相似三角形六大证明技巧

合集下载

相似三角形六大证明技巧

相似三角形六大证明技巧

相似三角形六大证明技巧一、AA(角角)相似准则这是最常用的相似三角形证明方法。

如果两个三角形的两个角分别相等,那么这两个三角形相似。

这是因为两个三角形如果两个角相等,那么第三个角也必然相等,从而保证了两个三角形的形状相同。

二、SAS(边角边)相似准则如果两个三角形的两边分别成比例,且夹角相等,那么这两个三角形相似。

这是因为两边成比例且夹角相等,可以保证两个三角形的形状相同。

三、SSS(边边边)相似准则如果两个三角形的三边分别成比例,那么这两个三角形相似。

这是因为三边成比例,可以保证两个三角形的形状相同。

四、HL(斜边和直角边)相似准则这个准则适用于直角三角形。

如果两个直角三角形的斜边和一条直角边分别成比例,那么这两个三角形相似。

这是因为斜边和直角边成比例,可以保证两个直角三角形的形状相同。

五、等比三角形如果两个三角形的对应边成等比,那么这两个三角形相似。

这是因为等比关系可以保证两个三角形的形状相同。

六、共线相似如果两个三角形有一条边共线,且这条边上的两个点分别与另一个三角形的两个点对应,那么这两个三角形相似。

这是因为共线关系可以保证两个三角形的形状相同。

相似三角形六大证明技巧一、AA(角角)相似准则这是最常用的相似三角形证明方法。

如果两个三角形的两个角分别相等,那么这两个三角形相似。

这是因为两个三角形如果两个角相等,那么第三个角也必然相等,从而保证了两个三角形的形状相同。

二、SAS(边角边)相似准则如果两个三角形的两边分别成比例,且夹角相等,那么这两个三角形相似。

这是因为两边成比例且夹角相等,可以保证两个三角形的形状相同。

三、SSS(边边边)相似准则如果两个三角形的三边分别成比例,那么这两个三角形相似。

这是因为三边成比例,可以保证两个三角形的形状相同。

四、HL(斜边和直角边)相似准则这个准则适用于直角三角形。

如果两个直角三角形的斜边和一条直角边分别成比例,那么这两个三角形相似。

这是因为斜边和直角边成比例,可以保证两个直角三角形的形状相同。

相似三角形六大证明技巧(提高类技巧训练)

相似三角形六大证明技巧(提高类技巧训练)

回顾相似三角形的判定方法总结:1. 平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似.2. 三边成比例的两个三角形相似.(SSS)3. 两边成比例且夹角相等的两个三角形相似. (SAS)4. 两角分别相等的两个三角形相似.(AA)5.斜边和一条直角边成比例的两个直角三角形相似(HL)模型一:反A型:如图,已知△ABC,∠ADE=∠C,若连CD、BE,进而能证明△ACD∽△ABE(SAS)试一试写出具体证明过程模型二:反X型:如图,已知角∠BAO=∠CDO,若连AD,BC,进而能证明△AOD∽△BOC.试一试写出具体证明过程应用练习:1.已知△ABC中,∠AEF=∠ACB,求证:(1)AE AB AF AC⋅=⋅(2)∠BEO=∠CFO,∠EBO=∠FCO(3)∠OEF=∠OBC,∠OFE=∠OCB2.已知在△ABC中,∠ABC =90∘,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.(1)当点P在线段AB上时,求证:△APQ∽△ABC;(2)当△PQB为等腰三角形时,求AP的长。

模型三:射影定理如图已知△ABC,∠ACB=90°,CH⊥AB于H,求证:2AC AH AB=⋅,2BC BH BA=⋅,,2HC HA HB=⋅,试一试写出具体证明过程相似三角形证明方法之射影定理与类射影相似三角形6大证明技巧相似三角形证明方法之反A型与反X型EDC BA模型四:类射影如图,已知2AB AC AD =⋅,求证:BD ABBC AC=,试一试写出具体证明过程 应用练习:1.如图,在△ABC 中,AD ⊥BC 于D ,DE ⊥AB 于E ,DF ⊥AC 于F 。

求证:2.如图,在ABC △中,AD BC ⊥于D ,DE AB ⊥于E ,DF AC ⊥于F ,连EF ,求证:∠AEF =∠C模型五:一线三等角如图,已知∠B =∠C =∠EDF ,则△BDE ∽△CFD (AA ),试一试写出具体证明过程应用练习:1.如图,△ABC 和△DEF 两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF 的顶点E 与△ABC 的斜边BC 的中点重合.将△DEF 绕点E 旋转,旋转过程中,线段DE 与线段AB 相交于点P ,线段EF 与射线CA 相交于点Q .(1) 如图①,当点Q 在线段AC 上,且AP=AQ 时,求证:△BPE ≌△CQE ; (2) (2)如图②,当点Q 在线段CA 的延长线上时,求证:△BPE ∽△CEQ ;并求当BP=a ,CQ=9a/2 时,P 、Q 两点间的距离(用含a 的代数式表示)2.△ABC 中,AB=AC ,D 为BC 的中点,以D 为顶点作∠MDN=∠B (1)如图(1)当射线DN 经过点A 时,DM 交AC 边于点E ,不添加辅助线,写出图中所有与△ADE 相似的三角形.(2)如图(2),将∠MDN 绕点D 沿逆时针方向旋转,DM ,DN 分别交线段AC ,AB 于E ,F 点(点E 与点A 不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.(3)在图(2)中,若AB=AC=10,BC=12,当△DEF 的面积等于△ABC 的面积的时,求线段EF 的长. 3.如图,点在线段上,点、在同侧,,,。

相似三角形六大证明技巧(提高类技巧训练)

相似三角形六大证明技巧(提高类技巧训练)

回顾相似三角形的判定方法总结: 相似三角形6大证明技巧相似三角形证明方法之反A型与反X型1. 2. 3. 4. 平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似三边成比例的两个三角形相似.(SSS两边成比例且夹角相等的两个三角形相似.(SAS)两角分别相等的两个三角形相似.(AA)斜边和一条直角边成比例的两个直角三角形相似(HL)5.模型一:反A型:如图,已知△ ABC, / ADE = / C,若连CD、BE,进而能证明△ ACD ABE(SAS) 试一试写出具体证明过程模型二:反X型:如图,已知角/ BAO= / CDO,若连AD, BC,进而能证明△ AODBOC.试一试写出具体证明过程D B应用练习:1.已知△ ABC 中,/ AEF= / ACB,求证:(1) AE AB AF AC (2)/ BEO= / CFO ,/ EBO= / FCO ( 3)/ OEF= / OBC,/ OFE= / OCB2.已知在MBC中,/ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.⑴当点P在线段AB上时,求证:MPQ S /△ABC ;⑵当/△^QB为等腰三角形时,求AP的长。

模型三:射影定理相似三角形证明方法之射影定理与类射影如图已知^ ABC,/ ACB=90° , CH 丄AB 于H,求证:A C2AH AB , BC2 BH BA ,, 2HC HA HB ,试一试写出具体证明过程模型四:类射影BD AB如图,已知AB 2AC AD ,求证:亍 乔,试一试写出具体证明过程BC AC应用练习:J 451.如图,在 △ ABC 中,AD 丄BC 于D ,DE 丄AB 于E ,DF 丄AC 于F 。

求证:—AP AS2.如图,在 △ ABC 中,AD BC 于 D , DE AB 于 E , DF/ AEF= / C模型五:一线三等角如图,已知/ B=/ C= / EDF ,则△ BDECFD (AA ),试 一试写出具体证明过程应用练习:1.如图,△ ABC 和/ DEF 两个全等的等腰直角三角形, / BACK EDF=90, △ DEF 的顶点E 与^ABC 的斜边BC 的中点重合.将△ DEF 绕点E 旋转,旋转过程中, 线段DE 与线段AB 相交于点P ,线段EF 与射线CA 相交于点Q .(1) 如图①,当点Q 在线段AC 上,且AP=AQ 时,求证:△ BPE^ZCQE (2) (2)如图②,当点Q 在线段CA 的延长线上时,求证: 并求当BP=a CQ=9a/2时,P 、Q 两点间的距离(用含2.^ABC 中,AB=AC , D 为BC 的中点,以 D 为顶点作/(1) 如图(1)当射线DN 经过点A 时,DM 交AC 边于点E ,不添加辅 助线,写出图中所有与/△ADE 相似的三角形.(2) 如图(2),将/ MDN 绕点D 沿逆时针方向旋转,DM ,DN 分别交 线段AC ,AB 于E ,F 点(点E 与点A 不重合),不添加辅助线,写出图 中所有的相似三角形,并证明你的结论.(3) 在图(2 )中,若 AB=AC=10,BC=12,当 Z\DEF 的面积等于 /ABC 的面积的4时,求线段EF 的长.3.如图,点仔在线段《上,点D 、F 在M 同侧,"=« =妙,他丄砒,AD = SC(1)求证:胆"D+CA(2 )若37, CE",点P 为线段丄&上的动点,连接DP ,作M3尸,交 直线占E相似三角形证明方法之一线三等角△ BP0A CEQa 的代数式表示)AC 于F ,连EF ,求证:于点Q。

相似三角形证明技巧(整理)

相似三角形证明技巧(整理)

相似三角形解题方法、技巧、步骤、辅助线解析一、相似三角形(1)三角形相似的条件: ①;②;③.二、两个三角形相似的六种图形:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决.三、三角形相似的证题思路:判定两个三角形相似思路:1)先找两对角对应相等(对平行线型找平行线),因为这个条件最简单; 2)再而先找一对角对应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例;找另一角两角对应相等,两三角形相似找夹边对应成比例两边对应成比例且夹角相等,两三角形相似找夹角相等两边对应成比例且夹角相等,两三角形相似 找第三边也对应成比例三边对应成比例,两三角形相似 找一个直角斜边、直角边对应成比例,两个直角三角形相似找另一角两角对应相等,两三角形相似找两边对应成比例判定定理2 找顶角对应相等判定定理1 找底角对应相等判定定理1 找底和腰对应成比例判定定理3e)相似形的传递性若△1∽△2,△2∽△3,则△1∽△3四、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。

具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。

有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。

例1、已知:如图,ΔABC 中,CE ⊥AB,BF ⊥AC. 求证: BAAC AF AE(判断“横定”还是“竖定”? )a)已知一对等b)己知两边对应成比c)己知一个直d)有等腰关例2、如图,CD是Rt△ABC的斜边AB上的高,∠BAC的平分线分别交BC、CD于点E、F,AC·AE=AF·AB吗?说明理由。

相似三角形六大证明技巧

相似三角形六大证明技巧

相似三角形六大证明技巧在数学中,相似三角形的研究是非常重要的,因为这可以帮助我们解决各种有关比例和比较的问题。

在证明相似三角形的过程中,存在许多有效的技巧和方法来简化问题并加深我们对其性质的理解。

以下是六大证明技巧,可用于证明相似三角形。

1.AA相似性定理:AA相似性定理是最常见的相似三角形证明技巧之一、该定理指出,如果两个三角形中的两个角度相等,则两个三角形相似。

这可以用于简化相似三角形的证明,特别是当两个三角形之一已知边长或角度的情况下,通过证明两个角度相等,即可得出它们相似的结论。

2.SAS相似性定理:SAS相似性定理是另一种常用的相似三角形证明技巧。

该定理指出,如果两个三角形中的两个边的比值相等,并且这两条边夹角的比值也相等,则两个三角形相似。

这可以用于证明两个三角形相似的证明,特别是当两个三角形已知有一个相等的边和夹角的情况下。

3.SSS相似性定理:SSS相似性定理是证明相似三角形的另一种方法。

该定理指出,如果两个三角形的三条边的比值相等,则两个三角形相似。

这可以用于证明两个三角形相似的证明,特别是当两个三角形已知边长的情况下。

4.比较边与角:当两个三角形中的两个角度已知且相等时,可以比较它们的边。

通过确定它们的边比值并与已知比值进行比较,可以确定它们是否相似。

这个方法通常需要使用三角函数和三角恒等式来解决。

5.直角三角形的特殊性质:在直角三角形中,如果两个直角三角形的一个角是相等的,并且另一个角是互补的,则两个三角形一定相似。

这是因为两个直角三角形的另一个角度相等,而直角定理保证了两个三角形的边的比值相等。

6.利用平行线:当直线与两条平行线相交时,可以使用平行线的性质来证明相似三角形。

具体而言,如果两个平行线通过一个第三个线段形成一个相似三角形,则可以通过证明这两个平行线的其他线段与第三个线段的比值相等来证明这两个平行线的其他线段与第三个线段的比值相等。

除了上述六大证明技巧之外,还有一些其他技巧可以用于证明相似三角形,如三角形的重心和垂心的性质,重心和垂心在相似三角形的边和角之间有特殊的关系。

相似三角形的证明方法

相似三角形的证明方法

相似三角形的证明方法相似三角形是初中数学中的一个重要概念,它在几何推导和实际问题中都有着广泛的应用。

在本文中,我们将介绍相似三角形的定义,并详细讨论几种证明相似三角形的方法。

一、相似三角形的定义相似三角形是指具有相同形状但不一定相同大小的两个三角形。

当两个三角形的对应角度相等时,它们是相似的。

换句话说,若两个三角形的对应角度分别相等,则它们是相似的。

二、数学证明法1. AA相似定理相似三角形的AA相似定理指的是,如果两个三角形的两个角分别相等,则它们是相似的。

具体而言,当两个三角形的两个对应角相等时,它们一定是相似的。

证明方法:首先,我们选取两个相似三角形的两个对应角,设为∠A1和∠A2,∠B1和∠B2。

然后,利用已知信息,通过角度相等的性质进行证明。

最后,根据相似三角形的定义,我们得出结论:∠A1 = ∠A2,∠B1 = ∠B2,所以两个三角形是相似的。

2. AAA相似定理AAA相似定理是指如果两个三角形的三个内角分别相等,则它们是相似的。

具体来说,当两个三角形的三个对应角都相等时,它们是相似的。

证明方法:假设有两个相似三角形,其三个对应角分别为∠A1、∠B1、∠C1,∠A2、∠B2、∠C2。

根据已知信息,我们进行角度的对应比较。

通过比较∠A1和∠A2、∠B1和∠B2、∠C1和∠C2,我们可以得出结论:两个三角形的三个对应角分别相等,因此它们是相似的。

三、几何证明法1. 边长比较法边长比较法是指通过比较两个三角形的对应边长之间的比值来证明相似。

具体而言,当两个三角形的三个对应边长比值相等时,它们是相似的。

证明方法:假设有两个相似三角形,分别为△ABC和△DEF。

我们可以比较边长AB与DE、BC与EF、AC与DF之间的比值。

如果这三组比值相等,即AB/DE = BC/EF = AC/DF,那么我们可以得出结论:两个三角形是相似的。

2. 三角函数关系法三角函数关系法是通过利用正弦定理、余弦定理等三角函数的性质来证明相似三角形。

初中数学相似三角形六大证明技巧

初中数学相似三角形六大证明技巧

初中数学相似三角形六大证明技巧初中数学中,相似三角形是一个非常重要的概念。

在学习相似三角形时,我们需要掌握一些证明技巧,以便能够正确地证明相似三角形的性质。

下面是六大证明技巧:1.直角三角形的性质:直角三角形是相似三角形中应用最多的一种情况。

当我们需要证明两个三角形相似且其中一个是直角三角形时,可以使用直角三角形的性质,比如勾股定理、余弦定理等,来进行证明。

2.AAA相似定理:如果两个三角形的三个角分别相等,那么它们是相似的。

可以通过将两个三角形的角度逐一对应,并通过角度相等来得到相似性。

3.SSS相似定理:如果两个三角形的三条边分别成比例,那么它们是相似的。

可以通过将两个三角形的边逐一对应,并通过边的比例来得到相似性。

4.SAS相似定理:如果两个三角形的一个角相等,且两个角分别对应的两边成比例,那么它们是相似的。

可以通过将两个三角形的角和边逐一对应,以及利用边的比例来得到相似性。

5.高度比例定理:如果两个三角形的一个角相等,且两个角分别对应的高分别成比例,那么它们是相似的。

我们可以通过证明两个三角形的高比例相等来得到相似性。

6.视角相等定理:如果两个三角形的一个角相等,且两个角分别对应的一对角的视角相等,那么它们是相似的。

我们可以通过证明两个三角形的视角相等来得到相似性。

在进行相似三角形的证明时,我们可以根据题目给出的条件选择合适的证明技巧。

通过灵活运用以上的六大证明技巧,我们可以较为简洁地完成相似三角形的证明。

同时,大量的练习也是提高证明技巧的重要方法,只有不断地练习才能够真正地掌握相似三角形的证明方法。

通过练习,我们还能够发现一些相似三角形的性质和规律,进一步提升对相似三角形的理解和运用能力。

根据相似三角形的证明的所有方法

根据相似三角形的证明的所有方法

根据相似三角形的证明的所有方法
相似三角形指的是具有相同形状但不同大小的三角形。

下面列
举了几种常见的证明方法:
1. AA相似定理(角-角相似定理):如果两个三角形的两个角
分别相等,那么这两个三角形是相似的。

例如,若两个三角形的两
个角分别相等,并且另一个角也相等,那么这两个三角形是相似的。

2. SAS相似定理(边-角-边相似定理):如果两个三角形的两
个边的比例相等,并且夹角也相等,那么这两个三角形是相似的。

例如,如果边的比例相等,并且夹角也相等,那么这两个三角形是
相似的。

3. SSS相似定理(边-边-边相似定理):如果两个三角形的三
个边的比例相等,那么这两个三角形是相似的。

例如,如果三个边
的比例相等,那么这两个三角形是相似的。

4. 比例关系证明:根据两个相似三角形的边的比例关系(例如边长的比例、周长的比例、面积的比例等),可以证明它们之间的相似性。

要注意的是,证明相似三角形的方法可以根据具体情况的不同而有所变化,以上列出的方法只是一些常见的证明方法。

在证明过程中,需要合理运用相似三角形的定义和相似三角形的性质,以及根据所给信息找到合适的证明方法。

通过使用以上方法中的一种或多种,可以有效地证明两个三角形的相似性。

以上是根据相似三角形的证明的一些常见方法,希望对你有所帮助。

请注意:文档中所列举的方法只是一些常见的证明方法,并不包含所有的可能方法。

具体证明过程需要根据实际情况灵活运用。

中考之相似三角形方法总结

中考之相似三角形方法总结

中考之相似三角形方法总结相似三角形是初中数学常见的重要知识点,掌握相似三角形的方法对于解题非常有帮助。

下面是关于相似三角形方法的总结。

一、相似三角形的定义和判定相似三角形指的是具有相同形状但可能不同大小的三角形。

两个三角形相似的判定方法为:1.AA判定法:如果两个三角形中有两对相对角度相等,则这两个三角形相似。

2.AAA判定法:如果两个三角形的三个内角相对应相等,则这两个三角形相似。

3.SSS判定法:如果两个三角形的对应边长之比相等,则这两个三角形相似。

4.SAS判定法:如果两个三角形中,一对对应角相等,且两对对应边的比值相等,则这两个三角形相似。

二、相似三角形的性质1.相似三角形的对应角相等。

2.相似三角形的对应边长比值相等。

3.相似三角形的高线、中线和角平分线所对应的长度之比相等。

4.相似三角形的周长比例等于它们的边长比例。

5.相似三角形的面积比例等于它们的边长比例平方。

三、相似三角形的计算方法1.已知两个相似三角形的边长比例,可以通过等比例关系来计算未知边长。

2.已知一个相似三角形的高线或者中线和相似比例,可以通过相似比例关系来计算另一个相似三角形的高线或者中线。

3.已知两个相似三角形的面积比例,可以通过面积比例关系来计算未知面积。

4.已知三个相似三角形的边长比例和一个相似三角形的面积,可以通过面积和边长的比例关系来计算未知面积。

四、相似三角形的应用1.根据相似三角形的性质,可以在不直接测量的情况下,计算远处的高度、长度等。

2.可以通过相似三角形的关系来解决各种几何问题,如平行线的证明、角度的计算、比例的求解等。

3.在实际生活中,相似三角形的知识经常用于建筑、测量、工程等领域的计算和设计中。

1.掌握相似三角形的定义和判定方法,能够准确判断两个三角形是否相似。

2.熟练应用AA、AAA、SSS和SAS判定法,能够根据题目给出的条件判定三角形的相似关系。

3.理解相似三角形的性质,能够应用性质计算未知边长、比例、面积等。

证明三角形相似的方法

证明三角形相似的方法

证明三角形相似的方法在几何学中,三角形相似是一个重要的概念,它指的是两个三角形的对应角相等,对应边的比值相等。

那么,如何证明两个三角形相似呢?下面将介绍几种常用的方法来证明三角形相似的原理。

1. AA相似法(角-角相似法)。

AA相似法是指如果两个三角形的两个角分别相等,则这两个三角形相似。

具体来说,如果三角形ABC和三角形DEF中∠A=∠D,∠B=∠E,那么可以得出三角形ABC∽三角形DEF。

证明方法,首先,我们可以利用角的对应性质来证明∠A=∠D,∠B=∠E。

然后,再利用角的对应性质来证明∠C=∠F,从而得出两个三角形相似。

2. SSS相似法(边-边-边相似法)。

SSS相似法是指如果两个三角形的对应边的比值相等,则这两个三角形相似。

具体来说,如果三角形ABC和三角形DEF中AB/DE=BC/EF=AC/DF,那么可以得出三角形ABC∽三角形DEF。

证明方法,首先,我们可以利用边的对应性质来证明AB/DE=BC/EF,BC/EF=AC/DF,AC/DF=AB/DE。

然后,再利用角的对应性质来证明∠A=∠D,∠B=∠E,∠C=∠F,从而得出两个三角形相似。

3. SAS相似法(边-角-边相似法)。

SAS相似法是指如果两个三角形的一个角和与其相对的两个边的比值相等,则这两个三角形相似。

具体来说,如果三角形ABC和三角形DEF中∠A=∠D,AB/DE=AC/DF,那么可以得出三角形ABC∽三角形DEF。

证明方法,首先,我们可以利用角的对应性质来证明∠A=∠D。

然后,再利用边的对应性质来证明AB/DE=AC/DF,从而得出两个三角形相似。

总结,通过上述三种方法,我们可以证明两个三角形的相似性。

在实际问题中,我们可以利用这些方法来解决各种三角形相似的证明问题,从而推导出更复杂的几何关系,为实际问题的解决提供了重要的数学工具。

通过不断的练习和实践,我们可以更加熟练地运用这些方法,提高数学解题的能力。

在实际问题中,证明三角形相似的方法是非常重要的,它不仅可以帮助我们理解几何形状之间的关系,还可以为我们解决各种实际问题提供便利。

相似三角形的六大证明技巧大全

相似三角形的六大证明技巧大全

相似三角形的六大证明技巧大全比例式的证明方法比例式是数学中常见的重要概念,其证明方法也是需要掌握的基本技能。

下面介绍几种比例式的证明方法。

1.相似三角形法若两个三角形相似,则它们对应边的比例相等。

因此,可以通过相似三角形的证明来得到比例式。

2.射影定理法射影定理指:在直角三角形中,直角边上的高的平方等于直角边与这个高的两个部分的乘积。

因此,可以通过射影定理来证明比例式。

3.平行线法若两条直线平行,则它们所截线段的比例相等。

因此,可以通过平行线的证明来得到比例式。

4.等角定理法等角定理指:在同一圆周角或同位角中,对应弧所对应的角相等。

因此,可以通过等角定理来证明比例式。

5.数学归纳法数学归纳法是数学中常见的证明方法,适用于证明一般情况下的比例式。

其基本思路是:证明当n=1时比例式成立,假设当n=k时比例式成立,证明当n=k+1时比例式也成立。

比例式的证明方法多种多样,需要根据具体情况选择合适的方法。

熟练掌握这些方法,可以更加轻松地解决各种数学问题。

通过前面的研究,我们知道,比例线段的证明离不开“平行线模型”(A型、X型、线束型),也离不开上述的6种“相似模型”。

但是,XXX认为,“模型”只是工具,怎样选择工具、怎样使用工具、怎样用好工具,取决于我们如何思考问题。

合理的思维方法能让模型成为解题的利刃,让复杂的问题变简单。

在本模块中,我们将研究比例式的证明中经常用到的思维技巧,包括三点定型法、等线段代换、等比代换、等积代换、证等量先证等比、几何计算。

技巧一:三点定型法例1】在平行四边形ABCD中,E是AB延长线上的一点,DE交BC于F,求证:$\frac{DC}{CF}=\frac{AE}{AD}$。

例2】在直角三角形△ABC中,$\angle BAC=90^\circ$,M为BC的中点,DM垂直于BC交CA的延长线于D,交AB 于E。

求证:$AM^2=MD\cdot ME$。

例3】在直角三角形△ABC中,AD是斜边BC上的高,$\angle ABC$的平分线BE交AC于E,交AD于F。

(完整版)相似三角形证明技巧(整理)

(完整版)相似三角形证明技巧(整理)

(完整版)相似三角形证明技巧(整理)相似三角形解题方法、技巧、步骤、辅助线解析一、相似三角形(1)三角形相似的条件:①;② ;③ . 二、两个三角形相似的六种图形:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决.三、三角形相似的证题思路:判定两个三角形相似思路:1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单;2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例;找另一角两角对应相等,两三角形相似找夹边对应成比例两边对应成比例且夹角相等,两三角形相似找夹角相等两边对应成比例且夹角相等,两三角形相似找第三边也对应成比例三边对应成比例,两三角形相似找一个直角斜边、直角边对应成比例,两个直角三角形相似找另一角两角对应相等,两三角形相似找两边对应成比例判定定理2 找顶角对应相等判定定理1找底角对应相等判定定理1 找底和腰对应成比例判定定理3e)相似形的传递性若△1∽△2,△2∽△3,则△1∽△3四、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。

具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。

有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。

例1、已知:如图,ΔABC 中,CE ⊥AB,BF ⊥AC. 求证: BAAC AF AE(判断“横定”还是“竖定”?) a)已知一对等b)己知两边对应成比c)己知一个直d)有等腰关例2、如图,CD是Rt△ABC的斜边AB上的高,∠BAC的平分线分别交BC、CD于点E、F,AC·AE=AF·AB吗?说明理由。

相似三角形知识点

相似三角形知识点

相似三角形知识点
三角形相似的判定方法
1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.
2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.
3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.
4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.
5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.
6、判定直角三角形相似的方法: (1)以上各种判定均适用.
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.
(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.。

相似三角形的六大证明技巧大全

相似三角形的六大证明技巧大全

相似三角形的判定方法总结:1. 平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似.2. 三边成比例的两个三角形相似.(SSS )3. 两边成比例且夹角相等的两个三角形相似. (SAS)4. 两角分别相等的两个三角形相似.(AA)5. 斜边和一条直角边成比例的两个直角三角形相似(HL) 相似三角形的模型方法总结: “反A ”型与“反X ”型.示意图结论E D CB A反A 型:如图,已知△ABC ,∠ADE =∠C ,则△ADE ∽△ACB (AA ),∴AE ·AC =AD ·AB. 若连CD 、BE ,进而能证明△ACD ∽△ABE (SAS)O DCBA反X 型:如图,已知角∠BAO =∠CDO ,则△AOB ∽△DOC (AA ),∴OA ·OC =OD ·OB . 若连AD ,BC ,进而能证明△AOD ∽△BOC .“类射影”与射影模型示意图结论A BCD类射影:如图,已知△ABC ,∠ABD =∠C ,则△ABD ∽△ACB (AA ),∴2AB =AD ·AC. CABH射影定理如图,已知∠ACB =90°,CH ⊥AB 于H ,则222,,AC AH AB BC BH BA HC HA HB =⋅=⋅=⋅相似三角形6大证明技巧相似三角形证明方法“旋转相似”与“一线三等角”反A 型与反X 型已知△ABC 中,∠AEF=∠ACB ,求证:(1)AE AB AF AC ⋅=⋅(2)∠BEO=∠CFO , ∠EBO=∠FCO (3)∠OEF=∠OBC ,∠OFE=∠OCBOF ECBA类射影如图,已知2AB AC AD =⋅,求证:BD ABBC AC= A BCD射影定理已知△ABC ,∠ACB =90°,CH ⊥AB 于H ,求证:2AC AH AB =⋅,2BC BH BA =⋅,2HC HA HB =⋅通过前面的学习,我们知道,比例线段的证明,离不开“平行线模型”(A 型,X 型,线束型),也离不开上述的6种“相似模型”. 但是,王老师认为,“模型”只是工具,怎样选择工具,怎样使用工具,怎样用好工具,取决于我们如何思考问题. 合理的思维方法,能让模型成为解题的利刃,让复杂的问题变简单。

相似三角形的六大证明技巧大全

相似三角形的六大证明技巧大全

相似三角形的六大证明技巧大全1.AA判定法AA判定法指的是若两个三角形的两个对应角度相等,则这两个三角形相似。

该方法一般用于解决两个三角形已经有一个角度相等的情况。

证明过程中,首先要证明两个对应角度相等,然后在利用角度相等证明其余对应边的比例关系。

2.SAS判定法SAS判定法指的是若两个三角形的一个角度相等,而另两边的比例相等,则这两个三角形相似。

该方法一般用于解决两个三角形已经知道两个对应边的比例相等的情况。

证明过程中,首先要证明一个角度相等,然后根据比例关系证明其余边的比例关系。

3.SSS判定法SSS判定法指的是若两个三角形的三边长度比例相等,则这两个三角形相似。

该方法一般用于解决两个三角形已经知道三边长度比例相等的情况。

证明过程中,需要证明各个对应边的比例相等。

4.直角三角形的相似证明直角三角形的相似证明可以利用勾股定理、正弦定理、余弦定理等三角函数关系进行证明。

当两个直角三角形的一个角度相等,而另两个边的比例相等时,可以通过三角函数关系证明两个三角形的相似性。

5.角平分线相似证明角平分线相似证明利用了角平分线的性质,也可以通过角度相等和角平分线的长度比例相等来证明两个三角形的相似性。

此外,利用角平分线的性质可以导出很多关于比例的等式或者比例关系,进而推导出相似三角形。

6.边平分线相似证明边平分线相似证明利用了边平分线的性质,要证明两个三角形相似,可以利用角平分线切分三角形,并利用与之相关的角度相等和边长比例相等进行推导,最终得到两个三角形相似的结论。

以上六大相似三角形的证明技巧是解决各种几何问题的基础。

在实际应用中,可以根据题目给出的条件选择合适的证明方法,灵活运用这些技巧,帮助我们解决各种与相似三角形相关的问题。

总结起来,相似三角形的证明技巧主要包括AA判定法、SAS判定法、SSS判定法、直角三角形的相似证明、角平分线相似证明和边平分线相似证明。

通过熟练掌握这些技巧,我们可以更好地解决各种相似三角形的证明问题。

初中数学解题模型专题讲解16---相似三角形六大证明技巧

初中数学解题模型专题讲解16---相似三角形六大证明技巧

初中数学解题模型专题讲解 专题16 16 相似三角形相似三角形6大证明技巧大证明技巧相似三角形的判定方法总结相似三角形的判定方法总结:: 1. 平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似. 2. 三边成比例的两个三角形相似.(SSS)3. 两边成比例且夹角相等的两个三角形相似. (SAS)4. 两角分别相等的两个三角形相似.(AA)5. 斜边和一条直角边成比例的两个直角三角形相似(HL) 相似三角形的模型方法总结相似三角形的模型方法总结:: “反A ”型与型与““反X ”型.“类射影”与射影模型与射影模型类射影””一线三等角”“旋转相似”与“一线三等角旋转相似”反A型与反X型已知△ABC 中,∠AEF=∠ACB ,求证:(1)AE AB AF AC ⋅=⋅(2)∠BEO=∠CFO , ∠EBO=∠FCO (3)∠OEF=∠OBC ,∠OFE=∠OCBOF ECBA类射影如图,已知2AB AC AD =⋅,求证:BD ABBC AC= A BCD射影定理已知△ABC ,∠ACB =90°,CH ⊥AB 于H ,求证:2AC AH AB =⋅,2BC BH BA =⋅,2HC HA HB =⋅通过前面的学习,我们知道,比例线段的证明,离不开“平行线模型”(A 型,X 型,线束型),也离不开上述的6种“相似模型”. 但是,王老师认为,“模型”只是工具,怎样选择工具,怎样使用工具,怎样用好工具,取决于我们如何思考问题. 合理的思维比例式的证明方法方法,能让模型成为解题的利刃,让复杂的问题变简单。

在本模块中,我们将学比例式的证明中,会经常用到的思维技巧. 技巧一:三点定型法 技巧二:等线段代换 技巧三:等比代换 技巧四:等积代换 技巧五:证等量先证等比 技巧六:几何计算 【例1】 如图,平行四边形ABCD 中,E 是AB 延长线上的一点,DE 交BC 于F ,求证:DC CF AE AD=. ABCFDE【例2】 如图,ABC △中,90BAC ∠=°,M 为BC 的中点,DM BC ⊥交CA 的延长线于D ,交AB 于E .求证:2AM MD ME =⋅技巧一技巧一::三点定型三点定型CBAEDM【例3】 如图,在Rt ABC △中,AD 是斜边BC 上的高,ABC ∠的平分线BE 交AC 于E ,交AD 于F .求证:BF ABBE BC=.DBACF E悄悄地替换比例式中的某条线段…【例4】 如图,在△ABC ,AD 平分∠BAC ,AD 的垂直平分线交AD 于E ,交BC 的延长线于F ,求证:2FD FB FC =⋅ABCDEF【例5】 如图,四边形ABCD 是平行四边形,点E 在边BA 的延长线上,CE 交AD 于F ,ECA D ∠=∠.求证:AC BE CE AD ⋅=⋅.技巧二技巧二::等线段代换等线段代换CBAD EF【例6】 如图,△ACB 为等腰直角三角形,AB=AC ,∠BAC=90°,∠DAE=45°,求证:2AB BE CD =⋅ABCE【例7】 如图,ABC △中,AB AC =,AD 是中线,P 是AD 上一点,过C 作CF AB ∥,延长BP 交AC 于E ,交CF 于F .求证:2BP PE PF =⋅.CBADPEF【例8】 如图,平行四边形ABCD 中,过B 作直线AC 、AD 于O ,E 、交CD 的延长线于F ,求证:2OB OE OF =⋅.技巧三技巧三::等比代换等比代换OFEDC BA【例9】 如图,在ABC △中,已知90A ∠=°时,AD BC ⊥于D ,E 为直角边AC 的中点,过D 、E 作直线交AB 的延长线于F .求证:AB AF AC DF ⋅=⋅.EFCABD【例10】 如图,在ABC △中(AB >AC )的边AB 上取一点D ,在边AC 上取一点E ,使AD AE =,直线DE 和BC 的延长线交于点P .求证:BP CE CP BD⋅=⋅E CD BAP【例11】 如图,ABC △中,BD 、CE 是高,EH BC ⊥于H 、交BD 于G 、交CA 的延长线于M .求证:2HE HG MH =⋅.技巧四技巧四::等积代换等积代换PMN D ABCA BCDE HGM【例12】 如图,在ABC △中,AD BC ⊥于D ,DE AB ⊥于E ,DF AC ⊥于F ,连EF ,求证:∠AEF =∠CFEDCBA【例13】 如图,在ABC △中,90BAC ∠=°,D 为AC 中点,AE BD ⊥,E 为垂足,求证:CBD ECD ∠=∠.CBADE【例14】 在Rt △ABC 中,AD ⊥BC ,P 为AD 中点,MN ⊥BC ,求证2MN AN NC =⋅【例15】 已知,平行四边形ABCD 中,E 、F 分别在直线AD 、CD 上,EF //AC ,BE 、BF 分别交AC 于M 、N .,求证:AM =CN.【例16】 已知如图AB =AC ,BD //AC ,AB //CE ,过A点的直线分别交BD 、CE 于D 、E . 求证:AM =NC ,MN //DE .DBAEM N【例17】 如图,△ABC 为等腰直角三角形,点P 为AB 上任意一点,PF ⊥BC ,PE ⊥AC ,AF 交PE 于N ,BE 交PF 于M .,求证:PM =PN ,MN //AB .CBAP EFN M技巧五技巧五::证等量先证等比证等量先证等比FMNEDC BA【例18】 如图,正方形BFDE 内接于△ABC ,CE 与DF 交于点N ,AF 交ED 于点M ,CE 与AF 交于点P . 求证:(1)MN //AC ;(2)EM =DN .PNM EFD ABC【例19】 (※)设E 、F 分别为AC 、AB 的中点,D 为BC 上一点,P 在BF 上,DP //CF ,Q 在CE 上,DQ //BE ,PQ 交BE 于R ,交CF 于S ,求证:13RS PQ =CBADP QSE FGR【例20】 (※)如图,梯形ABCD 的底边AB 上任取一点M ,过M 作MK //BD ,MN //AC ,分别交AD 、BC 于K 、N ,连KN ,分别交对角线AC 、BD 于P 、Q ,求证:KP =QN .Q N S PRKM ODC BA【例21】 (2016年四月调考)如图,在△ABC 中,AC >AB ,AD 是角平分线,AE 是中线,BF ⊥AD 于G ,交AC 于点M ,EG 的延长线交AB 于点H .(1)求证:AH =BH ,(2)若∠BAC =60°,求FG DG的值. HM FG E D CB A【例22】 (2016七一华源)如图:正方形ABCD 中,点E 、点F 、点G 分别在边BC 、AB 、CD 上,∠1=∠2=∠3=α. 求证:(1)EF +EG =AE (2)求证:CE+CG =AF技巧六技巧六::几何计算几何计算。

证明相似三角形判定方法

证明相似三角形判定方法

证明相似三角形判定方法证明相似三角形的判定方法有多种,以下是其中的50种方法,并对每种方法进行详细描述:1. 相似角对应相等:如果两个三角形的对应角相等,则这两个三角形相似。

2. 辅助角相等:如果两个三角形的一个角等于另一个角的辅助角,则这两个三角形相似。

3. 边长比例相等:如果两个三角形的对应边的比例相等,则这两个三角形相似。

4. 三边比例相等:如果两个三角形的三条边的比例相等,则这两个三角形相似。

5. 比较周长:如果两个三角形的周长比例相等,则这两个三角形相似。

6. 比较面积:如果两个三角形的面积比例相等,则这两个三角形相似。

7. 角平分线所成的相似三角形:如果两个三角形的一个角被其相对边的平分线所平分,且两个角相等,则这两个三角形相似。

8. 内切圆和外切圆:如果两个三角形的内切圆和外切圆的半径比例相等,则这两个三角形相似。

9. 三角形的高比较:如果两个三角形的高的比例相等,则这两个三角形相似。

10. 图中的角平分线构成相似三角形:如果两个三角形的一个角被图中一条直线平分,且划分的相邻两边的比例相等,则这两个三角形相似。

11. 内接三角形相似性:如果一个三角形内部有另一个相似的三角形,则这两个三角形相似。

12. 应用正弦定理:如果两个三角形中包含的两个角的正弦比相等,则这两个三角形相似。

13. 应用余弦定理:如果两个三角形中包含的两个角的余弦比相等,则这两个三角形相似。

14. 应用正切定理:如果两个三角形中包含的两个角的正切比相等,则这两个三角形相似。

15. 利用半角公式:如果两个三角形中包含的两个角的半角正弦比相等,则这两个三角形相似。

16. 利用角平分定理:如果平分一个三角形的一个角,并且用两条角平分线切分其对边,则所得的小三角形相似。

17. 边角边:如果两个三角形的一对对应边和夹角相等,则这两个三角形相似。

18. 角边角:如果两个三角形的一对对应角和夹边相等,则这两个三角形相似。

19. 边边边:如果两个三角形的三条边相等,则这两个三角形相似。

(完整版)相似三角形证明技巧(整理)

(完整版)相似三角形证明技巧(整理)

相似三角形解题方法、技巧、步骤、辅助线解析一、相似三角形(1)三角形相似的条件:①;② ;③ . 二、两个三角形相似的六种图形:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决.三、三角形相似的证题思路:判定两个三角形相似思路:1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单; 2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例;找另一角 两角对应相等,两三角形相似找夹边对应成比例 两边对应成比例且夹角相等,两三角形相似找夹角相等 两边对应成比例且夹角相等,两三角形相似找第三边也对应成比例 三边对应成比例,两三角形相似找一个直角 斜边、直角边对应成比例,两个直角三角形相似找另一角 两角对应相等,两三角形相似找两边对应成比例 判定定理2 找顶角对应相等 判定定理1找底角对应相等 判定定理1 找底和腰对应成比例 判定定理3e)相似形的传递性 若△1∽△2,△2∽△3,则△1∽△3四、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。

具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。

有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。

例1、已知:如图,ΔABC 中,CE ⊥AB,BF ⊥AC. 求证: BAAC AF AE(判断“横定”还是“竖定”? )a)已知一对等b)己知两边对应成比c)己知一个直d)有等腰关例2、如图,CD是Rt△ABC的斜边AB上的高,∠BAC的平分线分别交BC、CD于点E、F,AC·AE=AF·AB吗?说明理由。

相似三角形证明技巧(整理)

相似三角形证明技巧(整理)
(1)问:始终与△AGC相似的三角形有及;
(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据2的情况说明理由);
9.(1)如图1,在△ABC中,点D,E,Q分别在AB,AC,BC上,且DE∥BC,AQ交DE于点P.求证: .
(2) 如图,在△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG,AF分别交DE于M,N两点.
说明理由。
分析方法:
1)先将积式______________
2)______________(“横定”还是“竖定”?)
例3、已知:如图,△ABC中,∠ACB=900,AB的垂直平分线交AB于D,交BC延长线于F。
求证:CD2=DE·DF。
分析方法:
1)先将积式______________
2)______________(“横定”还是“竖定”?)
有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。
例1、已知:如图,ΔABC中,CE⊥AB,BF⊥AC.
求证:
(判断“横定”还是“竖定”?)
例2、如图,CD是Rt△ABC的斜边AB上的高,∠BAC的
平分线分别交BC、CD于点E、F,AC·AE=AF·AB吗?
求证: BC2=2CD·AC.
中考综合题型
1.已知:如图,在 中, 是角平分线,试利用三角形相似的关系说明 .
2.如图,矩形 中, 厘米, 厘米( ).动点 同时从 点出发,分别沿 , 运动,速度是 厘米/秒.过 作直线垂直于 ,分别交 , 于 .当点 到达终点 时,点 也随之停止运动.设运动时间为 秒.
例2 如图6,□ABCD中,E是BC上的一点,AE交BD于点F,已知BE:EC=3:1,

证明相似三角形判定方法

证明相似三角形判定方法

证明相似三角形判定方法相似三角形是指具有相同形状但可能不同大小的三角形。

证明两个三角形相似的方法有多种,下面是50条关于证明相似三角形的方法,并展开详细描述。

1. 三角形内角相等原理:如果两个三角形的对应内角相等,则它们是相似的。

2. 三角形内角和等于180度原理:如果两个三角形的对应内角和相等,则它们是相似的。

3. 直角三角形的相似判定:如果两个直角三角形的两个锐角分别相等,则它们是相似的。

4. AA相似判定:如果两个三角形的一个角相等,其对应边的比例相等,则它们是相似的。

5. AAA相似判定:如果两个三角形的三个内角分别相等,则它们是相似的。

6. 内角和边的比例判定:如果两个三角形的对应边的比例相等,则它们是相似的。

7. 直角三角形斜边比例判定:如果两个直角三角形的两个直角边的比例相等,则它们是相似的。

8. SAS相似判定:如果两个三角形的一个边及其夹角分别与另一个三角形的一个边及其夹角相等,则它们是相似的。

9. SSS相似判定:如果两个三角形的三条边与另一个三角形的三条边成比例,则它们是相似的。

10. 应用百分比表示相似:利用百分比表示相似三角形的边长之比,推导相似关系。

11. 等腰三角形的相似判定:如果两个等腰三角形的对应角相等,则它们是相似的。

12. 内切圆与三角形的相似性:利用内切圆切割一个三角形,可以得到两个相似三角形。

13. 外接圆与三角形的相似性:利用外接圆切割一个三角形,可以得到两个相似三角形。

14. 通过平行线判定相似:如果两个三角形中的对应边全都平行,则它们是相似的。

15. 通过中位线判定相似:如果两个三角形中的对应边全都平行,则它们是相似的。

以上是关于证明相似三角形的50种方法,每种方法都可以通过具体的例子和证明过程来详细描述。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形六大证明技巧
相似三角形的判定方法总结:
1. 平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似.
2. 三边成比例的两个三角形相似.(SSS )
3. 两边成比例且夹角相等的两个三角形相似. (SAS)
4. 两角分别相等的两个三角形相似.(AA)
5. 斜边和一条直角边成比例的两个直角三角形相似(HL)
相似三角形的模型方法总结: “反A ”型与“反X ”型.
示意图
结论
E D C
B
A
反A 型:
如图,已知△ABC ,∠
ADE =∠C ,则△ADE ∽△ACB (AA ),∴AE ·AC =AD ·AB.
若连CD 、BE ,进而能证
相似三角形6大证明技巧
相似三角形证明方法
“类射影”与射影模型
“旋转相似”与“一线三等角”
巩固练习 反A 型与反X 型
已知△ABC 中,∠AEF=∠ACB ,求证:(1)
AE AB AF AC
⋅=⋅(2)∠BEO=∠CFO ,
∠EBO=∠FCO (3)∠OEF=∠OBC ,∠OFE=∠OCB
O
F E
C
B
A
类射影 如图,已知
2AB AC AD
=⋅,求证:
BD AB
BC AC
=
A B
C
D
射影定理
已知△ABC ,∠ACB =90°,CH ⊥AB 于H ,求证:
2AC AH AB
=⋅,2
BC
BH BA
=⋅,2
HC
HA HB
=⋅
通过前面的学习,我们知道,比例线段的证明,离不开“平行线模型”(A 型,X 型,线束型),也离不开上述的6种“相似模型”. 但是,王老师认为,“模型”只是工具,怎样选择工具,怎样使用工具,怎样用好工具,取决于我们如何思考问题. 合理的思维方法,能让模型成为解题的
比例式的证明方法
利刃,让复杂的问题变简单。

在本模块中,我们将学比例式的证明中,会经常用到的思维技巧. 技巧一:三点定型法 技巧二:等线段代换 技巧三:等比代换 技巧四:等积代换 技巧五:证等量先证等比 技巧六:几何计算
【例1】 如图,平行四边形ABCD 中,E 是AB 延长
线上的一点,DE 交BC 于F ,求证:DC CF AE
AD
=.
A
B
C
F
D
E
【例2】 如图,ABC △中,90BAC ∠=︒,M 为BC 的中点,
DM BC
⊥交CA 的延长线于D ,交AB 于E .求证:2AM MD ME
=⋅
技巧一:
C
B
A
E
D
M
【例3】 如图,在Rt ABC △中,AD 是斜边BC 上的高,
ABC
∠的平分线BE 交AC 于E ,交AD 于F .求
证:BF AB
BE BC
=.
D
B
A
C
F E
悄悄地替换比例式中的某条线段…
【例4】 如图,在△ABC,AD 平分∠BAC ,AD 的
垂直平分线交AD 于E ,交BC 的延长线于F ,求证:2
FD
FB FC
=⋅
A
B
C
D
E
F
【例5】 如图,四边形ABCD 是平行四边形,点E 在
技巧二:等
边BA 的延长线上,CE 交AD 于F ,ECA D ∠=∠.求
证:AC BE CE AD ⋅=⋅.
C
B
A
D E
F
【例6】 如图,△ACB 为等腰直角三角形,AB=AC ,
∠BAC=90°,∠DAE=45°,求证:
2AB BE CD
=⋅
A
B
C
D
E
【例7】 如图,ABC △中,AB AC =,AD 是中线,P 是AD
上一点,过C 作CF AB ∥,延长BP 交AC 于E ,交CF 于F .求证:2
BP
PE PF
=⋅.
C
B
A
D
P
E
F
技巧三:
【例8】如图,平行四边形ABCD中,过B作直线AC、AD于O,E、交CD的延长线于F,求证:
2
OB OE OF
=⋅.
O
F E
D
C
B
A
【例9】如图,在ABC
△中,已知90
A
∠=︒时,AD BC
⊥于D,E为直角边AC的中点,过D、E作直
线交AB的延长线于F.求证:AB AF AC DF
⋅=⋅.
E
F
C
A
B
D
【例10】如图,在ABC
△中(AB>AC)的边AB上取一点D,在边AC上取一点E,使AD AE
=,
直线DE 和BC 的延长线交于点P .求证:
BP CE CP BD
⋅=⋅
E C
D B
A
P
【例11】 如图,ABC △中,BD 、CE 是高,EH BC ⊥于H 、
交BD 于G 、交CA 的延长线于M .求证:
2HE HG MH
=⋅.
A B
C
D
E H
G
M
【例12】 如图,在ABC △中,AD BC ⊥于D ,DE AB ⊥于E ,
DF AC
⊥于F ,连EF ,求证:∠AEF =∠C
F
E
D
C
B
A
【例13】 如图,在ABC △中,90BAC ∠=︒,D 为AC 中点,
AE BD
⊥,E 为垂足,求证:CBD ECD ∠=∠.
C
B
A
D
E
技巧四:
P
M
N D A
B
C
【例14】 在Rt △ABC 中,AD ⊥BC ,P 为AD 中
点,MN ⊥BC ,求证2
MN
AN NC
=⋅
【例15】 已知,平行四边形ABCD 中,E 、F 分
别在直线AD 、CD 上,EF //AC ,BE 、BF 分别交AC 于M 、N .,求证:
AM =CN. F
M
N
E
D
C B
A
【例16】 已知如图AB =AC ,BD //AC ,AB //CE ,
过A 点的直线分别交BD 、CE 于D 、E . 求证:AM =NC ,MN //DE .
D
C
B
A
E
M N
【例17】 如图,△ABC 为等腰直角三角形,点P
为AB 上任意一点,
PF ⊥BC ,PE ⊥AC ,AF 交PE 于N ,BE 交PF 于M .,求证:
技巧五:证等
PM =PN ,MN //AB .
C
B
A
P E
F
N M
【例18】 如图,正方形BFDE 内接于△ABC ,
CE 与DF 交于点N ,AF 交ED 于点M ,CE 与AF 交于点P . 求证:(1)MN //AC ;(2)EM =DN .
P
N
M E
F
D A
B
C
【例19】 (※)设E 、
F 分别为AC 、AB 的中点,D 为BC 上一点,P 在BF 上,DP //CF ,Q 在CE 上,DQ //BE ,PQ 交BE 于R ,交CF 于S ,求证:
1
3
RS PQ
C
B
A
D
P Q
S
E F
G
R
【例20】 (※)如图,梯形ABCD 的底边AB 上
任取一点M ,过M 作MK //BD ,MN //AC ,分别交AD 、BC 于K 、N ,连KN ,分别交对角线AC 、BD 于P 、Q ,求证:KP =QN .
Q
N
S
P
R
K
M
O D
C B
A
【例21】 (2016年四月调考)如图,在△ABC
中,AC >AB ,AD 是角平分线,AE 是中线,BF ⊥AD 于G ,交AC 于点M ,EG 的延长线交AB 于点H .(1)求证:AH =BH ,(2)若∠BAC =60°,求FG
DG

值.
技巧六:
H M
F G
E
D C
B
A
【例22】(2016七一华源)如图:正方形ABCD 中,点E、点F、点G分别在边BC、
AB、CD上,∠1=∠2=∠3=α. 求证:
(1)EF+EG=AE(2)求证:CE
+CG=AF。

相关文档
最新文档