理想气体定压比热容
第三章理想气体热力学能、焓、比热容和熵的计算详解
![第三章理想气体热力学能、焓、比热容和熵的计算详解](https://img.taocdn.com/s3/m/fb95254159eef8c75ebfb356.png)
ws h1 h2 c p (T1 T2 )
=1.004(300-365.7=-65.96 kJ/kg
3-6 有一输气管断裂,管中压缩空气以高速喷出。设压缩空
气的压力为0.15 MPa,温度为30 ℃,当喷至压力等于0.1 MPa的环
3-3 有一个小气瓶,内装压力为20 MPa、温度为20 ℃的氮 气10 cm3。该气瓶放置在一个0.01 m3的绝热容器中,设容器内为 真空。试求当小瓶破裂而气体充满容器时气体的压力及温度,并
分析小瓶破裂时气体变化经历的过程。
解 由附表1查得氮气的气体常数Rg=0.296 8 kJ/(kg K),故
由附表1查得,氧的摩尔质量为32 g/mol, 于是
q1 2 h2 h1 1 T 2 Cp0, mdT
M T1
1 32
[
25.48
520
300
1.52
103
5220 3020
2
5.062 106
5203
3003 3
1.312 109
5204
3004 4
h520 h800 =24 523 J/mol, h1 020=32 089 J/mol。
于是
q300520 h520 h300 15 395-8 736=6 659 J/mol
q8001020 h1020 h800 32 089-24 523=7 566 J/mol
q8001020 q300520
1
RgT 1 p1
0.2871 310 1500
0.059
4
m3/kg
《热力学》理想气体热力学能、焓、比热容和熵的计算
![《热力学》理想气体热力学能、焓、比热容和熵的计算](https://img.taocdn.com/s3/m/fb89f473e2bd960590c677c1.png)
U U1 U2 Un
H H1 H2 Hn
• 混合物的u、h按组成气体参数的质量分数加权平均
u w1u1 w2u2 wnun iui h w1h1 w2h2 wnhn ihi
2020年10月25日
第三章 理想气体热力学能、焓、比热容和熵的计算
可逆定压过程 (dh)p (δq)p cpdT
则任意过程
dh cp0dT
h h2 h1 12 cp0dT
通常规定: T 0K 时理想气体 u0 0 kJ kg
则 h0 u0 p0v0 u0 RgT0 0 kJ kg
2020年10月25日
第三章 理想气体热力学能、焓、比热容和熵的计算
cp0
dh dT
d dT
u
pv
du d dT dT
RgT
cV 0 Rg
即
c p0 cV 0 Rg 梅耶公式
C p0,m CV 0,m R
令 比热容比 cp0
cV 0
则
cV 0
1
1
Rg
cp0
1
Rg
1 Rg
cV 0
2020年10月25日
第三章 理想气体热力学能、焓、比热容和熵的计算
1 mi 1 m Mi
1
i
Mi
第三章 理想气体热力学能、焓、比热容和熵的计算
24
3. 混合物的折合气体常数
Rg
R M
R i
Mi
i
R Mi
i Rgi
R yiM i
1
1 R
yi
M
i
1
yi
Mi R
1 yi
工程热力学-03 理想气体u、h、s的计算
![工程热力学-03 理想气体u、h、s的计算](https://img.taocdn.com/s3/m/8d5704b34afe04a1b071de7e.png)
11
5、理想气体比定容热容cV0和比定压热容cp0的关系
(1) c=p0
d=h dT
d (u += pv) dT
d dT
(u
+
RgT=)
du dT
+
d dT
(RgT )
c p0 = cV 0 + Rg
(2)比热容比:比定压热容和比定容热容之比,符号 γ
γ = cp0
cV 0
cV 0
=
γ
1 −
1
Rg
(3-13a)
p
s= 2 − s1
cV 0 ln
p2 p1
+ cp0
ln
v2 v1
(3-14b)
19
若把理想气体的比热容看作定值:
= ds
cV 0
dT T
+
Rg
dv v
= ds
cp0
dT T
−
Rg
dp p
= ds
cV
0
dp p
+
cp0
dv v
s2= − s1
cV 0
ln T2 T1
+
Rg
ldu dT
(3-5)
任何过程中,单位质量的理想气体的温度升高1K时,比 热力学能增加的数值即等于其比定容热容cV0的值。
9
3、任意气体的比定压热容cp
按照比定压热容的定义式:cp
=
( δq dT
)p
设h=f (T , p)
δ=q
dh − vdp
=
(
∂h ∂T
1、分压力:混合物中的某种组成气体单独占有混合物的容积, 并具有与混合物相同温度时的压力。
热力学第二章 理想气体性质
![热力学第二章 理想气体性质](https://img.taocdn.com/s3/m/9465fc310722192e4536f68c.png)
t2
t2
t1
(3)定值比热
CV ,m i R 2 C P ,m i 1 R 2
i 取值:单原子:3; 双原子: 5; 多原 子:7
一.比热力学能
d u=cvdt
1. cv const
理想气体、任何过程
u cv t
2. cv 为真实比热
3. cv 为平均比热
h是状态量,
h f (T , p )
h h dh ( ) p dT ( )T dp T p
h h q ( ) p dT [( )T v ]dp T p
定压状态下,dq=u,
由定义知:
h q p ( ) p dT T q p h Cp ( ) ( )v dT T
dT p2 s s2 s1 1 c p Rg ln T p1
2
s 1
2
2 dv dp cp 1 cv v p
s s2 s1 c p ln
T2 p Rg ln 2 T1 p1
v2 p2 s c p ln cv ln v1 p1
t2
1
u cv dt
T1
T2
u cv t (T2 T1 ) cv 0 t2 cv 0 t1
4. 查T-u表, 附表4 (零点规定: 0K, u=0, h=0 )
t2
t2
u u2 u1
二. 比焓
dh c p dT
利息气体、任何过程
1. c p const
1kg 工质温度
物理意义:表示在 p 一定时, 升高 1K ,焓的增加量 所以当作状态量 ;
说明: 1、对于cv、cp因为过程定容、定压,
理想气体比热容比
![理想气体比热容比](https://img.taocdn.com/s3/m/e289286d82c4bb4cf7ec4afe04a1b0717fd5b3d7.png)
定义:Cp 定压比热容:压强不变,温度随体积改变时的热容,Cp=dH/dT,H为焓。
Cv 定容比热容:体积不变,温度随压强改变时的热容,Cv=dU/dT,U为内能。
则当气体温度为T,压强为P时,提供热量dQ时气体的比热容:Cp*m*dT=Cv*m*dT+PdV;其中dT为温度改变量,dV 为体积改变量。
理想气体的比热容:对于有f 个自由度的气体的定容比热容和摩尔比热容是:Cv,m=R*f/2
Cv=Rs*f/2 R=8.314J/(mol·K) 迈耶公式:Cp=Cv+R 比热容比:γ=Cp/Cv 多方比热容:Cn=Cv-R/(n-1)=Cv*(γ
-n)/(1-n) 对于固体和液体,均可以用比定压热容Cp来测量其比热容,即:C=Cp (用定义的方法测量C=dQ/mdT) 。
Dulong-Petit 规律:金属比热容有一个简单的规律,即在一定温度范围内,所有金属都有一固定的摩尔热容:Cp≈25J/(mol·K) 所以cp=25/M,其中M为摩尔质量,比热容单位J/(kg·K)。
注:当温度远低于200K时关系不再成立,因为对于T趋于0,C也将趋于0。
气体比热容比的测定实验报告
![气体比热容比的测定实验报告](https://img.taocdn.com/s3/m/093fc2674a35eefdc8d376eeaeaad1f347931161.png)
气体比热容比的测定实验报告气体比热容比的测定实验报告引言:气体比热容比是描述气体在不同温度下热量变化的重要物理量。
本实验旨在通过测量气体的压强和体积随温度的变化,来确定气体的比热容比。
通过实验,我们可以深入了解气体的热力学性质,并验证理论公式。
实验原理:根据理想气体状态方程PV=nRT,当气体温度不变时,气体的压强和体积成正比,即P1V1=P2V2。
根据理论公式,气体比热容比γ=Cp/Cv,其中Cp为定压比热容,Cv为定容比热容。
通过测量气体在不同温度下的压强和体积,可以计算出气体的比热容比γ。
实验器材:1. 气体采样器2. 温度计3. 压力计4. 水浴5. 计时器6. 数据记录表实验步骤:1. 将气体采样器连接到压力计和温度计上,确保连接处密封。
2. 将气体采样器放入水浴中,使其温度保持恒定。
3. 记录气体采样器的初始压强和体积。
4. 将气体采样器放入不同温度的水浴中,等待一段时间,使气体温度均匀分布。
5. 记录不同温度下气体采样器的压强和体积。
6. 根据实验数据,计算出不同温度下气体的比热容比γ。
实验结果与分析:根据实验数据,我们计算出了不同温度下气体的比热容比γ。
通过绘制γ与温度的关系曲线,我们可以观察到气体比热容比随温度的变化情况。
实验结果显示,当温度较低时,气体的比热容比γ较接近1。
随着温度的升高,气体的比热容比逐渐增大,最终趋于无穷大。
这与理论预期相符合,因为在高温下,气体分子的运动更加剧烈,分子间相互作用的影响较小,故气体的比热容比接近于无穷大。
实验中可能存在的误差主要来自以下几个方面:1. 气体采样器的密封性可能存在漏气现象,导致压强和体积的测量不准确。
2. 气体温度在不同位置可能存在差异,影响了温度的均匀分布。
3. 实验过程中,水浴的温度变化可能不够稳定,导致气体的温度变化不准确。
为减小误差,我们可以采取以下改进措施:1. 确保气体采样器的连接处密封良好,避免气体泄漏。
2. 使用更加精确的温度计,提高温度测量的准确性。
热工基础-3-(1)-第三章 理想气体
![热工基础-3-(1)-第三章 理想气体](https://img.taocdn.com/s3/m/648749cd08a1284ac850435f.png)
∆T
若比热容取定值或平均值,有: ∆ h = c p ∆ T
∆h = c p
T2 T1
∆T
3. 理想气体熵变化量的计算:
δ q du + pdv cv dT p ds = = = + dv T T T T cv dT p v cv dT dv = + dv = + Rg T T v T v
同理:
δ q dh − vdp c p dT v ds = = = − dp T T T T c p dT p v c p dT dp = − dp = − Rg T T p T p
Rg ,eq = ∑ wi Rg ,i
i
作业:P103-104
3-10 3-15
思考题: P102
10
五. 理想气体的基本热力过程 热力过程被关注的对象:
1) 参数 ( p, T, v, u, h, s ) 变化 2) 能量转换关系, q , w, wt 。
思路:
1) 抽象分类:
p
v T
s
n
基本过程 2) 简化为可逆过程 (不可逆再修正)
R = 8.314 J/(mol ⋅ K)
R 是一个与气体的种类
无关,与气体的状态也 无关的常数,称为通用 (摩尔)气体常数。
R = M ⋅ Rg
例题3.1: 已知体积为0.03m3的钢瓶内装有氧气,初 始压力p1=7×105Pa,温度t1=20℃。因泄漏,后 压力降至p2=4.9×105Pa ,温度未变。问漏去多少 氧气? 解:取钢瓶的容积为系统(控制容积),泄漏过 程看成是一个缓慢的过程。初终态均已知。假定 瓶内氧气为理想气体。根据状态方程:
V
0 m
= 22 . 414 m
比定压热容、比定容热容和迈耶公式
![比定压热容、比定容热容和迈耶公式](https://img.taocdn.com/s3/m/20d5db7249d7c1c708a1284ac850ad02de800794.png)
比定压热容、比定容热容和迈耶公式
…比定压热容和比定容热容
体会说明,同一种气体在不同的条件下,例如在保持体积不变或压力不变的条件下加热,同样温度升高1度所需的热量是不同的,因此,比热容的数值与加热(或放热)过程的性质有关。
工程上最常遇到的是气体在压力不变或容积不变的条件下加热(或放热),这时相应的比热容分别称为比定压热容和比定容热容,并分别在比热容符号的下方以脚注p和V来区别。
气体在定压下受热时,由于在温度升高的同时,还要克服外力膨胀作功,而在定容过程中,并不膨胀对外做功,因此同样升高1K,定压时比在定容下受热需要更多的热量,因此气体的比定压热容大于比定容热容。
理想气题定压热容与定容热容的关系见迈耶公式。
…迈耶公式
考察1kg某种理想气体从温度T1分别经等压和等体积过程升高1K,气体的吸热量分别是
因此
(a)
据热力学第一定律
由于理想气体的热力学能只是温度的函数,故两过程的热力学能变化量相等,因此
(b)
比较(a) (b)可得
(2-5)
式(2-5)称为迈耶公式。
式(2-5)两边都乘以相对分子质量
得:
(2-5’)
迈耶公式说明理想气体的比定压热容恒大于比定容热容,而且,尽管比定压热容和比定容热容差不多上温度的函数,但它们的差值确是常数。
从迈耶公式的导出过程,可知气体常数Rg可视为1kg气体在定压下温度升高1K时对外所做的功。
气体比热容比的确定
![气体比热容比的确定](https://img.taocdn.com/s3/m/9c652973f46527d3240ce095.png)
气体比热容比的确定气体的定压摩尔热容C p,m 与定容摩尔热容C v,m 之比VmPmC C v =为气体的比热容比,也叫泊松比。
它在热力学过程特别是绝热过程(const pV m v =)中是一个很重要的参量。
通过对v 的测定,能对绝热过程中的泊松方程(const pV m v =)和泊松比v 进一步理解。
一、试验目的1.了解用共振法测量气体比热容比的原理; 2.掌握比热容比的测量方法; 3.加深对共振现象的理解;4.进一步理解绝热过程的泊松方程(const pV m v =)和泊松比ν的含义。
二、仪器设备ν测定仪、游标卡尺、物力天平、气压计。
三、试验原理 泊松比 VmPm C C v =(8-1)理想气体有R iC vm 2=(8-2 ) R i R C C Vm pm22+=+= (8-3 )式中 R ——摩尔气体常数,R=8.31J/mol ·K;i ——气体分子的自由度。
单原子分子i=3;双原子分子i=5;多原子分子i=6。
将(8-2 )和(8-3 )式代入(8-1 )式,得ν=(i+2)/i (8-4)由此可见,理想气体的比热容比ν,仅仅与气体分子的自由度i 有关。
对单原子分子的气体,ν=5/3=1.67,对双原子分子的气体,ν=7/5=1.40,对多原子分子气体,ν=8/6=1.33。
现在假设有一个容器,内装待测气体,由一个质量为m 的活塞将其与外界隔绝,且与外界处于平衡状态。
外界的压强为ρ0,气体长为l 0,活塞截面积为S 。
此时气柱的体积为S l V 00=。
建立坐标,如图8-1所示,当活塞产生一个小位移时,气柱体积变为 S x l V )(00-=如果这是一个绝热过程,则有 c o n s t pV v =即 v v v S x l p S l p )()(000-= 化简得 vl x p p --=)1(00 由于x 是小位移,故x/ l 0<<1。
理想气体的内能、焓、比热容、熵介绍
![理想气体的内能、焓、比热容、熵介绍](https://img.taocdn.com/s3/m/3009748689eb172ded63b760.png)
3
对于实际气体可逆过程(reversible process )
q du pdv
u f (T ,v)
u T
dT v
u v T
dv
pdv
u T
dT v
u T
T
pdv
对定容过程dv=0
qv
u T
dT v
cv
qv
dT
u T v
同样用 q dh vd可p 得定压过程dp=0:
q p
h T
dT p
cp
q p
dT
h T p
因此有:ds du pdv du p dv
Rg p dh v dp
Rg
T
TT
p
由: du cV0dT
dh c p0dT
以及: pv RgT
dp dv dT pv T
取对数后 再微分
对微元过程(insensible process ):
352页附表2 求真实比热容(true specific heat) cv0 a0' a1T a2T 2 a3T 3
a0 a0' Rg
u1,2 u2 u1 12 du 12 cv0dT
h1,2 h2 h1 12 dh 12 c p0dT
适用范围:理想气体定比热工质的任意过程,1、2状 态为平衡状态。
标准状态熵:
当温度变化较大以及计算精度要求较高时, 可用标准状态熵来计算过程的熵变。
定压和定容比热容的概念-概述说明以及解释
![定压和定容比热容的概念-概述说明以及解释](https://img.taocdn.com/s3/m/9de5a322a88271fe910ef12d2af90242a995ab6b.png)
定压和定容比热容的概念-概述说明以及解释1.引言1.1 概述在热力学和物理学领域,比热容是一个重要的物性参数,它描述了物质在吸收或释放热量时温度变化的情况。
在研究热力学系统时,我们通常会涉及两种不同的比热容:定压比热容和定容比热容。
定压比热容是指在恒定压力下,单位质量物质升高1摄氏度所需的热量,通常用符号Cp表示。
而定容比热容则是在恒定体积下,单位质量物质升高1摄氏度所需的热量,通常用符号Cv表示。
本文将重点介绍定压和定容比热容的概念及其在热力学系统中的重要性和应用。
我们将比较这两种比热容的差异,并探讨它们在不同领域的应用前景。
通过深入理解定压和定容比热容,我们可以更好地理解热力学系统的特性,为相关领域的研究和应用提供参考和指导。
1.2 文章结构文章结构部分将会包括引言、正文和结论三个主要部分。
在引言部分,将简要介绍定压和定容比热容的概念及其重要性。
在正文部分,将详细探讨定压和定容比热容的概念,以及它们之间的区别和联系。
最后,在结论部分将总结定压和定容比热容的重要性,并探讨它们在不同领域的应用以及未来的研究方向。
整个文章将围绕这一主题展开,通过详细的论述和分析,帮助读者更好地理解定压和定容比热容的概念及其在物理学等领域中的重要性。
1.3 目的本文旨在深入探讨定压和定容比热容的概念及其重要性,帮助读者更好地理解这两个物理量在热力学和工程领域的作用和应用。
通过对定压和定容比热容的定义、测量方法以及物理意义的介绍,我们希望读者能够清晰地理解这两个参数在不同系统中的意义和作用。
同时,我们也将比较定压和定容比热容之间的差异,探讨它们在实际应用中的情况及其影响。
通过本文的阐述,读者可以更好地理解和运用定压和定容比热容这两个重要的热力学参数,从而为工程实践和科学研究提供更深入的理论支持。
我们希望本文能够为相关领域的研究人员和工程师提供一定的参考价值,促进相关研究的进展和应用的发展。
2.正文2.1 定压比热容的概念在热力学中,定压比热容是介质在定压条件下吸收或释放热量时所需的能量单位。
第五章理想气体热力性质
![第五章理想气体热力性质](https://img.taocdn.com/s3/m/0fc2ac5608a1284ac85043a3.png)
q c(t2 t1)
单原子气体 双原子气体 三原子气体
cM ,p 20.9 kJ (kmol K ) cM ,p 29.3kJ (kmol K ) cM ,p 37.7 kJ (kmol K )
例5-2 查表计算100kg空气在定压下从900℃加热到 1300℃所需的热量,并进行比较。
盖.吕萨克定律 p不变 v2 / v1 T2 / T1
查理定律 v不变
p2 / p1 T2 / T1
理想气体在任一平衡状态时p、v、T之间关系的方
程式即理想气体状态方程式,或称克拉贝龙
(Clapeyron)方程。
pv RT 或 pV mRT
R为气体常数(单位J/(kg·K),与气体所处的状态
据式(5-11) Qp mq p mc p (t2 t1) 100 1.012 (1300 900 ) 40480 kJ 比较: 直线关系与曲线关系的相对误差为
48008 47920 100% 0.184% 47920
定值比热与曲线关系的相对误差为
| 40480 47920| 100% 15.526% 47920
C、熵的物理意义:熵体现了可逆过程传热的大小与 方向
D.用途:判断热量传递的方向 计算可逆过程的传热量
熵流与熵产(闭口系统熵方程)
熵流与熵产
ds ds流 ds产
熵流为由于系统与外界发生热量交换而引起的熵的变化量,
dq ds流 T
熵产为由于过程中的不可逆因素而引起的熵的变化量,
ds产 ds ds流
Vm为1kmol(Mkg)物质的体积
通用气体常数不仅与气体状态无关,与气体的种
类也无关
RM 8314J /(kmol K )
理想气体比热、内能、焓和熵分析
![理想气体比热、内能、焓和熵分析](https://img.taocdn.com/s3/m/93f475f5360cba1aa811daa0.png)
理想气体的比热和热量为了计算在状态变化过程中的吸热量和放热量,我们引入了比热容的概念。
一、比热容的定义比热容与我们前面所讲过的比容、比内能、比焓、比功等参数类似,它是一个比参数,那么它的广延参数就是热容,所以在讲比热容之前我们先看一下热容。
1.热容热容指的是物体在一定的准静态过程中,温度升高或降低1K 时吸收或放出的热量,用符号C 表示。
根据热容的定义,我们可以得到:若工质在一定的准静态过程中,温度变化了△T ,过程中热量为Q ,那么这个过程中的比热为:Q C T=∆ 而物体的比热容是随温度变化的,并不是一个常数,我们上面的表示方法仅仅表示的是工质在这一过程中的平均比热容,若我们精确的表示工质在某一温度处的热容,则:QC dT δ=单位为J/K2.比热容用符号c 表示,比热容是热容的比参数。
比参数是广延参数与质量的比值。
所以比热容的定义为:1kg 物体在一定的准静态过程中温度升高或降低1K 时吸收或放出的热量。
C q c m dTδ== 单位:J/(kgK)这个比容又叫比质量热容,除了比质量热容外,热容还有两种比参数,分别是容积比热和摩尔比热。
容积比热用符号c ’表示,指的是1Nm 3工质在一定的准静态过程中温度升高或降低1K 时吸收或放出的热量。
单位为J/( Nm 3K)。
摩尔比热用符号Mc 表示,指的是1mol 工质在一定的准静态过程中温度升高或降低1K 时吸收或放出的热量。
单位为J/( molK)。
三个比容之间的关系:'Mc M c Vm c =⋅=⋅二、理想气体的比热热量是过程参数,其数值的大小与所进行的热力过程有关,同样比热也是过程参数,也与工质所进行的热力过程有关,不同热力过程的比热值也是不相同的。
在我们工程热力学的研究范围中,最常用到的比热有两种:一个是定容过程的比热,一个是定压过程的比热。
定容过程:整个热力过程中工质的容积保持不变。
比如固定容器中的气体被加热。
定压过程:整个热力过程中工质的压力保持不变。
第五章 气体的热力性质(作业)
![第五章 气体的热力性质(作业)](https://img.taocdn.com/s3/m/36755863af1ffc4ffe47ac53.png)
C p ,m 22.414 103
1.2978kJ/ m3 K
Q V0C p t2 t1 60000 1.2978 250 20 1.752 107 kJ/h
⑵用平均比热容计算
C p
20 0
20 250 Q V0 C p 250 C p 20 0 0 60000 1.312 2501.2976 20 1.812107 kJ/h
根据试算法,得
Z 0.99
pr 0.5202
p pr pC 0.5202 3.39 1.76MPa
h Cv t 2 t1 1.038 400 30 384.06kJ/kg
u Cv t2 t1 0.742 400 30 274.54kJ/kg
C p 1.038kJ/kg K
解:⑴用定值比热容计算
Cv 0.742kJ/kg K
S 120 1.004 ln 240.9 273 240.9 273 210 1.004 ln 400 273 150 273 32.495 41.041 8.546kJ/K h
上式不能应用于不同种类气体的混合。 上述绝热的混合过程是不可逆过程,空气的总熵必然增大。
对1kmol氧气有: H=6858.84KJ,U=4988.19KJ,S=-16.95KJ/k
(2)按能量平衡方程
Q n(HM Wt ) 1000 (6858.84 20000) 13141.16kJ
热力学习题参考答案
[5-12]两股压力相同的空气流,一股温度,t1=400℃,流量为qm1=120kg/h;另一 股t2=15℃,qm2=210kg/h,两股混合为相同压力的混合气流,若混合过程是绝热的, 求:⑴混合气流的温度;⑵混合过程空气的熵将增大还是减小,还是不变?⑶计算 熵变化量(用定值比热容计算)。
理想气体的定压比热容和定容比热容
![理想气体的定压比热容和定容比热容](https://img.taocdn.com/s3/m/f1d1521d3069a45177232f60ddccda38376be194.png)
理想气体的定压比热容和定容比热容
理想气体的定压比热容和定容比热容是描述理想气体在不同温度下热释放和吸收能力的物理量。
定压比热容(specific heat of pressure,符号为Cp)是指理想气体在一个给定的压力下,温度变化时其热量释放的能力。
随着温度的升高,理想气体的分子运动速度逐渐减小,分子间的距离也逐渐增大,因此理想气体分子间的相互作用力也减小。
因此,理想气体在温度升高时,需要通过吸收更多的热量来进行热运动,从而释放出更多的热量。
因此,定压比热容表示的是理想气体在一个给定压力下,温度升高时需要吸收的热量。
单位为J/(m^3·K)。
定容比热容(specific heat of volume,符号为Cv)是指理想气体在一个给定的体积范围内,温度变化时其热量释放的能力。
随着温度的升高,理想气体的分子运动速度逐渐增大,分子间的距离也逐渐减小,因此理想气体分子间的相互作用力也减小。
因此,理想气体在温度升高时,需要通过吸收更多的热量来进行热运动,从而释放出更多的热量。
因此,定容比热容表示的是理想气体在一个给定体积范围内,温度升高时需要吸收的热量。
单位为J/(m^3·K)。
需要注意的是,对于理想气体而言,定压比热容和定容比热容都是与温度无关的,也就是说,它们不会因为气体的压力而发生变化。
(8)热力学第三章2
![(8)热力学第三章2](https://img.taocdn.com/s3/m/690abd24bd64783e09122bb0.png)
u f T h f T
u cv ( ) v T
h cp ( ) p T
cv f T c p f T
理想气体:
du cv dT
dh cp dT
二、cp与cv关系
du 理想气体: cv dT
dh cp dT
h u Rg T dh du Rg dT
1.29
理想气体定值比热容 Cm=M· c=22.414C′ c=Cm/M
当气体温度在室温附近且变化范围不大时, 或者在精度要求不高时,比热可近似地当作定值
本门课程后续计算,全部采用定值比热容
3-4 理想气体的热力学能、焓和熵
一、热力学能和焓 理想气体 u f (T )
h u pv u RT g
q c p dT பைடு நூலகம் vdp
q c p T vdp
适用于理想气 体的可逆过程
热力学能、焓为不可测参数
u cv T
h c p T
应用中计算热力学能和焓的变化量,其实由热力 学第一定律也可看出,我们并不关心热力学能和焓的 绝对值,而是关心其变化量。 假定在0K时理想气体的焓值,热力学能为0 :
dh du R g c p cv R g dT dT
即
c p c v Rg
Cp,m-Cv,m=R
迈耶公式Mayer’s formula
比热容比
令
cp cv
称为比热容比
对于某一气体,Rg为一常数。
c p c v Rg
则
Rg cp 1
cv Rg
cp cv
c : 质量热容
kJ kg K
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。