20.(6分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE ,在小楼的顶端D 处测得障碍物边缘点C 的俯角为30°,测得大楼顶端A 的仰角为45°(点B ,C ,E 在同一水平直线上).已知AB =80m ,DE =10m ,求障碍物B ,C 两点间的距离.(结果保留根号)21.(6分)已知关于x 的一元二次方程x 2﹣(2k+1)x+k 2+k =1.(1)求证:方程有两个不相等的实数根;(2)当方程有一个根为1时,求k 的值.22.(8分)学生对待学习的态度一直是教育工作者关注的问题之一.为此,某区教委对该区部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A 级:对学习很感兴趣;B 级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:此次抽样调查中,共调查了名学生;将图①补充完整;求出图②中C级所占的圆心角的度数.23.(8分)为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列各题:×(1)该班级女生人数是__________,女生收看“两会”新闻次数的中位数是________;(2)对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).统计量平均数(次)中位数(次)众数(次)方差…该班级男生3342…根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小. 24.(10分)一辆汽车,新车购买价30万元,第一年使用后折旧20%,以后该车的年折旧率有所变化,但它在第二、三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值为17.34万元,求这辆车第二、三年的年折旧率. 25.(10分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.求证:△ABC≌△AED;当∠B=140°时,求∠BAE的度数.26.(12分)小明和小刚玩“石头、剪刀、布”的游戏,每一局游戏双方各自随机做出“石头”、“剪刀”、“布”三种手势的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,相同的手势是和局.(1)用树形图或列表法计算在一局游戏中两人获胜的概率各是多少?(2)如果两人约定:只要谁率先胜两局,就成了游戏的赢家.用树形图或列表法求只进行两局游戏便能确定赢家的概率.27.(12分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.求每件甲种、乙种玩具的进价分别是多少元?商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解题分析】试题分析:根据直角三角形两锐角互余求出∠3,再根据两直线平行,同位角相等解答.解:∵DB⊥BC,∠2=50°,∴∠3=90°﹣∠2=90°﹣50°=40°,∵AB∥CD,∴∠1=∠3=40°.故选A.2、B【解题分析】①当频数增大时,频率逐渐稳定的值即为概率,500次的实验次数偏低,而频率稳定在了0.618,错误;②由图可知频数稳定在了0.618,所以估计频率为0.618,正确;③.这个实验是一个随机试验,当投掷次数为1000时,钉尖向上”的概率不一定是0.1.错误,故选B.【题目点拨】本题考查了利用频率估计概率,能正确理解相关概念是解题的关键.3、D【解题分析】根据图中信息以及路程、速度、时间之间的关系一一判断即可.【题目详解】甲的速度=4206=70米/分,故A正确,不符合题意;设乙的速度为x米/分.则有,660+24x-70×24=420,解得x=60,故B正确,本选项不符合题意,70×30=2100,故选项C正确,不符合题意,24×60=1440米,乙距离景点1440米,故D错误,故选D.【题目点拨】本题考查一次函数的应用,行程问题等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.4、B【解题分析】根据旋转的性质得出全等,推出∠B=∠D,求出∠B+∠BEF=∠D+∠AED=90°,根据三角形外角性质得出∠CFD=∠B+∠BEF,代入求出即可.【题目详解】解:∵将△ABC绕点A顺时针旋转得到△ADE,∴△ABC≌△ADE,∴∠B=∠D,∵∠CAB=∠BAD=90°,∠BEF=∠AED,∠B+∠BEF+∠BFE=180°,∠D+∠BAD+∠AED=180°,∴∠B+∠BEF=∠D+∠AED=180°﹣90°=90°,∴∠CFD=∠B+∠BEF=90°,故选:B.【题目点拨】本题考查了旋转的性质,全等三角形的性质和判定,三角形内角和定理,三角形外角性质的应用,掌握旋转变换的性质是解题的关键.5、D【解题分析】试题分析:首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.解:根据总人数列方程,应是40m+10=43m+1,①错误,④正确;根据客车数列方程,应该为,②错误,③正确;所以正确的是③④.故选D.考点:由实际问题抽象出一元一次方程.6、D【解题分析】首先写出所有的组合情况,再进一步根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【题目详解】解:其中的任意三根的组合有3、4、1;3、4、x;3、1、x;4、1、x共四种情况,由题意:从中任取三根,首尾顺次相接都能组成一个三角形,可得3<x<7,即x=4或5或1.①当三边为3、4、1时,其周长为3+4+1=13;②当x=4时,周长最小为3+4+4=11,周长最大为4+1+4=14;③当x=5时,周长最小为3+4+5=12,周长最大为4+1+5=15;④若x=1时,周长最小为3+4+1=13,周长最大为4+1+1=11;综上所述,三角形周长最小为11,最大为11,故选:D.【题目点拨】本题考查的是三角形三边关系,利用了分类讨论的思想.掌握三角形任意两边之和大于第三边,任意两边之差小于第三边是解答本题的关键.7、B【解题分析】设大马有x 匹,小马有y 匹,根据题意可得等量关系:大马数+小马数=100,大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程即可.【题目详解】解:设大马有x 匹,小马有y 匹,由题意得:100131003x y x y +=⎧⎪⎨+=⎪⎩, 故选:B .【题目点拨】本题主要考查的是由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组. 8、D【解题分析】A 、由a=1>0,可得出抛物线开口向上,A 选项错误;B 、由抛物线与y 轴的交点坐标可得出c 值,进而可得出抛物线的解析式,令y=0求出x 值,由此可得出抛物线与x 轴的交点为(1,0)、(1,0),B 选项错误;C 、由抛物线开口向上,可得出y 无最大值,C 选项错误;D 、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-32,D 选项正确. 综上即可得出结论.【题目详解】解:A 、∵a=1>0,∴抛物线开口向上,A 选项错误;B 、∵抛物线y=x 1-3x+c 与y 轴的交点为(0,1),∴c=1,∴抛物线的解析式为y=x 1-3x+1.当y=0时,有x 1-3x+1=0,解得:x 1=1,x 1=1,∴抛物线与x 轴的交点为(1,0)、(1,0),B 选项错误;C 、∵抛物线开口向上,∴y 无最大值,C 选项错误;D 、∵抛物线的解析式为y=x 1-3x+1,∴抛物线的对称轴为直线x=-b 2a =-321 =32,D 选项正确. 故选D .【题目点拨】本题考查了抛物线与x 轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键.9、D【解题分析】解:∵I 是△ABC 的内心,∴AI 平分∠BAC ,BI 平分∠ABC ,∴∠BAD =∠CAD ,∠ABI =∠CBI ,故C 正确,不符合题意;∴BD =CD ,∴BD =CD ,故A 正确,不符合题意;∵∠DAC =∠DBC ,∴∠BAD =∠DBC .∵∠IBD =∠IBC +∠DBC ,∠BID =∠ABI +∠BAD ,∴∠DBI =∠DIB ,∴BD =DI ,故B 正确,不符合题意.故选D .点睛:本题考查了三角形的内切圆和内心的,以及等腰三角形的判定与性质,同弧所对的圆周角相等.10、A【解题分析】,错误,无法计算;②17 =1正确.故选A.11、A【解题分析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm ,根据草坪的面积是570m 1,即可列出方程:(31−1x )(10−x )=570,故选A.12、D【解题分析】设直线y=x 与BC 交于E 点,分别过A 、E 两点作x 轴的垂线,垂足为D 、F ,则A (1,1),而AB=AC=2,则B (3,1),△ABC 为等腰直角三角形,E 为BC 的中点,由中点坐标公式求E 点坐标,当双曲线与△ABC 有唯一交点时,这个交点分别为A 、E ,由此可求出k 的取值范围.解:∵2AC BC ==,90CAB ∠=︒.()1,1A .又∵y x =过点A ,交BC 于点E ,∴2EF ED ==,∴()2,2E ,∴14k ≤≤.故选D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、2π【解题分析】考点:弧长的计算;正多边形和圆.分析:本题主要考查求正多边形的每一个内角,以及弧长计算公式.解:方法一:先求出正六边形的每一个内角=()621806-⨯︒=120°, 所得到的三条弧的长度之和=3×120180r π=2πcm ; 方法二:先求出正六边形的每一个外角为60°,得正六边形的每一个内角120°,每条弧的度数为120°,三条弧可拼成一整圆,其三条弧的长度之和为2πcm .14、2【解题分析】【分析】根据旋转的性质知AB=AE ,在直角三角形ADE 中根据勾股定理求得AE 长即可得.【题目详解】∵四边形ABCD 是矩形,∴∠D=90°,BC=AD=3,∵将矩形ABCD 绕点A 逆时针旋转得到矩形AEFG ,∴EF=BC=3,AE=AB ,∵DE=EF ,∴AD=DE=3,∴,∴,故答案为【题目点拨】本题考查矩形的性质和旋转的性质,熟知旋转前后哪些线段是相等的是解题的关键.15、9.26×1011【解题分析】试题解析: 9260亿=9.26×1011故答案为: 9.26×1011点睛: 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.16、﹣ab(a﹣b)2【解题分析】首先确定公因式为ab,然后提取公因式整理即可.【题目详解】2b2a2﹣a3b﹣ab3=ab(2ab-a2-b2)=﹣ab(a﹣b)2,所以答案为﹣ab(a﹣b)2.【题目点拨】本题考查了因式分解-提公因式法,解题的关键是掌握提公因式法的概念.17、2【解题分析】解:分别过点A、B作x轴的垂线,垂足分别为D、E.则AD∥BE,AD=2BE=ka,∴B、E分别是AC、DC的中点.∴△ADC∽△BEC,∵BE:AD=1:2,∴EC:CD=1:2,∴EC=DE=a,∴OC=3a,又∵A(a,ka),B(2a,2ka),∴S△AOC=12AD×CO=12×3a×ka=32k=1,解得:k=2.18、2,0≤x≤2或43≤x≤2.【解题分析】(2)由图象直接可得答案;(2)根据图象求出甲乙的函数解析式,再求出方程组的解集即可解答【题目详解】(2)由函数图象可知,乙比甲晚出发2小时.故答案为2.(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,有两种情况:一是甲出发,乙还未出发时:此时0≤x≤2;二是乙追上甲后,直至乙到达终点时:设甲的函数解析式为:y=kx,由图象可知,(4,20)在函数图象上,代入得:20=4k,∴k=5,∴甲的函数解析式为:y=5x①设乙的函数解析式为:y=k′x+b,将坐标(2,0),(2,20)代入得:202k bk b=+⎧⎨=+⎩,解得2020kb=⎧⎨=-⎩,∴乙的函数解析式为:y=20x﹣20 ②由①②得52020y xy x=⎧⎨=-⎩,∴43203xy⎧=⎪⎪⎨⎪=⎪⎩,故43≤x≤2符合题意.故答案为0≤x≤2或43≤x≤2.【题目点拨】此题考查函数的图象和二元一次方程组的解,解题关键在于看懂图中数据三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)见解析;(2)cot CDF∠=. 【解题分析】(1)矩形的性质得到AD BC AD BC =,∥,得到AD AE DAF AEB ∠∠=,=,根据AAS 定理证明ABE DFA ≌;(2)根据全等三角形的性质、勾股定理、余切的定义计算即可.【题目详解】解:(1)证明:四边形ABCD 是矩形,AD BC AD BC ∴=,∥,AD AE DAF AEB ∴∠∠=,=,在ABE △和DFA 中,DAF AEB AFD EBA AD AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,ABE DFA ∴≌,AF BE ∴=;(2)ABE DFA ≌,AD AE DAF AEB ∴∠∠=,=,设CE k =,21BE EC :=:, 2BE k ∴=,3AD AE k ∴==, 225AB AE BE k ∴=-=,9090ADF CDF ADF DAF ∠+∠︒∠+∠︒=,=,CDF DAE ∴∠∠=,CDF AEB ∴∠∠=,225cot cot 55BE k CDF AEB AB k∴∠=∠===.【题目点拨】本题考查的是矩形的性质、勾股定理的运用、全等三角形的判定和性质以及余切的定义,掌握全等三角形的判定定理和性质定理是解题的关键.20、(70﹣103)m .【解题分析】过点D 作DF ⊥AB 于点F ,过点C 作CH ⊥DF 于点H .通过解Rt ADF 得到DF 的长度;通过解Rt CDE △得到CE的长度,则BC BE CE =-.【题目详解】如图,过点D 作DF ⊥AB 于点F ,过点C 作CH ⊥DF 于点H .则DE =BF =CH =10m ,在Rt ADF 中,∵AF =80m −10m =70m ,45ADF ∠=,∴DF =AF =70m .在Rt CDE △中,∵DE =10m ,30DCE ∠=,∴103()tan303DE CE m ===, ∴(703).BC BE CE m =-=-答:障碍物B ,C 两点间的距离为(70103).m -21、(2)证明见解析;(2)k 2=2,k 2=2.【解题分析】(2)套入数据求出△=b 2﹣4ac 的值,再与2作比较,由于△=2>2,从而证出方程有两个不相等的实数根; (2)将x =2代入原方程,得出关于k 的一元二次方程,解方程即可求出k 的值.【题目详解】(2)证明:△=b 2﹣4ac ,=[﹣(2k+2)]2﹣4(k 2+k ),=4k 2+4k+2﹣4k 2﹣4k ,=2>2.∴方程有两个不相等的实数根;(2)∵方程有一个根为2,∴22﹣(2k+2)+k2+k=2,即k2﹣k=2,解得:k2=2,k2=2.【题目点拨】本题考查了根的判别式以及解一元二次方程,解题的关键是:(2)求出△=b2﹣4ac的值;(2)代入x=2得出关于k 的一元二次方程.本题属于基础题,难度不大,解决该题型题目时,由根的判别式来判断实数根的个数是关键.22、(1)200,(2)图见试题解析(3)540【解题分析】试题分析:(1)根据A级的人数与所占的百分比列式进行计算即可求出被调查的学生人数;(2)根据总人数求出C级的人数,然后补全条形统计图即可;(3)1减去A、B两级所占的百分比乘以360°即可得出结论.试题解析::(1)调查的学生人数为:5025%=200名;(2)C级学生人数为:200-50-120=30名,补全统计图如图;(3)学习态度达标的人数为:360×[1-(25%+60%]=54°.答:求出图②中C级所占的圆心角的度数为54°.考点:条形统计图和扇形统计图的综合运用23、(1)20,1;(2)2人;(1)男生比女生的波动幅度大.【解题分析】(1)将柱状图中的女生人数相加即可求得总人数,中位数为第10与11名同学的次数的平均数.(2)先求出该班女生对“两会”新闻的“关注指数”,即可得出该班男生对“两会”新闻的“关注指数”,再列方程解答即可.(1)比较该班级男、女生收看“两会”新闻次数的波动大小,需要求出女生的方差.【题目详解】(1)该班级女生人数是2+5+6+5+2=20,女生收看“两会”新闻次数的中位数是1.故答案为20,1.(2)由题意:该班女生对“两会”新闻的“关注指数”为1320=65%,所以,男生对“两会”新闻的“关注指数”为60%.设该班的男生有x人,则136xx-++()=60%,解得:x=2.答:该班级男生有2人.(1)该班级女生收看“两会”新闻次数的平均数为122536455220⨯+⨯+⨯+⨯+⨯=1,女生收看“两会”新闻次数的方差为:2222223153263353423520⨯-+⨯-+⨯-+-+-()()()()()=1310. ∵2>1310,∴男生比女生的波动幅度大. 【题目点拨】本题考查了平均数,中位数,方差的意义.解题的关键是明确平均数表示一组数据的平均程度,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.24、这辆车第二、三年的年折旧率为15%.【解题分析】设这辆车第二、三年的年折旧率为x ,则第二年这就后的价格为30(1-20%)(1-x )元,第三年折旧后的而价格为30(1-20%)(1-x )2元,与第三年折旧后的价格为17.34万元建立方程求出其解即可.【题目详解】设这辆车第二、三年的年折旧率为x ,依题意,得()()230120%117.34x --=整理得()210.7225x -=,解得1 1.85x =,20.15x =.因为折旧率不可能大于1,所以1 1.85x =不合题意,舍去.所以0.1515%x ==答:这辆车第二、三年的年折旧率为15%.【题目点拨】本题是一道折旧率问题,考查了列一元二次方程解实际问题的运用,解答本题时设出折旧率,表示出第三年的折旧后价格并运用价格为11.56万元建立方程是关键.25、(1)详见解析;(2)80°.【分析】(1)根据∠ACD =∠ADC ,∠BCD =∠EDC =90°,可得∠ACB =∠ADE ,进而运用SAS 即可判定全等三角形; (2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE 的度数.【解题分析】(1)根据∠ACD=∠ADC ,∠BCD=∠EDC=90°,可得∠ACB=∠ADE ,进而运用SAS 即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE 的度数.【题目详解】证明:(1)∵AC=AD ,∴∠ACD=∠ADC ,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE ,在△ABC 和△AED 中,BC ED ACB ADE AC AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△AED (SAS );解:(2)当∠B=140°时,∠E=140°,又∵∠BCD=∠EDC=90°,∴五边形ABCDE 中,∠BAE=540°﹣140°×2﹣90°×2=80°.【题目点拨】考点:全等三角形的判定与性质.26、(1),13(2)29【解题分析】解:(1)画树状图得:∵总共有9种等可能情况,每人获胜的情形都是3种,∴两人获胜的概率都是13. (2)由(1)可知,一局游戏每人胜、负、和的机会均等,都为13.任选其中一人的情形可画树状图得:∵总共有9种等可能情况,当出现(胜,胜)或(负,负)这两种情形时,赢家产生,∴两局游戏能确定赢家的概率为:29.(1)根据题意画出树状图或列表,由图表求得所有等可能的结果与在一局游戏中两人获胜的情况,利用概率公式即可求得答案.(2)因为由(1)可知,一局游戏每人胜、负、和的机会均等,都为13.可画树状图,由树状图求得所有等可能的结果与进行两局游戏便能确定赢家的情况,然后利用概率公式求解即可求得答案.27、(1)甲,乙两种玩具分别是15元/件,1元/件;(2)共有四种方案.【解题分析】(1)设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.【题目详解】解:设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,x=15,经检验x=15是原方程的解.∴40﹣x=1.甲,乙两种玩具分别是15元/件,1元/件;(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,,解得20≤y<2.因为y是整数,甲种玩具的件数少于乙种玩具的件数,∴y取20,21,22,23,共有4种方案.考点:分式方程的应用;一元一次不等式组的应用.。
汕头中考数学试题及答案
汕头中考数学试题及答案高中数学试题及答案第一节选择题1.若 a 和 b 都是正整数且 7a = 9b,则 a:b =A.1:7B.3:4C.2:3D.4:9答案:C2.设函数 f(x) 的反函数为 f^(-1)(x),若 f(3) = 4,f^(-1)(4) =A.1B.2C.3D.4答案:33.已知二次函数 y = ax^2 + bx + c 的图像经过点 (2, 3),(1, 1),(4, 5),则 a + b + c 的值为A.11B.12C.13D.14答案:134.若直线 y = kx + 1 与抛物线 y = x^2 + px + q 相切,则 k 的取值范围是A.0 < k < 1B.k > 1C.k < 0D.k = -1答案:0 < k < 15.已知等腰梯形 ABCD,AB ∥ CD,AB = 6 cm,BC = AD = 8 cm,若角 A = 60°,则梯形的面积为A.24 cm^2B.30√3 cm^2C.36 cm^2D.48 cm^2答案:24 cm^2第二节解答题1.解方程 3x + 5 = 2(x - 1) + 5。
解:将等式两边的数字合并,得到 3x + 5 = 2x + 3。
移项得 3x - 2x = 3 - 5,即 x = -2。
2.已知直线 l 与直线 m 的夹角为 60°,直线 l 的斜率为 2,求直线 m 的斜率。
解:由直线 l 和直线 m 的夹角为 60°,说明 l 和 m 的斜率之积为tan(60°) = √3。
设直线 m 的斜率为 k,则2k = √3,解得k = √3 / 2。
3.已知函数 f(x) 的图像经过点 (1, 3) 和 (2, 5),求函数 f(x) 的解析式。
解:设函数 f(x) 的解析式为 y = ax + b,代入已知条件得到以下方程组:a +b = 32a + b = 5解方程组得 a = 2,b = 1,因此函数 f(x) 的解析式为 y = 2x + 1。
广东汕头数学中考试题及答案
广东汕头数学中考试题及答案一、选择题(每题4分,共40分)1. 下列哪个数是无理数?A. 3.14B. 根号2C. 0.33333...D. 22/7答案:B2. 一个等腰三角形的底边长为6,高为4,其周长是多少?A. 12B. 14C. 16D. 18答案:C3. 函数y=2x+3的图象经过哪个象限?A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限答案:C4. 如果一个数的平方等于9,那么这个数是多少?A. 3C. 3或-3D. 以上都不是答案:C5. 一个圆的直径为10,那么它的面积是多少?A. 25πB. 50πC. 100πD. 200π答案:B6. 以下哪个方程是一元二次方程?A. x+2=0B. x^2+2x+1=0C. 2x-3=0D. x^3-2=0答案:B7. 一个正方体的体积是27立方厘米,它的棱长是多少?A. 3厘米B. 6厘米C. 9厘米D. 27厘米答案:A8. 一个数的绝对值是5,这个数可能是?B. -5C. 5或-5D. 以上都不是答案:C9. 一个直角三角形的两个直角边长分别为3和4,斜边长是多少?A. 5B. 6C. 7D. 8答案:A10. 以下哪个是不等式?A. 3x+2=11B. 2x-3>5C. x^2-4=0D. 以上都是答案:B二、填空题(每题4分,共20分)11. 一个等差数列的首项是2,公差是3,那么第5项是多少?答案:1712. 一个二次函数的顶点坐标是(1,-4),且经过点(3,0),那么这个二次函数的解析式是?答案:y=a(x-1)^2-413. 一个三角形的内角和是多少度?答案:180度14. 一个圆的半径是5厘米,那么它的周长是多少?答案:10π厘米15. 一个数的相反数是-7,那么这个数是多少?答案:7三、解答题(每题10分,共40分)16. 解方程:2x-5=3x+2。
答案:x=-717. 已知一个三角形的两边长分别为5和7,且这两边夹角为60度,求第三边长。
2024届广东省汕头市潮阳区中考数学模拟精编试卷含解析
2024届广东省汕头市潮阳区中考数学模拟精编试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是()A.t<B.t>C.t≤D.t≥2.实数213-的倒数是()A.52-B.52C.35D.353.半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()A.3B.4C.5D.74.若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为()A.2 B.8 C.﹣2 D.﹣85.如图,A,B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束. 设运动时间为x,弦BP的长度为y,那么下面图象中可能表示y与x的函数关系的是A.①B.④C.②或④D.①或③6.下列运算正确的是()A42=±B.2525+=C.a2•a3=a5D.(2a)3=2a37.在数轴上标注了四段范围,如图,则表示8的点落在()A.段①B.段②C.段③D.段④8.下列计算或化简正确的是()A.234265+=B.842=C.2(3)3-=-D.2733÷=9.已知二次函数(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程2x3x m0-+=的两实数根是A.x1=1,x2=-1 B.x1=1,x2=2C.x1=1,x2=0 D.x1=1,x2=310.已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A,B两个样本的下列统计量对应相同的是()A.平均数B.标准差C.中位数D.众数二、填空题(共7小题,每小题3分,满分21分)11.如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P= 40°,则∠BAC= .12.如图,把一个面积为1的正方形分成两个面积为12的长方形,再把其中一个面积为12的长方形分成两个面积为14的正方形,再把其中一个面积为14的正方形分成两个面积为18的长方形,如此进行下去……,试用图形揭示的规律计算:111111248163264+++++11128256++=__________.13.把多项式3x2-12因式分解的结果是_____________.14.如图1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,点E,F分别是线段BC,AC的中点,连结EF.(1)线段BE与AF的位置关系是,AFBE=.(2)如图2,当△CEF绕点C顺时针旋转a时(0°<a<180°),连结AF,BE,(1)中的结论是否仍然成立.如果成立,请证明;如果不成立,请说明理由.(3)如图3,当△CEF绕点C顺时针旋转a时(0°<a<180°),延长FC交AB于点D,如果AD=6﹣23,求旋转角a的度数.15.方程3211xx x---=1的解是___.16.如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是_____cm.17.用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于a b、的等式为________.三、解答题(共7小题,满分69分)18.(10分)29的910除以20与18的差,商是多少?19.(5分)如图,在△ABC中,点D是AB边的中点,点E是CD边的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.求证:DB=CF;(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.20.(8分)某校对学生就“食品安全知识”进行了抽样调查(每人选填一类),绘制了如图所示的两幅统计图(不完整)。
广东省汕头市名校2024届中考数学最后冲刺浓缩精华卷含解析
广东省汕头市名校2024学年中考数学最后冲刺浓缩精华卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知点A,B分别是反比例函数y=kx(x<0),y=1x(x>0)的图象上的点,且∠AOB=90°,tan∠BAO=12,则k的值为()A.2 B.﹣2 C.4 D.﹣4 2.如图,数轴上表示的是下列哪个不等式组的解集()A.53xx≥-⎧⎨>-⎩B.53xx>-⎧⎨≥-⎩C.53xx<⎧⎨<-⎩D.53xx<⎧⎨>-⎩3.已知圆锥的侧面积为10πcm2,侧面展开图的圆心角为36°,则该圆锥的母线长为()A.100cm B.10cm C.10cm D.1010cm4.将2001×1999变形正确的是()A.20002﹣1 B.20002+1 C.20002+2×2000+1 D.20002﹣2×2000+15.将抛物线向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为()A.B.C.D.6.计算4×(–9)的结果等于A.32 B.–32 C.36 D.–367.如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为()A.3 B.4﹣3C.4 D.6﹣238.上体育课时,小明5次投掷实心球的成绩如下表所示,则这组数据的众数与中位数分别是()1 2 3 4 5成绩(m)8.2 8.0 8.2 7.5 7.8A.8.2,8.2 B.8.0,8.2 C.8.2,7.8 D.8.2,8.09.下列计算正确的有()个①(﹣2a2)3=﹣6a6②(x﹣2)(x+3)=x2﹣6 ③(x﹣2)2=x2﹣4 ④﹣2m3+m3=﹣m3⑤﹣16=﹣1.A.0 B.1 C.2 D.310.如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是()A.91032π⎛⎝米2B.932π⎛⎝米2C.9632π⎛-⎝米2D.(693π-米211.以坐标原点为圆心,以2个单位为半径画⊙O,下面的点中,在⊙O上的是()A.(1,1) B.2,2) C.(1,3) D.(12)12.已知二次函数y=(x+a)(x﹣a﹣1),点P(x0,m),点Q(1,n)都在该函数图象上,若m<n,则x0的取值范围是()A.0≤x0≤1B.0<x0<1且x0≠1 2C .x 0<0或x 0>1D .0<x 0<1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,将边长为6的正方形ABCD 绕点A 逆时针方向旋转30°后得到正方形A′B′C′D′,则图中阴影部分面积为_______平方单位.14.如图,在△ABC 中,AB=AC ,tan ∠ACB=2,D 在△ABC 内部,且AD=CD ,∠ADC=90°,连接BD ,若△BCD 的面积为10,则AD 的长为_____.15.如图,已知抛物线223y x x =--+与坐标轴分别交于A ,B ,C 三点,在抛物线上找到一点D ,使得∠DCB=∠ACO ,则D 点坐标为____________________.16.如图,六边形ABCDEF 的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________.17.如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD=58°,则∠BCD 的度数是_____.18.已知,则=_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg.且不高于180元/kg,经销一段时间后得到如下数据:销售单价x(元/kg)120 130 (180)每天销量y(kg)100 95 (70)设y与x的关系是我们所学过的某一种函数关系.(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,销售利润最大?最大利润是多少?20.(6分)如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD为45°,在B点测得D点的仰角∠CBD为60°.求这两座建筑物的高度(结果保留根号).21.(6分)(操作发现)(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB 上取点E,使∠DCE=30°,连接AF,EF.①求∠EAF的度数;②DE与EF相等吗?请说明理由;(类比探究)(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:①∠EAF的度数;②线段AE,ED,DB之间的数量关系.22.(8分)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?23.(8分)解不等式组:,并把解集在数轴上表示出来.24.(10分)已知A、B、C三地在同一条路上,A地在B地的正南方3千米处,甲、乙两人分别从A、B两地向正北方向的目的地C匀速直行,他们分别和A地的距离s(千米)与所用的时间t(小时)的函数关系如图所示.(1)图中的线段l1是(填“甲”或“乙”)的函数图象,C地在B地的正北方向千米处;(2)谁先到达C地?并求出甲乙两人到达C地的时间差;(3)如果速度慢的人在两人相遇后立刻提速,并且比先到者晚1小时到达C地,求他提速后的速度.25.(10分)正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是______;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.26.(12分)如今,旅游度假成为了中国人庆祝传统春节的一项的“新年俗”,山西省旅发委发布的《2018年“春节”假日旅游市场总结分析报告》中称:山西春节旅游供需两旺,实现了“旅游接待”与“经济效益”的双丰收,请根据图表信息解决问题:(1)如图1所示,山西近五年春节假日接待海内外游客的数量逐年增加,2018年首次突破了“千万”大关,达到万人次,比2017年春节假日增加万人次.(2)2018年2月15日﹣20日期间,山西省35个重点景区每日接待游客数量如下:日期2月15日(除夕)2月16日(初一)2月17日(初二)2月18日(初三)2月19日(初四)2月20日(初五)日接待游客数量(万人次)7.56 82.83 119.51 84.38 103.2 151.55这组数据的中位数是万人次.(3)根据图2中的信息预估:2019年春节假日山西旅游总收入比2018年同期增长的百分率约为,理由是.(4)春节期间,小明在“青龙古镇第一届新春庙会”上购买了A,B,C,D四枚书签(除图案外完全相同).正面分别印有“剪纸艺术”、“国粹京剧”、“陶瓷艺术”、“皮影戏”的图案(如图3),他将书签背面朝上放在桌面上,从中随机挑选两枚送给好朋友,求送给好朋友的两枚书签中恰好有“剪纸艺术”的概率.27.(12分)已知抛物线y=ax2+bx+c.(Ⅰ)若抛物线的顶点为A(﹣2,﹣4),抛物线经过点B(﹣4,0)①求该抛物线的解析式;②连接AB,把AB所在直线沿y轴向上平移,使它经过原点O,得到直线l,点P是直线l上一动点.设以点A,B,O,P为顶点的四边形的面积为S,点P的横坐标为x,当22时,求x的取值范围;(Ⅱ)若a>0,c>1,当x=c时,y=0,当0<x<c时,y>0,试比较ac与l的大小,并说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解题分析】首先过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,易得△OBD∽△AOC,又由点A,B分别在反比例函数y=k x(x <0),y=1x (x >0)的图象上,即可得S △OBD =12 ,S △AOC =12|k|,然后根据相似三角形面积的比等于相似比的平方,即可求出k 的值 【题目详解】解:过点A 作AC ⊥x 轴于C ,过点B 作BD ⊥x 轴于D ,∴∠ACO=∠ODB=90°, ∴∠OBD+∠BOD=90°, ∵∠AOB=90°, ∴∠BOD+∠AOC=90°, ∴∠OBD=∠AOC , ∴△OBD ∽△AOC , 又∵∠AOB=90°,tan ∠BAO=12, ∴OB AO =12, ∴BOD OACS S=14 ,即112142k ,解得k=±4, 又∵k <0, ∴k=-4, 故选:D . 【题目点拨】此题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法。
2024届广东省汕头市高三上学期期中考数学试题及答案
汕头市2023-2024学年度普通高中毕业班期中调研测试数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,能表示集合{}220A x x x =--≤∣与{05}B x x =<<∣关系的Venn 图是()A. B.CD.2.已知复数1z -与复数2(1)8i z +-都是纯虚数,则z =( )A.1i+ B.12i+ C.12i± D.12i-3.设22tan22.5,2sin13cos13,1tan 22.5a b c ===-)A.a c b <<B.a b c <<C.c b a<< D.b<c<a4.为了进一步学习贯彻党的二十大精神,推进科普宣传教育,激发学生的学习热情,营造良好的学习氛围,不断提高学生对科学、法律、健康等知识的了解,某学校组织全校班级开展“红色百年路•科普万里行”知识竞赛.现抽取10个班级的平均成绩:70717376787881858990、、、、、、、、、,据此估计该校各个班级平均成绩的第40百分位数为( )A.77B.78C.76D.805.已知ABC ,点D 在线段BC 上(不包括端点),向量AD xAB y AC =+ ,12x y+的最小值为( )A.B. 2+C. 3D. 2+6. 图1是一个水平放置且高为6的直三棱柱容器111ABC A B C -,现往内灌进一些水,设水深为h .将容器底面的一边AB 固定于地面上,再将容器倾斜,当倾斜到某一位置时,水面形状恰好为11A B C ,如图2,.则h =( )A.3B.4C. D.67.已知函数()sin πf x x =图象的一部分如图1,则图2中的函数图象所对应的函数解析式是( )A.122y f x ⎛⎫=-⎪⎝⎭B. 122x y f ⎛⎫=-⎪⎝⎭C.12x y f ⎛⎫=- ⎪⎝⎭D.()21y f x =-8.设()0,1a ∈,若函数()(1)xxf x a a =++在()0,∞+递增,则a 的取值范围是( )A.B. ⎫⎪⎪⎭C. ⎫⎪⎪⎭D.⎛ ⎝二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.设A B 、为两个互斥的事件,且()()0,0P A P B >>,则( )A.()0P AB = B.()()()P AB P A P B =C (1P A B = D.()()()P A B P A P B =+ 10.已知圆22:(2)1C x y -+=,点P 是直线:0l x y +=上一动点,过点P 作直线PA PB 、分别与圆C 相切于点A B 、,则( )A.圆C 上恰有一个点到l 的距离为12B.直线AB 恒过定点31,22⎛⎫- ⎪⎝⎭的.C. AB的最小值是 D.四边形ACBP 面积的最小值为211.如图,在长方体1111ABCD A B C D -中,124AB BB BC M N ===,,分别为棱111,A D AA 的中点,则下列结论正确的是()A.MN //平面1ABCB.1B D ⊥平面CMNC.异面直线CN 和ABD.若P 为线段11A C 上动点,则点P 到平面CMN 的距离不是定值12.对于函数()1sin sin22f x x x =+,则下列结论正确的是( )A.2π是()f x 一个周期 B.()f x 在[]0,2π上有3个零点C.()f xD.()f x 在π0,2⎡⎤⎢⎣⎦上是增函数三、填空题:本题共4小题,每小题5分,共20分.第16题第一空2分,第二空3分.13. 以下4幅散点图所对应的样本相关系数1234r r r r 、、、的大小关系为__________.的的14.高中数学教材含必修类课本2册,选择性必修类课本3册,现从中选择3册,要求两类课本中各至少选一册,则不同的选法共有__________种.(用数字作答)15.如图,在三棱锥S ABC -中,1,,SA AB BC SA AB BC AB ===⊥⊥,若2SC =,则直线SA 与BC 所成角的大小是__________.16.三等分角是“古希腊三大几何问题”之一,目前尺规作图仍不能解决这个问题.古希腊数学家Pappus (约300~350前后)借助圆弧和双曲线给出了一种三等分角的方法:如图,以角的顶点C 为圆心作圆交角的两边于A ,B 两点;取线段AB 的三等分点O ,D ;以B 为焦点,A ,D 为顶点作双曲线H .双曲线H 与弧AB 的交点记为E ,连接CE ,则13BCE ACB ∠∠=.①双曲线H 的离心率为________;②若π2ACB ∠=,||AC =,CE 交AB 于点P ,则||OP =________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.记n S 为数列{}()0,Nn n a a n *>∈的前n 项和,已知.(1)求{}n a 的通项公式;(2)设11a =,证明:1223111112n n a a a a a a ++++< 18.如图,长方体1111ABCD A B C D -中,2AB =,11BC CC ==,若在CD 上存在点E ,使得1A E ⊥平面11AB D .(1)求DE 的长;(2)求平面11AB D 与平面1BB E 夹角的余弦值.19.某种疾病的历史资料显示,这种疾病的自然痊愈率为20%.为试验一种新药,在有关部门批准后,某医院把此药给10个病人服用,试验方案为:若这10个病人中至少有5人痊愈,则认为这种药有效,提高了治愈率;否则认为这种药无效.假设每个病人是否痊愈是相互独立的.(1)如果新药有效,把治愈率提高到了80%,求经试验认定该药无效的概率p ;(精确到0.001,参考数据:12243648101010101C 2C 2C 2C 262201+⨯+⨯+⨯+⨯=)(2)根据(1)中p 值的大小解释试验方案是否合理.20.在凸四边形ABCD 中,对角线AC BD 、交于点E,且,2,4,BE ED AE EC AB AD ====.(1)若1EC =,求BAD ∠的余弦值;(2)若π4ABD ∠=,求边BC 的长.21.设椭圆22221(0)x y a b a b +=>>、下顶点分别为,4A B AB =、.过点()0,1E ,且斜率为k 的直线l 与x 轴相交于点G ,与椭圆相交于C D 、两点.(1)若GC DE =,求k 的值;(2)是否存在实数k ,使得直线AC 平行于直线BD ?证明你的结论.22.已知函数()e ()x f x a a =∈R ,2()g x x =.(1)若()f x 的图像在点(1,f (1))处的切线过(3,3),求函数y =xf (x )的单调区间;(2)当a >0时,曲线f (x )与曲线g (x )存在唯一的公切线,求实数a 的值.汕头市2023-2024学年度普通高中毕业班期中调研测试数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,能表示集合{}220A x x x =--≤∣与{05}B x x =<<∣关系的Venn 图是()A. B.C. D.【答案】D 【解析】【分析】解一元二次不等式,结合集合的交运算即可判断.【详解】因为{}{}22012A xx x x x =--≤=-≤≤∣∣,又{05}B xx =<<∣,所以{02}A B xx ⋂=<≤∣,所以A B A ≠ ,A B B ≠I ,A B ⋂≠∅,根据选项的Venn 图可知选项D 符合.故选:D.2.已知复数1z -与复数2(1)8i z +-都是纯虚数,则z =( )A.1i + B.12i + C.12i ± D.12i-【答案】D 【解析】【分析】设i z a b =+,由题意列出方程组,求解即可.【详解】解:设i z a b =+,则1(1)i z a b -=-+,()()()222218i=1i 8i=(+1)218i z a b a b b a ⎡⎤+-++--++-⎣⎦,由题意可得()()22100102180a b a b b a -=⎧⎪≠⎪⎨+-=⎪⎪+-≠⎩,解得12a b =⎧⎨=-⎩,所以12z i =-.故选:D.3.设22tan22.5,2sin13cos13,1tan 22.5a b c ===-)A.a c b <<B.a b c <<C.c b a <<D.b<c<a【答案】C 【解析】【分析】根据二倍角公式化简,然后根据正弦函数的单调性比较大小.【详解】22tan 22.5tan 4511tan 22.5a ︒==︒=-︒,2sin13cos13sin 26b =︒︒=︒,sin 25c ===︒,因为sin y x =在090x <<︒时单调递增,所以sin 25sin 26sin 901︒<︒<︒=,即c b a <<.故选:C.4.为了进一步学习贯彻党的二十大精神,推进科普宣传教育,激发学生的学习热情,营造良好的学习氛围,不断提高学生对科学、法律、健康等知识的了解,某学校组织全校班级开展“红色百年路•科普万里行”知识竞赛.现抽取10个班级的平均成绩:70717376787881858990、、、、、、、、、,据此估计该校各个班级平均成绩的第40百分位数为( )A.77 B.78 C.76 D.80【答案】A 【解析】【分析】由第p 百分位数计算公式可得答案.【详解】因共10个数据,则0010404i =⨯=,故该组数据的第40百分位数为从小到大排列第4个数据与第5个数据的平均数,即7678772+=.故选:A5.已知ABC ,点D 在线段BC 上(不包括端点),向量AD xAB y AC =+ ,12x y+的最小值为( )A. B.2+C. 3D. 2+【答案】C 【解析】【分析】由平面向量共线定理的推论得到1x y +=,利用基本不等式“1”的妙用求出最小值.【详解】ABC ,点D 在线段BC 上(不包括端点),故存在λ,使得BD BC λ=,即AD AB AC AB λλ-=- ,即()1AD AC AB λλ=+- ,因为向量AD xAB y AC =+,所以,1y x λλ==-,可得1x y +=,0x >,0y >,由基本不等式得()12121233y x x y x y x x y ⎛+=++=+++≥+=+ ⎝,当且仅当y =,即21y x ==-时等号成立.故选:C .6.图1是一个水平放置且高为6的直三棱柱容器111ABC A B C -,现往内灌进一些水,设水深为h .将容器底面的一边AB 固定于地面上,再将容器倾斜,当倾斜到某一位置时,水面形状恰好为11A B C ,如图2,则h =( )A.3B.4C. D.6【答案】B 【解析】【分析】利用两个几何体中的装水的体积相等,列出方程,即可求解.【详解】在图1中的几何体中,水的体积为1ABC V S h =⋅△,在图2的几何体中,水的体积为111111*********ABC A B C C A B C ABC A B C ABC V V V S S S --=-=⨯-⨯⨯= ,因为12V V =,可得4ABC ABC S h S ⋅= ,解得4h =.故选:B.7.已知函数()sin πf x x =图象的一部分如图1,则图2中的函数图象所对应的函数解析式是( )A.122y f x ⎛⎫=- ⎪⎝⎭ B. 122x y f ⎛⎫=- ⎪⎝⎭C.12x y f ⎛⎫=- ⎪⎝⎭D.()21y f x =-【答案】D 【解析】【分析】根据三角函数的变换即可得答案.【详解】解:由题意可知,图2中的图象是将图1中的图象纵坐标不变,横坐标先缩短12,再向右平移12个单位得到的.所以对应的解析式为()21y f x =-.故选:D.8.设()0,1a ∈,若函数()(1)xxf x a a =++在()0,∞+递增,则a 的取值范围是( )A.B. ⎫⎪⎪⎭C. ⎫⎪⎪⎭D.⎛ ⎝【答案】B 【解析】【分析】把函数()f x 在()0,∞+递增利用导数转化为1ln ln(1)xa a a a +⎛⎫≥- ⎪+⎝⎭在()0,∞+上恒成立,利用指数函数单调性得ln 1ln(1)aa -≤+,解对数不等式即可得解.的【详解】因为函数()(1)xxf x a a =++在()0,∞+递增,所以()ln (1)ln(1)0x xf x a a a a '=+++≥在()0,∞+上恒成立,则(1)ln(1)ln xxa a a a ++≥-,即1ln ln(1)xa a a a +⎛⎫≥-⎪+⎝⎭在()0,∞+上恒成立,由函数1x a y a +⎛⎫= ⎪⎝⎭单调递增得01ln 1ln(1)a a a a +⎛⎫=≥- ⎪+⎝⎭,又()0,1a ∈,所以()11,2a +∈,所以()ln 10a +>,所以()ln 1ln 01a a a ⎧+≥-⎨<<⎩即()1101a a a ⎧+≥⎨<<⎩1a ≤<,所以a 的取值范围是⎫⎪⎪⎭.故选:B二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.设A B 、为两个互斥的事件,且()()0,0P A P B >>,则( )A.()0P AB = B.()()()P AB P A P B =C.()1P A B = D.()()()P A B P A P B =+ 【答案】AD 【解析】【分析】根据互斥事件的含义及概率计算公式逐项判定即可.【详解】因为A B 、为两个互斥的事件,且()()0,0P A P B >>,所以A B ⋂=∅,即()0P AB =,故A 正确,B 错误;因为A B 、为两个互斥的事件,不一定为对立事件,所以,A B 也不一定为对立事件,故(P A B ⋃不一定为1,故C 错误;因为A B 、为两个互斥的事件,所以()()()P A B P A P B =+ ,故D 正确,故选:AD .10.已知圆22:(2)1C x y -+=,点P 是直线:0l x y +=上一动点,过点P 作直线PA PB 、分别与圆C 相切于点A B 、,则( )A.圆C 上恰有一个点到l 的距离为12 B.直线AB 恒过定点31,22⎛⎫- ⎪⎝⎭C. AB 的最小值是D.四边形ACBP 面积的最小值为2【答案】BC 【解析】【分析】利用圆心到直线的距离求解选项A ;利用圆的标准方程和直线恒过定点的求解方法求解选项B ;利用弦长公式求解选项C ;利用切线长公式求解选项D.【详解】圆心(2,0)C ,半径1r =,对A ,圆心(2,0)C 到直线:0l x y +=的距离为d ==,所以圆上的点到直线l 112-<,圆上的点到直线l 112>,所以圆C 上恰有两个点到l 的距离为12,A 错误;对B ,设(,)P t t -,由题意可知,,A B 都在以PC 为直径的圆上,又(2,0)C ,所以PC 为直径的圆的方程为22222(2)224t t t t x y +-+⎛⎫⎛⎫-++=⎪ ⎪⎝⎭⎝⎭,整理得,()22220x y t x ty t +-+++=,联立()2222(2)1220x y x y t x ty t ⎧-+=⎪⎨+-+++=⎪⎩可得,(2)320t x ty t -+-+=,即为直线AB 的方程,即23(2)0x t x y ----=令23020x x y -=⎧⎨--=⎩,解得3122,x y ==-,所以直线AB 恒过定点31,22⎛⎫- ⎪⎝⎭,B 正确;对C ,因为直线AB 恒过定点31,22⎛⎫-⎪⎝⎭,当定点31,22⎛⎫-⎪⎝⎭与圆心(2,0)C 连线垂直于AB 时,圆心(2,0)C 到直线AB 的距离最大,则AB 最小,定点31,22⎛⎫-⎪⎝⎭与圆心(2,0)C之间的距离为1d =,所以min2AB ==,C 正确;对D ,四边形ACBP 的面积为PA CA PA =,根据切线长公式可得,PA =,当PC 最小时,PA最小,min PC d ==,所以PA 最小值为1,即四边形ACBP 面积的最小值为1,D 错误;故选:BC.11.如图,在长方体1111ABCD A B C D -中,124AB BB BC M N ===,,分别为棱111,A D AA 中点,则下列结论正确的是()A.MN //平面1ABC 的的B.1B D ⊥平面CMNC.异面直线CN 和ABD.若P 为线段11A C 上的动点,则点P 到平面CMN 的距离不是定值【答案】AD 【解析】【分析】建立空间直角坐标系,根据线面平行的判定定理,利用空间平面向量的数量积运算性质、夹角公式逐一判断即可.【详解】建立如图所示空间直角坐标系,则()()()()()()()11110,4,0,2,0,0,2,4,0,0,4,4,0,0,4,2,0,4,2,4,4A C D A B C D ,()()1,4,4,0,4,2M N 对于 A ,因为()()11,0,22,0,42NM BC NM ===,, 所以1//BC MN ,又1BC ⊂平面1ABC ,MN ⊄平面1ABC ,所以MN //平面1ABC ,故 A 正确;对于B : ()()()12,4,41,4,42,4,2B D CM CN =-=-=- ,,,设平面CMN 的法向量为(),,m x y z = ,则0.0.m CM m CN ⎧⋅=⎪⎨⋅=⎪⎩即440.2420.x y z x y z -++=⎧⎨-++=⎩令1z =,则32.2x y =-=-,所以平面CMN 的一个法向量为32,,12m ⎛⎫=-- ⎪⎝⎭ ,因为1B D 与32,,12m ⎛⎫=-- ⎪⎝⎭ 不平行,所以 1B D ⊥平面CMN 不成立,故 B错误;对于C :()()2,4,20,4,0CN AB =-=-,, 设异面直线CN 和AB 所成的角为θ,则cos cos ,CN AB CN AB CN ABθ⋅====⋅,故C 错误;对于 D ,设()[]()1112,4,00,1A P A C λλλλ==-∈,所以()1122,44,4CP CA A P λλ=+=--,又平面CMN 的一个法向量为32,,12m ⎛⎫=-- ⎪⎝⎭ 所以点 P 到平面CMN的距离m CP d m⋅==不是定值.故 D 正确.故选 :AD12.对于函数()1sin sin22f x x x =+,则下列结论正确的是( )A.2π是()f x 的一个周期 B.()f x 在[]0,2π上有3个零点C.()f xD.()f x 在π0,2⎡⎤⎢⎣⎦上是增函数【答案】ABC 【解析】【分析】对于A ,根据周期的定义即可判断;对于B ,令()0f x =即可求得零点;对于CD ,对()f x 求导,令()0f x '=,判断单调性即可.【详解】对于A ,因为()()()()112πsin 2πsin 22πsin sin 222f x x x x x f x +=+++=+=,所以2π是()f x 的一个周期,A 正确;对于B ,当()1sin sin 202f x x x =+=,[]0,2πx ∈时,sin sin cos 0x x x +=,即sin (1cos )0x x +=,即sin 0x =或1cos 0x +=,解得0x =或πx =或2πx =,所以()f x 在[]0,2π上有3个零点,故B 正确;对于C ,由A 可知,只需考虑求()f x 在[)0,2π上的最大值即可.()1sin sin 2sin sin cos 2f x x x x x x =+=+,则()22cos cos sin f x x x x '=+-22cos cos 1x x =+-,令()0f x '=,求得1cos 2x =或cos 1x =-,所以当π0,3x ⎛⎫∈ ⎪⎝⎭或5π,2π3x ⎛⎫∈ ⎪⎝⎭时,1cos 12x <<,此时()0f x '>,则()f x 在π5π0,,,2π33⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭上单调递增,当π5π,33x ⎛⎫∈⎪⎝⎭时,11cos 2x -≤<,此时()0f x '≤,但不恒为0,则()f x 在π5π,33⎛⎫⎪⎝⎭上单调递减,则当π3x =时,函数()f x 取得最大值,为ππ12πsin sin 3323f ⎛⎫=+=+=⎪⎝⎭C 正确;对于D ,由C 可知,()f x 在π0,2⎡⎤⎢⎥⎣⎦上不是增函数,D 错误.故选:ABC三、填空题:本题共4小题,每小题5分,共20分.第16题第一空2分,第二空3分.13. 以下4幅散点图所对应的样本相关系数1234r r r r 、、、的大小关系为__________.【答案】2431r r r r <<<【解析】【分析】根据散点图及相关系数的概念判断即可;【详解】根据散点图可知,图①③成正相关,图②④成负相关,所以12340,0,0,0r r r r ><,又图①②的散点图近似在一条直线上,所以图①②两变量的线性相关程度比较高,图③④的散点图比较分散,故图③④两变量的线性相关程度比较低,即1||r 与2||r 比较大,3||r 与4||r 比较小,所以2431r r r r <<<.故答案为:2431r r r r <<<14.高中数学教材含必修类课本2册,选择性必修类课本3册,现从中选择3册,要求两类课本中各至少选一册,则不同的选法共有__________种.(用数字作答)【答案】9【解析】【分析】根据选取的必修类课本数量分类即可.【详解】第一类,只选取一册必修类课本的选法有1223C C 6=种;第二类,两册必修类课本都选的选法有2123C C 3=种.综上,满足条件的选法共有639+=种.故答案:915.如图,在三棱锥S ABC -中,1,,SA AB BC SA AB BC AB ===⊥⊥,若2SC =,则直线SA 与BC 所成角的大小是__________.【答案】π3【解析】【分析】利用空间向量可得SC SA AB BC =++,在根据模长可求得12SA BC ⋅= ,即可求出直线SA 与BC所成角的大小是π3.【详解】根据题意可得SC SA AB BC =++,又2SC = ,所以可得()22222222SC SA AB BCSA AB BC SA AB BC AB SA BC=++=+++⋅+⋅+⋅为1110024SA BC =+++++⋅=,即可知12SA BC ⋅= ,设直线SA 与BC 所成的角为θ,则112cos 112SA BC SA BC θ===⨯⋅ ,又[)0,πθ∈,所以π3θ=.故答案为:π316.三等分角是“古希腊三大几何问题”之一,目前尺规作图仍不能解决这个问题.古希腊数学家Pappus (约300~350前后)借助圆弧和双曲线给出了一种三等分角的方法:如图,以角的顶点C 为圆心作圆交角的两边于A ,B 两点;取线段AB 的三等分点O ,D ;以B 为焦点,A ,D 为顶点作双曲线H .双曲线H 与弧AB 的交点记为E ,连接CE ,则13BCE ACB ∠∠=.①双曲线H 的离心率为________;②若π2ACB ∠=,||AC =,CE 交AB 于点P ,则||OP =________.【答案】①.2②.7-【解析】【分析】①根据图形关系确定2c a =即可求解;利用面积之比1sin 21sin 2ACPBCPAC CP ACP AP S S BP BC CP BCP ⋅∠==⋅∠△△,进而可求出3BP =-,再根据OP OB BP =-求解.【详解】①由题可得,,OA a OB c ==所以2c a =,所以双曲线H 的离心率为2ca=;②,因为π2ACB ∠=,且AC BC ==,所以6AB ==,又因为13BCE ACB ∠∠=,所以ππ,,36ACP BCP ∠=∠=所以1sin 21sin 2ACP BCPAC CP ACP APS S BP BC CP BCP⋅∠===⋅∠△△,所以AP =因为1)6AB AP BP BP =+=+=,解得3BP =-,所以7OP OB BP =-=-故答案为:2; 7-四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.记n S 为数列{}()0,N n n a a n *>∈的前n项和,已知.(1)求{}n a 的通项公式;(2)设11a =,证明:1211112n n a a a a +++< 【答案】(1)1(21)n a n a =-⋅(2)证明见解析【解析】【分析】(1)根据题意,得到21n S n a =⋅,得到2n ≥时,211(1)n S n a -=-⋅,两式相减可得1(21)n a n a =-⋅,进而求得数列{}n a 的通项公式.(2)由(1)知1(21)n a n a =-⋅,求得11111()22121n n a a n n +=--+,结合裂项法求和,即可求解.【小问1详解】解:由((n n -=+-=21n S n a =⋅,当2n ≥时,211(1)n S n a -=-⋅,两式相减可得221111(1)(21)n n S S n a n a n a --=--=-⋅,即1(21)n a n a =-⋅,当1n =时,211111a S a a ==⋅=,适合上式,所以数列{}n a 的通项公式1(21)n a n a =-⋅.【小问2详解】解:由(1)知1(21)n a n a =-⋅,当11a =时,21n a n =-,则111111()(21)(21)22121n n a a n n n n +==--+-+,所以1223111111111111[(1)(()](1)23352121221n n a a a a a a n n n ++++=-+-++-=--++ ,因为1021n >+,所以111(12212n -<+,所以1223111112n n a a a a a a ++++< .18.如图,长方体1111ABCD A B C D -中,2AB =,11BC CC ==,若在CD 上存在点E ,使得1A E ⊥平面11AB D .(1)求DE 的长;(2)求平面11AB D 与平面1BB E 夹角的余弦值.【答案】(1)12;(2【解析】【分析】(1)建立空间坐标系,设DE a =,令11A E AB ⊥即可求出a 的值;(2)求出平面1BB E 的法向量n ,计算n 和1A E 的夹角即可得出二面角的大小.【详解】(1)以D 为原点,以DA ,DC ,1DD 为轴建立空间直角坐标系D xyz -,如图所示:设DE a =,则(0E ,a ,0),(1A ,0,0),1(1A ,0,1),1(1B ,2,1),1(0D ,0,1),∴1(0AB = ,2,1),11(1D B =,2,0),1(1A E =- ,a ,1)-,AE ^Q 平面11AB D ,∴1AB AE ⊥ ,即1210E a A AB ⋅=-=,解得12a =,12DE ∴=.(2)由(1)可知1(1A E =- ,12,1)-为平面11AB D 的法向量,(1BE =- ,32-,0),1(0BB = ,0,1),设平面1BB E 的法向量为(n x = ,y ,)z ,则1·0·0n BB n BE ⎧=⎨=⎩ ,即0302z x y =⎧⎪⎨--=⎪⎩,令2y =可得(3n =-,2,0),1cos A E ∴<,11·A E A E n n n >===.∴平面11AB D 与平面1BB E【点睛】方法点睛:二面角的求法方法一:(几何法)找→作(定义法、三垂线法、垂面法)→证(定义)→指→求(解三角形);方法二:(向量法)首先求出两个平面的法向量,m n ;再代入公式cos m n m nα⋅=±(其中,m n分别是两个平面的法向量,α是二面角的平面角.)求解.(注意先通过观察二面角的大小选择“±”号)19.某种疾病的历史资料显示,这种疾病的自然痊愈率为20%.为试验一种新药,在有关部门批准后,某医院把此药给10个病人服用,试验方案为:若这10个病人中至少有5人痊愈,则认为这种药有效,提高了治愈率;否则认为这种药无效.假设每个病人是否痊愈是相互独立的.(1)如果新药有效,把治愈率提高到了80%,求经试验认定该药无效的概率p ;(精确到0.001,参考数据:12243648101010101C 2C 2C 2C 262201+⨯+⨯+⨯+⨯=)(2)根据(1)中p 值的大小解释试验方案是否合理.【答案】19. 0.006p ≈ 20. 试验方案合理【解析】【分析】(1)先分析新药无效的情况:10中0人或1人或2人或3人或4 人痊愈,由此求解出无效的概率;(2)结合(1)该药无效的概率分析试验方案的合理性得解.【小问1详解】设通过试验痊愈的人数为变量X ,则()10,0.8B X ,所以经试验认定该药无效的概率为:()()()()()()501234p P X P X P X P X P X P X =<==+=+=+=+=()()()()()()()()1098273640123410101010100.20.20.80.20.80.20.80.20.8C C C C C =⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯()()102341234101010100.214444C C C C =⨯+⨯+⨯++⨯+⨯()()1024681234101010100.212222C C C C =⨯+⨯+⨯++⨯+⨯10622010.0065=≈.【小问2详解】由题意,新药是有效的,由(1)得经试验认定该药无效的概率为0.006p =,概率很小是小概率事件,故试验方案合理.20.在凸四边形ABCD 中,对角线AC BD 、交于点E ,且,2,4,BE ED AE EC AB AD ====.(1)若1EC =,求BAD ∠的余弦值;(2)若π4ABD ∠=,求边BC 的长.【答案】(1)(2【解析】【分析】(1)设BE ED x ==,在ABD △与AED △中,分别利用余弦定理建立方程求解BD =,然后在ABD △中由余弦定理求解;(2)在ABD △中由正弦定理得sin 1ADB ∠=,从而求得π2ADB ∠=,进一步利用直角三角形的性质得AE =,cos BEC ∠=,在BCE 中由余弦定理求解即可.【小问1详解】因为1EC =,所以22,3AE EC AC ===,设BE ED x ==,在ABD △中,由余弦定理得222cos 2AD BD ABADB AD BD +-∠===⋅在AED △中,由余弦定理得222cos 2AD ED AEADB AD ED+-∠===⋅,=,解得x =BD =,在ABD △中,由余弦定理得222cos 2AB AD BD BAD AB AD +-∠===⋅;【小问2详解】在ABD △中,由正弦定理得sin sinAB ADADB ABD=∠∠,所以πsin sin 14AB ADB ABD AD ∠=∠==,又ADB ∠为三角形的内角,所以π2ADB ∠=,所以BD AD ==,BE ED ==AE ==,所以cos cos EDAED BEC AE ∠=∠==,又12EC AE ==在BCE 中,由余弦定理得2222cos BC BE EC BE EC BEC=+-⋅∠552222=+-=,所以BC =21.设椭圆22221(0)x y a b a b +=>>、下顶点分别为,4A B AB =、.过点()0,1E ,且斜率为k 的直线l 与x 轴相交于点G ,与椭圆相交于C D 、两点.(1)若GC DE =,求k 的值;(2)是否存在实数k ,使得直线AC 平行于直线BD ?证明你的结论.【答案】(1)(2)不存在实数k ,使得直线AC 平行于直线BD ,证明见解析.【解析】【分析】(1)由题意,列出基本量方程组,进而求出椭圆方程,设()11,C x y ,()22,D x y ,直线l 方程为1y kx =+,直曲联立,结合韦达定理,求出CD 的中点横坐标,据题意推出CD 的中点即为EG 的中点,列方程即可求出k 的值;(2)据题意,若//AC BD ,则//AC BD,进而得到213x x =-,由(2)得()12111221211126322393323k x x x x x k x x x x x k ⎧+=-=-=-⎪⎪+⎨⎪=-=-=-⎪+⎩,即()2222932323k k k =++,即可得出答案.【小问1详解】根据题意,22224c e a b a b c ⎧==⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得2264a b ⎧=⎨=⎩,所以椭圆的方程为22164x y +=,当0k =时,直线l 方程为1y =,与x 轴无交点,不符合题意;当0k ≠时,设直线l 方程为1y kx =+,则1,0G k ⎛⎫-⎪⎝⎭,设()11,C x y ,()22,D x y ,由221164y kx x y =+⎧⎪⎨+=⎪⎩得()2223690k x kx ++-=,()223636230k k ∆=++>,所以122623k x x k +=-+,122923x x k =-+,所以CD 的中点横坐标为2323k k-+,EG 的中点横坐标为12k -,又因为GC DE ,且四点共线,取EG 中点H ,则||||EH GH =,所以||||||||CG GH DE EH -=-,即||||CH DH =,所以H 是CD 的中点,即EG 与CD 的中点重合,即231232k k k -=-+,解得k =【小问2详解】不存在实数k ,使直线AC 平行于直线BD ,证明如下:由题意()0,2A ,()0,2B -,则()11,2AC x y =- ,()22,2BD x y =+,若//AC BD 则//AC BD,所以()()1221220x y x y +--=,化简得()12211220x y x y x x -++=,即()()()1221121120x kx x kx x x +-+++=,化简得213x x =-,,由(2)得()12111221211126322393323k x x x x x kx x x x x k ⎧+=-=-=-⎪⎪+⎨⎪=-=-=-⎪+⎩,所以12212323323k x k x k ⎧=⎪⎪+⎨⎪=⎪+⎩,故()2222932323k k k =++,整理得22332k k =+,无解,所以不存在实数k ,使直线AC 平行于直线BD .22.已知函数()e ()x f x a a =∈R ,2()g x x =.(1)若()f x 的图像在点(1,f (1))处的切线过(3,3),求函数y =xf (x )的单调区间;(2)当a >0时,曲线f (x )与曲线g (x )存在唯一的公切线,求实数a 的值.【答案】(1)单调递增区间为(1,)-+∞,单调递减区间为(,1)-∞- (2)24e a =【解析】【分析】(1)先由切线方程求出1ea =,利用导数求出函数的单调区间;(2)设公切线与两曲线的切点为()11,e x x a ,()222,x x ,利用分离参数法求出()1112412eex x x xa -==,()11x >,构造函数4(1)()e xx F x -=,利用导数判断出F (x )的单调性和最大值,即可求得.【小问1详解】由()e x f x a =得()e x f x a '=,又1e f a =(),所以在x =1处切线方程为()e e 1y a a x -=-,代入(3,3)得1ea =所以1()e x y xf x x -==,1(1)e x y x -'=+,由0'>y 得1x >-,由0'<y 得1x <-,所以单调递增区间为(1,)-+∞,单调递减区间为(,1)-∞-.【小问2详解】设公切线与两曲线的切点为()11,e xx a ,()222,x x ,易知12x x ≠,由1122212e e 2x x a x k a x x x -===-,122221222222e 2x x x a x x x x --=-=,所以2122222x x x x -=,由0a >,故20x >,所以212 20x x =->,故11x >,所以()1112412e ex x x x a -==,()11x >,构造函数4(1)()exx F x -=,()1x >问题等价于直线y =a 与曲线y =F (x )在x >1时有且只有一个交点,4(2)()exx F x -'=,当(1,2)x ∈时,F (x )单调递增;当(2,)x ∈+∞时,F (x )单调递减;()F x 的最大值为24(2)e F =,(1)0F =,当x →+∞时,F (x )→0,24ea =.。
2024年广东省汕头市中考数学模拟试题
2024年广东省汕头市中考数学模拟试题一、单选题1.下列运算正确的是( )A .236a a a ⋅=B .2334a a a +=C .()326328a b a b -=-D .()()2222a a a +-=-2.某种冠状病毒的大小约为0.000125mm ,该数用科学记数法表示正确的是( ) A .30.12510-⨯ B .41.2510-⨯ C .31.2510-⨯ D .40.12510-⨯ 3.下列各组数中,互为相反数的是( )A .2- 与B .2- 与C .2 与 2D .- 与 4.已知α、β是关于x 的一元二次方程22(23)0x m x m +++=的两个不相等的实数根,且满足111αβ+=-,则m 的值是( )A .3B .1C .3或1-D .3-或1 5.若点(1,22)P a a +-在第一象限,则a 的取值范围在数轴上表示为( ) A . B .C .D .6.为了落实“双减”政策,进一步丰富文体活动,学校准备购进一批篮球和足球,已知每个篮球的价格比每个足球的价格多20元,用1500元购进篮球的数量比用800元购进足球的数量多5个,如果设每个足球的价格为x 元,那么可列方程为( )A .1500800520x x -=+ B .1500800520x x -=- C .8001500520x x -=+ D .8001500520x x -=- 7.如图,在矩形ABCD 中,1BC =,60ADB ∠=︒,动点P 沿折线AD DB →运动到点B ,同时动点Q 沿折线DB BC →运动到点C ,点,P Q 在矩形边上的运动速度为每秒1个单位长度,点P ,Q 在矩形对角线上的运动速度为每秒2个单位长度.设运动时间为t 秒,PBQ V 的面积为S ,则下列图象能大致反映S 与t 之间函数关系的是( )A .B .C .D .8.中国“二十四节气”已被列入联合国教科文组织人类非物质文化遗产代表作名录,下列四幅作品分别代表“立春”、“立夏”、“芒种”、“大雪”,其中既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 9.如图是一盏可调节台灯及其示意图.固定支撑杆AO 垂直底座MN 于点O ,AB 与BC 是分别可绕点A 和B 旋转的调节杆,台灯灯罩可绕点C 旋转调节光线角度,在调节过程中,最外侧光线CD 、CE 组成的DCE ∠始终保持不变.现调节台灯,使外侧光线CD MN ∥,CE BA ∥,若158BAO ∠=︒,则DCE ∠=( )A .58︒B .68︒C .32︒D .22︒10.一组数据2,2,2,3,5,8,13,若加入一个数a ,一定不会发生变化的统计量是( )A .方差B .平均数C .中位数D .众数二、填空题11.因式分解:224mx my -=.12.如图,三角形纸片中,AB AC =,18BC =,30C ∠=︒,折叠这个三角形,使点B 落在AC 的中点D 处,折痕为EF ,那么BF 的长为.13.如图1是小强在健身器材上进行仰卧起坐锻炼时的情景;图2是小强锻炼时上半身由ON 位置运动到与地面CD 垂直的OM 位置时的示意图,已知0.8ON =米,30α=︒,则M 、N 两点的距离是米.14.如图,点A 、B 在反比例函数k y x=的图象上,AC y ⊥轴,垂足为D ,BC AC ⊥.若四边形AOBC 的面积为6,12AD AC =,则k 的值为.15.如图,在ABC V 中,点D 为BC 的中点,5AB =,3AC =,2AD =,则ABC V 边BC 上的高为.三、解答题16.计算:()10120242cos454π-⎛⎫-+-︒+ ⎪⎝⎭17.先化简,再求值:22211()a ab b a b b a++÷++,其中1,1a b ==. 18.图1,图2都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段AB 的端点均在格点上,分别按要求画出图形.(1)在图1中画出一个以AB 为边的ABCD Y ,且点C 和点D 均在格点上;(2)在图2中画出一个以AB 为对角线的菱形AEBF ,且点E 和点F 均在格点上.19.我县组织开展研学活动,共有月岩,陈树湘烈士纪念馆,濂溪故里,葫芦岩红军渡4个地点可供选择,让同学们投票决定最终研学地点,现将同学们的投票结果制成如下统计图(其中A :月岩,B :陈树湘烈士纪念馆,C :濂溪故里,D :葫芦岩红军渡),根据相关信息,回答下列问题:(1)本次抽样的样本容量为_______,请补全条形统计图;(2)扇形统计图中a 的值为_______ ,圆心角β的度数为_______;(3)若我县有5000名同学参加研学活动,试估计去月岩的有多少?20.虹桥中学为了创建良好的校园读书环境,去年购买了一批图书.其中故事书的单价比文学书的单价多4元,用1200元购买的故事书与用800元购买的文学书数量相等. (1)求去年购买的文学书和故事书的单价各是多少元?(2)若今年文学书的单价比去年提高了25%,故事书的单价与去年相同,这所中学今年计划再购买文学书和故事书共200本,且购买文学书和故事书的总费用不超过2120元,这所中学今年至少要购买多少本文学书?21.过山车是倍受年轻人喜爱的经典娱乐项目.如图14,A B C →→为过山车的一部分轨道(B 为轨道与地面的交点,图中的x 轴表示地面),它可以看成抛物线()20y ax bx c a =++≠的一部分,其中20OB =米(轨道厚度忽略不计).(1)写出a ,b 之间的数量关系;(2)已知50OA =米.①求抛物线()20y ax bx c a =++≠的解析式;②在轨道距离地面32米处有两个位置M 和C ,当过山车运动到点C 处时,沿着平行于地面的轨道向前运动了18米至点G ,又进入下坡段G H →(G 接口处轨道忽略不计,点H 为轨道与地面的交点).已知轨道抛物线G H K →→的形状与抛物线M B C →→的形状相同,求OH 的长度;③现需要在轨道下坡段A B →进行一种安全加固,建造某种材料的水平和竖直支架PE ,PT QF QS ,,,且要求2OT OS =,如图所示,已知这种材料的价格是5000元/米.当PE 的长度为多少时会使造价最低?并求最低造价为多少元?22.如图①,在正方形ABCD 中,点E ,F 分别在边AB 、BC 上,DF CE ⊥于点O ,点G ,H 分别在边AD 、BC 上,GH CE ⊥.(1)问题解决:①写出DF 与CE 的数量关系:;②GH CE 的值为; (2)类比探究,如图②,在矩形ABCD 中,AB k BC=(k 为常数),将矩形ABCD 沿GH 折叠,使点C 落在AB 边上的点E 处,得到四边形EFGH 交AD 于点P ,连接CE 交GH 于点O .试探究GH 与CE 之间的数量关系,并说明理由;(3)拓展应用,如图③,四边形ABCD 中,90BAD ∠=︒,6AB BC ==,4AD CD ==,BF CE ⊥,点E 、F 分别在边AB 、AD 上,求CE BF的值.。
2024年广东省汕头市多校联考中考数学一模试卷+答案解析
2024年广东省汕头市多校联考中考数学一模试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.的相反数是()A. B.3 C. D.2.冠状病毒是一大类病毒的总称,该病毒粒子呈不规则形状.近期发现的冠状病毒呈球形或椭圆形,平均直径在,将用科学记数法表示是()A. B. C. D.3.下列几何体中,主视图、左视图、俯视图完全相同的是()A.球B.圆锥C.圆柱D.长方体4.如图所示,直线被直线c所截,与是()A.同位角B.内错角C.同旁内角D.邻补角5.下列计算结果正确的是()A. B.C. D.6.下列是不等式的一个解的是()A.1B.C.2D.37.在平面直角坐标系中,点的位置在()A.第一象限B.x轴正半轴上C.第二象限D.y轴正半轴上8.已知∽,且若的面积为4,则的面积是()A. B.6 C.9 D.189.如图,在中,,,以AB为边在点C同侧作正方形ABDE,则正方形ABDE的周长为()A.12B.16C.20D.2510.圆的一条弦把圆分为度数比为1:3的两条弧,则弦心距与弦长的比为()A.1:3B.2:3C.1:4D.1:2二、填空题:本题共6小题,每小题3分,共18分。
11.若分式有意义,则x的取值范围是______.12.如图所示,,数轴上点A表示的数是______.13.已知关于x的一元二次方程的一个根是,则______.14.如图,用一个半径为10cm的定滑轮带动重物上升,滑轮上一点P旋转了,假设绳索粗细不计与滑轮之间没有滑动,则重物上升了______15.如图,已知≌≌,三条对应边BC,CE,EF在同一条直线上,连接BG,分别交AC,DC,DE于点P,Q,K,其中,则图中三个阴影部分的面积和为______.16.已知二次函数中,函数y与自变量x的部分对应值如表:x …0123…y…105212…则当时,x的取值范围是_________________.三、解答题:本题共8小题,共64分。
2024年广东省中考数学真题(学生版+解析版)
2024年广东省中考数学真题满分120分考试用时120分钟注意事项:1. 答题前,考生务必用黑色字迹的签字笔或钢笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上.用2B 铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号,将条形码粘贴在答题卡“条形码粘贴处"2. 作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3. 非选择题必须用黑色字迹的签字笔或钢笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4. 考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 计算—5+3的结果是()A. 2B. —2C. 82. 下列几何图形中,既是中心对称图形也是轴对称图形的是()A 6B二c .QD. —8D.3. 2024年6月6日,嫦娥六号在距离地球约384000千米外上演“太空牵手”,完成月球轨道的交会对接.数据384000用科学记数法表示为()A. 3.84xl04B. 3.84xl05C. 3.84xl06D. 38.4xl054. 如图,一把直尺、两个含30°的三角尺拼接在一起,则乙ACE 的度数为()11/三l0三�:'I'IA. 120°B . 90° 5. 下列计算正确的是()A. a 2 . a s= a 10B. a s -;-Q 2 = a 4C . 60°D . 30°C. —2a +5a =7a25D. (a ) = a 106.长江是中华民族的母亲河,长江流域孕育出藏羌文化、巴蜀文化、荆楚文化、吴越文化等区域文化.若从上述四种区域文化中随机选一种文化开展专题学习,则选中“巴蜀文化”的概率是()1 1 3A.—B.—C.—D. —4 3 47.完全相同的4个正方形面积之和是100,则正方形的边长是()A.2B.5C.10D.208.若点(0,Y1),(1, Y2),(2,Y3)都在二次函数y=x2的图象上,则()A.Y3 > Y2 > Y1B.Y2 > Y1 > Y3C.Y1 > Y3> Y2D.Y3 > Y1 > Y22 39.方程=-的解为()X—3 XA.x=3B.X=-9C.x=9D.X=—310.已知不等式kx+b<O的解集是x<2,则一次函数y= kx+b的图象大致是()y,321A.B.I 2 3 xy,321霆3 ,y3,y-2-3D.3.x -3-2-10-1-2-3_、填空题:本大题共5小题,每小题3分,共15分.11.数据2,3, 5, 5, 4的众数是12.关千x的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是2 -1 fl I13.若关千X的一元二次方程x2+2x+c=O有两个相等的实数根,则c=a 314.计算:- =a-3 a-315.如图,菱形A BCD的面积为24,点E是AB的中点,点F是BC上的动点若D BEF的面积为4,则图中阴影部分的面积为I三、解答题(一):本大题共3小题,每小题7分,共21分.1 16. 计算:2°X-—+✓4-3-13 17. 如图,在AB C 中,乙C=90°.(1)实践与操作:用尺规作图法作乙A的平分线AD交BC 千点D (保留作图痕迹,不要求写作法)(2)应用与证明:在(1)条件下,以点D 为圆心,DC 长为半径作D . 求证:AB 与D 相切.18. 中国新能源汽车为全球应对气候变化和绿色低碳转型作出了巨大贡献.为满足新能源汽车的充电需求,某小区增设了充电站,如图是矩形PQ MN 充电站的平面示意图,矩形A BCD 是其中一个停车位.经测量,缰Q =60°,AB=5.4m , CE=l.6m , GH _l_CD, GH是另一个车位的宽,所有车位的长宽相同,按图示并列划定.,(`,I l,r ·1-` .tI凡根据以上信息回答下列问题:(结果精确到O .lm,参考数据✓3:::::1.73)(1)求PQ 的长;(2)该充电站有20个停车位,求P N 的长.四、解答题(二):本大题共3小题,每小题9分,共27分.19. 端午假期,王先生计划与家人一同前往景区游玩,为了选择一个最合适的景区,王先生对A、B 、C三个景区进行了调查与评估.他依据特色美食、自然风光、乡村民宿及科普基地四个方面,为每个景区评分(10分制).三个景区的得分如下表所示:景区特色美食自然风光乡村民宿科普基地A687 9B 7 7 87C886 6(1)若四项所占百分比如图所示,通过计算回答:王先生会选择哪个景区去游玩?(2)如果王先生认为四项同等重要,通过计算回答:王先生将会选择哪个景区去游玩?(3)如果你是王先生,请按你认为各项“重要程度”设计四项得分的百分比,选择最合适的景区,并说明理由.20. 广东省全力实施“百县千镇万村高质量发展工程", 2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入“最大?并求出其最大值.(题中“元”为人民币)21. 综合与实践【主题】滤纸与漏斗【素材】如图1所示:少一张直径为10cm的圆形滤纸;@一只漏斗口直径与母线均为7cm的圆锥形过滤漏斗.�7cm叶图l【实践操作】步骤1:取一张滤纸;步骤2:按如图2所示步骤折叠好滤纸;步骤3:将其中一层撑开,围成圆锥形;步骤4:将围成圆锥形滤纸放入如图1所示漏斗中.气_芍c 厂。
2023年汕头中考数学摸拟卷二
A. 12
B. 24
C. 30
D. 10
依据勾股定理:a2+b2=c2,
18
6
正方形的面积公式:
a2=18, b2=6, c2=24.
A
−
有意义,则x的取值范围是(
−
7、若式子
A. x>1
B. x>1且x≠2
)
C. x≥1且x≠2
D. x≠2
平方根的底数不小于0,∴x-1≥0, 解得:x≥1;
x≥1
分母不为零,∴x-2≠0, 解得:x≠2;
两者必须同时成立,∴x≥1且x≠2.
1
2
8、如图,AB为⊙O的直径, PB, PC分别与⊙O相切于点B, C,
过点C作AB的垂线,垂足为E,交⊙O于点D. 若CD=PB=2 ,
则BE长为( )
A
A. 1
B. 2
C. 3
D. 4
E
C
D
连接BD,则四边形PBDC是菱形,
∙
△CEF的面积:S=
= (2− )=−
∴当k=3时,△CEF的面积为 最大.
C
F
O
2
2
+ =− (k -6k)=− (k-3) + ,
A x
22、如图, AB是⊙O的直径, C为⊙O上一点, D为BC延长线一点, 且
BC=CD, CE⊥AD于点E, BE与⊙O交于点F,AF的延长线与CE交于点P.
由Rt△ABE∽Rt△DCE, 可得:
汕头市中考数学试题及答案
汕头市中考数学试题及答案一、选择题1. 下列选项中,哪个是合数?A. 2B. 3C. 5D. 72. 若正方形的边长为5cm,则它的对角线长为A. 5cmB. 10cmC. 5√2cmD. 10√2cm3. 若一条直线与平面内一条直线交于一点,那么在该平面上过这一点的直线有A. 0条B. 1条C. 2条D. 无数条4. 如图所示,已知∠CBD=60°,BD=BC,则下列结论中必然正确的是A. ∠BAC=120°B. ∠BAC=60°C. BA=ADD. AC=AD5. 小明有10张红色卡片和6张蓝色卡片,他从中随机取出2张卡片,则取到2张红色卡片的概率是A. 1/8B. 1/2C. 5/8D. 7/8二、填空题1. 将1/5化成小数,结果是__________。
2. 直接在1m3空气的基础上,加入一定量的水蒸气,使水蒸气所占比例变为1%,则最终体积增加为__________m3。
3. 三角形ABC中,∠ACB=90°,AB=5cm,BC=12cm,则AC的长度为__________cm。
4. 在一条长直线上有一个A国家的小镇,离小镇相距100km的地方有一个B国家的村庄,小镇对村庄的方位是东南,现有一条A-B的铁路将两地连接在一起,下列哪个斜率的铁路最短?A. 1B. 2C. 10D. 1005. 化简:(5x²+8) - (3x²-6) = __________。
三、解答题1. 已知函数y=2x²+3x-5,求该函数的零点和顶点坐标。
【解答】首先求零点,令y=0,得到2x²+3x-5=0。
通过配方法得到(x+2)(2x-5)=0,解得x=-2或x=2.5。
因此,该函数的零点为x=-2和x=2.5。
接下来求顶点坐标,通过一元二次函数的顶点公式x=-b/2a,a=2,b=3,所以x=-3/4。
将x带入函数中,得到y=2*(-3/4)²+3*(-3/4)-5,计算得到y=-15/8。
汕头地区中考数学试卷真题
汕头地区中考数学试卷真题经过仔细研究和分析,我们为您整理了汕头地区中考数学试卷真题的内容。
以下是试卷的详细题目及解答。
1.选择题1) 填空题(1) 20 ÷ 5 × 2 = _________(2) 2 × 10 ÷ (12 - 2) = ________2) 选择题(1) 已知正方体的表面积为96,求体积。
A. 8B. 12C. 16D. 18(2) 若 x = -2,则 -3x = ________。
A. -6B. 6C. -9D. 92.非选择题证明:平行线之间的夹角相等。
解答:要证明平行线之间的夹角相等,可以运用三角形内角和定理。
首先,我们先画出两条平行线与一条横穿平行线的直线,形成若干个三角形。
设被横穿平行线分割出的两个内角为x和y,被平行线分割出的内角为a和b。
根据三角形内角和定理:对于三角形ABC,有内角之和等于180°。
因此,我们可以得到以下等式:a + x + y = 180° (1)b + x + y = 180° (2)由于a + b = 180°(平行线与横穿直线的交角为180°),我们将其代入式子(1)和(2)中,得到:a + x + y =b + x + y (3)通过对式子(3)进行整理可以得到:a = b由此可见,两条平行线之间的夹角a和b相等,证明完成。
以上就是汕头地区中考数学试卷真题的相关内容。
希望本文的解答对您有所帮助,祝您学业有成!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年广东省汕头市初中毕业生学业考试
数 学
说明:1.全卷共4页,考试用时100分钟,满分为120分.
2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、 试室号、座位号.用2B 铅笔把对应该号码的标号涂黑.
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑, 如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.
4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域 内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和 涂改液.不按以上要求作答的答案无效.
5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.
一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确 的,请把答题卡上对应题目所选的选项涂黑.
1.-3的相反数是( )
A .3
B .31
C .-3
D .13
- 2.下列运算正确的是( )
A .ab b a 532=+
B .()b a b a -=-422
C .()()22b a b a b a -=-+
D . ()222b a b a +=+ 3.如图,已知∠1=70°,如果CD ∥B
E ,那么∠B 的度数为( )
A.70°
B.100°
C.110°
D.120°
4.某学习小组7位同学,为玉树地震灾区捐款,捐款金额分别为5元、6元、6元、7元、8元、 9元,则这组数据的中位数与众数分别为( )
A .6,6
B .7,6
C . 7,8
D .6,8
5. 左下图为主视方向的几何体,它的俯视图是( )
二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应 的位置上.
6.根据新网上海6月1日电:世博会开园一个月来,客流平稳,累计到当晚19时,参观者已超过 8000000人次,试用科学记数法表示8000000= .
7.分式方程11
2=+x x 的解x = . 8.如图,已知R t △ABC 中,斜边BC 上的高AD =4,cosB =
54,则 AC = .
9.某市2007年、2009年商品房每平方米平均价格分别为4000元、5760元,假设2007年后的两 年内,商品房每平方米平均价格的年增长率都为x ,试列出关于x 的方程: .
10.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;
把正方形A 1B 1C 1D 1边长按原法延长一倍得到新正方形A 2B 2C 2D 2(如图(2));以此下去…, 则正方形A 4B 4C 4D 4的面积为 .
三、解答题(一)(本大题5小题,每小题6分,共30分)
11.计算:()001260cos 2214π-+-⎪⎭
⎫ ⎝⎛+-. 12. 先化简,再求值 ()x x x x x 224422+÷+++ ,其中 x = 2 .
13. 如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,R t △ABC 的顶点均在格点上,
在建立平面直角坐标系以后,点A 的坐标为(-6,1),点B 的坐标为(-3,1),点C 的坐标为 (-3,3).
(1)将R t △ABC 沿X 轴正方向平移5个单位得到R t △A 1B 1C 1,试在图上画出R t △A 1B 1C 1的图形,
并写出点A 1的坐标。
(2)将原来的R t △ABC 绕着点B 顺时针旋转90°得到R t △A 2B 2C 2,试在图上画出R t △A 2B 2C 2的
图形。
14.如图,PA 与⊙O 相切于A 点,弦A B ⊥OP ,垂足为C ,OP 与⊙O 相交于D 点,已知OA =2,
OP =4.
⑴求∠POA 的度数;
⑵计算弦AB 的长.
15.如图,一次函数1y kx =-的图象与反比例函数m y x
=的图象交于A 、B 两点,其中A 点坐标 为(2,1).
⑴试确定k 、m 的值;
⑵求B 点的坐标.
四、解答题(二)(本大题4小题,每小题7分,共28分)
16.分别把带有指针的圆形转盘A 、B 分成4等份、3等份的扇形区域,并在每一个小区域内标上
数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停 止时,若指针所指两区域的数字之积为奇数,则欢欢
胜;若指针所指两区域的数字之积为偶数,则乐乐胜;
若有指针落在分割线上,则无效,需重新转动转盘.
⑴试用列表或画树状图的方法,求欢欢获胜的概率;
⑵请问这个游戏规则对欢欢、乐乐双方公平吗?试
说明理由.
17.已知二次函数2
y x bx c =-++的图象如图所示,它与x 轴的一个交点坐标为(-1,0) ,与
y 轴的交点坐标为(0,3)
. ⑴求出b ,c 的值,并写出此二次函数的解析式;
⑵根据图象,写出函数值y 为正数时,自变量x 的取值范围.
18.如图,分别以Rt ABC ∆的直角边AC 及斜边AB 向外作等边ACD ∆,等边ABE ∆.已知
∠BAC =30°,EF ⊥AB ,垂足为F ,连结DF .
⑴试说明AC =EF ;
⑵求证:四边形ADFE 是平行四边形.
19.某学校组织340名师生进行长途考察活动,带有行礼170件,计划租用甲、乙两种型号的汽车 第17题图 第18题图
共有10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李. ⑴请你帮助学校设计所有可行的租车方案;
⑵如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?
五、解答题(三)(本大题3小题,每小题9分,共27分)
20.已知两个全等的直角三角形纸片ABC 、DEF ,如图(1)放置,点B 、D 重合,点F 在BC 上,
AB 与EF 交于点G .∠C =∠EFB =90°,∠E =∠ABC =30°,AB =DE =4.
(1)求证:EGB ∆是等腰三角形;
(2)若纸片DEF 不动,问ABC ∆绕点F 逆时针旋转最小____度时,四边形ACDE 成为以ED 为底的梯形(如图(2)).求此梯形的高.
21.阅读下列材料: 112(12
3012),3
123(234123),3
134(345234),3
⨯=⨯⨯-⨯⨯⨯=⨯⨯-⨯⨯⨯=⨯⨯-⨯⨯ 由以上三个等式相加,可得
1122334345203
⨯+⨯+⨯=⨯⨯⨯=. 读完以上材料,请你计算下各题:
(1)1223341011⨯+⨯+⨯++⨯L (写出过程);
(2)122334(1)_____n n ⨯+⨯+⨯++⨯+=L ;
(3)123234345789______⨯⨯+⨯⨯+⨯⨯++⨯⨯=L .
22.如图(1),(2)所示,矩形ABCD 的边长AB =6,BC =4,点F 在DC 上,DF =2.动点M 、N
分别从点D 、B 同时出发,沿射线DA 、线段BA 向点A 的方向运动(点M 可运动到DA 的延 长线上),当动点N 运动到点A 时,M 、N 两点同时停止运动.连结FM 、MN 、FN ,当F 、N 、 M 不在同一条直线时,可得FMN ∆,过FMN ∆三边的中点作∆PQW .设动点M 、N 的速度 都是1个单位/秒,M 、N 运动的时间为x 秒.试解答下列问题:
(1)说明FMN ∆∽∆QWP ;
(2)设0≤x ≤4(即M 从D 到A 运动的时间段).试问x 为何值时,∆PQW 为直角三角形?
当x 在何范围时,∆PQW 不为直角三角形?
(3)问当x 为何值时,线段MN 最短?求此时MN 的值.。