三柱盖梁抱箍法模板及支撑体系设计计算书

合集下载

三柱式盖梁抱箍法施工及计算

三柱式盖梁抱箍法施工及计算

盖梁抱箍法施工及计算第一部分盖梁抱箍法施工设计图一、施工设计说明1、概况桥长1012.98米,各墩为三柱式结构(墩柱为直径2.0m的钢筋砼结构),墩柱上方为盖梁。

盖梁为长26.4m,宽2.4m,高2.6m的钢筋砼结构,引桥盖梁砼浇筑量大,约156.1m3。

图1-1 盖梁正面图(单位:m)二、盖梁抱箍法结构设计1、侧模与端模支撑侧模为特制大钢模,面模厚度为δ6mm,肋板高为10cm,在肋板外设2[14背带。

在侧模外侧采用间距1.2m的2[14b作竖带,竖带高2.9m;在竖带上下各设一条φ20的栓杆作拉杆,上下拉杆间间距2.7m,在竖带外设φ48的钢管斜撑,支撑在横梁上。

端模为特制大钢模,面模厚度为δ6mm,肋板高为10cm。

在端模外侧采用间距1.2m的2[14b作竖带,竖带高2.9m;在竖带外设φ48的钢管斜撑,支撑在横梁上。

2、底模支撑底模为特制大钢模,面模厚度为δ8mm,肋板高为10cm。

在底模下部采用间距0.4m工16型钢作横梁,横梁长4.6m。

盖梁悬出端底模下设三角支架支撑,三角架放在横梁上。

横梁底下设纵梁。

横梁上设钢垫块以调整盖梁底2%的横向坡度与安装误差。

与墩柱相交部位采用特制型钢支架作支撑。

3、纵梁在横梁底部采用单层四排上下加强型贝雷片(标准贝雷片规格:3000cm×1500cm,加强弦杆高度10cm)连接形成纵梁,长30m,每两排一组,每组中的两排贝雷片并在一起,两组贝雷梁位于墩柱两侧,中心间距253.6cm,贝雷梁底部采用3m长的工16型钢作为贝雷梁横向底部联接梁。

贝雷片之间采用销连接。

纵、横梁以及纵梁与联接梁之间采用U 型螺栓连接;纵梁下为抱箍。

4、抱箍采用两块半圆弧型钢板(板厚t=16mm)制成,M24的高强螺栓连接,抱箍高1734cm,采用66根高强螺栓连接。

抱箍紧箍在墩柱上产生摩擦力提供上部结构的支承反力,是主要的支承受力结构。

为了提高墩柱与抱箍间的摩擦力,同时对墩柱砼面保护,在墩柱与抱箍之间设一层2~3mm厚的橡胶垫,纵梁与抱箍之间采用U型螺栓连接。

盖梁抱箍法施工计算书

盖梁抱箍法施工计算书

盖梁抱箍法施工计算书 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】目录抱箍法施工计算书1、计算依据《路桥施工计算手册》《辽宁省标准化施工指南》《辽宁中部环线高速公路铁岭至本溪段第四合同段设计图》及相关文件2、专项工程概况盖梁施工采用抱箍法,抱箍采用2块半圆弧形钢板制作,使用M24的高强螺栓连接,底模厚度10cm,每块长度;充分利用现场已有材料,下部采用I14工字钢作为横梁,横梁长度为,根据模板拼缝位置按照间距布置,共需27根;横梁底部采用2根I45C工字钢作为纵梁,纵梁长度为15m;抱箍与墩柱接触部位夹垫2~3mm橡胶垫,防止夹伤墩柱砼;纵横梁梁两端绑扎钢管,安装防落网。

下面以体积最大的浑河大桥8#右幅盖梁为例进行抱箍相关受力计算。

浑河大桥8#墩柱直径为2m,柱中心间距,盖梁尺寸为××, C40砼,盖梁两端挡块长度为×(上口,下口)×,C40砼。

图1 抱箍法施工示意图3、横梁计算荷载计算盖梁钢筋砼自重:G1=×26KN/m3=挡块钢筋砼自重:G2=×26KN/m3=模板自重:G3=98KN施工人员:G4=2KN/m2××=施工动荷载:G5=2KN/m××=,倾倒砼时产生的冲击荷载和振捣砼时产生的荷载均按2KN/㎡考虑。

横梁自重G6=××27=横梁上跨中部分荷载:G7=G1+G2+G3+G4+G5+G6=++98+×2+=每根横梁上所受荷载:q1= G7/15=27=作用在每根横梁上的均布荷载:q2= q1/==m两端悬臂部分只承受施工人员荷载,可以忽略不计。

力学模型图2 力学模型分配梁抗弯与挠度计算由分析可知,横梁跨中弯矩最大,计算如下:Mmax=q2l2/8- q2l12/2=××2=·m图3 分配梁弯矩示意图Q235 I14工字钢参数:弹性模量E=×105Mpa,截面惯性矩I=712cm4,截面抵抗矩W=①抗弯计算σ= Mmax/W= ×103=<[σ]=170Mpa结论:强度满足施工要求。

盖梁钢抱箍计算计算书

盖梁钢抱箍计算计算书

盖梁钢抱箍计算计算书盖梁钢抱箍计算书计算依据:1、《建筑施工模板安全技术规范》JGJ162-20082、《混凝土结构设计规范》GB50010-20103、《建筑结构荷载规范》GB 50009-20124、《钢结构设计标准》GB 50017-2017一、荷载组合S1=1.2(G 1k + G 2k + G 3k )+1.4(Q 1k + Q 2k )=1.2×(1200+50+18.4)+1.4×(20+16)=1572.48kN S2=1.35(G 1k +G 2k +G3k )+0.7×1.4(Q 1k +Q 2k )=1.35×(1200+50+18.4)+0.7×1.4×(20+16)=1747.62kN 取较大值,即荷载设计值S =Max[S1,S2]=Max[1572.48,1747.62]=1747.62kN二、墩柱参数示意图三、钢带验算钢抱箍形式单抱箍钢带宽度B(mm) 800 钢带厚度t(mm)12 两半抱箍接头间隙d(mm)30钢带和墩柱间的摩擦系数μ 0.3 钢带抗拉、压、弯强度设计值f (N/mm 2) 215 钢带弹性模量E(N/mm 2) 206000 螺栓个数n20 螺栓强度等级高8.8级螺栓抗拉强度设计值f t b(N/mm 2) 170 螺栓直径(mm)M22螺栓有效截面积Ae(mm 2)303.41、钢带对墩柱的压应力σ1=S/(μπBD)=1747620/(0.3×3.14×800×1500)=1.546N/mm 2≤[σ]=14N/mm 2 满足要求。

2、钢带内应力σ2=σ1D/(2t)=1.546×1500/(2×12)=96.625 N/mm 2≤f=215N/mm 2 满足要求。

3、钢带下料长度L(半个)ΔL=πD σ2/(2E)=3.14×1500×96.625/(2×206000)=1.105mm 钢带下料长度L(半个)=πD/2-ΔL-d=3.14×1500/2-1.105-30=2323.895mm4、螺栓强度验算钢带所受拉力P=Btσ2=800×12×96.625=927600N=927.6kN螺栓设计拉力N t=nA e f t b=20×303.4×170=1031560N=1031.56kNN t≥P满足要求。

盖梁施工支撑体系计算

盖梁施工支撑体系计算

盖梁施工支撑体系计算书本标段盖梁分为双柱式和三柱式盖梁,由于盖梁尺寸不同,分别各选取盖梁尺寸及跨中最大的一种进行计算。

等截面矩形双柱式盖梁采用抱箍法或钢棒法施工,墩柱完成后,在墩柱上安装抱箍,方柱抱箍分为四片分别进行安装;钢棒法施工墩柱施工时盖梁下部墩身预埋φ110PVC 管,内穿φ100mm 高强钢棒。

然后在抱箍或钢棒上上安装横向的I63a 工字钢,工字钢上铺4m/5m 长15cm ×15cm 的方木或[25a 槽钢,然后方木/槽钢上铺设定型钢模。

盖梁侧模、底模(前后左右面)均采用定型钢模,盖梁端部定制模板时已包含支架。

由于双柱式盖梁单侧要放置单层两排63a 工字钢才能满足受力要求,考虑抱箍侧面平面布置问题,本标段盖梁全部采用内穿钢棒法施工,抱箍根据现场情况自行确定是否使用,本计算书对于采用两种形式均进行计算。

盖梁验算,盖梁立面图如下:盖梁立面图9600100010002250225016100盖梁立面图一、工字钢验算63a工字钢计算参数如下:E=2.1×105MPa,W=2980cm3,I=93900cm4,单位重为154.658kg/m1、受力分析(1)、双柱式盖梁工字钢长度为18.6m,盖梁长16.1m。

(2)、三柱式盖梁工字钢长度为23.3m,盖梁长20.8m。

工字钢受力示意图如下:2、荷载计算作用于工字钢的荷载有:(1)、施工时钢筋混凝土重量双柱式盖梁:116.68m³×26KN/m³=3033.7KN,三柱式盖梁:83.28m³×26KN/m³=2165.3KN;(2)、模板及方木、钢管重量;双柱式盖梁:①侧模、底模定型钢模重量:总面积为104.6㎡,重量为139KN;②铺设5cm厚脚手板重量:面积为45.0㎡,重量为15.8KN;③工字钢上满铺12×15方木重量:长度496m,重量62.5KN;合计为217.3KN;三柱式盖梁:①侧模、底模定型钢模重量:总面积为87.6㎡,重量为96.1KN;②铺设5cm厚脚手板重量:面积为55.0㎡,重量为19.3KN;④工字钢上满铺12×15方木重量:长度625m,重量78.8KN;合计为194.2KN或用[25槽钢重量为:16.1/0.3×2×27.4×3×10=88.76KN(差值10KN,荷载系数已考虑);(3)、施工时人员、设备重量10KN;(4)、振捣砼时产生荷载双柱式:2KN/㎡×16.1m ×2.8m=90.2KN ,三柱式:2KN/㎡×20.8m ×2.1m=87.4KN ;(5)总荷载双柱式:总荷载为 1.2×3033.7+1.2×217.3+1.4×10+1.4×90.2=4041.5KN 。

盖梁抱箍计算书

盖梁抱箍计算书

盖梁抱箍计算书惠大疏港高速公路A09合同段抱箍计算书1、盖梁支撑体系设计计算及施工方法1.1、计算依据⑴惠大高速A09合同段施工图设计⑵公路桥涵施工技术规范⑶实用新编五金手册⑷装配式公路钢桥使用手册1.2、计算内容圆柱墩盖梁施工的抱箍计算2、施工方法简介圆柱墩盖梁:采用抱箍法施工,每根柱子使用两个抱箍,两抱箍之间用铁楔子固定做拆模使用。

抱箍为A3钢制作,厚度为0.02米,高度0.3米,每个抱箍由两个半环组成,每个连接处使用4根M22高强螺栓。

抱箍两侧耳上横桥向设各设1排贝雷片,贝雷片上每隔60cm 设一根长4m的18#工字钢作钢模板支承小棱。

3、设计计算原则(1)在满足结构受力情况下考虑挠度变形控制。

(2)综合考虑结构的安全性。

(3)采取比较符合实际的力学模型。

(4)尽量采用已有的构件和已经使用过的支撑方法。

4、本计算结果适用于D1.3m立柱上的盖梁施工。

5、本计算未扣除墩柱承担的盖梁砼重量。

以做安全储备。

6、抱箍加工完成实施前,必须先进行现场预压,变形满足要求后方可使用。

横梁计算采用间距0.6m的18型工字钢作横梁,横梁长4m,共布设横梁30个。

1、荷载计算=36.75m3×25kN/m3=920kN(1)盖梁砼自重:G1=100kN (根据厂家供货重量)(2)模板自重:G2=20kN(5)施工荷载与其它荷载:G3横梁上的总荷载:G H =G 1+G 2+G 3=920+100+20=1040kN q H =1040/17.27=60.22kN/m横梁采用0.6m 的18型工钢,则作用在单根横梁上的荷载:G H ’=60.22×0.6=36.13kN作用在横梁上的均布荷载为:q H ’= G H ’/l H =36.13/1.6=22.6kN/m(式中:l H 为横梁受荷段长度,为1.6m)2、力学模型如图1所示。

R A R B横梁,工16,EIq H =22.6 K N /m图1 横梁计算模型3、横梁抗弯与挠度验算横梁的弹性模量E=2.1×105MPa;惯性矩I=1669cm 4;抗弯模量Wx=185.4cm 3最大弯矩:M max = q H ’l H 2/8=22.6×1.62/8=7.232 kN ·m σ= M max /W x =7.232/(185.4×10-6)≈39MPa<[σw ]=140MPa (可)最大挠度: f max = 5 q H ’l H4/384×EI=5×22.6×1.64/(384×1.6×108×1669×10-8)=0.0007 m<[f]=l 0/400=2.1/400=0.00525 m (满足要求) 抱箍计算(一)抱箍承载力计算1、荷载计算每个盖梁按墩柱设2个抱箍体支承上部荷载,贝雷梁自重:G4=0.3×7×2=42kN (采用2排3m×1.5m贝雷片)抱箍上的总荷载:GB =G1+G2+G3+G4=920+100+20+42=1082kN支座反力RA =RB= RC=ql/3=361 kN以最大值为抱箍体需承受的竖向压力N进行计算,该值即为抱箍体需产生的摩擦力。

盖梁抱箍法施工及计算书(三柱式结构)

盖梁抱箍法施工及计算书(三柱式结构)

盖梁抱箍法施工及计算第一部分盖梁抱箍法施工设计图一、施工设计说明1、概况桥长1012.98米,各墩为三柱式结构(墩柱为直径2.0m的钢筋砼结构),墩柱上方为盖梁。

盖梁为长26.4m,宽2.4m,高2.6m的钢筋砼结构,引桥盖梁砼浇筑量大,约156.1m3。

图1-1 盖梁正面图(单位:m)二、盖梁抱箍法结构设计1、侧模与端模支撑侧模为特制大钢模,面模厚度为δ6mm,肋板高为10cm,在肋板外设2[14背带。

在侧模外侧采用间距1.2m的2[14b作竖带,竖带高2.9m;在竖带上下各设一条φ20的栓杆作拉杆,上下拉杆间间距2.7m,在竖带外设φ48的钢管斜撑,支撑在横梁上。

端模为特制大钢模,面模厚度为δ6mm,肋板高为10cm。

在端模外侧采用间距1.2m的2[14b作竖带,竖带高2.9m;在竖带外设φ48的钢管斜撑,支撑在横梁上。

2、底模支撑底模为特制大钢模,面模厚度为δ8mm,肋板高为10cm。

在底模下部采用间距0.4m工16型钢作横梁,横梁长4.6m。

盖梁悬出端底模下设三角支架支撑,三角架放在横梁上。

横梁底下设纵梁。

横梁上设钢垫块以调整盖梁底2%的横向坡度与安装误差。

与墩柱相交部位采用特制型钢支架作支撑。

3、纵梁在横梁底部采用单层四排上下加强型贝雷片(标准贝雷片规格:3000cm×1500cm,加强弦杆高度10cm)连接形成纵梁,长30m,每两排一组,每组中的两排贝雷片并在一起,两组贝雷梁位于墩柱两侧,中心间距253.6cm,贝雷梁底部采用3m长的工16型钢作为贝雷梁横向底部联接梁。

贝雷片之间采用销连接。

纵、横梁以及纵梁与联接梁之间采用U 型螺栓连接;纵梁下为抱箍。

4、抱箍采用两块半圆弧型钢板(板厚t=16mm)制成,M24的高强螺栓连接,抱箍高1734cm,采用66根高强螺栓连接。

抱箍紧箍在墩柱上产生摩擦力提供上部结构的支承反力,是主要的支承受力结构。

为了提高墩柱与抱箍间的摩擦力,同时对墩柱砼面保护,在墩柱与抱箍之间设一层2~3mm厚的橡胶垫,纵梁与抱箍之间采用U型螺栓连接。

盖梁抱箍法施工计算书

盖梁抱箍法施工计算书

盖梁抱箍法计算书一、工程概况本项目共有墩台帽201座,其中台帽40座,桥墩盖梁161座,有墩间系梁10座(全部在2号桥)。

盖梁为单立柱、双立柱、三立柱和四立柱非预应力形式,采用抱箍法施工。

二、盖梁无支架施工的受力验算拟采用321型贝雷片,在贝雷片I25a工钢,其上铺15cm×20cm 的方木做盖梁底模的底支撑。

1、纵向方木受力验算①盖梁混凝土自重:53.5m3×26KN/m3 = 1391KN②钢模板自重:(面板6mm厚的钢模取70Kg/m2)18.75×1.9+18.75×1.6×2= 95.63 m295.63×70Kg/m2 = 6694 Kg 即:66.94 KN③纵向方木自重:0.15×0.20×2.3×6KN/m3 = 0.414 KN荷载总重:1391+66.94+0.414 =1458.35 KN取安全系数为1.2则:方木所受线性荷载:1458.35×1.2/(18.75×1.9)×0.4= 19.65KN/m图2:方木计算模型按连续梁受均布荷载作用计算:图3:方木弯矩图经计算得:M max =3.9 KN〃m取方木(松木)抗弯强度f m = 8.0 MPa则:方木截面抵抗矩:W= M/[f]=3.9/[8]=48750 mm3方木的截面抵抗矩[W]=1/6bh2 = 150×200×200/6=1000000 mm3 W<[W],方木截面满足要求。

2、横向贝雷受力验算①强度验算纵向贝雷所承受的力为方木所传递下来的集中荷载,方木的间距为40cm,按连续梁受均布荷载作用计算:图2:贝雷梁计算模型图3:贝雷梁弯矩图经计算得:M max =90.1 KN〃m<788.2KN〃m②刚度验算按连续梁受均布荷载作用计算:图4:位移图f max=1.8mm≤L/400=7100/400=17.75mm最大的支撑反力在中间支点处P= 375.98 KN,在抱箍与墩柱接触面垫一层摩擦力较大的材料,取摩擦系数μ=0.3,则抱箍钢板对立柱的压力N=P/μ=375.98/0.3=1253.3 KN。

盖梁抱箍计算书

盖梁抱箍计算书

盖梁抱箍计算书1.1抱箍材料采用两块半圆弧型钢板(板厚t=10mm)制成,M24的高强螺栓连接,抱箍高50cm,采用16个高强螺栓连接。

抱箍紧箍在墩柱上产生摩擦力提供上部结构的支承反力,是主要的支承受力结构。

为了提高墩柱与抱箍间的摩擦力,同时对墩柱砼面保护,在墩柱与抱箍之间设一层0.5cm厚的橡胶皮。

1.2荷载计算每个盖梁按墩柱设三个抱箍体支承上部荷载,取28#右幅最大方量(64.5m3)的盖梁验算。

盖梁砼自重:G1=64.5×26=1677kN盖梁模板自重:G2=72KN钢管外撑自重:G3=2.77×4.65*12=0.154kN横梁工字钢:双40b,长度26米,G4=21kN施工荷载与其它荷载:G5=20kN横梁上的总荷载:GH=G1+G2+G3+G4+G5=1790.15kN支座反力R A=R B=1790.15/3=596.71kN以最大值为抱箍体需承受的竖向压力N进行计算,该值即为抱箍体需产生的摩擦力。

1.3抱箍受力计算1.3.1螺栓数目计算抱箍体需承受的竖向压力N=596.71kN抱箍所受的竖向压力由M24的高强螺栓的抗剪力产生,查《路桥施工计算手册》第426页:M24螺栓的允许承载力:[NL]=Pμn/K式中:P---高强螺栓的预拉力,取200kN;μ---摩擦系数,取0.35;n---传力接触面数目,取1;K---安全系数,取1.7。

则:[NL]= 200×0.35×1/1.7=41.18kN螺栓数目m计算:m=N’/[NL]=596.71/41.18=14.5≈15个,取计算截面上的螺栓数目m=16个。

则每条高强螺栓提供的抗剪力:P′=N/8=596.71/16=37.3KN<[NL]=41.18kN故能承担所要求的荷载。

1.3.2螺栓轴向受拉计算砼与钢之间设一层橡胶皮,查摩擦系数表:按橡胶皮与砼之间的摩擦系数取μ=0.6,橡胶皮与钢的的摩擦系数取μ=0.6,综合摩阻系数按0.45计算。

桥梁三柱式受 力 计 算 书

桥梁三柱式受 力 计 算 书

盖梁抱箍受力计算书一、盖梁横断面图二、 力学模型:qqq q反力计算简图三、 力学检算盖梁的重力传递给工字钢,再由工字钢传递给抱箍钢板,靠抱箍钢板与立柱的摩擦力来维持力学平衡。

假设三根立柱从左至右产生的反力为Rb 、Ra 、Rc 。

Ra 为两个简支梁在中间立柱的合力。

1、 反力计算q=(砼+钢筋+模板、工字钢、方木及振动荷载等)÷15.7=(25.16m 3×2400kg/ m 3+3974kg+9056kg)×9.8N/kg ÷1000÷15.7=45.8KN/ m∑Mb=0Ra1×5.5+2.35×45.8×2.35÷2-5.5×45.8×5.5÷2=0计算得Ra1=103.0KNRa=2×103.0=206.0 KN∑Ma=0计算得Rb=256.5 KN由力学计算式Ra+Rb+ Rc=15.7×45.8计算得Rc=256.5 KN由此可得出在两个边立柱的结构压力最大。

取其中一个检算。

2、抱箍钢板与立柱砼的摩擦力计算盖梁的重力传递给抱箍的钢板,在压力小于摩擦力的的情况下,抱箍钢板才不会产生位移失稳。

确定摩擦力的大小关键取决于抱箍钢板之间连接螺栓的抗拉力大小。

一个抱箍钢板用10个φ20的高强螺栓连接。

每个高强螺栓紧箍轴力为:185.85KN。

N=10×185.85=1858.5KNf=uN=0.3×1858.5=557.55 KN(砼与橡胶摩擦系数为0.3)安全系数考虑为2.0那么:2.0×256.5KN=513.0KN< f=557.55 KN 从以上力学分析,该抱箍方法完全满足施工要求。

三柱盖梁抱箍法模板及支撑体系设计计算书

三柱盖梁抱箍法模板及支撑体系设计计算书

盖梁模板及支撑体系设计计算书(一)、盖梁工程概况本工程全线共七座桥梁,盖梁共40个,均为三柱式墩结构。

各部分尺寸各桥相同,分别为:长15.2m,宽1.6m,高1.4m,混凝土33.2m³。

柱间距5.5m,两侧悬臂1.5m。

计划防震挡块同盖梁一起浇筑。

如图所示:(二)、盖梁抱箍施工法结构设计1、侧模设计侧模为专用大钢模,面板采用δ=6mm的Q235钢板,肋板高度100mm。

其中纵肋(横桥向)、竖肋均采用[10槽钢,边肋为δ=12mm的Q235钢板与背肋连接。

整座盖梁侧模每侧设置16道拉杆梁,上下各有一道拉杆保证侧模稳定性。

2、底模设计底模模为专用大钢模,面板δ=6mm,肋板高度100mm。

其中纵肋(横桥向)、横肋(顺桥向)均采用[10槽钢,边肋在底部主要受力区采用等边角钢L100×10,其余部分为δ=12mm的Q235钢板与背肋连接。

3、横梁(顺桥向)采用[10槽钢立放,优先布置底模接缝处及薄弱处,然后再加密布置。

最大间距50cm。

4、主支撑梁(纵梁)主梁采用28b工字钢,长度16m,安装在三个抱箍之上,承受盖梁施工的全部荷载。

5、抱箍抱箍由两块半圆形高度为50cm的钢板(δ=10mm)制作而成。

两片抱箍间采用M20高强螺栓连接,每侧16颗,共计32颗。

与混凝土的接触面贴合一层2~3mm厚度的橡胶垫。

紧固高强螺栓使抱箍产生对墩柱混凝土面的侧压力产生摩擦力,为主梁提供足够的支座反力。

6、防护栏杆与工作平台(1)在横梁上每隔3条横梁焊接一根竖向钢筋,长度50cm。

当横梁安装完毕时,将长度1.2m的钢管(Φ50×1.5),再沿纵向安装栏杆。

钢管间连接采用扣件连接。

(2)在横梁悬臂端放置竹胶板或竹踏板,方便作业人员走行。

(三)、盖梁抱箍法施工设计图图01 《桥墩盖梁模板支撑体系设计图》图02 《盖梁模板设计图(一)》图03 《盖梁模板设计图(二)》(含抱箍设计图)(四)、主要材料数量汇总表(五)、设计简算说明1、设计计算原则(1)、满足结构受力的安全性。

盖梁抱箍法施工方案设计计算书

盖梁抱箍法施工方案设计计算书

梁箍法施工设计计算一、设计校核和计算说明1.计算原理(1)在满足结构受力的条件下考虑挠度和变形控制。

(2)综合考虑结构的安全性。

(3)采用更符合实际的力学模型。

(4)尽量采用现有的组件和已经使用过的支持方法。

2.没有贝雷架的相关数据。

根据计算,没有数据可以附上。

3.对于部分结构的不均匀分布,不对称采用较大的均布荷载。

4.本次计算不扣除墩柱承担的盖梁混凝土重量。

作为安全储备。

5.抱箍加工完成实施前,必须先进行压力试验,变形符合要求后方可使用。

二、侧模支撑计算1.荷载计算(按最大盖梁)混凝土浇筑时的侧压力:Pm=Kγh式中:K——外加剂的影响系数,取1.2;γ-混凝土容重,26kN/m3;;H -有效压头高度。

混凝土浇筑速度V为0.3m/h,浇筑温度为20℃。

则:v/T=0.3/20=0.015<0.035h = 0.22+24.9v/T = 0.22+24.9×0.015 = 0.6mpm = kγh = 1.2×26×0.6 = 19千帕模板上混凝土振捣的侧压力按4kPa考虑。

那么:Pm=19+4=23kPa盖梁长度每延米侧压力按最坏情况考虑(即混凝土浇至盖梁顶部时):P = pm×(h-h)+pm×h/2 = 23×2+23×0.6/2 = 53.9 kN。

2、拉杆张力计算拉杆(φ20圆钢)间距1.2m,1.2m范围内混凝土浇筑时的侧压力由上、下拉杆承担。

有:σ=(T1+T2)/A=1.2P/2πr2= 1.2×53.9/(2π×0.012)= 102993 kpa = 103 MPa <[σ]= 160 MPa(OK)3、垂直皮带弯曲和挠度计算竖带两端设拉杆作为竖带支点,竖带为简支梁,长度l0=2.2m,混凝土侧压力按均布荷载q0考虑。

垂直带的弹性模量e[14b = 2.1×105 MPa;惯性矩Ix = 609.4cm4弯曲模量Wx = 87.1cm3立方厘米Q0 = 23×1.2 = 27.6千牛/米最大弯矩:mmax = q0l 02/8 = 27.6×2.72/8 = 25kn·m。

盖梁施工抱箍受力计算书

盖梁施工抱箍受力计算书

目录一、抱箍结构设计 (2)二、应力计算 (2)1、施工荷载 (2)2、计算钢带对混凝土的应力 (3)3、钢带内应力为σ2的受力布置图 (3)4、牛腿螺栓受力情况 (4)5、工字钢受力计算 (5)6、工字钢应力计算: (6)一、抱箍结构设计根据第二阶段施工设计图(第三册、第四册(第二分册)),我标头沟特大桥、南沟大桥、AK1+718匝道桥采用抱箍法施工盖梁,其中墩柱尺寸为180cm、160cm、140cm等,则现场抱箍加工尺寸为高50cm,直径为180cm、160cm、140cm,抱箍钢带厚度10mm,为考虑最不利因素,只对180cm的抱箍进行计算一般变形计算,即应力计算。

二、应力计算1、施工荷载1)盖梁设计混凝土方量为44.90m3,钢筋骨架为7.566T,自重为(考虑钢筋混凝土的平均密度为 2.5T/m3),则所得自重为44.90*2.5=112.25T;2)钢模自重:根据模板设计图,模板每平方米按照100㎏计算,则所得自重为26.4*0.1=2.64T;3)工字钢采用45b,其理论单位中为87.485㎏/m,共用2根,每根长12m,则所得自重为87.485*12*2=2.1T;4)施工荷载:按照混凝土施工工序人员最多需要作业人员10人计算,则所得自重为10人+混凝土动载+振捣力=10*0.1+0.5*1.2+0.3=1.9T;5)盖梁混凝土施工总荷载为:112.5+2.64+2.1+1.9=118.59T;为考虑施工安全系数1.2,则计算施工荷载为118.59*1.2=143T,根据施工荷载及现场施工布置,抱箍受力考虑为均布荷载,则单个抱箍受力为143/2=71.5T。

2、计算钢带对混凝土的应力1)钢带对墩柱的压应力σ1可由下式计算μσ1BπD=KG其中:μ——摩阻系数,取0.35;B——钢带宽度,B=500mm;D——立柱直径,D=1800mm;K——荷载安全系数,取1.2;G——作用在单个抱箍上的荷载,G=715KN。

盖梁抱箍法施工计算书

盖梁抱箍法施工计算书

11.2.1抱箍法盖梁施工计算书1、计算依据(1)《路桥施工计算手册》(2)《云南省标准化施工指南》(3)宾南高速土建3标两阶段施工图设计;(4)公路桥涵施工技术规范(JTJ 041-2000);(5)公路桥涵钢结构及木结构设计规范(JTJ025-86);(6)路桥施工计算手册. 人民交通出版社. 2002;(7)公路桥涵施工技术规范实施手册. 人民交通出版社. 2002及相关文件2、专项工程概况(1)盖梁施工采用抱箍法,抱箍采用2块半圆弧形钢板制作,使用M24的高强螺栓连接,底模厚度10cm,每块长度2.5m;充分利用现场已有材料,下部采用I14工字钢作为横梁,横梁底部采用2根I40b工字钢作为纵梁,抱箍与墩柱接触部位夹垫2~3mm橡胶垫,防止夹伤墩柱砼;纵横梁梁两端绑扎钢管,安装防落网。

下面以K55+213右幅1号墩盖梁例进行抱箍相关受力计算。

(2)盖梁尺寸:2.1m×1.7m×11.7m(宽×高×长);不规则尺寸:2.1m×0.7m×1。

63m(宽×高×长);下部采用圆形双柱墩,柱直径2m,柱间中心距离6.4m,盖梁周围预留1m以上作为操作平台;(3)计算假定:工字钢放在抱箍上按外伸梁计算,荷载按均布荷载垂直作用在两片工字钢上,柱顶承受的荷载忽略不计(偏安全),工字钢受弯、剪作用,抱箍受剪力作用。

抱箍法施工示意图如下:I14工字钢横梁10cm厚底模间距0.5mI45C工字钢纵梁千斤顶抱箍抱箍法施工示意图3、横梁计算冬季雪荷载及养护设施荷载根据现场情况考虑增加,(1)荷载计算1)根据《路桥施工计算手册》表8-1,得C30砼容重取25KN/m³盖梁钢筋砼荷载:G1=39.4×25KN/m³=985KN;挡块钢筋砼荷载:G2=3.6×25KN/m³=90KN;2)根据《路桥施工计算手册》表8-1得模板采用组合钢膜、连接件及钢楞时荷载均按0.75KN/㎡考虑,得:模板面积:经计算,盖梁模板面积为59.88㎡;模板荷载:G3=59.88×0.75=44.91KN3)根据《路桥施工计算手册》表8-1得施工人员、施工料具运输、堆放产生的荷载均按按2.5KN/㎡考虑,得:施工人员荷载:G4=2.5KN/m2×11.7m×2.1m=61.425KN4)根据《路桥施工计算手册》表8-1得倾倒砼时产生的冲击荷载采用溜槽或串通产生的荷载和振捣砼时产生的荷载均按2KN/㎡考虑,不叠加计算,得:施工动荷载:G5=2KN/m×11.7m×2.1m=49.14KN5)横梁盖梁长度为11.7m,两侧布置横梁时各延长1m作为操作平台;由于盖梁宽2.1m,各延长1m后为4.1m,根据钢材长度规范一般取4.5m,施工时可根据现场情况调整横梁间距及数量;两墩柱中心距离为6.4m,墩径为2m,则两墩柱间净间距为4.4m,考虑到中间位置受力较为集中,横梁布置间距采用0.25m;则横梁数量为:中间位置(两墩柱之间):4.4÷0.25=17.6根,取整为18根;两侧位置(两墩柱外侧):(2+3.3)÷0.25=21.2根,取整后为22根,即两侧各布置11根横梁;即:横梁总数为40根;根据《路桥施工计算手册》得,I14工字钢每米重量为16.88m;横梁总荷载G6=mg=16.88×4.5×40×9.8=29776.32N≈30KN;计算中:g取9.8N/Kg;7)横梁上跨中部分荷载:G7=G1+G2+G3+G4+G5+G6=985+90+44.91+61.429+49.14+30=1260.475KN 每根横梁上所受荷载:q1= G7/15=1265.475/40≈31.5KN作用在每根横梁上的均布荷载:q2= q1/2.1=31.5/2.1≈15KN/m两端悬臂部分只承受施工人员荷载,可以忽略不计。

盖梁抱箍法施工计算书

盖梁抱箍法施工计算书

盖梁抱箍法施工计算书 Final revision by standardization team on December 10, 2020.目录抱箍法施工计算书1、计算依据《路桥施工计算手册》《辽宁省标准化施工指南》《辽宁中部环线高速公路铁岭至本溪段第四合同段设计图》及相关文件2、专项工程概况盖梁施工采用抱箍法,抱箍采用2块半圆弧形钢板制作,使用M24的高强螺栓连接,底模厚度10cm,每块长度;充分利用现场已有材料,下部采用I14工字钢作为横梁,横梁长度为,根据模板拼缝位置按照间距布置,共需27根;横梁底部采用2根I45C工字钢作为纵梁,纵梁长度为15m;抱箍与墩柱接触部位夹垫2~3mm橡胶垫,防止夹伤墩柱砼;纵横梁梁两端绑扎钢管,安装防落网。

下面以体积最大的浑河大桥8#右幅盖梁为例进行抱箍相关受力计算。

浑河大桥8#墩柱直径为2m,柱中心间距,盖梁尺寸为××, C40砼,盖梁两端挡块长度为×(上口,下口)×,C40砼。

图1 抱箍法施工示意图3、横梁计算荷载计算盖梁钢筋砼自重:G1=×26KN/m3=挡块钢筋砼自重:G2=×26KN/m3=模板自重:G3=98KN施工人员:G4=2KN/m2××=施工动荷载:G5=2KN/m××=,倾倒砼时产生的冲击荷载和振捣砼时产生的荷载均按2KN/㎡考虑。

横梁自重G6=××27=横梁上跨中部分荷载:G7=G1+G2+G3+G4+G5+G6=++98+×2+=每根横梁上所受荷载:q1= G7/15=27=作用在每根横梁上的均布荷载:q2= q1/==m两端悬臂部分只承受施工人员荷载,可以忽略不计。

力学模型图2 力学模型分配梁抗弯与挠度计算由分析可知,横梁跨中弯矩最大,计算如下:Mmax=q2l2/8- q2l12/2=××2=·m图3 分配梁弯矩示意图Q235 I14工字钢参数:弹性模量E=×105Mpa,截面惯性矩I=712cm4,截面抵抗矩W=①抗弯计算σ= Mmax/W= ×103=<[σ]=170Mpa结论:强度满足施工要求。

盖梁抱箍法施工计算书【范本模板】

盖梁抱箍法施工计算书【范本模板】

目录1、计算依据 ................................................. 错误!未定义书签。

2、专项工程概况ﻩ错误!未定义书签。

3、横梁计算ﻩ错误!未定义书签。

3。

1荷载计算......................................... 错误!未定义书签。

3.2力学模型 .......................................... 错误!未定义书签。

3。

3横梁抗弯与挠度计算................................ 错误!未定义书签。

4、纵梁计算ﻩ错误!未定义书签。

4。

1荷载计算......................................... 错误!未定义书签。

4。

2力学计算模型ﻩ错误!未定义书签。

5、抱箍计算 ................................................. 错误!未定义书签。

5。

1荷载计算ﻩ错误!未定义书签。

5.2抱箍所受正压分布力Q计算 .......................... 错误!未定义书签。

5。

3两抱箍片连接力P计算.............................. 错误!未定义书签。

5.4抱箍螺栓数目的确定................................ 错误!未定义书签。

5.5紧螺栓的扳手力P B计算 ............................. 错误!未定义书签。

5。

6抱箍钢板的厚度ﻩ错误!未定义书签。

抱箍法施工计算书1、计算依据《路桥施工计算手册》《辽宁省标准化施工指南》《辽宁中部环线高速公路铁岭至本溪段第四合同段设计图》及相关文件2、专项工程概况盖梁施工采用抱箍法,抱箍采用2块半圆弧形钢板制作,使用M24的高强螺栓连接,底模厚度10cm,每块长度2。

盖梁模板及支架设计计算

盖梁模板及支架设计计算

盖梁模板及支架设计计算1) 抱箍设计计算:盖梁采用抱箍法施工,用钢箍卡固在墩柱上,搭贝雷架工字槽钢,再铺横方木或槽钢,上再安装盖梁底模。

1.抱箍承受的垂直力:①盖梁高 1.6m,宽 1.9m,长 14.86m,砼42.5m3,钢筋6933Kg ,盖梁重:42.5 X2.3 + 6.93 = 104.7T②底模、侧模重底模重 3.362T,测模重 2 X 0 X10) X37.38Kg/ 片=2243Kg[12 槽钢 12.31Kg/m 6X17 X2.31 = 1255 Kg立柱:11 X1.8 X2X12.31 = 487Kg,三角支架 2 个:1.062T底横梁[22 25 条X3.2 X24.99 = 2000Kg人行工作台1T③贝雷架 12 片,0.275 X12 = 3.3T④施工设备、人员、倾倒混凝土及振捣荷载 2.5T,合计:121.908T,加大荷载安全系数1.1.121.908 X.1 = 134.099T = 1340.99KN全部荷载分配在两个墩柱上,故每个墩柱承受力为:134.仃67.05T : 670.5KN2即每个抱箍要承受 67.0T ( 670.5KN )的垂直力。

加抱箍自重0.305T为67.355T。

抱箍承受的垂直力转化为抱箍与墩柱的摩擦力来承受。

摩擦系数:铁板与橡胶0.6,橡胶与混凝柱0.8,故取铁板与橡胶的摩擦系数0.6故需要的正压力673.55KN/0.6 = 1122.6KN ,采用d 24螺栓,每 个螺栓允许拉力262KN最小螺栓个数1122.6KN/262KN = 4.28个螺栓。

采用12个螺栓,其安全系数为12/4.28 = 2.8可 施工时每个螺栓的最小拉力:1122.6KN/12 = 93.55KN 每个螺栓的最小拧扭矩:tc = K XPC 刈tc —扭矩 K —钢与钢的摩擦系数,0.15〜0.2取0.2. d —螺栓外径PC —螺栓拉力tc = 0.2 X93.55 >0.024 = 0.4490KN*m为了保证螺栓不至于损坏,拧扭矩不要过大,最大扭矩为: tc = K XP >1,这时 K 取 0.15 , tc = 0.15 X262 >0.024 = 0.9432建议施工时取其中值:0.4490 0.9432二0.6961KN .m22)贝雷架梁的应力验算:总重量134.099T (见前页),盖梁长14.86m ,柱间距离8.46m ,(高良桥9 …14 #墩为8.65m )柱间均布荷载估算:贝雷架:[12 lx = 388.5cm 4, A = 15.65cm 2134.099 14.86二9.024T / m9.024T/m 2[12 f \ f yp zs-T ----------- A--3.1 8.65m 3.1-可编辑修改-1.9m0.1794T/m 2可编辑修改-1.5m贝雷架截面惯性矩:0.687mlx = 4 X 388.5 + 4 X15.69 W8.72[12=1554 + 296208 = 297762cm 211M ql 29.024 8.652 = 84.4T.m = 84.4 105Kg.cm (按简支梁计 88算偏安全)5yM 75 84.4 102二=5-1062.93Kg / cm =106.2MPaI 2 2.97762 103 )灌砼前风力引起的模板倾覆稳定计算 1、受力如图下图,9.755T抱箍支承点1.42m①查抱箍计算单模板支架等重9.755②抱箍支承点距离:墩柱直径+贝雷架丄宽:1.3 + 0.12 = 1.42m2③模板高1.8m④风压强度,查全国基本风压分布图:广宁为 W o = 100Kg/m2 = 0.1T/m2风载体系数:方型为K1 = 1.3风压高度变化系数:K2=1.2 , (26m高)地形地理条件系数:K3 = 1.15 ,(山岭、峡谷、风口区)风载强度:W = K1 XK2 XK3 >Wo=1.3 X1.2 X1.15 >0.1T/m2 = 0.1794 T/m 2⑤风力:受风面积承风压强:17 X1.9 >0.1794 = 5.490T风力重心高1.8m/2 = 0.9m ,风力倾覆弯矩5.490T >0.9m = 4.94仃*m抗倾覆弯矩: 9.755T >.42/2m = 6.926T*m安全系数 6.926/4.941 = 1.40 可4)贝雷架也可用三层128工字钢代用,使用时两层工字钢必须焊接在一起,共同受力。

盖梁施工抱箍受力计算书

盖梁施工抱箍受力计算书

目录一、抱箍结构设计 (2)二、应力计算 (2)1、施工荷载 (2)2、计算钢带对混凝土的应力 (3)3、钢带内应力为σ2的受力布置图 (3)4、牛腿螺栓受力情况 (4)5、工字钢受力计算 (5)6、工字钢应力计算: (6)一、抱箍结构设计根据第二阶段施工设计图(第三册、第四册(第二分册)),我标头沟特大桥、南沟大桥、AK1+718匝道桥采用抱箍法施工盖梁,其中墩柱尺寸为180cm、160cm、140cm等,则现场抱箍加工尺寸为高50cm,直径为180cm、160cm、140cm,抱箍钢带厚度10mm,为考虑最不利因素,只对180cm的抱箍进行计算一般变形计算,即应力计算。

二、应力计算1、施工荷载1)盖梁设计混凝土方量为44。

90m3,钢筋骨架为7.566T,自重为(考虑钢筋混凝土的平均密度为2。

5T/m3),则所得自重为44。

90*2。

5=112。

25T;2)钢模自重:根据模板设计图,模板每平方米按照100㎏计算,则所得自重为26。

4*0.1=2.64T;3)工字钢采用45b,其理论单位中为87。

485㎏/m,共用2根,每根长12m,则所得自重为87。

485*12*2=2。

1T;4)施工荷载:按照混凝土施工工序人员最多需要作业人员10人计算,则所得自重为10人+混凝土动载+振捣力=10*0。

1+0.5*1.2+0。

3=1.9T;5)盖梁混凝土施工总荷载为:112。

5+2。

64+2。

1+1.9=118。

59T;为考虑施工安全系数1。

2,则计算施工荷载为118.59*1。

2=143T,根据施工荷载及现场施工布置,抱箍受力考虑为均布荷载,则单个抱箍受力为143/2=71.5T。

2、计算钢带对混凝土的应力1)钢带对墩柱的压应力σ1可由下式计算μσ1BπD=KG其中:μ-—摩阻系数,取0.35;B——钢带宽度,B=500mm;D--立柱直径,D=1800mm;K——荷载安全系数,取1。

2;G—-作用在单个抱箍上的荷载,G=715KN。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

盖梁模板及支撑体系设计计算书(一)、盖梁工程概况本工程全线共七座桥梁,盖梁共40个,均为三柱式墩结构。

各部分尺寸各桥相同,分别为:长15.2m,宽1.6m,高1.4m,混凝土33.2m³。

柱间距5.5m,两侧悬臂1.5m。

计划防震挡块同盖梁一起浇筑。

如图所示:(二)、盖梁抱箍施工法结构设计1、侧模设计侧模为专用大钢模,面板采用δ=6mm的Q235钢板,肋板高度100mm。

其中纵肋(横桥向)、竖肋均采用[10槽钢,边肋为δ=12mm的Q235钢板与背肋连接。

整座盖梁侧模每侧设置16道拉杆梁,上下各有一道拉杆保证侧模稳定性。

2、底模设计底模模为专用大钢模,面板δ=6mm,肋板高度100mm。

其中纵肋(横桥向)、横肋(顺桥向)均采用[10槽钢,边肋在底部主要受力区采用等边角钢L100×10,其余部分为δ=12mm的Q235钢板与背肋连接。

3、横梁(顺桥向)采用[10槽钢立放,优先布置底模接缝处及薄弱处,然后再加密布置。

最大间距50cm。

4、主支撑梁(纵梁)主梁采用28b工字钢,长度16m,安装在三个抱箍之上,承受盖梁施工的全部荷载。

5、抱箍抱箍由两块半圆形高度为50cm的钢板(δ=10mm)制作而成。

两片抱箍间采用M20高强螺栓连接,每侧16颗,共计32颗。

与混凝土的接触面贴合一层2~3mm厚度的橡胶垫。

紧固高强螺栓使抱箍产生对墩柱混凝土面的侧压力产生摩擦力,为主梁提供足够的支座反力。

6、防护栏杆与工作平台(1)在横梁上每隔3条横梁焊接一根竖向钢筋,长度50cm。

当横梁安装完毕时,将长度1.2m的钢管(Φ50×1.5),再沿纵向安装栏杆。

钢管间连接采用扣件连接。

(2)在横梁悬臂端放置竹胶板或竹踏板,方便作业人员走行。

(三)、盖梁抱箍法施工设计图图01 《桥墩盖梁模板支撑体系设计图》图02 《盖梁模板设计图(一)》图03 《盖梁模板设计图(二)》(含抱箍设计图)(四)、主要材料数量汇总表(五)、设计简算说明1、设计计算原则(1)、满足结构受力的安全性。

(2)、在满足结构受力安全情况下考虑挠度变形控制及挠度调整。

(3)、采取比较符合实际的力学模型和实际的施工荷载。

(4)、尽量采用已有的构件和已经使用过的支撑方法。

2、注意事项(1)、盖梁悬臂端为变截面,荷载分布不规则,但荷载必然比跨中段小,未简化计算采用与跨中段相同的均布荷载。

(2)、抱箍在使用前必须进行压力试验,沉降及变形满足要求后方可使用。

(3)、第一个盖梁浇筑时使用水准仪进行主梁挠度观测,安全监控的同时验证计算结果。

(4)、由于桥梁墩柱嵌入到模板内,故风荷载不予考虑。

(六)、常数及各部件参数1、计算常量(1)、重力加速度:g=9.81m/s2=9.81N/kg(2)、钢筋混凝土容重:γ=26KN/m32、重力荷载支撑体系中各构件质量取自前文《盖梁施工支撑体系材料统计表》。

(1)、盖梁钢筋混凝土自重:G1=33.2γ=863.2KN(2)、整套钢模板自重:G2=10345∙g/1000=101.5KN(3)、横梁自重:G3=(42+720)∙g/1000=7.5KN(4)、主梁(横桥向)自重:G4=1532.8∙g/1000=15.0KN(5)、单个抱箍自重:G5=495∙g/1000=4.9KN(6)、施工荷载:G p=(60×4+25×2+150)∙g/1000=4.3KN 说明:施工荷载假设浇筑时有工人及管理人员4名,60Kg/人;振动棒2台,25Kg/台;其它设备150Kg。

3、钢材力学参数型钢、拉杆(圆钢)、钢板弹性模量:E=2.1×105MPa=2.1×109KN/m2型钢的截面力学参数详见以下图表。

图 1 型钢截面图注:数据取自国标规范《热轧型钢》(GB/T 706-2008)(七)、侧模支撑计算1、力学模型假定混凝土浇筑时侧压力由拉杆和拉杆梁承受,如下受力图:振捣棒产生的压力取P z=4KPa混凝土浇筑时的侧压力:P m=kγℎ+P zk为外加剂影响系数,夏季施工为防止坍落度损失,可能混凝土流动性较强,取1.3;h为混凝土有效压头高度(m),根据总体施工计划,盖梁施工将在6、7、8月份,根据气象资料,入模温度T取30℃;浇筑速度v取0.45m/h。

v/T=0.45/30=0.015<0.035ℎ=0.22+24.9v/T=0.6mP m=kγℎ+P Z=1.3×26×0.6+4=24.3KPa延盖梁每延米上产生的侧压力按最不利因素考虑,即混凝土刚浇筑完毕时:P=P m(H−ℎ2)=23×(1.4−0.62)=25.3KN3、拉杆受力计算拉杆拟采用Φ20mm的圆钢,容许抗拉应力取140MPa,拉杆端焊接4.4级M22螺栓,抗拉强度400MPa,取最小值,即拉杆容许拉应力[σ]=140MPa。

根据模板设计图得知,拉杆梁最大纵向间距为1.2m,计算拉杆的拉应力为:σ=T1+T2A=1.2P2πr2=1.2×25.32×3.142×0.012=48313KPa<[σ]=140MPa结论:拉杆强度满足要求!4、拉杆梁受力计算拉杆梁为2根[10槽钢连接(y轴向受力)制成,由上图可知T1、T2为拉杆梁的支点即支座反力,拉杆梁为简支梁,按模板设计图考虑模板肋宽及拉杆安装位置,取梁长l=1.7m。

砼侧压力按均布荷载考虑:q0=1.2P/H=1.2×25.3/1.4=21.7KN/m单根[10承受的荷载为:q=q0/2=10.9KN/m最大弯矩:M max=ql28=10.9×1.72÷8=3.94KN∙m弯曲应力:σ=M maxW x=3.94KN∙m39.7cm3=99.24MPa<[σw]=160MPa挠度值:f max=5ql4384EI x=5×10.9×1.74384×2.1×109×198×10−8=2.85×10−4mf max=0.29mm<[f]=l400=4.25mm结论:拉杆梁满足要求!5、纵肋(横桥向)受力计算:侧模纵肋为单根[10槽钢(y轴向受力),上下间距0.3m,可按简支梁计算,梁长l 同拉杆梁间距1.2m,拉杆梁为支点。

纵肋荷载q计算按最不利点,即最底部纵肋做受力计算,安全系数k=1.2:q=kP m×1.2×0.3/1.2=8.75KN/m 最大弯矩:M max=ql28=8.75×1.22÷8=1.575KN∙m结论:由此可见纵肋最大弯矩远小于拉杆梁内单根槽钢,材料相同、截面相同,弯曲强度及挠度不做计算即可知其满足要求。

(八)、底模及横梁计算1、底模纵肋计算底模纵肋直接架在横梁之上(y轴方向受力),横向间距最大0.4m。

可按简支梁计算,梁长取横梁最大间距,即l=0.8m。

(1)、荷载计算:荷载来自纵肋上方的混凝土重力以及混凝土振捣产生的荷载4KPa,安全系数k=1.2:q=k[(0.4×0.8×1.4)γ+4×(0.4×0.8)]/l=19.4KN/m 最大弯矩:M max=ql28=19.4×0.82÷8=1.552KN∙m结论:由此可见底模纵肋最大弯矩小于拉杆梁内单根槽钢,材料相同、截面相同,弯曲强度及挠度不做计算即可知其满足要求。

(上方混凝土高度大于1m时可不计振捣荷载)2、横梁计算横梁也为[10槽钢,延y轴方向受力,布置最大间距0.5m。

横梁承受0.5m范围内的盖梁砼自重、模板自重、施工荷载。

假设主梁工字钢在贴近墩柱位置安装,则受力模型如下:荷载计算:最大间距处在D1底模和两块C1侧模下方,由模板图纸及工程量统计得知:单块C1底模为5.5×1.5m,重量936.2kg,附带6根拉杆梁重量34.1kg;单块D1底模重量339.2kg,纵向长度2.3m。

故横梁承受的模板重力为G k=g[(936.2+34.1)×2/5.5+339.2/2.3]×10−3×0.5=2.454KN横梁承受的混凝土重力荷载为:施工振捣荷载取4KPaG m=[(1.6×1.4)γ+4×1.6]×0.5=36.33KN均布荷载:安全系数k=1.2q=k(G k+G m)2a+l=1.2(2.454+36.33)2×0.244+1.324=25.68KN/m弯矩计算:M max=ql28(1−4a2l2)=25.68×1.32428(1−4×0.24421.3242)=4.86KN∙m弯曲应力:σ=M maxW x=4.86KN∙m39.7cm3=122.4MPa<[σw]=160MPa最大挠度值:f max=ql4384EI x(5−24a2l2)=25.68×1.3244384×2.1×109×198×10−8∙(5−24×0.24421.3242)f max=0.2mm<[f]=1324400=3.3mm结论:横梁满足要求。

(九)、主梁计算主梁采用28b工字钢,长度l=16m,共两根,架设在抱箍平台之上,横梁分布在15.5m 范围内,是整个盖梁模板支撑体系的主要受力构件。

1、荷载计算前文已对荷载进行计算,主梁承受的荷载为盖梁混凝土及模板、横梁重力与施工过程中人员及机械的重力荷载,平均分配至两根主梁。

安全系数k=1.2G=G1+G2+G3+G4+G p=863.2+101.5+7.5+15+4.3=991.5KNq=G2l=991.52×15.5=32KN/m2、受力模型建立力学模型如图:由受力图得知,此结构体系属一次超静定结构,用位移法进行解算。

3、结构力学计算(1)、计算支座反力R c:第一步:解除C点约束,分别计算悬臂端荷载与梁中段均布荷载情况下弯矩与挠度。

M max=−qa22=−2.53qC点位移量:f C′=−qa2(2l)216EI(↑)D、E点位移量:f D′=f E′=qa3(2l)+5ql28EI(2+a2l) (↓)M max=q(2l)28=15.125qC点位移量:f C‘’=5q(2l)4 384EI(↓)第二步:计算C点支座反力RC作用下的弯矩与挠度M max=−R C∙2l 4C点位移量:f C=−R C(2l)348EI(↑)第三步:加入C点支座计算支座反力R C 加入C点支座后可得如下方程:∑f C=−R C(2l)348EI−qa2(2l)216EI+5q(2l)4384EI=0简化得:4R C l+q(6a2−5l2)=0R C=−(6a2−5l2)4lq=5.494q (↑)(2)、计算支座反力R A、R B:由静力平衡原理可得:R A=R B=2(l+a)−R C2=5.003q (↑)(3)、弯矩分析由结构力学相关资料可得知,均布荷载下连续梁结构最大弯矩出现在支座顶负弯矩,根据叠加原理,此结构最大弯矩也出现在支座顶负弯矩,且由于两端悬臂处荷载作用,跨中正弯矩影响也会变小,故跨中弯矩不做计算。

相关文档
最新文档