算法时间复杂度计算示例

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本计算步骤

示例一:

(1) int num1, num2;

(2) for(int i=0; i

(3) num1 += 1;

(4) for(int j=1; j<=n; j*=2){

(5) num2 += num1;

(6) }

(7) }

分析步骤

Step1.分析各条语句执行时间,得到算法(实际)复杂性

语句int num1, num2;的频度为1;

语句i=0;的频度为1;

语句i

语句j<=n; j*=2; num2+=num1;的频度为n*log2n;

算法(实际)复杂性:T(n) = 2 + 4n + 3n*log2n

step2. 计算渐进复杂性

忽略掉T(n)中的常量、低次幂和最高次幂的系数,得到

f(n) = n*log2n

{ 可省略:

lim(T(n)/f(n)) = (2+4n+3n*log2n) / (n*log2n)

= 2*(1/n)*(1/log2n) + 4*(1/log2n) + 3

当n趋向于无穷大,1/n趋向于0,1/log2n趋向于0,极限等于3。

}

T(n) = O(n*log2n)

简化的计算步骤

再来分析一下,可以看出,决定算法复杂度的是执行次数最多的语句,这里是num2 += num1,一般也是最内循环的语句。

并且,通常将求解极限是否为常量也省略掉?

于是,以上步骤可以简化为:

1. 找到执行次数最多的语句

2. 计算语句执行次数的数量级

3. 用大O来表示结果

继续以上述算法为例,进行分析:

1.

执行次数最多的语句为num2 += num1

2. T(n) = n*log2n

f(n) = n*log2n

3. // lim(T(n)/f(n)) = 1

T(n) = O(n*log2n)

--------------------------------------------------------------------------------

一些补充说明

最坏时间复杂度

算法的时间复杂度不仅与语句频度有关,还与问题规模及输入实例中各元素的取值有关。一般不特别说明,讨论的时间复杂度均是最坏情况下的时间复杂度。这就保证了算法的运行时间不会比任何更长。

求数量级

即求对数值(log),默认底数为10,简单来说就是“一个数用标准科学计数法表示后,10的指数”。例如,5000=5x10 3 (log5000=3) ,数量级为3。另外,一个未知数的数量级为其最接近的数量级,即最大可能的数量级。

复杂度与时间效率的关系:

c < log2n < n < n*log2n < n2 < n3 < 2n < 3n < n! (c是一个常量)

|--------------------------|--------------------------|-------------| 较好一般较差

--------------------------------------------------------------------------------------------------

复杂情况的分析

以上都是对于单个嵌套循环的情况进行分析,但实际上还可能有其他的情况,下面将例举说明。

1.并列循环的复杂度分析

将各个嵌套循环的时间复杂度相加。

例如:

for (i=1; i<=n; i++)

x++;

for (i=1; i<=n; i++)

for (j=1; j<=n; j++)

x++;

解:

第一个for循环

T(n) = n

f(n) = n

时间复杂度为Ο(n)

第二个for循环

T(n) = n2

f(n) = n2

时间复杂度为Ο(n2)

整个算法的时间复杂度为Ο(n+n2) = Ο(n2)。

2.函数调用的复杂度分析

例如:

public void printsum(int count){

int sum = 1;

for(int i= 0; i

sum += i;

}

System.out.print(sum);

}

分析:

记住,只有可运行的语句才会增加时间复杂度,因此,上面方法里的内容除了循环之外,其余的可运行语句的复杂度都是O(1)。

所以printsum的时间复杂度 = for的O(n)+O(1) = 忽略常量 = O(n)

*这里其实可以运用公式 num = n*(n+1)/2,对算法进行优化,改为:

public void printsum(int count){

int sum = 1;

sum = count * (count+1)/2;

System.out.print(sum);

}

这样算法的时间复杂度将由原来的O(n)降为O(1),大大地提高了算法的性能。

3.混合情况(多个方法调用与循环)的复杂度分析

例如:

public void suixiangMethod(int n){

printsum(n);//1.1

for(int i= 0; i

printsum(n); //1.2

}

for(int i= 0; i

for(int k=0; k

System.out.print(i,k); //1.3

}

}

相关文档
最新文档