断口分析

合集下载

金属材料断口分析的步骤与方法

金属材料断口分析的步骤与方法

金属材料断口分析的步骤与方法金属材料断口分析是一项综合性很强的技术分析工作,通常需要采用多种仪器联合测试检验的结果,从宏观到微观,从定性到定量进行研究分析。

因此,需要严格的科学态度和有步骤的操作。

断口分析的步骤包括:选择、鉴定、保存和清洗试样;宏观检验和分析断裂表面、二次裂纹以及其他表面现象;微观检验和分析;金相剖面的检验和分析以及化学分析;断口定量分析,如断裂力学方法;模拟试验等。

在进行断裂构件的处理和断口的保存时,需要采取措施把断口保存好并尽快制定分析计划。

对于不同情况下的断口,应采用不同的方法进行处理。

例如,对于大气中的新鲜断口,应立即放入干燥器内或真空干燥器内而不必清洗;对于带有油污的断口,应先用有机溶剂溶去油污,最后用无水乙醇清洗吹干;在腐蚀环境下发生断裂的断口,则需要进行产物分析。

通常可以采用X射线、电子探针、电子扫描显微镜或俄歇能谱仪进行产物分析,得出结论后再去掉产物观察断口形貌。

总之,断口分析是一项重要的金属材料分析技术,需要严格的科学态度和有步骤的操作。

去除腐蚀产物的方法之一是干剥法。

使用醋酸纤维纸(AC纸)进行清理是最有效的方法之一,特别是在断口表面已经受到腐蚀的情况下。

将一条厚度约为1mm的AC纸放入丙酮中泡软,然后放在断口表面上。

在第一张条带的背后衬上一块未软化的AC纸,然后用夹子将复型牢牢地压在断口表面上。

干燥后,使用小镊子将干复型从断口上揭下来。

如果断口非常污染,可以重复操作,直到获得一个洁净无污染的复型为止。

这种方法的一个优点是,它可以将从断口上除去的碎屑保存下来,以供以后鉴定使用。

此外,还可以使用复型法来长期保存断口。

断口表面不能使用酸溶液清洗,因为这会影响断口分析的准确性。

对于在潮湿空气中暴露时间比较长、锈蚀比较严重的断口,以及高温下使用的有高温氧化的断口,一定要去除氧化膜后才能观察,以避免假象。

如果一般有机溶液、超声波洗涤和复型都不能洁净断口表面,可以采用化学清洗。

断口分析技术及其在失效分析中的应用

断口分析技术及其在失效分析中的应用

断口分析技术及其在失效分析中的应用1 . 前言断口是断裂过程的最真实、完整的纪录,从宏观到微观的断口分析可以揭示断裂过程中从裂纹的形核、长大到断裂的各个进程中主断裂面的受力情况、介质环境情况、材料制造情况、以及损伤过程等。

断口分析是通过肉眼观察,和借助显微分析仪器对断裂过程在断裂件上留下的痕迹进行的综合分析和检测,目的是通过分析揭示断裂的过程、断裂的性质和研究断裂机理。

断口分析需要结合断裂件的材料组织结构特征和使用环境状况等方面的知识,才能得出正确的判断。

断口分析的三大作用:1 作为结构材料研究的重要内容之一,用于研究材料的断裂机理; 2 断裂失效分析; 3 评价材料。

断口分析分为宏观断口分析和微观断口分析两部分,二者必须相互结合。

宏观断口分析主要是用肉眼或借助普通放大镜进行观察,从而分析裂纹的扩展方向、断裂的起源位置、断裂过程的载荷情况等断裂的宏观特征;微观断口分析需要借助光学和电子显微分析仪器进行观察和分析,通过对断口的微观形态、结晶学特征、残留元素成分等理化特征的分析,确定断裂的类型和断裂的机理。

断口分析是断裂失效分析的基础,它是建立在人们对各种材料和环境组合下得到的断口的宏观、微观特征和断裂机理研究的长期知识积累的基础之上的。

断裂失效分析是断口分析最重要的运用方面,是判明断裂失效原因的唯一途径,其作用是:1 判定事故责任;2 寻求改善和提高;(改进设计、完善检验措施、改善使用条件;从而使装备的整体性能得到改进)3 为改善管理、预防事故的再次发生提供依据。

因为断口是断裂过程的真实记录,是第一手最可靠的证据,因此断口分析的判断正确与否成为断裂失效分析结论正确与否的关键。

由于工程上的材料和断裂过程千差万别,而且断裂事件发生后,断口常常会受到不同程度的污染和损坏,因此实物断口通常与我们在教科书上所见的不尽一样,甚至相去甚远,这使得工程上的断口分析变得相当复杂。

常常能看见,对于同样的断口,不同人员得出不同判断的情况,往往是因为片面地生套书本所致。

金属材料断口分析的步骤与方法

金属材料断口分析的步骤与方法

金属材料断口分析的步骤与方法断口分析通常是一个从宏观到微观,从定性到定量的分析过程,并且是应用多种仪器联合测试检验的结果,是综合性很强的技术分析工作。

因此需要严格的科学态度,精心地、有步骤地进行研究分析。

断口分析步骤:(1)所有试样的选择、鉴定、保存以及清洗;(2)宏观检验和分析(断裂表面、二次裂纹以及其他的表面现象);(3)微观检验和分析;(4)金相剖面的检验和分析以及化学分析;(5)断口定量分析(断裂力学方法);(6)模拟试验。

1 断裂构件的处理及断口的保存在确定了断裂的金属构件后,就要采取措施把断口保存好,尽快制定分析计划。

通常金属构件的断裂不止一个断口,有时要立即判断主断口有困难,此时应该把所有断件收集好,在收集过程中切勿把断口碰伤或对接,也不要在断口上使用防蚀涂层。

保护和清理断口是断口分析的一个重要前提。

对断口和裂纹轨迹进行充分检查后方可进行清洗。

对于不同情况下的断口应该用不同方法处理:(1)大气中的新鲜断口,应立即放入干燥器内或真空干燥器内而不必清洗。

(2)对于带有油污的断口,首先用汽油,然后用丙酮、三氯甲烷、石油醚及苯等有机溶剂溶去油污,最后用无水乙醇清洗吹干。

当浸没处理还不能去除油污时,可使用蒸汽或超声波方法进一步去除。

(3)在腐蚀环境下发生断裂的断口,通常在断口上覆盖一层腐蚀产物,这层产物对于分析断裂原因是非常有用的,但对断口形貌观察常常带来很大的麻烦。

在这种情况下,需要用综合分析的方法来考虑。

因为有许多腐蚀产物容易水解或分解,因此进行产物分析要抓紧时间,同时不要进行任何清洗和处理。

通常把带有腐蚀产物的断口试样,先用X射线、电子探针、电子扫描显微镜或俄歇能谱仪进行产物分析,得出结论后去掉产物再观察断口形貌。

去掉腐蚀产物有时可采用干剥法。

用醋酸纤维纸(称AC纸,由7%的醋酸纤维素、丙酮溶液制成厚度0.1~1mm的均匀薄膜)复型进行清理是最有效的方法之一,尤其是断口表面已经受到腐蚀的时候。

断力讲义-2(断口分析简介)

断力讲义-2(断口分析简介)

5.4 准解理断口的形貌特征
准解理断裂:介于解理与韧窝断裂之间的 断裂(回火马氏体钢)
一、宏观形貌特征
比较平整、塑性变形小,近似于解理 断口的宏观形貌
二、微观形貌特征
* 亦有解理台阶、撕裂脊线、舌状花样 * 微观上有较大的塑性变性(图4-4)
5.5 韧性断口的形貌特征
断口形貌取决于:材料类型、质量、变形 速度、应力状态、试验温度等
二、宏观形貌特征
• 三个区域:平滑区(含疲劳源)、过渡区、 瞬断区
1.疲劳源:单源、多源;表面、次表面
2 平滑区:裂纹萌生、稳定扩展; 呈脆性断口形貌
1)裂纹扩展方向,结合贝壳状、年轮、 海滩状、前沿线等宏观条纹标记来判断;
2)机械磨光标记 3)裂纹扩展区的颜色(黑、黑红) 4)疲劳台阶(多源疲劳断裂) 5)棘轮状标记(应力大、应力集中) • 贝壳状条纹 (图6-22) * 鉴别疲劳断口的重要宏观依据 * 产生、形状、变化
续的,且其长度也大致相等。
4.轮胎压痕
* 疲劳断口微观形貌特征的第二重要依据 * 轮胎压痕是疲劳断口上最小特征花样,
是在疲劳裂纹形成后,由匹配断口上的 “突起”、“刃边”等反复挤压或刻入而 引起的压痕
5.7 环境断口
1.应力腐蚀断口
金属材料、受拉应力、腐蚀环境;多源脆性 断裂,穿晶、沿晶或混晶断裂 2.氢脆断口 体心立方金属及合金;穿晶或晶间断裂 3.腐蚀疲劳断口 往往在材料表面萌生裂纹,多个疲劳源 特征:有腐蚀或氧化形貌、颜色(疲劳区)
5.8 其它断口
1.蠕变断口
金属材料在高温蠕变条件下,可能出现两 种晶间裂开形式:楔形裂纹,圆形或椭 圆形孔穴
2.过热断口
3.沿晶断口
5.9 失效分析概论

复合材料断口分析的流程

复合材料断口分析的流程

复合材料断口分析的流程一、准备工作。

要进行复合材料断口分析呢,咱得先把东西都准备好。

这就好比做饭得先把食材和厨具准备齐全一样。

我们得先拿到这个复合材料的断口样品。

这个样品可得小心对待呀,就像对待宝贝一样。

要是不小心把断口弄坏了,那后面的分析可就全乱套了。

然后呢,我们还需要一些基本的工具,像放大镜呀,虽然这个看起来有点简单,但是有时候简单的工具能发现大问题呢。

还有显微镜,这可是个很厉害的家伙,能让我们看到很细微的结构。

二、宏观观察。

拿到样品后,咱就开始观察啦。

这宏观观察就像是从远处看一幅画一样。

先直接用肉眼看这个断口的形状。

是平整的呢,还是参差不齐的呀?如果是参差不齐的,像锯齿一样,那这里面可能就有很多故事啦。

比如说,可能是在断裂的时候受到了很大的外力拉扯。

再用放大镜仔细瞅瞅。

看看断口表面有没有一些特殊的标记,比如说像一些线条啊,或者是颜色不一样的区域。

这些可能都是断裂过程留下来的小线索。

就像侦探在犯罪现场找线索一样,可有意思了。

有时候,你会发现断口上有一些亮晶晶的东西,这说不定就是复合材料里的某种特殊成分在断裂的时候聚集到一起了呢。

三、微观观察。

宏观观察完了,就得深入微观世界啦。

这时候显微镜就派上用场了。

把断口放到显微镜下,就像进入了一个全新的小宇宙。

在微观下,我们可以看到复合材料的内部结构是怎么被破坏的。

比如说纤维和基体之间的连接情况。

如果看到纤维从基体里拔出来了,那就说明它们之间的结合可能不是很牢固。

就像两个人拉手,一用力就松开了一样。

而且还能看到断口处的微观裂纹是怎么扩展的。

是直直地往前冲呢,还是弯弯扭扭地走。

这不同的裂纹扩展路径也能告诉我们很多信息。

像如果裂纹是弯弯曲曲的,可能是在扩展过程中遇到了不同的阻力,就像我们走路遇到障碍物得绕着走一样。

四、成分分析。

除了看断口的形状和结构,我们还得知道断口上都有啥成分呀。

这就像是知道一道菜里都放了哪些调料一样。

可以用一些化学分析的方法,像能谱分析之类的。

断口分析报告

断口分析报告

断口分析报告1. 背景断口分析是一种通过观察和研究材料的断口特征,以了解材料断裂的原因和性质的方法。

断口分析在材料科学、工程和事故调查等领域都有广泛的应用。

本报告旨在对某一断口进行分析,以确定断裂原因并提供相关建议。

2. 断口特征通过对断口的观察,我们可以得出以下一些断口特征:2.1 断裂模式根据断裂的形态和特征,我们可以将断裂模式分为以下几种类型:•韧性断裂:断口较为平整,可见一些拉伸痕迹。

•脆性断裂:断口光滑,没有明显的变形或拉伸痕迹。

•疲劳断裂:断裂面呈现出扇形状的纹理,通常伴随着细小的裂纹。

2.2 断口形貌根据断口的形貌,我们可以得到以下一些关键信息:•断口表面的平整程度,可以判断材料的韧性。

•断口表面的颜色和气泡,可以了解材料的杂质含量和成分。

•断口表面的纹理和条纹,可以用于判断断裂过程中的应力分布和应力集中。

2.3 断口特征的意义通过对断口特征的分析,我们可以初步判断断裂原因、材料的性能和失效机制。

断口特征的意义如下:•韧性断口表明材料具有较好的韧性和延展性。

•脆性断口表明材料可能存在缺陷或材料本身较脆性。

•疲劳断裂表明材料长期受到了交变载荷的影响,可能需要进行疲劳寿命的评估。

3. 断裂原因分析基于对断口特征的观察和分析,我们进行进一步的断裂原因分析。

断裂原因分为以下几个方面:3.1 材料缺陷材料缺陷是引起断裂的常见原因之一。

缺陷可以存在于材料的制备、成型和使用过程中。

常见的材料缺陷包括:气孔、夹杂物、夹层等。

通过观察断口特征,我们可以判断是否存在明显的材料缺陷。

3.2 施加载荷材料在受到外部力的作用下可能会发生断裂。

施加在材料上的载荷可能包括拉力、压力、剪切力等。

通过观察断口形貌和纹理,我们可以初步判断受力方向和载荷大小。

3.3 环境因素环境因素也可能对材料的断裂起到一定的影响。

例如,高温、湿度、腐蚀等环境条件可能导致材料的性能变化和失效。

通过分析断口的颜色、气泡等特征,我们可以初步判断是否存在环境因素导致的断裂。

金属材料断口分析-精彩部分

金属材料断口分析-精彩部分

断口分析总结
1 断口微观分析 系统介绍:
2 1,解理与准解 理;
3 2,剪切断裂;
4 3,疲劳断裂;
4,晶间断裂
5等 断口的一般 特征
解理与准解理断裂的断口具有以下之一 的重要特征----解理部分:
解理与准解理断裂的断口具有以下之一 的重要特征----准解理部分:
剪切断裂断口的一般特征
下面介绍:
01
断口微观分析的
系统说明:
02
1解理与准解理;
03
2剪切断裂;
04
3疲劳断裂;
05
4晶间断裂等
断口特征
有关断口分析的 基本概念介绍--10; 冲击断口的宏观 形貌及示意图
V缺口试样
断口
示意图
有关断口分 析的基本概 念介绍---11;
带有中央切口板 试样的反复交变 拉伸的疲劳断口
有关断口分析的基本概念 介绍---12; 弯曲与旋转弯曲疲劳断口
a, Ⅰ; b, Ⅱ; c, Ⅲ;
平面应变和平面应力时断口 有关断口分析的基本概念介 绍---4;
a,平面应变时的断口,正断 型;
b,平面应力时的断口,切断 型;
屈服区大小沿板厚方向改变的情况(穿透裂纹“哑铃状”) 有关断口分析的基本概念介绍---4;
有关断口分析 的基本概念介 绍---5; 静载荷下光滑 圆试样的拉伸 断口宏观形貌 示意图
有关断口分析的基本概 念介绍---6;
静载荷下缺口拉伸试样 断口宏观形貌示意图
有关断口分析的基 本概念介绍---7; 裂纹不对称扩展的 断口形态示意图
有关断口分 析的基本概 念介绍---8; 矩形拉伸试 样的断口形 貌及示意图
有关断口分析的 基本概念介绍--9;

断口分析

断口分析

低碳钢解理断口河流花样
河流花样形成示意图
(1)解理台阶产生机制
①两个不在同一个平面上的解理裂纹通过与主解埋面相垂直 的二次解理形成解理台结,如图所示.
二次解理
C103铌合金氩弧焊焊缝断口上的解理台阶
②解理裂纹与螺位错相交形成台阶。解理裂纹与螺位错相交 产生一个布氏矢量大小的台阶。裂纹扩展过程中如与多个同号 螺位错相交,矢量不断叠加,达到一定程度便产生一个能够观 察到的台阶。裂纹与异号螺位错相交台阶就抵消或减少。 ③解理裂纹之间产生较大的塑性变形,通过撕裂方式连接形 成台阶。
④ 通过基体和孪晶的界面发生开裂连接形成台阶。
(2)河流花样的起源
①河流花样起源于有晶面存在的地方:晶界、亚晶界、 孪晶界。
②河流花样起源于夹杂物或析出相。
③河流花样起源于晶粒内部,是由于解理面与螺型位错 交截所致。
低碳钢拉伸断口河流花样起源于晶界
河流花样起源于孪晶界
河流花样起源于夹杂
河流花样起源于析出相
§3.2.3 韧性断口的诊断
1.对材料塑性的判断 ①柔性系数。一般说来,载荷的柔性系数越小,同一种 材料所表现出来的塑性就越大;应变速率越大,温度越低,同 种材料所表现出来的塑性就越小。 ②纤维区、放射区和剪切唇三区的相对大小。纤维区所 占的面积比例越大,说明材料塑性越好。 ③颈缩。颈缩越大材料的塑性越好。 ④韧窝尺寸。韧窝的尺寸越大(平均直径越大、深度越 深),材料的塑性就越好。 2.对载荷类型的判断
等轴韧窝(SEM)
拉长韧窝(TEM)
第二相粒子
第二 相粒 子
22Cr双相不锈钢冲击微观断口形貌(SEM)
§3.2.2 影响韧窝的尺寸因素 1.硬化指数 金属材料本身的相对塑性以及变形硬化指数的大 小直接影响着显微空洞的聚集、连接方式。通常, 变形硬化指数越大的材料难以发生内颈缩,将产生 更多的显微空洞或通过剪切断裂而连接,因此导致 韧窝变小、变浅。受材料本身微观结构和相对塑性 的影响,韧窝表现出完全不同的形态和大小。

材料断口分析

材料断口分析

材料断口分析材料断口分析是一种重要的金相分析方法,通过观察金属材料在受力作用下的断口形貌,可以了解材料的性能和断裂特点。

在工程实践中,材料断口分析可以帮助工程师和科研人员更好地理解材料的性能,为材料的选用、加工和改进提供重要依据。

首先,材料断口分析需要对断口形貌进行详细的观察和描述。

通常情况下,金属材料的断口形貌可以分为韧性断口、脆性断口和疲劳断口三种类型。

韧性断口表现为比较光滑的断口,通常发生在具有良好塑性的金属材料上,表明材料具有较好的韧性和延展性。

脆性断口则表现为比较粗糙的断口,常见于强度较高但塑性较差的金属材料上,表明材料的抗拉强度较高但延展性较差。

疲劳断口则表现为呈现出一定的条纹状和海浪状的形貌,通常发生在金属材料长期受到交变载荷作用下,表明材料具有较好的耐疲劳性能。

其次,材料断口分析需要结合金相显微镜等仪器进行金相组织的观察和分析。

金相组织的观察可以帮助我们更加深入地了解材料的内部结构和性能。

通过金相显微镜观察,我们可以清晰地看到金属材料的晶粒结构、夹杂物分布和相变组织等信息,这些信息对于分析材料的性能和断裂特点具有重要意义。

最后,材料断口分析还需要进行断口形貌和金相组织的综合分析。

通过综合分析,我们可以更加全面地了解材料的性能和断裂特点,为材料的选用、加工和改进提供科学依据。

在实际工程中,材料断口分析可以帮助我们及时发现材料存在的问题,并采取相应的措施进行改进,保证工程的安全可靠性。

综上所述,材料断口分析是一种重要的金相分析方法,通过观察金属材料在受力作用下的断口形貌和金相组织,可以全面地了解材料的性能和断裂特点。

在工程实践中,材料断口分析具有重要的应用价值,可以为工程设计和科研实验提供重要依据,推动材料科学的发展和进步。

SEM的断口分析

SEM的断口分析

新材料研究
探索新材料性能
通过断口分析,可以深入了解新材料的断裂行为和性能特点,为 新材料的研发和应用提供依据。
比较不同材料的性能
通过对比不同材料的断口形貌和特征,可以评估和比较不同材料的 性能差异,为材料的选择和应用提供参考。
优化新材料配方和工艺
通过对新材料的断口分析,可以发现材料在制备和加工过程中存在 的问题和不足,进一步优化新材料的配方和工艺条件。
产品质量控制
检测生产过程中的缺陷
在生产过程中,断口分析可以检测到 材料内部的缺陷和异常,及时发现并 纠正生产过程中的问题,从而提高产 品质量。
验证产品性能
优化产品设计
通过对不同设计方案的断口分析,可 以评估和优化产品的设计,提高产品 的可靠性和稳定性。
通过断口分析,可以对产品的性能进 行验证和评估,确保产品达到预期的 性能要求和使用寿命。
02
TEM在断口分析中主要用于观察断口的内部结构、晶界、相界等,可以获得比 SEM更高的分辨率和更深入的内部结构信息。
03
通过TEM分析,可以深入了解断裂机制和断裂原因,为材料改进和优化提供重 要依据。同时,TEM还可以用于分析材料的晶体结构、相组成等,为材料性能 研究和优化提供重要依据。
04
断口分析的应用
断口分析的重要性和意义
重要性
断口分析是揭示材料断裂失效机理的重要手段,通过对断口的观察和分析,可 以深入了解材料的内部结构和性能,为材料的优化设计和改进提供科学依据。
意义
断口分析对于保障工程安全、提高产品质量、推动材料科学的发展都具有重要 的意义。同时,断口分析也是评价材料性能和可靠性、研究材料失效机制的重 要手段,有助于推动相关领域的科技进步。
跨学科合作

断口分析报告

断口分析报告

断口分析报告1. 引言本报告旨在对断口分析进行详细的说明和解释。

通过针对断口现象进行观察和分析,我们可以获得有关材料性能、工艺参数和破裂机制的重要信息。

断口分析是材料科学和工程领域中常见的实验技术,它对于材料的质量控制、故障分析和产品改进具有重要意义。

2. 断口形貌观察断口形貌观察是断口分析的第一步。

通过使用光学显微镜或扫描电子显微镜,我们可以对断口的形貌进行详细观察和分析。

断口形貌可以提供有关断裂过程和破坏模式的重要线索。

2.1 层状断口层状断口是一种常见的断口形貌,它表现为明显的层状结构。

这种断口形貌通常与延性材料的断裂机制相关,如拉伸载荷下的金属断裂。

2.2 河流状断口河流状断口是另一种常见的断口形貌,它表现为河流状的纹理。

这种断口形貌通常与脆性材料的断裂机制相关,如在低温条件下的金属断裂。

2.3 颗粒状断口颗粒状断口是一种由细小颗粒组成的断口形貌。

这种断口形貌通常与颗粒增强复合材料的断裂机制相关,如纤维增强聚合物复合材料。

3. 断口分析方法3.1 化学分析化学分析是一种常用的断口分析方法,它可以通过对断裂面进行化学成分分析来确定材料的成分。

通过比较断口区域和未破裂区域的化学成分差异,我们可以获得有关材料制备和加工过程中的变化信息。

3.2 热分析热分析是一种通过对断裂样品进行热处理和热解来研究其热性能的方法。

热分析技术包括热重分析、差热分析和热失重分析等。

通过热分析,我们可以了解材料的热稳定性、熔点、热分解温度等重要参数。

3.3 X射线衍射分析X射线衍射分析是一种通过对断裂样品进行X射线衍射实验来研究其晶体结构的方法。

通过分析断口区域和未破裂区域的晶体结构差异,我们可以获得有关材料晶体结构和晶格畸变的信息。

4. 断口分析的应用断口分析在材料科学和工程领域有广泛的应用。

以下是一些常见的应用领域:4.1 产品质量控制通过对断口进行分析,可以帮助我们了解产品的质量和使用寿命。

通过分析断口形貌和断口特征,我们可以判断制造过程中可能存在的问题,并采取相应的措施来提高产品质量。

钢棒断口分析报告模板

钢棒断口分析报告模板

钢棒断口分析报告模板钢棒断口分析报告模板报告编号:XXXXX日期:XXXX年XX月XX日一、测试目的:本次测试旨在对钢棒断口进行分析,了解断口的形态以及可能的断裂原因,为材料的改进和生产过程的优化提供有力依据。

二、测试步骤:1. 对被测试钢棒进行断裂实验;2. 观察并记录断口形态;3. 结合相关资料和经验分析,找出钢棒断裂的可能原因;4. 给出改进建议。

三、测试结果:经过断裂实验和观察,得到如下结果:1. 断口形态:钢棒的断口为典型的河流状断口,呈现出一条或多条沟槽,沟槽两侧有明显的韧突。

2. 断口特征分析:a. 河流状断口表明钢棒在断裂前经历了较大的塑性变形,具有较好的韧性。

b. 沟槽的存在表明钢棒存在着较大的应力集中,并且可能存在着一定的脆性。

c. 韧突的存在表明钢棒在断裂前可能存在较大的内部缺陷或组织不均匀现象。

四、断裂原因分析:结合断裂形态和相关资料,初步分析得到钢棒断裂的可能原因为:1. 材料质量问题:钢棒内部可能存在缺陷、夹杂物或组织不均匀等问题,导致应力在这些部位集中,引发断裂。

2. 生产工艺问题:钢棒的冷加工过程中可能存在温度控制不当、冷却速度过快等问题,导致结构组织不均匀,易产生应力集中现象。

3. 外界应力问题:钢棒在运输、储存或使用过程中受到外界冲击或挤压等应力,使其应力超过其抗拉强度,导致断裂。

五、改进建议:根据断裂原因的分析,提出以下改进建议:1. 强化材料质量检验,加强内部缺陷和夹杂物的检测,确保钢棒的质量达到标准要求。

2. 优化生产工艺,控制冷加工过程中的温度和冷却速度,避免出现组织不均匀问题。

3. 加强运输、储存和使用过程中的外界应力保护,采取适当的包装和存放方式,避免钢棒受到外界冲击或挤压导致断裂。

六、总结:通过对钢棒断裂断口的形态分析和原因分析,可以初步判断该钢棒断裂主要是由于材料质量和生产工艺问题所导致。

改进建议提出了相应解决方案,希望能对钢棒的生产和质量控制提供有价值的参考。

断口分析

断口分析

故障件的断口分析在形形色色的故障分析过程中,人们常会看到一些损坏零件的断口,但是人们缺乏“读懂”它的经验,不能从它的断口处判断其损坏的真正原因而贻误了战机。

这里结合整改过程中的一些实例作些介绍,希望能对您有所帮助!对于汽车常用碳素钢和合金钢而言,其常见断口有:1. 韧性(塑性)断口:发生明显塑性变形的断裂统称为塑性断裂。

断口形貌为韧性(塑性)断口,断口呈暗灰色没有金属光泽看不到颗粒状形貌,断口上有相当大的延伸边缘。

2. 疲劳弯曲断口:2-1 在抗拉极限范围内的疲劳弯曲断口:出现典型的疲劳裂纹源区、裂纹扩展区和瞬时断裂区特征(下面将详述)。

2-2 超过抗拉极限范围内的弯曲断口:不具有典型的疲劳断口特征,属于不正常的弯曲断裂。

其断口特征:沿弯曲方向上下呈灰褐色无金属光泽的断层; 而内层呈银灰色白亮条状新断口(见图1)图13. 典型的金属疲劳断口典型的疲劳断口定会出现疲劳裂纹源区、裂纹扩展区和瞬时断裂区三个特征。

断口具有典型的“贝壳状”或称“海滩状”。

疲劳断口示意图疲丐源疲劳区(贝纹区)3-1 疲劳裂纹源区:是疲劳裂纹萌生的策源地,它处于机件的表面,形状呈平坦、白亮光滑的半圆或椭圆 形,这是因为疲劳裂纹的扩展过程速度缓慢,裂纹 经反复挤压摩擦而形成的。

它所占有的面积较其他 两个区要小很多。

疲劳裂纹大多是因受交变载荷的 机件表面有缺陷;譬如裂纹、脱碳、硬伤痕、焊点 等缺陷形成应力集中而引起的。

疲劳裂纹点在同一 个机件上可能有多处,换句话说可能有多处疲劳裂 纹源区,这需要我们去仔细解读疲劳断口。

3-2 疲劳裂纹扩展区:是形成疲劳裂纹后慢速扩展的区域。

它是判断疲劳断裂的最重要的特征区。

它以疲 劳源区为中心,与裂纹扩展方向垂直呈半圆形或扇 形的弧线,也称疲劳弧线呈“贝纹状”。

疲劳弧 线是因机器运转时的负载变化、反复启动和停止而 留下的塑性变形痕迹线。

金属材料的塑性好、工作 温度高及有腐蚀介质切和aj JJDOO-DB 口-D e sciljKD 450DGQ 0D 45QCJI ?^*■?住沓40"-&|>住©*4& QGIO4OO&Q o a&IJ 00'g "6 令 0 b K 0吕占0 0菖®1&QQ0『00flD劈曰-D0B *■?* I'.n-IQIDlwJldjg^Jooo&pcaDaOQd *Lg 日da00!口巳u M £ -I &D H &&&口負 L-CO O QO 口 QID C^--dcoo存在时则弧线清晰。

金属断口分析 实验报告

金属断口分析 实验报告

金属断口分析实验报告通过对金属断口进行分析,了解金属的断裂形态,判断金属的断裂性质。

实验原理:金属的断裂形态受多种因素影响,包括金属的材质、加工工艺、应力状态等。

常见的金属断口形态有韧性断口、脆性断口、中间断口等。

韧性断口是指金属在拉伸过程中逐渐展开,伴随表面的细微颗粒状变形,最终形成一条明显的条纹状断口。

韧性断口的特点是具有较高的塑性变形能力和断裂韧性,常见于延性金属材料。

脆性断口是指金属在加载过程中没有明显的变形,断口很快出现,并且没有延展性,呈现出平整且光滑的特点。

脆性断口的特点是无法承受相对较大的塑性变形,并且在加载过程中存在明显的蠕变现象,常见于脆性金属材料。

中间断口是韧性断口和脆性断口之间的一种过渡形态,断口上既有韧性断口的条纹状结构,又有脆性断口的平整、光滑特点。

中间断口常见于具有一定韧性的脆性金属材料。

实验步骤:1. 准备金属试样,根据试样的材料和加工工艺,选择合适的试样形状和尺寸。

2. 对试样进行预处理,包括清洗、抛光等步骤,以保证试样表面的光滑度和清晰度。

3. 将试样固定在实验台上,利用金属试验机进行拉伸实验或冲击实验,使试样断裂。

4. 观察断口形态,可以使用裸眼观察、显微镜观察等方式进行观察和记录。

5. 根据观察结果判断金属的断裂性质,如韧性、脆性或中间性,可以结合实验数据进行进一步分析和判断。

实验结果分析:根据实验所得的断口形态,可以判断金属的断裂性质。

如果试样的断口呈现出明显的条纹状结构,并且断口表面光滑、平整,说明试样具有一定的延展性和塑性变形能力,可以判断为韧性断口,表示金属具有较好的韧性和延性。

如果试样的断口呈现平整、光滑的表面,没有明显的条纹状结构,且试样未发生明显的延展性变形,可以判断为脆性断口,说明金属具有较差的塑性能力和韧性。

如果试样的断口同时具有条纹状结构和光滑表面,可以判断为中间断口,表示金属具有一定的韧性,但同时也存在一定的脆性。

需要注意的是,金属的断裂性质不仅与材料本身的特性有关,还与加工工艺、试样形状和尺寸等因素有关,因此在判断金属的断裂性质时,需要综合考虑多个因素。

断口分析

断口分析

拉伸断裂在断口上形成等轴状的韧窝
等轴韧窝是在拉伸正应力的作用下形成。应力 在整个断口表面上是均匀的,显微空洞沿空间三个 方向均匀长大,形成等轴韧窝。
拉伸形成的等轴韧窝
剪切断裂
剪切韧窝呈抛物线形。在剪切应力作用下显微空洞沿剪 切方向上被拉长。剪切韧窝在两个相匹配的断面上方向相 反。
卵形韧窝是由较大夹杂物或第二相粒子 先形成韧窝核,大人在长大过程中其自 由表面与一个小韧窝连通,这时小韧窝
河流花样起源于孪晶界
河流花样起源于夹杂
河流花样起源于析出相
河流花样起源于晶粒内部
河流花样在扩展过程中遇到倾斜晶界、扭转晶界和普通大角 度晶界时河流形态发生改变。
裂纹与小角度倾斜晶界相交时,河流连学地穿过晶界。小角 度倾斜晶界是由刃型位错组成。晶界两侧晶体取向差小,两侧晶 体的解理面也只是倾斜一个小角度。因此裂纹穿过时河流花样顺 延到下一个晶粒。
③解理裂纹之间产生较大的塑性变形,通过撕裂方式连接形 成台阶。
④ 通过基体和孪晶的界面发生开裂连接形成台阶。
(2)河流花样的起源
①河流花样起源于有晶面存在的地方:晶界、亚晶界、 孪晶界。
②河流花样起源于夹杂物或析出相。
③河流花样起源于晶粒内部,是由于解理面与螺型位错 交截所致。
低碳钢拉伸断口河流花样起源于晶界
河流通过小角度倾斜界面
河流通过小角度扭转界面
河流花样穿过扭转晶界时将产生河流的激增。扭转界面又称 为孪晶界,两侧晶体以晶界为公共界面旋转了一个角度。因此 解理裂纹不能简单的穿过晶界,必须重新形核后才能沿新的解 理面扩展。
当解理裂纹扩展到大角度晶界(大多数晶界属于大角 度晶界)时,由于晶界结构复杂两晶粒之间缺乏连续性, 晶粒之间的位向差又很大,这些都使解理裂纹无法连接 通过这时裂纹需要重新生核进而扩展,因此有可能在新 的晶粒中出现大量的河流,而且河流台阶的高度差很大, 这也有可能使原来的河流消失。

断口分析的报告模板

断口分析的报告模板

断口分析的报告模板一、背景断口分析是在材料科学领域中常用的一种方法,用于研究材料的断裂行为和性质。

断口的形态、特点和分布规律可以反映出材料的品质和性能,通过对断口的分析,可以帮助人们评估材料的质量、使用寿命和维修效果。

因此,断口分析在工业生产、科学研究和质量检验等领域中具有重要意义。

二、实验目的本实验旨在通过对不同材料的断口进行观察和分析,探究断口形态和分布与材料本身性质的关系,了解断口分析的基本原理和方法,培养学生的分析技能和实验操作能力。

三、实验原理断口形貌分析是材料力学、材料科学中常用的一种表现材料断裂介质、行为和材料物理性质联系的方法。

不同断口形貌可以反映出材料的不同断裂特性和性质,有助于揭示材料的疲劳断裂机理、裂纹扩展特性、韧性、硬度、延展性等重要机械性能参数。

实验中会使用金相显微镜和断口显微镜观察钢、铜、铝等材料的断口形貌,通过对断口的分析和比较,可以了解不同材料的物理性质、力学性质、断裂行为等方面的特点和规律。

四、实验步骤1.制作材料试样,根据不同材料的特点选择适当的尺寸和形状。

2.调节金相显微镜和断口显微镜的参数,获得适宜的观察条件。

3.将试样放入断口显微镜中,观察断口的形貌和特征。

4.调节断口显微镜的放大倍数,并在不同的放大倍数下观察断口的形貌和特征。

5.对不同材料的断口进行比较和分析,结合材料性质和实验结果进行总结和探讨。

五、实验结果经过对不同材料的断口观察和分析,我们得到了以下几点结论:1.钢材断口呈现出一定的韧性和延展性,断口形貌多为锯齿状,表明材料在断裂前有一定的变形和塑性变形;2.铜材料断口呈现出均匀的“层状”结构,表明材料性质各向同性,在断裂过程中没有出现明显的裂纹扩展或形变变化;3.铝材料断口呈现出一定的脆性和脆化特征,断口形貌多为贯通型或翘起状,表明材料在断裂前没有过多的变形和塑性变形,脆性断裂为主要断裂形式。

六、实验结论断口分析可以帮助评估材料的质量和性能,可以揭示材料在工程中的应用潜力和安全性问题。

断口分析

断口分析

断口分析是研究金属断裂面的学科,是断裂学科的组成部分。

金属破断后获得的一对相互匹配的断裂表面及其外观形貌,称断口。

简介断口分析(一)断口总是发生在金属组织中最薄弱的地方,记录着有关断裂全过程的许多珍贵资料,所以在研究断裂时,对断口的观察和研究一直受到重视。

通过断口的形态分析去研究一些断裂的基本问题:如断裂起因、断裂性质、断裂方式、断裂机制、断裂韧性、断裂过程的应力状态以及裂纹扩展速率等。

如果要求深入地研究材料的冶金因素和环境因素对断裂过程的影响,通常还要进行断口表面的微区成分分析、主体分析、结晶学分析和断口的应力与应变分析等。

随着断裂学科的发展,断口分析同断裂力学等所研究的问题更加密切相关,互相渗透,互相配合;断口分析的实验技术和分析问题的深度将会取得新的发展。

断口分析现已成为对金属构件进行失效分析的重要手段。

断口的宏观和微观观察断口分析的实验基础是对断口表面的宏观形貌和微观结构特征进行直接观察和分析。

通常把低于40倍的观察称为宏观观察,高于40倍的观察称为微观观察。

对断口进行宏观观察的仪器主要是放大镜(约10倍)和体视显微镜(从5~50倍)等。

在很多情况下,利用宏观观察就可以判定断裂的性质、起始位置和裂纹扩展路径。

但如果要对断裂起点附近进行细致研究,分析断裂原因和断裂机制,还必须进行微观观察。

断口的微观观察经历了光学显微镜(观察断口的实用倍数是在50~500倍间)、透射电子显微镜(观察断口的实用倍数是在1000~40000倍间)和扫描电子显微镜(观察断口的实用倍数是在20~10000倍间)三个阶段。

因为断口是一个凹凸不平的粗糙表面,观察断口所用的显微镜要具有最大限度的焦深,尽可能宽的放大倍数范围和高的分辨率。

扫描电子显微镜最能满足上述的综合要求,故近年来对断口观察大多用扫描电子显微镜进行。

断裂微观机制的分析,有可能把断口的形貌分析同断裂力学指标联系起来,其中最重要的成果之一是系统地建立了断裂机制图,这对解决一些工程断裂问题十分有用。

断口分析及其在车辆交通事故鉴定中的应用

断口分析及其在车辆交通事故鉴定中的应用

断口分析及其在车辆交通事故鉴定中的应用车辆发生交通事故后,为查明事故发生原因,判定和明确事故各方责任,避免类似事故再次发生,常常需要对汽车零部件的断裂原因进行技术鉴定。

为有效解决这一问题,本文尝试将断口宏观分析技术弓入车辆交通事故检验鉴定领域,进行分析说明。

一、断口及断口分析断口分析是研究金属断裂面的学科,金属断裂后产生的一种相互匹配的断裂面及外观形貌称为断口,对故障金属构件进行检查并分析其断裂原因的技术称为断口分析。

二、断口分析的意义断口发生在金属组织中最薄弱的地方,是断裂过程最真实、完整的纪录,可通过断口的形态去研究断裂发生时的一些基本问题,如断裂起因、断裂性质、断裂方式、断裂机制、断裂过程的应力状态以及裂纹扩展速率等。

从宏观到微观的断口分析可以揭示断裂过程中从裂纹的生成、长大到断裂的各个进程中主断裂面的受力情况,介质环境情况、材料制造情况、以及损伤过程等,并基于以上信息综合判断事故发生的原因,明确事故责任,并为制定防止此类事故再次发生的预防措施提供依据。

断口分析分为宏观断口分析和微观断口分析。

通常把低于40 倍的观察称为宏观观察,高于40 倍的观察称为微观观察。

宏观断口分析主要是用肉眼或借助普通放大镜进行观察,从而分析裂纹的扩展方向、断裂的起源位置、断裂过程的载荷情况等断裂的宏观特征。

微观断口分析需要借助光学和电子显微分析仪器进行观察和分析,通过对断口的微观形态、结晶学特征、残留元素成分等理化特征的分析,确定断裂的类型和断裂的机理,本文主要讨论宏观断口分析及其在实际交通事故中的应用情况。

三、断口的分类断口按性质可分为脆性断口、韧性断口和疲劳断口。

脆性断口是不伴随塑性变形而断裂的断口,其断裂面通常与拉伸应力垂直,其断裂面宏观上由具有光泽的结晶亮面组成。

韧性断口是伴随着明显塑性变形而形成的断口,其断裂面可能与拉伸应力方向垂直或倾斜(分别称为正断口和斜断口。

)从宏观来看,韧性断口上有细小凹凸,呈纤维状。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

断口分析duankou fenxi断口分析fractography研究金属断裂面的学科,是断裂学科的组成部分。

金属破断后获得的一对相互匹配的断裂表面及其外观形貌,称断口。

断口总是发生在金属组织中最薄弱的地方,记录着有关断裂全过程的许多珍贵资料,所以在研究断裂时,对断口的观察和研究一直受到重视。

通过断口的形态分析去研究一些断裂的基本问题:如断裂起因、断裂性质、断裂方式、断裂机制、断裂韧性、断裂过程的应力状态以及裂纹扩展速率等。

如果要求深入地研究材料的冶金因素和环境因素对断裂过程的影响,通常还要进行断口表面的微区成分分析、主体分析、结晶学分析和断口的应力与应变分析等。

随着断裂学科的发展,断口分析同断裂力学等所研究的问题更加密切相关,互相渗透,互相配合;断口分析的实验技术和分析问题的深度将会取得新的发展。

断口分析现已成为对金属构件进行失效分析的重要手段。

断口的宏观和微观观察断口分析的实验基础是对断口表面的宏观形貌和微观结构特征进行直接观察和分析。

通常把低于40倍的观察称为宏观观察,高于40倍的观察称为微观观察。

对断口进行宏观观察的仪器主要是放大镜(约10倍)和体视显微镜(从5~50倍)等。

在很多情况下,利用宏观观察就可以判定断裂的性质、起始位置和裂纹扩展路径。

但如果要对断裂起点附近进行细致研究,分析断裂原因和断裂机制,还必须进行微观观察。

断口的微观观察经历了光学显微镜(观察断口的实用倍数是在50~500倍间)、透射电子显微镜(观察断口的实用倍数是在1000~40000倍间)和扫描电子显微镜(观察断口的实用倍数是在20~10000倍间)三个阶段。

因为断口是一个凹凸不平的粗糙表面,观察断口所用的显微镜要具有最大限度的焦深,尽可能宽的放大倍数范围和高的分辨率。

扫描电子显微镜最能满足上述的综合要求,故近年来对断口观察大多用扫描电子显微镜进行(见金属和合金的微观分析)。

脆性断口和延性断口根据断裂的性质,断口大致可以分为几乎不伴随塑性变形而断裂的脆性断口,和伴随着明显塑性变形的延性断口。

脆性断口的断裂面通常与拉伸应力垂直,宏观上断口由具有光泽的结晶亮面组成;延性断口的断裂面可能同拉伸应力垂直或倾斜,分别称为正断口和斜断口;从宏观来看,断口上有细小凹凸,呈纤维状。

对于单轴拉伸断口和冲击断口,在理想情况下,其断裂面是由三个明显不同的区域(即纤维区、放射区和剪切唇区)所构成(图1[断口的三要素])。

这三个区域实际上是裂纹形成区、裂纹扩展区和剪切断裂区(对冲击拉伸则有终了断裂区),通常称它们为断口三要素。

对于同一种材料,三个区域的面积及其所占整个断口的比例随外界条件的改变而变化。

例如:加载速率愈大,温度愈低,则裂纹扩展区(即放射区)所占的比例也愈大。

如果定义裂纹扩展区对另外两个区面积的比值为,则通常把=1时的断裂温度称为材料的韧性-脆性转变温度(或延性-脆性转变温度、塑性-脆性转变温度)。

如果在同一温度和加载速率下比较两种材料的断裂性质,则值愈小的材料,其延性(塑性)愈好。

金属断裂的微观机制为了阐明断裂的全过程(包括裂纹的生核和扩展,以及环境因素对断裂过程的影响等),提出种种微观断裂模型,以探讨其物理实质,称为断裂机制。

在断口的分析中,各种断裂机制的提出主要是以断口的微观形态为基础,并根据断裂性质、断裂方式以及同环境和时间因素的密切相关性而加以分类。

根据大量的研究成果,目前已知主要的金属断裂微观机制可以归纳在表1[金属的断裂微观机制]中。

属于不同断裂机制的断裂,其断口微观结构各具有独特的形貌特征。

图2[基本断裂机制的典型微观形貌a沿晶脆性断裂×500b解理断裂×1000c准解理断裂]×2000]所示是属于不同基本断裂机制的断口所观察到的典型微观形貌,其物理本质和断口特征为:沿晶脆性断裂是指断裂路径沿着不同位向的晶界(晶粒间界)所发生的一种属于低能吸收过程的断裂。

根据断裂能量消耗最小原理,裂纹的扩展路径总是沿着原子键合力最薄弱的表面进行。

晶界强度不一定最低,但如果金属存在着某些冶金因素使晶界弱化(例如杂质原子P、S、Si、Sn等在晶界上偏聚或脱溶,或脆性相在晶界析出等等),则金属将会发生沿晶脆性断裂。

沿晶脆性断裂的断口特征是:在宏观断口表面上有许多亮面,每个亮面都是一个晶粒的界面。

如果进行高倍观察,就会清晰地看到每个晶粒的多面体形貌(图2a[基本断裂机制的典型微观形貌a沿晶脆性断裂×500]),类似于冰糖块的堆集,故有冰糖状断口之称;又由于多面体感特别强,故在三个晶界面相遇之处能清楚地见到三重结点。

沿晶脆性断裂的发生在很大程度上取决于晶界面的状态和性质。

实践表明,提纯金属,净化晶界,防止杂质原子在晶界上偏聚或脱溶,以及避免脆性第二相在晶界析出等,均可以减少金属发生沿晶脆性断裂的倾向。

因此,应用X射线能谱分析法和俄歇电子能谱分析法确定沿晶断裂面的化学成分,对从冶金因素来认识材料的致脆原因,提出改进工艺措施有指导意义。

解理断裂属于一种穿晶脆性断裂,根据金属原子键合力的强度分析,对于一定晶系的金属,均有一组原子键合力最弱的、在正应力下容易开裂的晶面,这种晶面通常称为解理面。

例如:属于立方晶系的体心立方金属,其解理面为{100}晶面;六方晶系为{0001};三角晶系为{111}。

一个晶体如果是沿着解理面发生开裂,则称为解理断裂。

面心立方金属通常不发生解理断裂(见晶体结构)。

解理断裂的特点是:断裂具有明显的结晶学性质,即它的断裂面是结晶学的解理面{},裂纹扩展方向是沿着一定的结晶方向〈〉。

为了表示这种结晶学性质,通常用解理系统{}〈〉来描述。

对于体心立方金属,已观察到的解理系统有{100}<001>,{100}〈011〉等。

解理断口的特征是宏观断口十分平坦,而微观形貌则是由一系列小裂面(每个晶粒的解理面)所构成。

在每个解理面上可以看到一些十分接近于裂纹扩展方向的阶梯,通常称为解理阶(图2b[基本断裂机制的典型微观形貌b解理断裂×1000])。

解理阶的形态是多种多样的,同金属的组织状态和应力状态的变化有关。

其中所谓“河流花样”是解理断口的最基本的微观特征。

河流花样解理阶的特点是:支流解理阶的汇合方向代表断裂的扩展方向;汇合角的大小同材料的塑性有关,而解理阶的分布面积和解理阶的高度同材料中位错密度和位错组态有关。

因此,通过对河流花样解理阶进行分析,就可以帮助我们寻找主断裂源的位置,判断金属的脆性程度,和确定晶体中位错密度和位错容量。

准解理断裂也是一种穿晶断裂。

根据蚀坑技术分析表明,多晶体金属的准解理断裂也是沿着原子键合力最薄弱的晶面(即解理面)进行。

例如:对于体心立方金属(如钢等),准解理断裂也基本上是{100}晶面,但由于断裂面上存在较大程度的塑性变形(见范性形变),故断裂面不是一个严格准确的解理面。

准解理断裂首先在回火马氏体等复杂组织的钢中发现。

对于大多数合金钢(如Ni-Cr钢和Ni-Cr-Mo钢等),如果发生断裂的温度刚好在延性-脆性转变温度的范围内,也常出现准解理断裂。

从断口的微观形貌特征来看(图2c[基本断裂机制的典型微观形貌c准解理断裂×2000]),在准解理断裂中每个小断裂面的微观形态颇类似于晶体的解理断裂,也存在一些类似的河流花样,但在各小断裂面间的连结方式上又具有某些不同于解理断裂的特征,如存在一些所谓撕裂岭等。

撕裂岭是准解理断裂的一种最基本的断口形貌特征。

准解理断裂的微观形貌的特征,在某种程度上反映了解理裂纹与已发生塑性变形的晶粒间相互作用的关系。

因此,对准解理断裂面上的塑性应变进行定量测量,有可能把它同断裂有关的一些力学参数如:屈服应力、解理应力和应变硬化参数等联系起来。

韧窝断裂金属多晶材料的断裂,通过空洞核的形成长大和相互连接的过程进行,这种断裂称为韧窝断裂(dimple fracture)韧窝断裂是属于一种高能吸收过程的延性断裂。

其断口特征为:宏观形貌呈纤维状,微观形态呈蜂窝状(图2d[基本断裂机制的典型微观形貌d韧窝断裂×2000]),断裂面是由一些细小的窝坑构成,窝坑实际上是长大了的空洞核,通常称为韧窝,它是韧窝断裂的最基本形貌特征和识别韧窝断裂机制的最基本依据。

系统的观察表明,韧窝的尺寸和深度同材料的延性有关,而韧窝的形状则同破坏时的应力状态有关。

由于应力状态不同,相应地在相互匹配的断口偶合面上,其韧窝形状和相互匹配关系是不同的。

如图3[在断口偶合面上韧窝的形状和应力状态关系]所示:a为等轴型韧窝,韧窝形成的应力状态为均匀应变型;b为同向伸长韧窝,伸长方向平行于断裂方向,其应力状态为拉伸撕裂型;c为异向伸长型韧窝,伸长方向平行于断裂方向,其应力状态为刃滑动型;d为同向伸长韧窝,但伸长方向垂直于断裂方向,其应力状态为螺滑动型。

除了上述四种基本的韧窝形状外,还存在混合应力状态下所形成的韧窝,理论分析表明,最低限度有14种,其中8种已从实验观察到。

由于韧窝的形状与应力状态密切相关,故对断口耦合面上相啮合部位的韧窝形状、尺寸和深度进行分析,就可以确定断裂时所在部位的应力状态和裂纹扩展的方向,并对材料的延性进行评价。

还有其他断裂的机制如:疲劳、蠕变和应力腐蚀断裂等。

微观断裂机制的实际应用作为材料断裂韧性指标之一的裂纹扩展阻力,它不但是一个材料常数,而且也同断裂的微观机制有关。

例如:当断裂机制是沿晶脆性断裂或解理断裂时,值较小;反之,当断裂机制是韧窝断裂时,则值较大,如表2[断裂微观机制和裂纹扩展阻力的关系]的关系" class=image>所示。

断裂微观机制的分析,有可能把断口的形貌分析同断裂力学指标联系起来,其中最重要的成果之一是系统地建立了断裂机制图,这对解决一些工程断裂问题十分有用。

所谓断裂机制图,是指选择适当的断裂参数、力学参数或物理参数作为坐标系,用它来确立各种可能出现的微观断裂机制的区域,以便发现各类金属断裂的普遍规律。

在工程应用上,断裂机制图对工程设计,材料的选择,使用条件的限制,以及失效分析等都能提供十分重要的指导性意见和数据资料,目前正大力开展这方面的工作。

相关文档
最新文档