五动量守恒定律的应用练习题及答案
(精品讲义)动量守恒定律5word版含答案2
5 反冲运动 火箭[学习目标] 1.了解反冲运动的概念及反冲运动的一些应用.2.理解反冲运动的原理,能够应用动量守恒定律解决反冲运动问题.3.了解火箭的工作原理及决定火箭最终速度大小的因素.一、反冲运动[导学探究] 在生活中常见到这样的情形:吹饱的气球松手后喷出气体,同时向相反方向飞去;点燃“钻天猴”的药捻,“钻天猴”便会向后喷出亮丽的火焰,同时“嗖”的一声飞向天空;乌贼向后喷出水后,它的身体却能向前运动,结合这些事例,体会反冲运动的概念,并思考以下问题: (1)反冲运动的受力有什么特点?(2)反冲运动过程中系统的动量、机械能有什么变化?答案 (1)物体的不同部分受相反的作用力,在内力作用下向相反方向运动.(2)反冲运动中,相互作用的内力一般情况下远大于外力,所以可以用动量守恒定律来处理;反冲运动中,由于有其他形式的能转变为机械能,所以系统的机械能增加. [知识梳理] 反冲运动1.定义:如果一个静止的物体在内力的作用下分裂为两个部分,一部分向某个方向运动,另一部分必然向相反的方向运动.这个现象叫做反冲.2.反冲运动的特点:是物体间作用力与反作用力产生的效果. 3.反冲运动的条件(1)系统不受外力或所受合外力为零. (2)内力远大于外力.(3)某一方向上不受外力或所受合外力为零. 4.反冲运动遵循的规律:动量守恒定律. 二、火箭 [导学探究]1.火箭飞行利用了怎样的工作原理?在分析火箭运动问题时可否应用动量守恒定律?答案 火箭靠向后连续喷射高速气体飞行,利用了反冲原理.由于火箭与“高温、高压”燃气组成的系统内力很大,远大于系统所受重力及阻力,故可应用动量守恒定律.2.设火箭发射前的总质量是M ,燃料燃尽后的质量为m ,火箭燃气的喷射速度为v ,试求燃料燃尽后火箭飞行的最大速度v ′.答案 在火箭发射过程中,由于内力远大于外力,所以可认为动量守恒.取火箭的速度方向为正方向,发射前火箭的总动量为0,发射后的总动量为m v ′-(M -m )v 则由动量守恒定律得0=m v ′-(M -m )v 所以v ′=M -m mv =⎝⎛⎭⎫M m -1v3.分析提高火箭飞行速度的可行办法.答案 由2题可知火箭喷气获得的最大的速度v ′=(Mm -1)v ,故可以用以下办法提高火箭飞行速度:(1)提高喷气速度;(2)提高火箭的质量比;(3)使用多级火箭,一般为三级. [知识梳理] 1.工作原理应用反冲运动,其反冲过程动量守恒.它靠向后喷出的气流的反冲作用而获得向前的速度. 2.影响火箭最终速度大小的因素 (1)喷气速度:现代液体燃料火箭的喷气速度约为2 000~4 000 m/s. (2)火箭的质量比:指火箭起飞时的质量与火箭除燃料外的箭体质量之比.现代火箭的质量比一般小于10. 喷气速度越大,质量比越大,火箭获得的速度越大.一、反冲运动的应用1.反冲运动问题一般应用系统动量守恒定律列式计算.列方程时要注意初、末状态动量的方向,反冲物体速度的方向与原物体的运动方向是相反的.2.动量守恒表达式中的速度均为相对地面的速度,对“相对”速度,则要根据矢量关系转化为相对地面的速度.例1 反冲小车静止放在水平光滑玻璃上,点燃酒精,水蒸气将橡皮塞水平喷出,小车沿相反方向运动.如果小车运动前的总质量M =3 kg ,水平喷出的橡皮塞的质量m =0.1 kg ,水蒸气质量忽略不计. (1)若橡皮塞喷出时获得的水平速度v =2.9 m/s ,求小车的反冲速度;(2)若橡皮塞喷出时速度大小不变,方向与水平方向成60°夹角,小车的反冲速度又如何(小车一直在水平方向运动)?答案 (1)0.1 m/s ,方向与橡皮塞运动的方向相反 (2)0.05 m/s ,方向与橡皮塞运动的水平分运动方向相反解析 (1)小车和橡皮塞组成的系统所受外力之和为零,系统总动量为零.以橡皮塞运动的方向为正方向 根据动量守恒定律,m v +(M -m )v ′=0 v ′=-m M -m v =-0.13-0.1×2.9 m /s =-0.1 m/s ,负号表示小车运动的方向与橡皮塞运动的方向相反,反冲速度大小是0.1 m/s.(2)小车和橡皮塞组成的系统水平方向动量守恒.以橡皮塞运动的水平分运动方向为正方向,有m v cos 60°+(M -m )v ″=0v ″=-m v cos 60°M -m =-0.1×2.9×0.53-0.1m /s =-0.05 m/s ,负号表示小车运动的方向与橡皮塞运动的水平分运动方向相反,反冲速度大小是0.05 m/s. 二、火箭原理1.火箭喷气属于反冲类问题,是动量守恒定律的重要应用.在火箭运动的过程中,随着燃料的消耗,火箭本身的质量不断减小,对于这一类的问题,可选取火箭本身和在相互作用的时间内喷出的全部气体为研究对象,取相互作用的整个过程为研究过程,运用动量守恒的观点解决问题.2.火箭燃料燃尽时火箭获得的最大速度由喷气速度v 和质量比Mm (火箭起飞时的质量与火箭除燃料外的箭体质量之比)两个因素决定.例2 一火箭喷气发动机每次喷出m =200 g 的气体,气体离开发动机喷出时的速度v =1 000 m/s.设火箭总质量M =300 kg ,发动机每秒钟喷气20次. (1)当第三次喷出气体后,火箭的速度为多大? (2)运动第1 s 末,火箭的速度为多大? 答案 (1)2 m /s (2)13.5 m/s解析 (1)选取火箭和气体组成的系统为研究对象,运用动量守恒定律求解.设喷出三次气体后火箭的速度为v 3,以火箭和喷出的三次气体为研究对象,以火箭速度方向为正方向,据动量守恒定律得:(M -3m )v 3-3m v =0,故v 3=3m v M -3m≈2 m/s.(2)发动机每秒钟喷气20次,以火箭和喷出的20次气体为研究对象,以火箭速度方向为正方向,根据动量守恒定律得:(M -20m )v 20-20m v =0,故v 20=20m vM -20m ≈13.5 m/s.三、反冲运动的应用——“人船模型” 1.“人船模型”问题两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒.在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题归为“人船模型”问题. 2.人船模型的特点(1)两物体满足动量守恒定律:m 1v 1-m 2v 2=0.(2)运动特点:人动船动,人停船停,人快船快,人慢船慢,人左船右;人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x 1x 2=v 1v 2=m 2m 1.(3)应用此关系时要注意一个问题:即公式v 1、v 2和x 一般都是相对地面而言的.例3 有一只小船停在静水中,船上一人从船头走到船尾.如果人的质量m =60 kg ,船的质量M =120 kg ,船长为l =3 m ,则船在水中移动的距离是多少?水的阻力不计. 答案 1 m解析 人在船上走时,由于人、船组成的系统所受合力为零,总动量守恒,因此系统的平均动量也守恒,如图所示.设人从船头到船尾的时间为t ,在这段时间里船后退的距离为x ,人相对地面运动的距离为l -x ,选船后退方向为正方向,由动量守恒有: M x t -m l -x t=0 所以x =m M +m l =60120+60×3 m =1 m.“人船模型”是利用平均动量守恒求解的一类问题,解决这类问题应明确: (1)适用条件:①系统由两个物体组成且相互作用前静止,系统总动量为零;②在系统内发生相对运动的过程中至少有一个方向的动量守恒(如水平方向或竖直方向).(2)画草图:解题时要画出各物体的位移关系草图,找出各长度间的关系,注意两物体的位移是相对同一参考系的位移.1.(反冲运动的认识)(多选)下列属于反冲运动的是( ) A .喷气式飞机的运动 B .直升机的运动 C .火箭的运动D .反击式水轮机的运动 答案 ACD解析 反冲运动是一个物体分裂成两部分,两部分向相反方向的运动,故直升机的运动不是反冲运动. 2.(反冲运动的应用)假设一个人静止于完全光滑的水平冰面上,现欲离开冰面,下列方法中可行的是( ) A .向后踢腿 B .手臂向后甩 C .在冰面上滚动 D .脱下外衣水平抛出 答案 D解析 向后踢腿和手臂向后甩,都是人体间的内力,不会使人前进.在光滑冰面上由于不存在摩擦力,故无法完成滚动动作.而抛出衣服能获得反方向的速度,故可滑离冰面.3.(火箭问题的分析)一质量为M 的航天器,正以速度v 0在太空中飞行,某一时刻航天器接到加速的指令后,发动机瞬间向后喷出一定质量的气体,气体喷出时速度大小为v 1,加速后航天器的速度大小v 2,则喷出气体的质量m 为( ) A.eq M B.eq M C.eq M D.eq M答案 C解析 规定航天器的速度方向为正方向,由动量守恒定律可得:M v 0=(M -m )v 2-m v 1,解得m =v 2-v 0v 2+v 1M ,故选C.4.(人船模型的迁移)质量为m 、半径为R 的小球,放在半径为2R 、质量为2m 的大空心球内,大球开始静止在光滑水平面上.当小球从如图1所示的位置无初速度沿内壁滚到最低点时,大球移动的距离是( )图1A.eqB.eqC.eqD.eq 答案 B解析 由水平方向平均动量守恒有:mx 小球=2mx 大球,又x 小球+x 大球=R ,所以x 大球=13R ,B 正确.考点一 反冲运动的理解和应用1.(多选)下列哪些措施有利于增加喷气式飞机的飞行速度( ) A .使喷出的气体速度增大 B .使喷出的气体温度更高C.使喷出的气体质量更大D.使喷出的气体密度更小答案AC2.一航天探测器完成对月球的探测后,离开月球的过程中,由静止开始沿着与月球表面成一定倾角的直线飞行,先加速运动后匀速运动.探测器通过喷气而获得动力,以下关于喷气方向的说法正确的是() A.探测器加速运动时,向后喷射B.探测器加速运动时,竖直向下喷射C.探测器匀速运动时,竖直向下喷射D.探测器匀速运动时,不需要喷射答案C解析探测器加速运动时,重力与喷气获得的反作用力的合力应向前,所以A、B错,探测器匀速运动时,所受合力应为零,C对,D错.3.如图1所示,质量为M的小船在静止水平面上以速度v0向右匀速行驶,一质量为m的救生员站在船尾,相对小船静止.若救生员以相对水面速率v水平向左跃入水中,则救生员跃出后小船的速率为()图1A.v0+mM v B.v0-mM vC.v0+mM(v0+v) D.v0+mM(v0-v)答案C解析根据动量守恒定律,选向右为正方向,则有(M+m)v0=M v′-m v,解得v′=v0+mM(v0+v),故选项C正确.4.如图2所示,船静止在平静的水面上,船前舱有一抽水机把前舱的水均匀的抽往后舱,不计水的阻力,下列说法中正确的是()图2A.若前后舱是分开的,则前舱将向后加速运动B.若前后舱是分开的,则前舱将向前加速运动C.若前后舱不分开,则船将向后加速运动D.若前后舱不分开,则船将向前加速运动答案B解析前后舱分开时,前舱和抽出的水相互作用,靠反冲作用前舱向前加速运动,若前后舱不分开,前后舱和水是一个整体,则船不动.5.如图3所示,装有炮弹的大炮总质量为M,炮弹的质量为m,炮筒水平放置,炮弹水平射出时相对地面的速率为v0,则炮车后退的速率为()图3A.eq?v0B.eqC.eq D.v0答案C解析炮弹离开炮口时,炮弹和炮车在水平方向受到的外力相对于内力可忽略不计,则系统在水平方向动量守恒.取炮车后退的方向为正,以炮弹和炮车组成系统为研究对象,根据水平方向动量守恒有:(M-m)v′-m v0=0解得炮车后退的速率为v′=m v0.M-m考点二火箭问题的分析6.运送人造地球卫星的火箭开始工作后,火箭做加速运动的原因是()A.燃料燃烧推动空气,空气反作用力推动火箭B.火箭发动机将燃料燃烧产生的气体向后喷出,气体的反作用力推动火箭C.火箭吸入空气,然后向后排出,空气对火箭的反作用力推动火箭D.火箭燃料燃烧发热,加热周围空气,空气膨胀推动火箭答案B解析火箭的工作原理是利用反冲运动,火箭燃料燃烧产生的高温、高压燃气从尾部喷管迅速喷出时,使火箭获得反冲速度,故正确选项为B.7.竖直发射的火箭质量为6×103kg.已知每秒钟喷出气体的质量为200 kg.若要使火箭获得大小为20.2 m/s2、方向向上的加速度,则喷出气体的速度大小最接近()A.700 m/s B.800 m/sC.900 m/s D.1 000 m/s答案C8.将静置在地面上,质量为M(含燃料)的火箭模型点火升空,在极短时间内以相对地面的速度v0竖直向下喷出质量为m的炽热气体.忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是()A.eq v0B.eq v0C.eq v 0D.eq v 0答案 D解析 设火箭模型获得的速度为v ,规定竖直向上为正方向,据动量守恒定律有0=(M -m )v -m v 0,得v =mM -mv 0,故选D. 9.课外科技小组制作一只“水火箭”,用压缩空气压出水流使火箭运动.假如喷出的水流流量保持为2×10-4m 3/s ,喷出速度保持为对地10 m/s.启动前火箭总质量为1.4 kg ,则启动2 s 末火箭的速度可以达到多少?(已知火箭沿水平轨道运动且阻力不计,水的密度是103 kg/m 3) 答案 4 m/s解析 “水火箭”喷出水流做反冲运动,设火箭原来总质量为M ,喷出水流的流量为Q ,水的密度为ρ,水流的喷出速度为v ,火箭的反冲速度为v ′,由动量守恒定律得(M -ρQt )v ′=ρQt v ,火箭启动后2 s 末的速度为v ′=ρQt vM -ρQt =103×2×10-4×2×101.4-103×2×10-4×2m /s =4 m/s.10.平板车停在水平光滑的轨道上,平板车上有一人从固定在车上的货厢边沿水平方向顺着轨道方向跳出,落在平板车地板上的A 点,距货厢的水平距离为l =4 m ,如图4所示.人的质量为m ,车连同货厢的质量为M =4m ,货厢高度为h =1.25 m .求:(g 取10 m/s 2)图4(1)车从人跳出后到落到地板期间的反冲速度大小;(2)人落在地板上并站定以后,车还运动吗?车在地面上移动的位移是多少? 答案 (1)1.6 m/s (2)车不运动 0.8 m解析 (1)人从货厢边跳离的过程,系统(人、车和货厢)的动量守恒,设人的水平速度大小是v 1,车的反冲速度大 小是v 2,则m v 1-M v 2=0,v 2=14v 1.人跳离货厢后做平抛运动,车以v 2做匀速直线运动,运动时间为t =2hg=0.5 s ,在这段时间内人的水平位移x 1和车的位移x 2分别为x 1=v 1t ,x 2=v 2t , 由图可知:x 1+x 2=l ,即v 1t +v 2t =l , 则v 2=l 5t =45×0.5m /s =1.6 m/s.(2)人落到车上A 点的过程,系统水平方向的动量守恒(水平方向系统不受外力),人落到车上前的水平速度大小仍为v1,车的速度大小为v2,落到车上后设它们的共同速度为v,根据水平方向动量守恒,得m v1-M v2=(M+m)v,则v=0,故人落到车上A点站定后车的速度为零.车的水平位移为x2=v2t=1.6×0.5 m=0.8 m.。
2025高考物理 动量守恒定律及其一般应用
2025高考物理动量守恒定律及其一般应用一、多选题1.如图所示,光滑地面上放置一辆小车C,车上站有两名同学A和B,小车上表面粗糙。
初始时A、B、C均静止,当A同学开始向右走的同时,B同学向左走。
则()A.若A、B的速率相等,则C可能静止B.若A、B的质量相等,则A、B组成的系统动量守恒C.只有A、B的动量大小相等时,A、B、C组成的系统动量才守恒D.无论C运动与否,A、B、C组成的系统动量一定守恒二、单选题2.质量为M的小孩站在质量为m的滑板上,小孩和滑板均处于静止状态,忽略滑板与地面间的摩擦.小孩沿水平方向跃离滑板,离开滑板时的速度大小为v,此时滑板的速度大小为.A.mvMB.M vmC.m vm M+D.M vm M+3.一弹丸在飞行到距离地面5 m高时仅有水平速度v=2 m/s,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1.不计质量损失,取重力加速度g=10 m/s 2,则下列图中两块弹片飞行的轨迹可能正确的是()A.B.C .D .三、多选题4.如图所示,竖直平面内的四分之一光滑圆弧轨道下端与光滑水平桌面相切,小滑块B 静止在圆弧轨道的最低点。
现将小滑块A 从圆弧轨道的最高点无初速度释放。
已知圆弧轨道半径 1.8m R =,小滑块的质量关系是B A 2m m =,重力加速度210m/s g =。
则碰后小滑块B 的速度大小不可能是( )A .5m sB .4m sC .3m sD .1m四、单选题5.已知质量相同的两个物体发生弹性正碰时速度交换.如图“牛顿摆”,由五个相同的钢球紧挨着悬挂在同一水平线上.当拉起最左侧的球1并释放,由于相邻球间的碰撞,导致最右侧的球5被弹出,碰撞时动能不损失.则 (填选项前的字母).A .相邻球间碰撞属于非弹性碰撞B .球5被弹起时,球4速度不为零C .球5被弹起时,球1速度等于零D .五个钢球组成的系统在整个运动过程中动量守恒6.如图所示,在光滑的水平面上,有一质量为m 的木板A ,通过不可伸长的轻绳与质量2m的足够长的木板B 连接。
动量守恒定律的综合应用练习及答案
1.如图所示,以质量m=1kg 的小物块(可视为质点),放置在质量为M=4kg 的长木板,左侧长木板放置在光滑的水平地面上,初始时长木板与木块一起,以水平速度v ₀=2m/s 向左匀速运动。
在长木板的左侧上方固定着一个障碍物A ,当物块运动到障碍物A 处时与A 发生弹性碰撞(碰撞时间极短,无机械能损失),而长木板可继续向左运动,重力加速度g=10m/s ²。
(1)设长木板足够长,求物块与障碍物第1次碰撞后,物块与长木板速度相同时的共同速率 1.2m/s(2)设长木板足够长,物块与障碍物发生第1次碰撞后,物块儿向右运动能到达的最大距离,s=0.4m ,求物块与长木板间的动摩擦因数以及此过程中长木板运动的加速度的大小.1.25m/s2(3)要使物块不会从长木板上滑落,长木板至少为多长?2m2.如图所示为一根直杆弯曲成斜面和平面连接在一起的轨道,转折点为C,斜面部分倾角为30度,平面部分足够长,滑块A,B 放在斜面上,开始时A,B 之间的距离为1米,B 与C 的距离为0.6米,现将A B 同时由静止释放.已知A 、B 与轨道的动摩擦因数分别为√3/5和√3/2 ,A 、B 质量均为m ,g 取10m/s²,设最大静摩擦力等于滑动摩擦力,A 、B 发生碰撞时为弹性碰撞。
物体A,B 可以看作是质点,不计在斜面与平面转弯处的机械能损失,则(1)经过多长时间滑块A,B 第1次发生碰撞. 1s(2)滑块B 停在水平轨道上的位置与C 点儿的距离是多少?m 1033.如图所示,光滑的轨道固定在竖直平面内,其O 点左边为水平轨道,O 点右边的曲面轨道高度h 等于0.45米,左右两段轨道在O 点平滑连接.质量m=0.10kg 的小滑块a 由静止开始从曲面轨道的顶端沿轨道下滑,到达水平段后与处于静止状态的质量M=0.30kg 的小滑块b 发生碰撞,碰撞后现小滑块a 恰好停止运动,取重力加速度g=10m/s²,求(1)小滑块a 通过O 点时的速度大小3m/s (2)碰撞后小滑块b 的速度大小1m/s(3)碰撞后碰撞过程中小滑块a 、b 组成的系统损失的机械能。
高考物理动量守恒定律的应用及其解题技巧及练习题(含答案)
高考物理动量守恒定律的应用及其解题技巧及练习题 (含答案)一、高考物理精讲专题动量守恒定律的应用1.竖直平面内存在着如图甲所示管道,虚线左侧管道水平,虚线右侧管道是半径R=1m 的半圆形,管道截面是不闭合的圆,管道半圆形部分处在竖直向上的匀强电场中,电场强度 E=4X 10/m .小球a 、b 、c 的半径略小于管道内径, b 、c 球用长L 2m 的绝缘细轻杆连接,开始时c 静止于管道水平部分右端P 点处,在M 点处的a 球在水平推力F 的作用下由静止向右运动,当 F 减到零时恰好与b 发生了弹性碰撞,F-t 的变化图像如图乙所示,且满足F 2 t 2 —.已知三个小球均可看做质点且 m a =0.25kg , m b =0.2kg , m c =0.05kg ,小球 (1) 小球a 与b 发生碰撞时的速度 v o ; (2) 小球c 运动到Q 点时的速度v ;(3) 从小球c 开始运动到速度减为零的过程中,小球 c 电势能的增加量.【答案】(1) V 4m/s (2) v=2m/s (3) E p 3.2J 【解析】【分析】对小球 a ,由动量定理可得小球 a 与b 发生碰撞时的速度;小球a 与小球b 、c 组 成的系统发生弹性碰撞由动量守恒和机械能守恒可列式,小球c 运动到Q 点时,小球b 恰好运动到P 点,由动能定理可得小球 c 运动到Q 点时的速度;由于b 、c 两球转动的角速 度和半径都相同,故两球的线速度大小始终相等,从c 球运动到Q 点到减速到零的过程列能量守恒可得; 解:⑴对小球a ,由动量定理可得I m a V 。
0 由题意可知,F-图像所围的图形为四分之一圆弧 ,面积为拉力F 的冲量,由圆方程可知S 1m 2 代入数据可得:v 0 4m/s(2)小球a 与小球b 、c 组成的系统发生弹性碰撞 , 由动量守恒可得 m a V 0 m a V | (m b m c )v 21 2 1 2 12由机械能守恒可得 m a v 0m a v 1 (m b m c )v 222 2解得 V 1 0, V 2 4m/ sA E阳1r c 带q=5 x 1'0)C 的正电荷,其他小球不带电,不计一切摩擦, g=10m/s 2,求小球c运动到Q点时,小球b恰好运动到P点,由动能定理1 2 1 2 m c gR qER ㊁血 mjv ㊁血 mjv ?代入数据可得v 2m/ s⑶由于b 、c 两球转动的角速度和半径都相同,故两球的线速度大小始终相等,假设当两球速度减到零时,设b 球与O 点连线与竖直方向的夹角为 从c 球运动到Q 点到减速到零的过程列能量守恒可得:1 2(m b m c )v qERsin 22.如图所示,小明参加户外竞技活动,站在平台边缘抓住轻绳一端,轻绳另一端固定在 '点,绳子刚好被拉直且偏离竖直方向的角度0 =60.小明从A 点由静止往下摆,达到 O 点正下方B 点突然松手,顺利落到静止在水平平台的平板车上,然后随平板车一起向右运 动•到达C 点,小明跳离平板车(近似认为水平跳离),安全落到漂浮在水池中的圆形浮漂 上•绳长L=1.6m ,浮漂圆心与 C 点的水平距离x=2.7m 、竖直高度y=1.8m ,浮漂半径 R=0.3m 、不计厚度,小明的质量m=60kg ,平板车的质量 m=20kg ,人与平板车均可视为质点,不计平板车与平台之间的摩擦.重力加速度g=10m/s 2,求:_*』吩(1) 轻绳能承受最大拉力不得小于多少? (2) 小明跳离平板车时的速度在什么范围?(3) 若小明跳离平板车后恰好落到浮漂最右端,他在跳离过程中做了多少功 ?【答案】(1) 1200N (2) 4m/s Wv< 5m/s( 3) 480J 【解析】 【分析】(1)首先根据机械能守恒可以计算到达B 点的速度,再根据圆周运动知识计算拉力大小.(2)由平抛运动规律,按照位移大小可以计算速度范围( 3)由动量守恒和能量守恒规律计算即可. 【详解】解(I)从A 到B .由功能关系可得1 2 mgL(1 cos ) mv ①2代人数据求得v=4 m/s ②m b gR(1cos ) m c gRsin 解得sin0637因此小球c 电势能的增加量: E p qER(1 sin ) 3.2J2在最低点B处,T mg mv③联立①②解得,轻绳能承受最大拉力不得小于T=1200N(2) 小明离开滑板后可认为做平抛运动1 2竖直位移y gt1 2 3④2离C点水平位移最小位移x R v min t⑤离C点水平位移最大为X R V min t⑥联立④⑤⑥解得小明跳离滑板时的速度 4 m/s Wvw 5 m/s(3) 小明落上滑板时,动量守恒mv (m m0)V| ⑦代人数据求得V i=3 m/s⑧离开滑板时,动量守恒(m m0)v| mv C m o V2⑨将⑧代人⑨得V2=-3 m/s由功能关系可得1 2 1 2 1 2 W ( — mv C m0v2) m m0 v1⑩.2 2 2解得W=480 J3. 某种弹射装置的示意图如图所示,光滑的水平导轨MN右端N处于倾斜传送带理想连接,传送带长度L=15.0m,皮带以恒定速率v=5m/s顺时针转动,三个质量均为m=1.0kg的滑块A、B C置于水平导轨上, B C之间有一段轻弹簧刚好处于原长,滑块B与轻弹簧连接,C未连接弹簧,B C处于静止状态且离N点足够远,现让滑块A以初速度V0=6m/s 沿B、C 连线方向向B运动,A与B碰撞后粘合在一起•碰撞时间极短,滑块C脱离弹簧后滑上倾角0 =37的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C与传送带之间的动摩擦因数卩=0.8重力加速度g=10m/s2, sin37=0.6, cos37°0.8.1滑块A、B碰撞时损失的机械能;2滑块C在传送带上因摩擦产生的热量Q;3若每次实验开始时滑块A的初速度V。
物理动量守恒定律题20套(带答案)及解析
物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2014mv ;(2) 0mv 【解析】 【详解】解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速度相等,有:212v v =而第一次碰撞中系统动量守恒有:01222mv mv mv =+ 由以上两式可得:012v v =,20 v v = 所以第一次碰撞中的机械能损失为:222201201111222224E m v m v mv mv ∆=--=gg g g (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-=2.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b ,小车质量M =3kg ,AO 部分粗糙且长L =2m ,动摩擦因数μ=0.3,OB 部分光滑.另一小物块a .放在车的最左端,和车一起以v 0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a 、b 两物块视为质点质量均为m =1kg ,碰撞时间极短且不粘连,碰后一起向右运动.(取g =10m/s 2)求:(1)物块a 与b 碰后的速度大小;(2)当物块a 相对小车静止时小车右端B 到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.【答案】(1)1m/s (2) (3) x=0.125m【解析】试题分析:(1)对物块a,由动能定理得:代入数据解得a与b碰前速度:;a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B端距挡板的距离:;(3)由能量守恒得:,解得滑块a与车相对静止时与O点距离:;考点:动量守恒定律、动能定理。
动量守恒定律试题(含答案)(1)
动量守恒定律试题(含答案)(1)一、动量守恒定律选择题1.如图所小,在粗糙水平面上,用水平轻绳相连的两个相同物体P和Q,质量均为m,在水平恒力F作用下以速度v做匀速运动.在t=0时轻绳断开,Q在F的作用下继续前进,则下列说法正确的是()A.t=0至2mvtF=时间内,P、Q的总动量守恒B.t=0至3mvtF=时间内,P、Q的总动量守恒C.4mvtF=时,Q的动量为3mvD.3mvtF=时,P的动量为32mv2.如图甲所示,一轻弹簧的两端与质量分别为99m、200m的两物块A、B相连接,并静止在光滑的水平面上,一颗质量为m的子弹C以速度v0射入物块A并留在A中,以此刻为计时起点,两物块A(含子弹C)、B的速度随时间变化的规律如图乙所示,从图象信息可得()A.子弹C射入物块A的速度v0为600m/sB.在t1、t3时刻,弹簧具有的弹性势能相同,且弹簧处于压缩状态C.当物块A(含子弹C)的速度为零时,物块B的速度为3m/sD.在t2时刻弹簧处于自然长度3.平静水面上停着一只小船,船头站立着一个人,船的质量是人的质量的8倍.从某时刻起,人向船尾走去,走到船中部时他突然停止走动.不计水对船的阻力,下列说法正确的是()A.人在船上走动过程中,人的动能是船的动能的8倍B.人在船上走动过程中,人的位移是船的位移的9倍C.人走动时,它相对水面的速度大于小船相对水面的速度D .人突然停止走动后,船由于惯性还会继续运动一小段时间4.如图所示,物体A 、B 的质量均为m =0.1kg ,B 静置于劲度系数k =100N/m 竖直轻弹簧的上端且B 不与弹簧连接,A 从距B 正上方h =0.2m 处自由下落,A 与B 相碰并粘在一起.弹簧始终在弹性限度内,g =10m/s 2.下列说法正确的是A .AB 组成的系统机械能守恒B .B 运动的最大速度大于1m/sC .B 物体上升到最高点时与初位置的高度差为0.05mD .AB 在最高点的加速度大小等于10m/s 25.A 、B 两球沿同一直线运动并发生正碰,如图所示为两球碰撞前后的位移—时间(x-t)图像,图中a 、b 分别为A 、B 两球碰撞前的图线,c 为碰撞后两球共同运动的图线.若A 球的质量2A m kg ,则由图可知下列结论正确的是( )A .A 、B 两球碰撞前的总动量为3 kg·m/sB .碰撞过程A 对B 的冲量为-4 N·sC .碰撞前后A 的动量变化为4kg·m/sD .碰撞过程A 、B 两球组成的系统损失的机械能为10 J6.如图所示,质量为m 的小球从距离地面高度为H 的A 点由静止释放,落到地面上后又陷入泥潭中,由于受到阻力作用,到达距地面深度为h 的B 点时速度减为零不计空气阻力,重力加速度为g 。
(完整版)动量守恒定律习题及答案
动量守恒定律及答案一.选择题(共32小题)1.把一支枪水平固定在小车上,小车放在光滑的水平面上,枪发射出一颗子弹时,关于枪、弹、车,下列说法正确的是()A.枪和弹组成的系统,动量守恒B.枪和车组成的系统,动量守恒C.因为枪弹和枪筒之间的摩擦力很大,使系统的动量变化很大,故系统动量守恒D.三者组成的系统,动量守恒,因为系统只受重力和地面支持力这两个外力作用,这两个外力的合力为零2.静止的实验火箭,总质量为M,当它以对地速度为v0喷出质量为△m的高温气体后,火箭的速度为()A.B.﹣C.D.﹣3.据新华社报道,2018年5月9日凌晨,我国长征系列运载火箭,在太原卫星发射中心完或第274次发射任务,成功发射高分五号卫星,该卫星是世界上第一颗实现对大气和陆地综合观测的全谱段高光谱卫星。
最初静止的运载火箭点火后喷出质量为M的气体后,质量为m的卫星(含未脱离的火箭)的速度大小为v,不计卫星受到的重力和空气阻力。
则在上述过程中,卫星所受冲量大小为()A.Mv B.(M+m)v C.(M﹣m)v D.mv4.在光滑的水平面上有一辆平板车,一个人站在车上用大锤敲打车的左端(如图)。
在连续的敲打下,关于这辆车的运动情况,下列说法中正确的是()A.由于大锤不断的敲打,小车将持续向右运动B.由于大锤与小车之间的作用力为内力,小车将静止不动C.在大锤的连续敲打下,小车将左右移动D.在大锤的连续敲打下,小车与大锤组成的系统,动量守恒,机械能守恒5.设a、b两小球相撞,碰撞前后都在同一直线上运动。
若测得它们相撞前的速度为v a、v b,相撞后的速度为v a′、v b′,可知两球的质量之比等于()A.B.C.D.6.两个质量相等的小球在光滑水平面上沿同一直线同向运动,A球的动量是8kg•m/s,B球的动量是6kg•m/s,A球追上B球时发生碰撞,则碰撞后A、B 两球的动量可能为()A.p A=0,p B=l4kg•m/sB.p A=4kg•m/s,p B=10kg•m/sC.p A=6kg•m/s,p B=8kg•m/sD.p A=7kg•m/s,p B=8kg•m/s7.质量为m1=2kg和m2的两个物体在光滑的水平面上正碰,碰撞时间不计,其χ﹣t(位移﹣时间)图象如图所示,则m2的质量等于()A.3kg B.4kg C.5kg D.6kg8.如图所示,光滑水平面上,甲、乙两个球分别以大小为v1=1m/s、v2=2m/s的速度做相向运动,碰撞后两球粘在一起以0.5m/s的速度向左运动,则甲、乙两球的质量之比为()A.1:1B.1:2C.1:3D.2:19.质量为1kg的木板B静止在水平面上,可视为质点的物块A从木板的左侧沿木板上表面水平冲上木板,如图甲所示。
动量及动量守恒定律习题大全(含解析答案)
动量守恒定律习题课一、运用动量守恒定律的解题步骤1.明确研究对象,一般是两个或两个以上物体组成的系统; 2.分析系统相互作用时的受力情况,判定系统动量是否守恒; 3.选定正方向,确定相互作用前后两状态系统的动量; 4.在同一地面参考系中建立动量守恒方程,并求解.二、碰撞1.弹性碰撞特点:系统动量守恒,机械能守恒.设质量m 1的物体以速度v 0与质量为m 2的在水平面上静止的物体发生弹性正碰,则有动量守恒:221101v m v m v m +=碰撞前后动能不变:222212111210121v mv m v m += 所以012121v v m m m m +-= 022211v v m m m +=(注:在同一水平面上发生弹性正碰,机械能守恒即为动能守恒) [讨论]①当m l =m 2时,v 1=0,v 2=v 0(速度互换) ②当m l <<m 2时,v 1≈-v 0,v 2≈O (速度反向) ③当m l >m 2时,v 1>0,v 2>0(同向运动) ④当m l <m 2时,v 1<O ,v 2>0(反向运动)⑤当m l >>m 2时,v 1≈v,v 2≈2v 0 (同向运动)、 2.非弹性碰撞特点:部分机械能转化成物体的内能,系统损失了机械能两物体仍能分离.动量守恒 用公式表示为:m 1v 1+m 2v 2= m 1v 1′+m 2v 2′机械能的损失:)()(22221211212222121121'+'-+=∆v m v m v m v m E3.完全非弹性碰撞特点:碰撞后两物体粘在一起运动,此时动能损失最大,而动量守恒. 用公式表示为: m 1v 1+m 2v 2=(m 1+m 2)v动能损失:221212222121121)()(v m m v m v mE k +-+=∆ 【例题】甲、乙两球在光滑水平轨道上同向运动,已知它们的动量分别是p 甲=5 kg ·m/s,p 乙= 7 kg ·m/s ,甲追乙并发生碰撞,碰后乙球的动量变为p 乙′=10 kg ·m/s ,则两球质量m 甲与m 乙的关系可能是A.m 甲=m 乙B.m 乙=2m 甲C.m 乙=4m 甲D.m 乙=6m 甲 三、平均动量守恒问题——人船模型:1.特点:初态时相互作用物体都处于静止状态,在物体发生相对运动的过程中,某一个方向的动量守恒(如水平方向动量守恒).对于这类问题,如果我们应用“人船模型”也会使问题迅速得到解决,现具体分析如下:【模型】如图所示,长为L 、质量为M 的小船停在静水中,一个质量m 的人立在船头,若不计水的粘滞阻力,当人从船头走到船尾的过程中,船和人对地面的位移各是多少? 〖分析〗lv 0 v S四、“子弹打木块”模型此模型包括:“子弹打击木块未击穿”和“子弹打击木块击穿”两种情况,它们有一个共同的特点是:初态时相互作用的物体有一个是静止的(木块),另一个是运动的(子弹) 1.“击穿”类其特点是:在某一方向动量守恒,子弹有初动量,木块有或无初动量,击穿时间很短,击穿后二者分别以某一速度度运动【模型1】质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速度v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。
动量守恒定律试题(含答案)
动量守恒定律试题(含答案)一、动量守恒定律 选择题1.如图所示,在光滑水平面上有质量分别为A m 、B m 的物体A ,B 通过轻质弹簧相连接,物体A 紧靠墙壁,细线连接A ,B 使弹簧处于压缩状态,此时弹性势能为p0E ,现烧断细线,对以后的运动过程,下列说法正确的是( )A .全过程中墙对A 的冲量大小为p02A B E m mB .物体B 的最大速度为p02A E mC .弹簧长度最长时,物体B 的速度大小为p02B A BB E m m m m +D .弹簧长度最长时,弹簧具有的弹性势能p p0E E > 2.如图所示,长木板A 放在光滑的水平面上,质量为m =4kg 的小物体B 以水平速度v 0=2m/s 滑上原来静止的长木板A 的表面,由于A 、B 间存在摩擦,之后A 、B 速度随时间变化情况如图乙所示,取g=10m/s 2,则下列说法正确的是( )A .木板A 获得的动能为2JB .系统损失的机械能为2JC .A 、B 间的动摩擦因数为0.1D .木板A 的最小长度为2m3.如图所示,物体A 、B 的质量均为m =0.1kg ,B 静置于劲度系数k =100N/m 竖直轻弹簧的上端且B 不与弹簧连接,A 从距B 正上方h =0.2m 处自由下落,A 与B 相碰并粘在一起.弹簧始终在弹性限度内,g =10m/s 2.下列说法正确的是A .AB 组成的系统机械能守恒B .B 运动的最大速度大于1m/sC .B 物体上升到最高点时与初位置的高度差为0.05mD .AB 在最高点的加速度大小等于10m/s 24.质量为3m 足够长的木板静止在光滑的水平面上,木板上依次排放质量均为m 的木块1、2、3,木块与木板间的动摩擦因数均为μ.现同时给木块l 、2、3水平向右的初速度v 0、2v 0、3v 0,已知重力加速度为g .则下列说法正确的是( )A .1木块相对静止前,木板是静止的B .1木块的最小速度是023v C .2木块的最小速度是056v D .木块3从开始运动到相对静止时位移是204v g5.如图所示,质量为m 的小球从距离地面高度为H 的A 点由静止释放,落到地面上后又陷入泥潭中,由于受到阻力作用,到达距地面深度为h 的B 点时速度减为零不计空气阻力,重力加速度为g 。
关于动量守恒定律练习题
关于动量守恒定律练习题一、选择题A. 系统不受外力作用B. 系统受到平衡力作用C. 系统内各物体间相互作用力为内力D. 系统内各物体间相互作用力为外力A. 动能B. 动量C. 重力势能D. 弹性势能3. 质量为m的物体以速度v与静止的质量为2m的物体发生完全非弹性碰撞,碰撞后两物体的共同速度为:A. v/3B. v/2C. 2v/3D. v二、填空题1. 动量守恒定律的内容是:在_________的情况下,系统的总动量_________。
2. 质量为m1的物体以速度v1与质量为m2的物体发生弹性碰撞,碰撞后两物体的速度分别为v1'和v2',则动量守恒定律表达式为:_________。
3. 在光滑水平面上,质量为m的物体受到一个恒力F作用,经过时间t后,物体的速度为_________。
三、计算题1. 质量为2kg的物体A以6m/s的速度向右运动,与质量为3kg的物体B发生完全非弹性碰撞,物体B初始静止。
求碰撞后两物体的共同速度。
2. 质量为1kg的物体以10m/s的速度沿光滑水平面向右运动,与质量为2kg的物体发生弹性碰撞,碰撞后第二个物体速度为8m/s。
求第一个物体碰撞后的速度。
3. 在光滑水平面上,质量为m1的物体以速度v1向右运动,质量为m2的物体以速度v2向左运动。
两物体发生完全非弹性碰撞后,求碰撞后两物体的共同速度。
四、应用题1. 一颗子弹以一定速度射入固定在光滑水平面上的木块中,子弹和木块一起运动。
求子弹射入木块后,子弹和木块的共同速度。
2. 在光滑水平面上,质量为m的物体A以速度v向右运动,与质量为2m的物体B发生弹性碰撞。
碰撞后,物体B的速度为v/2,求物体A碰撞后的速度。
3. 质量为m1和m2的两个物体分别以速度v1和v2在光滑水平面上相向而行,发生完全非弹性碰撞后,求碰撞后两物体的共同速度。
五、判断题1. 若一个系统受到的外力为零,则该系统的总动量一定守恒。
()2. 在弹性碰撞中,不仅系统的总动量守恒,而且系统的总动能也守恒。
物理动量守恒定律题20套(带答案)
物理动量守恒定律题20套(带答案)一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg和1kg的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s,此时乙尚未与P相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P碰撞反弹后,不能再与弹簧发生碰撞.求挡板P对乙的冲量的最大值.【答案】v乙=6m/s. I=8N【解析】【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。
(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.如图:竖直面内固定的绝缘轨道abc,由半径R=3 m的光滑圆弧段bc与长l=1.5 m的粗糙水平段ab在b点相切而构成,O点是圆弧段的圆心,Oc与Ob的夹角θ=37°;过f点的竖直虚线左侧有方向竖直向上、场强大小E=10 N/C的匀强电场,Ocb的外侧有一长度足够长、宽度d =1.6 m的矩形区域efgh,ef与Oc交于c点,ecf与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m2=3×10-3 kg、电荷量q=3×l0-3 C的带正电小物体Q静止在圆弧轨道上b点,质量m1=1.5×10-3 kg的不带电小物体P从轨道右端a以v0=8 m/s的水平速度向左运动,P、Q碰撞时间极短,碰后P以1 m/s的速度水平向右弹回.已知P与ab间的动摩擦因数μ=0.5,A、B均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g=10m/s2.求:(1)碰后瞬间,圆弧轨道对物体Q的弹力大小F N;(2)当β=53°时,物体Q刚好不从gh边穿出磁场,求区域efgh内所加磁场的磁感应强度大小B1;(3)当区域efgh内所加磁场的磁感应强度为B2=2T时,要让物体Q从gh边穿出磁场且在磁场中运动的时间最长,求此最长时间t及对应的β值.【答案】(1)24.610N F N -=⨯ (2)1 1.25B T = (3)127s 360t π=,001290143ββ==和 【解析】 【详解】解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111-22m gl m v m v μ=- 解得:17m/s v =碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '=+取向左为正方向,由题意11m/s v =-', 解得:24m/s v =b 点:对Q ,由牛顿第二定律得:2222N v F m g m R-=解得:24.610N N F -=⨯(2)设Q 在c 点的速度为c v ,在b 到c 点,由机械能守恒定律:22222211(1cos )22c m gR m v m v θ-+=解得:2m/s c v =进入磁场后:Q 所受电场力22310N F qE m g -==⨯= ,Q 在磁场做匀速率圆周运动由牛顿第二定律得:2211c c m v qv B r =Q 刚好不从gh 边穿出磁场,由几何关系:1 1.6m r d == 解得:1 1.25T B = (3)当所加磁场22T B =,2221m cm v r qB == 要让Q 从gh 边穿出磁场且在磁场中运动的时间最长,则Q 在磁场中运动轨迹对应的圆心角最大,则当gh 边或ef 边与圆轨迹相切,轨迹如图所示:设最大圆心角为α,由几何关系得:22cos(180)d r rα-︒-= 解得:127α=︒ 运动周期:222m T qB π=则Q 在磁场中运动的最长时间:222127127•s 360360360m t T qB παπ===︒此时对应的β角:190β=︒和2143β=︒3.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=)(1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能.【答案】(1)6/B v m s = (2)0.6P E J = 【解析】试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2cos 1sin 2B B B Bm gh m gh m v θμθ+⋅= ① (3分)代入已知数据解得:6/B v m s = ② (2分)(2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得:2220111()222A B P A A B Bm m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分)考点:本题考查了动能定理、动量守恒定律、能量守恒定律.4.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。
动量守恒定律经典习题(带答案)
动量守恒定律习题(带答案)(基础、典型)例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为4kg,地面光滑,则车后来的速度为多少?例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0.2,则此过程经历的时间为多少?例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地点的距离。
(g取10m/s2)例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1.6kg,木块与小车之间的摩擦系数为0.2(g取10m/s2)。
设小车足够长,求:(1)木块和小车相对静止时小车的速度。
(2)从木块滑上小车到它们处于相对静止所经历的时间。
(3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。
例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。
游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。
为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。
若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞?答案:1.分析:以物体和车做为研究对象,受力情况如图所示。
在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。
因此地面给车的支持力远大于车与重物的重力之和。
系统所受合外力不为零,系统总动量不守恒。
但在水平方向系统不受外力作用,所以系统水平方向动量守恒。
以车的运动方向为正方向,由动量守恒定律可得:车 重物 初:v 0=5m/s 0末:v v ⇒Mv 0=(M+m)v⇒s m v m N M v /454140=⨯+=+=即为所求。
高考物理动量守恒定律题20套(带答案)
高考物理动量守恒定律题20套(带答案)一、高考物理精讲专题动量守恒定律1.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A 、B 、C 运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.2.如图甲所示,物块A 、B 的质量分别是 m A =4.0kg 和m B =3.0kg .用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙相接触.另有一物块C 从t =0时以一定速度向右运动,在t =4s 时与物块A 相碰,并立即与A 粘在一起不再分开,物块C 的v -t 图象如图乙所示.求:①物块C 的质量?②B 离开墙后的运动过程中弹簧具有的最大弹性势能E P ? 【答案】(1)2kg (2)9J 【解析】试题分析:①由图知,C 与A 碰前速度为v 1=9 m/s ,碰后速度为v 2=3 m/s ,C 与A 碰撞过程动量守恒.m c v 1=(m A +m C )v 2 即m c =2 kg②12 s 时B 离开墙壁,之后A 、B 、C 及弹簧组成的系统动量和机械能守恒,且当A 、C 与B 的速度相等时,弹簧弹性势能最大 (m A +m C )v 3=(m A +m B +m C )v 4得E p =9 J考点:考查了动量守恒定律,机械能守恒定律的应用【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.3.人站在小车上和小车一起以速度v 0沿光滑水平面向右运动.地面上的人将一小球以速度v 沿水平方向向左抛给车上的人,人接住后再将小球以同样大小的速度v 水平向右抛出,接和抛的过程中车上的人和车始终保持相对静止.重复上述过程,当车上的人将小球向右抛出n 次后,人和车速度刚好变为0.已知人和车的总质量为M ,求小球的质量m . 【答案】02Mv m nv= 【解析】试题分析:以人和小车、小球组成的系统为研究对象,车上的人第一次将小球抛出,规定向右为正方向,由动量守恒定律:Mv 0-mv=Mv 1+mv 得:102mvv v M=-车上的人第二次将小球抛出,由动量守恒: Mv 1-mv=Mv 2+mv 得:2022mvv v M=-⋅同理,车上的人第n 次将小球抛出后,有02n mvv v n M=-⋅ 由题意v n =0, 得:02Mv m nv=考点:动量守恒定律4.如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R =0.5m ,物块A 以v 0=6m/s 的速度滑入圆轨道,滑过最高点Q ,再沿圆轨道滑出后,与直轨道上P 处静止的物块B 碰撞,碰后粘在一起运动,P 点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.1m ,物块与各粗糙段间的动摩擦因数都为μ=0.1,A 、B 的质量均为m =1kg(重力加速度g 取10m/s 2;A 、B 视为质点,碰撞时间极短).(1)求A 滑过Q 点时的速度大小v 和受到的弹力大小F ; (2)若碰后AB 最终停止在第k 个粗糙段上,求k 的数值; (3)求碰后AB 滑至第n 个(n <k )光滑段上的速度v n 与n 的关系式. 【答案】(1)5m/s v =, F =22 N (2) k =45 (3)90.2m/s ()n v n n k =-<【解析】⑴物块A 从开始运动到运动至Q 点的过程中,受重力和轨道的弹力作用,但弹力始终不做功,只有重力做功,根据动能定理有:-2mgR =-解得:v ==4m/s在Q 点,不妨假设轨道对物块A 的弹力F 方向竖直向下,根据向心力公式有:mg +F =解得:F =-mg =22N ,为正值,说明方向与假设方向相同。
动量守恒定律试题(含答案)
动量守恒定律试题(含答案)一、动量守恒定律 选择题1.四个水球可以挡住一颗子弹!如图所示,是央视《国家地理》频道的实验示意图,直径相同(约30cm 左右)的4个装满水的薄皮气球水平固定排列,子弹射入水球中并沿水平线做匀变速直线运动,恰好能穿出第4个水球,气球薄皮对子弹的阻力忽略不计。
以下判断正确的是( )A .子弹在每个水球中的速度变化相同B .每个水球对子弹做的功不同C .每个水球对子弹的冲量相同D .子弹穿出第3个水球的瞬时速度与全程的平均速度相等 2.如图所示,用长为L 的细线悬挂一质量为M 的小木块,木块处于静止状态.一质量为m 、速度为v 0的子弹自左向右水平射穿木块后,速度变为v .已知重力加速度为g ,则A .子弹刚穿出木块时,木块的速度为0()m v v M - B .子弹穿过木块的过程中,子弹与木块组成的系统机械能守恒C .子弹穿过木块的过程中,子弹与木块组成的系统动量守恒D .木块上升的最大高度为2202mv mv Mg- 3.如图,在光滑的水平面上有一个长为L 的木板,小物块b 静止在木板的正中间,小物块a 以某一初速度0v 从左侧滑上木板。
已知物块a 、b 与木板间的摩擦因数分别为a μ、b μ,木块与木板质量均为m ,a 、b 之间的碰撞无机械能损失,滑动摩擦力等于最大静摩擦力。
下列说法正确的是( )A .若没有物块从木板上滑下,则无论0v 多大整个过程摩擦生热均为2013mvB .若22ab a μμμ<≤,则无论0v 多大,a 都不会从木板上滑落C .若032a v gL μ≤ab 一定不相碰D .若2b a μμ>,则a 可能从木板左端滑落4.如图所示,长木板A 放在光滑的水平面上,质量为m =4kg 的小物体B 以水平速度v 0=2m/s 滑上原来静止的长木板A 的表面,由于A 、B 间存在摩擦,之后A 、B 速度随时间变化情况如图乙所示,取g=10m/s 2,则下列说法正确的是( )A .木板A 获得的动能为2JB .系统损失的机械能为2JC .A 、B 间的动摩擦因数为0.1D .木板A 的最小长度为2m5.平静水面上停着一只小船,船头站立着一个人,船的质量是人的质量的8倍.从某时刻起,人向船尾走去,走到船中部时他突然停止走动.不计水对船的阻力,下列说法正确的是( )A .人在船上走动过程中,人的动能是船的动能的8倍B .人在船上走动过程中,人的位移是船的位移的9倍C .人走动时,它相对水面的速度大于小船相对水面的速度D .人突然停止走动后,船由于惯性还会继续运动一小段时间6.如图所示,两个小球A 、B 在光滑水平地面上相向运动,它们的质量分别为m A =4kg ,m B =2kg ,速度分别是v A =3m/s (设为正方向),v B =-3m/s .则它们发生正碰后,速度的可能值分别为( )A .v A ′=1 m/s ,vB ′=1 m/sB .v A ′=4 m/s ,v B ′=-5 m/sC .v A ′=2 m/s ,v B ′=-1 m/sD .v A ′=-1 m/s ,v B ′=-5 m/s7.如图所示,左图为大型游乐设施跳楼机,右图为其结构简图.跳楼机由静止从a 自由下落到b ,再从b 开始以恒力制动竖直下落到c 停下.已知跳楼机和游客的总质量为m ,ab 高度差为2h ,bc 高度差为h ,重力加速度为g .则A .从a 到b 与从b 到c 的运动时间之比为2:1B .从a 到b ,跳楼机座椅对游客的作用力与游客的重力大小相等C .从a 到b ,跳楼机和游客总重力的冲量大小为m ghD .从b 到c ,跳楼机受到制动力的大小等于2mg8.如图所示,小车质量为M ,小车顶端为半径为R 的四分之一光滑圆弧,质量为m 的小球从圆弧顶端由静止释放,对此运动过程的分析,下列说法中正确的是(g 为当地重力加速度)( )A .若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为mgB .若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为32mg C .若地面光滑,当小球滑到圆弧最低点时,小车速度为2()gR m M M m + D .若地面光滑,当小球滑到圆弧最低点时,小车速度为2()gR Mm M m + 9.如图,质量为m 的小木块从高为h 的质量为M 的光滑斜面体顶端滑下,斜面体倾角为θ,放在光滑水平面上,m 由斜面体顶端滑至底端的过程中,下列说法正确的是A .M 、m 组成的系统动量守恒B .M 移动的位移为()tan mh M m θ+ C .m 对M 做功为222cos ()(sin )Mm gh M m M m θθ++ D .m 对M 做功为222sin ()(cos )Mm gh M m M m θθ++ 10.如图所示,A 、B 、C 是三级台阶的端点位置,每一级台阶的水平宽度是相同的,其竖直高度分别为h 1、h 2、h 3,将三个相同的小球分别从A 、B 、C 三点以相同的速度v 0水平抛出,最终都能到达A 的下一级台阶的端点P 处,不计空气阻力。
动量守恒专题(含答案)
动量守恒定律1.质量为M 的物块静止在光滑水平桌面上,质量为m 的子弹以水平速度v 0射入物块后,以水平速度2v 0/3射出。
则物块的速度为 ,此过程中损失的机械能为2.将静置在地面上,质量为M(含燃料)的火箭模型点火升空,在极短时间内以相对地面的速度v 0竖直向下喷出质量为m 的炽热气体。
忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是3.如图所示,进行太空行走的宇航员A 和B 的质量分别为80 kg 和100 kg,他们携手远离空间站,相对空间站的速度为0.1 m/s 。
A 将B 向空间站方向轻推后,A 的速度变为0.2 m/s,求此时B 的速度大小和方向。
4.蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并在空中做各种动作的运动项目.一个质量为60 kg的运动员,从离水平网面3.2 m 高处自由下落,着网后沿竖直方向蹦回离水平网面5.0 m 高处.已知运动员与网接触的时间为1.2 s .若把这段时间内网对运动员的作用力当做恒力处理,求此力的大小.(g 取10 m/s 2)解析:法一:运动员刚接触网时速度的大小为v 1=2gh 1=2×10×3.2 m/s =8 m/s ,方向竖直向下.刚离开网时速度的大小为v 2=2gh 2=2×10×5 m/s =10 m/s ,方向竖直向上.运动员接触网的过程中,网的作用力为F ,规定竖直向上为正方向,根据动量定理得 (F -mg )t =m v 2-(-m v 1)F =m v 2+m v 1t+mg =60×10+60×81.2N +60×10 N =1.5×103 N ,方向竖直向上.法二:运动员从3.2 m 高处自由下落的时间为t 1= 2h 1g = 2×3.210s =0.8 s 运动员刚离开网弹回5.0 m 高处所用的时间为t 2= 2h 2g = 2×510s =1 s 整个过程中运动员始终受重力作用,仅在与网接触的t 3=1.2 s 时间内受到网对他向上的弹力F 的作用,对全过程应用动量定理得:F ·t 3-mg (t 1+t 2+t 3)=0F =(t 1+t 2+t 3)t 3mg =0.8+1+1.21.2×60×10 N =1.5×103 N ,方向竖直向上.答案:1.5×103 N5.光滑水平轨道上有三个木块A 、B 、C ,质量分别为m A =3m 、m B =m C =m ,开始时B 、C 均静止,A 以初速度v 0向右运动,A 与B 碰撞后分开,B 又与C 发生碰撞并粘在一起,此后A 与B 间的距离保持不变.求B 与C 碰撞前B 的速度大小.【解析】 法一:把A 、B 、C 看成一个系统,整个过程中由动量守恒定律得m A v 0=(m A +m B +m C )vB 、C 碰撞过程中由动量守恒定律m B v B =(m B +m C )v联立解得v B =65v 0. 法二:设A 与B 碰撞后,A 的速度为v ,B 与C 碰撞前B 的速度为v B ,B 与C 碰撞后粘在一起的速度为v ,由动量守恒定律得对A 、B 木块:m A v 0=m A v A +m B v B ①对B 、C 木块:m B v B =(m B +m C )v ②由A 到B 间的距离保持不变可知v A =v ③联立①②③式,代入数据得v B =65v 0. 6.质量为M =2 kg 的小平板车静止在光滑水平面上,车的一端静止着质量为m A=2 kg 的物体A (可视为质点),如图所示,一颗质量为m B =20 g 的子弹以600 m/s的水平速度射穿A 后,速度变为100 m/s ,最后物体A 仍在车上.若物体A 与小车间的动摩擦因数μ=0.5,取g =10 m/s 2,求(1)平板车最后的速度是多大?(2)平板车的长度至少为多少?解析:(1)从子弹射入A 到A 与车相对静止的过程中,子弹、A 与车系统动量守恒,则m B v 0=m B v ′+(m A +M )v解得v =m B (v 0-v ′)m A +M =0.02×(600-100)2+2m/s =2.5 m/s.(2)子弹射穿A 的过程中,子弹与A 系统动量守恒,由动量守恒定律有m B v 0=m B v ′+m A v A 得v A =m B (v 0-v ′)m A =0.02×(600-100)2m/s =5 m/s 由能量守恒得μm A gL =12m A v 2A -12(m A +M )v 2 代入数据解得:L =1.25 m.7、如图所示,光滑水平面上静止着A 、B 两个滑块,A 上固定一轻杠,杠用轻绳在竖直方向悬挂一个光滑的球C ,球C 紧靠轻杆但与轻杆不粘连,对A 施加水平向右的瞬时冲量I=6N.S ,使A 、C 由静止开始运动,A 向右滑动与静止在水平面上的B 相碰,A 、B 在极短时间内便粘在一起运动,此后运动过程中,绳子摆动均未超过水平位置,已知A 、B 、C 的质量均为m=1kg,取g=10m/s 2 ,求:1)A 、B 碰撞结束瞬间A 的速度;28.如图,A 、B 、C 三个木块的质量均为m ,置于光滑的水平面上,B 、C 之间有一轻质弹簧,弹簧的两端与木块接触而不固连. 将弹簧压紧到不能再压缩时用细线把B 和C 紧连,使弹簧不能伸展,以至于B 、C 可视为一个整体. 现A 以初速υ0沿B 、C 的连线方向朝B 运动,与B 相碰并粘合在一起. 以后细线突然断开,弹簧伸展,从而使C 与A 、B 分离. 已知C 离开弹簧后的速度恰为υ0. 求弹簧释放的势能.9.在粗糙的水平桌面上有两个静止的木块A 和B,两者相距为d 。
高考物理考点《动量守恒定律的理解和应用》真题练习含答案
高考物理考点《动量守恒定律的理解和应用》真题练习含答案1.[2024·江苏省无锡市教学质量调研]如图所示,曲面体P 静止于光滑水平面上,物块Q 自P 的上端静止释放.Q 与P 的接触面粗糙,在Q 下滑的过程中,关于P 和Q 构成的系统,下列说法正确的是( )A .机械能守恒、动量守恒B .机械能不守恒、动量守恒C .机械能守恒、动量不守恒D .机械能不守恒、动量不守恒答案:D解析:系统在水平方向所受合外力为零,系统在水平方向动量守恒,但系统在竖直方向所受合外力不为零,系统在竖直方向动量不守恒,系统动量不守恒.Q 与P 的接触面粗糙,克服阻力做功产热,所以机械能不守恒,D 正确.2.(多选)如图所示,在光滑水平面上,一速度大小为v 0的A 球与静止的B 球正碰后,A 球的速率为v 03 ,B 球的速率为v 02,A 、B 两球的质量之比可能是( )A .3∶4B .4∶3C .8∶3D .3∶8答案:AD解析:两球碰撞过程动量守恒,以A 的初速度方向为正方向,如果碰撞后A 球的速度方向不变,有m A v 0=m A ·v 03 +m B ·v 02,解得m A ∶m B =3∶4,如果碰撞后A 的速度反向,有m A v 0=-m A ·v 03 +m B ·v 02,解得m A ∶m B =3∶8,A 、D 正确. 3.如图水平桌面上放置一操作台,操作台上表面水平且光滑.在操作台上放置体积相同,质量不同的甲、乙两球,质量分别为m 1、m 2,两球用细线相连,中间有一个压缩的轻质弹簧,两球分别与操作台左右边缘距离相等.烧断细线后,由于弹簧弹力的作用,两球分别向左、右运动,脱离弹簧后在操作台面上滑行一段距离,然后平抛落至水平桌面上.则下列说法中正确的是()A.刚脱离弹簧时,甲、乙两球的动量相同B.刚脱离弹簧时,甲、乙两球的动能相同C.甲、乙两球不会同时落到水平桌面上D.甲、乙两球做平抛运动的水平射程之比为m1∶m2答案:C解析:脱离弹簧的过程满足动量守恒定律,以甲的运动方向为正方向可得m1v1-m2v2=0,故刚脱离弹簧时,甲、乙两球的动量大小相等,方向相反,A错误;动能与动量的关系为E k=12m v2=p22m,由于质量不同,故刚脱离弹簧时,甲、乙两球的动能不相同,B错误;甲、乙两球在操作台滑行时,距台边缘距离相等但速度不等,故在操作台滑行时间不相等,之后做平抛运动的竖直位移相同,由h=12gt2可知,两球做平抛运动的时间相等,因此甲、乙两球不会同时落到水平桌面上,C正确;由A的解析可得v1v2=m2m1,平抛的水平位移为x=v0t,故甲、乙两球做平抛运动的水平射程与初速度成正比,即与质量成反比,可得x1∶x2=m2∶m1,D错误.4.[2024·江西省萍乡市阶段练习]在光滑水平地面上放置一辆小车,车上放置有木盆,在车与木盆以共同的速度向右运动时,有雨滴以极小的速度竖直落入木盆中而不溅出,如图所示,则在雨滴落入木盆的过程中,小车速度将()A.保持不变B.变大C.变小D.不能确定答案:C解析:雨滴落入木盆的过程中,小车、木盆、雨滴组成的系统水平方向满足动量守恒,设小车、木盆的总质量为M ,雨滴的质量为m ,则有M v =(M +m )v 共,解得v 共=M v M +m<v ,在雨滴落入木盆的过程中,小车速度将变小,C 正确.5.[2024·山东省普高大联考]如图所示,A 、B 两木块紧靠在一起且静止于光滑水平面上,一颗子弹C 以一定的速度v 0向右从A 的左端射入,穿过木块A 后进入木块B ,最后从B 的右端射出,在此过程中下列叙述正确的是( )A .当子弹C 在木块A 中运动时,A 、C 组成的系统动量守恒B .当子弹C 在木块B 中运动时,B 、C 组成的系统动量守恒C .当子弹C 在木块A 中运动时,A 、B 、C 组成的系统动量不守恒D .当子弹C 在木块B 中运动时,A 、B 、C 组成的系统动量不守恒答案:B解析:当子弹C 在木块A 中运动时,B 对A 、C 组成的系统有力的作用,则A 、C 组成的系统动量不守恒,A 错误;当子弹C 在木块B 中运动时,A 已经和B 脱离,则B 、C 组成的系统受合外力为零,则B 、C 组成的系统动量守恒,因此时A 的动量也守恒,则A 、B 、C 组成的系统动量守恒,B 正确,D 错误;当子弹C 在木块A 中运动时,A 、B 、C 组成的系统受合外力为零,则动量守恒,C 错误.6.[2024·广东省深圳市实验学校期中考试]滑板运动是青少年比较喜欢的一种户外运动.现有一个质量为m 的小孩站在一辆质量为λm 的滑板车上,小孩与滑板车一起在光滑的水平路面上以速度v 0匀速运动,突然发现前面有一个小水坑,由于来不及转向和刹车,该小孩立即以对地2v 0的速度向前跳离滑板车,滑板车速度大小变为原来的12,且方向不变,则λ为( )A .1B .2C .3D .4答案:B解析:小孩跳离滑板车时,与滑板车组成的系统在水平方向的动量守恒,由动量守恒定律有(m +λm )v 0=m ·2v 0+λm ·v 02,解得λ=2,B 正确. 7.[2024·湖南省邵阳市期中考试]如图所示,设车厢长为L ,质量为M ,静止在光滑的水平面上,车厢内有一质量为m 的物体以初速度v 0向右运动,与车厢壁来回碰撞n 次后,最终相对车厢静止,这时车厢速度是( )A .v 0,水平向右B .0C .m v 0M +m ,水平向右D .m v 0M +m,水平向左 答案:C解析:物块在车辆内和车发生碰撞满足动量守恒,最后物块和车共速,由动量守恒得m v 0=(m +M )v ,解得v =m v 0m +M,方向水平向右,C 正确. 8.[2024·河北省邯郸市九校联考]如图所示,在粗糙水平面上,用水平轻绳相连的物体A 、B ,在水平恒力F 作用下以速度v 做匀速运动,某时刻轻绳断开,A 在F 作用下继续前进.已知物体A 的质量为2m ,物体B 的质量为m ,则下列说法正确的是( )A .当物体B 的速度大小为12 v 时,物体A 的速度大小为12v B.当物体B 的速度大小为12 v 时,物体A 的速度大小为54v C .当物体B 的速度大小为0时,物体A 的速度大小一定为32v D .当物体B 的速度大小为0时,物体A 的速度大小可能为54v 答案:B解析:A 、B 匀速运动时,对A 、B 整体受力分析可得F =f A +f B ,物体B 的速度大小在减小到0的过程中,A 和B 所组成的系统所受的合外力为零,该系统的动量守恒,当物体B的速度大小为12 v 时,有(m A +m B )v =m A v A +m B v B ,解得v A =54v ,A 错误,B 正确;当物体B 的速度大小为0时,有(m A +m B )v =m A v ′A ,解得v ′A =32v ,A 在F 作用下继续前进,物体A 继续加速,当物体B 的速度大小为0时,物体A 的速度大小不一定为32v ,C 、D 错误.9.[2024·江苏省盐城一中、大丰中学联考]如图所示,一质量为M=3.0 kg的长木板B放在光滑水平地面上,在其右端放一个质量为m=1.0 kg的小木块A.给A和B以大小均为5.0 m/s、方向相反的初速度,使A开始向左运动,B开始向右运动,A始终没有滑离B.在A 做加速运动的时间内,B的速度大小可能是()A.1.8 m/s B.2.4 m/sC.2.8 m/s D.3.5 m/s答案:C解析:以A、B组成的系统为研究对象,因为系统不受外力,则系统动量守恒,选择水平向右的方向为正方向,从A开始运动到A的速度为零,根据动量守恒定律可得(M-m)v0=M v B1,解得v B1=103m/s,当从开始运动到A、B共速,根据动量守恒定律可得(M-m)v0=(M+m)v B2,解得v B2=2.5 m/s,木块A加速运动的过程为其速度减为零到与B共速,此过程中B始终减速,则在木块A正在做加速运动的时间内,B的速度范围为2.5 m/s≤v B≤103 m/s,C正确,A、B、D错误.10.[2024·吉林卷]如图,高度h=0.8 m的水平桌面上放置两个相同物块A、B,质量m A=m B=0.1 kg.A、B间夹一压缩量Δx=0.1 m的轻弹簧,弹簧与A、B不栓接.同时由静止释放A、B,弹簧恢复原长时A恰好从桌面左端沿水平方向飞出,水平射程x A=0.4 m;B 脱离弹簧后沿桌面滑行一段距离x B=0.25 m后停止.A、B均视为质点,取重力加速度g=10 m/s2.不计空气阻力,求:(1)脱离弹簧时A、B的速度大小v A和v B;(2)物块与桌面间的动摩擦因数μ;(3)整个过程,弹簧释放的弹性势能ΔE p.答案:(1)1 m/s 1 m/s(2)0.2(3)0.12 J解析:(1)对A物块由平抛运动知识得h =12gt 2 x A =v A t代入数据解得,脱离弹簧时A 的速度大小为v A =1 m/sA 、B 与弹簧相互作用的过程中,A 、B 所受水平桌面的摩擦力等大反向,所受弹簧弹力也等大反向,又A 、B 竖直方向上所受合力均为零,故A 、B 组成的系统所受合外力为零,动量守恒,则有m A v A =m B v B解得脱离弹簧时B 的速度大小为v B =1 m/s(2)对物块B 由动能定理有-μm B gx B =0-12m B v 2B 代入数据解得,物块与桌面的动摩擦因数为μ=0.2(3)由能量守恒定律ΔE p =12 m A v 2A +12m B v 2B +μm A g Δx A +μm B g Δx B 其中m A =m B ,Δx =Δx A +Δx B解得整个过程中,弹簧释放的弹性势能ΔE p =0.12 J11.如图所示,甲、乙两名宇航员正在离静止的空间站一定距离的地方执行太空维修任务.某时刻甲、乙都以大小为v 0=2 m/s 的速度相向运动,甲、乙和空间站在同一直线上且可视为质点.甲和他的装备总质量为M 1=90 kg ,乙和他的装备总质量为M 2=135 kg ,为了避免直接相撞,乙从自己的装备中取出一质量为m =45 kg 的物体A 推向甲,甲迅速接住A后即不再松开,此后甲、乙两宇航员在空间站外做相对距离不变的同向运动,且安全“飘”向空间站.(1)乙要相对空间站以多大的速度v将物体A推出;(2)设甲与物体A作用时间为t=0.5 s,求甲与A的相互作用力F的大小.答案:(1)5.2 m/s(2)432 N解析:(1)规定水平向左为正方向,甲、乙两宇航员最终的速度大小均为v1,对甲、乙以及物体A组成的系统根据动量守恒定律可得M2v0-M1v0=(M1+M2)v1对乙和A组成的系统根据动量守恒定律可得M2v0=(M2-m)v1+m v联立解得v=5.2 m/s,v1=0.4 m/s.(2)对甲根据动量定理有Ft=M1v1-M1(-v0)解得F=432 N.。
2023-2024(上高中物理 选择性必修第一册动量定理习题课:动量守恒定律的应用练习册含答案
2023-2024(上)全品学练考高中物理选择性必修第一册动量定理习题课:动量守恒定律的应用建议用时:40分钟◆知识点一多物体、多过程中动量守恒的判断1.[2022·长沙一中月考] 如图所示,光滑水平面上放置一足够长木板A,其上表面粗糙,两个质量和材料均不同的物块B、C,以不同的水平速度分别从两端滑上长木板A.当B、C在木板A 上滑动的过程中,由A、B、C组成的系统 ()A.动量守恒,机械能守恒B.动量守恒,机械能不守恒C.动量不守恒,机械能守恒D.动量不守恒,机械能不守恒2.(多选)[2022·湖北宜昌一中月考] A、B两物体质量之比m A∶m B=3∶2,原来静止在平板小车C上,A、B间有一根被压缩的弹簧,地面水平且光滑.当两物体被同时释放后,则()A.若A、B与平板车上表面间的动摩擦因数相同,则A、B组成系统的动量守恒B.若A、B与平板车上表面间的动摩擦因数相同,则A、B、C组成系统的动量守恒C.若A、B所受的摩擦力大小相等,则A、B组成系统的动量守恒D.若A、B所受的摩擦力大小相等,则A、B、C组成系统的动量守恒◆知识点二多物体、多过程中动量守恒定律的应用3.[2022·广州广雅中学月考] 质量相同的A、B两小车置于光滑的水平面上,有一个质量为m 的人静止在A车上,两车都静止,当这个人自A车跳到B车上,接着又跳回A车上,最终相对A 车静止,则A车最终的速率 ()A.等于零B.小于B车的速率C.大于B车的速率D.等于B车的速率4.[2022·浙江效实中学月考] 质量相等的五个物块在一光滑水平面上排成一条直线,且彼此隔开一定的距离,具有初速度v0的第5号物块向左运动,依次与其余四个静止物块发生碰撞,如图所示,最后这五个物块粘成一个整体,则它们最后的速度为()A.v0B.v05C.v03D.v04◆知识点三动量守恒定律应用的临界问题5.[2022·山师大附中月考] 如图所示在光滑的水平面上静止放置着一个质量为4m的木板B,它的左端静止放置着一个质量为2m的物块A,现让A、B一起以水平速度v0向右运动,与其前方静止的另一个相同的木板C相碰后粘在一起,在两木板相碰后的运动过程中,物块恰好没有滑下木板,且物块A可视为质点,则两木板的最终速度为()A.v02 B.2v05C.3v05D.4v056.将两个完全相同的磁铁(磁性极强)分别固定在质量相等的甲、乙两车上,水平面光滑.开始时甲车速度大小为3 m/s,乙车速度大小为2 m/s,方向相反并在同一直线上,如图所示.(1)当乙车速度为零时,甲车的速度为多大?方向如何?(2)由于磁铁的磁性极强,故两车不会相碰,那么两车间的距离最小时,乙车的速度是多大?方向如何?7.如图所示,三辆完全相同的平板小车a、b、c成一直线排列,静止在光滑水平面上.c车上有一小孩跳到b车上,接着又立即从b车跳到a车上.小孩跳离c车和b车时对地的水平速度相同.他跳到a车上相对a车保持静止,此后()A.a、b两车运动速率相等B.a、c两车运动速率相等C.三辆车的速率关系为v c=v b>v aD.a、c两车运动方向相反8.[2022·浙江海盐高级中学月考] 如图所示,在光滑的水平地面上有一平板小车质量为M=2 kg,靠在一起的滑块甲和乙质量均为m=1 kg,三者处于静止状态.某时刻起滑块甲以初速度v1=2 m/s向左运动,同时滑块乙以v2=4 m/s向右运动.最终甲、乙两滑块均恰好停在小车的两端.小车长L=9.5 m,两滑块与小车间的动摩擦因数相同,求:(g取10 m/s2,滑块甲和乙可视为质点)(1)最终甲、乙两滑块和小车的共同速度的大小;(2)两滑块与小车间的动摩擦因数;(3)两滑块运动前滑块乙离右端的距离.9.[2022·北京东城区期中] 甲、乙两个小孩各乘一辆冰车在水平地面上游戏,甲和他的冰车的质量为M=30 kg,乙和他的冰车的质量也是M=30 kg .游戏时甲推一个质量m=15 kg 的箱子,以大小为v 0=3.0 m/s 的速度向东滑行,乙以同样大小的速度迎面滑来.不计水平地面的摩擦力.(1)若甲向东以5 m/s 的速度将箱子推给乙,甲的速度变为多少?(2)甲至少以多大的速度将箱子推给乙,才能避免相撞?(题中各速度均以地面为参考系)10.(多选)如图所示,在质量为M 的小车上用细线挂有一小球,小球的质量为m 0,小车和小球以恒定的速度v 沿光滑水平地面运动,与位于正前方的质量为m 的静止木块发生碰撞,碰撞的时间极短,在此碰撞过程中,下列哪些情况是可能发生的 ( )A .小车、木块、小球的速度都发生变化,分别变为v 1、v 2、v 3,满足(M+m 0)v=Mv 1+mv 2+m 0v 3B .小球的速度不变,小车和木块的速度变为v 1和v 2,满足Mv=Mv 1+mv 2C .小球的速度不变,小车和木块的速度都变为v 1,满足Mv=(M+m )v 1D .小车和小球的速度都变为v 1,木块的速度变为v 2,满足(M+m 0)v=(M+m 0)v 1+mv 2习题课:动量守恒定律的应用1.B [解析] 依题意,因水平面光滑,则A 、B 、C 组成的系统合力为零,满足动量守恒条件,系统动量守恒,木板A 上表面粗糙,物块B 、C 在其上滑行时,会摩擦生热,系统机械能有损失,则系统机械能不守恒,故A 、C 、D 错误,B 正确.2.BCD [解析] 若A 、B 与平板车上表面间的动摩擦因数相同,由于A 、B 两物体的质量之比为m A ∶m B =3∶2,由滑动摩擦力F f =μmg 可知弹簧释放时,小车对A 、B 的滑动摩擦力大小之比为3∶2,所以A 、B 组成的系统所受合外力不等于零,系统的动量不守恒,A 错误;对于A 、B 、C 组成的系统,由于地面光滑,系统所受的合外力为零,则系统动量守恒,B 、D 正确;若A 、B 所受的摩擦力大小相等,则A 、B 组成的系统所受合外力为零,A 、B 组成的系统动量守恒,C 正确.3.B [解析] 设车的质量为M ,A 、B 两车以及人组成的系统动量守恒,规定由A 指向B 为正方向,有0=Mv B -(M+m )v A ,解得v A v B=MM+m ,则A 车最终的速率小于B 车的速率,故选B .4.B [解析] 由于五个物块组成的系统沿水平方向不受外力作用,故系统在水平方向上动量守恒,由动量守恒定律得mv 0=5mv ,得v=15v 0,即它们最后的速度为15v 0,B 正确.5.C [解析] 设两木板碰撞后的速度为v 1,以v 0的方向为正方向,由动量守恒定律得4mv 0=8mv 1,解得v 1=v02,设物块与木板共同的速度为v 2,由动量守恒定律得2mv 0+8mv 1=(2m+8m )v 2,解得v 2=3v 05,故选C .6.(1)1 m/s 向右 (2)0.5 m/s 向右[解析] 两车及磁铁组成的系统在水平方向不受外力作用,两磁铁之间的磁力是系统内力,系统动量守恒.设向右为正方向.(1)据动量守恒定律得mv 甲-mv 乙=mv'甲 则v'甲=v 甲-v 乙=1 m/s,方向向右.(2)两车相距最近时,两车的速度相同,设为v',由动量守恒定律得 mv 甲-mv 乙=mv'+mv' 解得v'=mv 甲-mv 乙2m=v 甲-v 乙2=3-22 m/s =0.5 m/s,方向向右.7.D [解析] 若人跳离b 、c 车时相对地面的水平速度为v ,以水平向右为正方向,由动量守恒定律知,水平方向,对人和c 车组成的系统有0=m 人v+m 车v c ,对人和b 车有m 人v=m 车v b +m 人v ,对人和a 车有m 人v=(m 车+m 人)v a ,所以v c =-m 人v m 车,v b =0,v a =m 人vm 人+m 车,即三辆车的速率关系为v c >v a >v b ,并且v c 与v a 方向相反,故选D . 8.(1)0.5 m/s (2)0.1 (3)7.5 m[解析] (1)两滑块与小车组成的系统动量守恒,以向右为正方向,由动量守恒定律得 mv 2-mv 1=(M+m+m )v 解得 v=0.5 m/s(2)对整体由能量守恒定律得 12m v 12+12m v 22=12(M +m +m )v 2+μmgL解得μ=0.1(3)经分析,滑块甲运动到左端时速度刚好减为0,在滑块甲运动至左端前,小车静止,之后滑块甲和小车一起向右做匀加速运动到三者共速.甲、乙从开始运动到最终两滑块均恰好停在小车的两端的过程中,设滑块乙的对地位移为x 1,滑块甲和小车一起向右运动的位移为x 2.由动能定理,对滑块乙有 -μmgx 1=12mv 2-12m v 22对滑块甲和小车有 μmgx 2=12(m +M )v 2滑块乙离右端的距离 s=x 1-x 2 解得s=7.5 m9.(1)2 m/s (2)7.8 m/s[解析] (1)取向东为正方向,由动量守恒定律有 mv 0+Mv 0=mv 1+Mv 解得v=2 m/s(2)设甲至少以速度v'将箱子推出,推出箱子后甲的速度为v 甲,乙接到箱子后的速度为v 乙,取向东为正方向.则根据动量守恒定律得 (M+m )v 0=Mv 甲+mv' mv'-Mv 0=(m+M )v 乙当甲与乙恰好不相撞时,有v甲=v乙联立解得v'=7.8 m/s10.BC[解析] 在小车与木块发生碰撞的瞬间,彼此作用力很大,所以它们的速度在瞬间发生改变,作用过程中它们的位移可看成为零,而小球并没有直接与木块发生力的作用,在它与小车共同匀速运动时,细线沿竖直方向,因此细线的拉力不能改变小球速度的大小,即小球的速度不变,A、D错误;而小车和木块碰撞后,可能以不同的速度继续向前运动,也可能以共同速度向前运动,B、C正确.章末学业测评(一)建议用时:40分钟一、选择题1.[2022·湖北黄冈中学期中] 关于物体的动量,下列说法中正确的是()A.物体的动量越大,其惯性也越大B.动量相同的物体,速度一定相同C.物体的速度方向改变,其动量一定改变D.运动的物体在任一时刻的动量方向一定是该时刻的加速度方向2.[2022·唐山一中月考] 如图所示,一个质量为m=0.5 kg的铁锤,以v=5 m/s的速度竖直打在木桩的钉子上,钉子的质量为2 g,经0.01 s后铁锤速度减小到0,重力加速度g取10 m/s2,则铁锤对钉子的作用力大小为()A.1 NB.245 NC.250 ND.255 N3.[2022·北京四中月考] 蹦极是一项刺激的极限运动,如图所示运动员将一端固定的弹性长绳绑在腰或踝关节处,从几十米高处跳下.在某次蹦极中,质量为60 kg的运动员在弹性绳绷紧后又经过2 s速度减为零,假设弹性绳长为45 m,重力加速度g取10 m/s2(忽略空气阻力),下列说法正确的是()A.弹性绳在绷紧后2 s内对运动员的平均作用力大小为2 000 NB.运动员在弹性绳绷紧后动量的变化量等于弹性绳的作用力的冲量C.运动员从开始起跳到下落到最低点的整个运动过程中重力冲量与弹性绳作用力的冲量大小相等D.运动员从开始起跳到下落到最低点的整个运动过程中重力冲量小于弹性绳作用力的冲量4.(多选)如图所示,小车放在光滑水平面上,A端固定一轻弹簧,B端粘有油泥,小车及油泥的总质量为M,质量为m的木块C放在小车上,用细绳连接于小车的A端并使弹簧压缩,开始时小车和C 都静止,当突然烧断细绳时,C 被释放,C 离开弹簧向B 端冲去,并跟B 端油泥粘在一起,忽略一切摩擦,下列说法正确的是( )A .弹簧伸长过程中C 向右运动,同时小车也向右运动B .C 与B 端碰前,C 与小车的速率之比为M ∶m C .C 与油泥粘在一起后,小车立即停止运动D .C 与油泥粘在一起后,小车继续向右运动5.一只爆竹竖直升空后,在高为h 处到达最高点并发生爆炸,分成质量不同的两块,两块质量之比为3∶1,其中质量小的一块获得大小为v 的水平速度,重力加速度为g ,不计空气阻力,则两块爆竹落地点的距离为 ( ) A .v4√2ℎg B .2v3√2ℎg C .4v3√2ℎg D .4v √2ℎg6.(多选)如图所示,小车的上面固定一个光滑弯曲圆管道,整个小车(含管道)的质量为2m ,原来静止在光滑的水平面上.今有一个可以视为质点的小球,质量为m ,半径略小于管道半径,以水平速度v 从左端滑上小车,小球恰好能到达管道的最高点,然后从管道左端滑离小车.关于这个过程,下列说法正确的是 ( )A .小球滑离小车时,小车回到原来位置B .小球滑离小车时相对小车的速度大小为vC .管道最高点距小车上表面的高度为v 23gD .小球从滑进管道到滑到最高点的过程中,小车的动量变化量大小是mv37.(多选)[2022·天津一中月考] 如图甲所示,一轻弹簧的两端与质量分别为m 1和m 2的两物块A 、B 相连接,并静止在光滑的水平面上.现使B 瞬时获得水平向右的速度3 m/s,以此刻为计时起点,两物块的速度随时间变化的规律如图乙所示,从图像信息可得 ( )A .在t 1、t 3时刻两物块达到共同速度1 m/s,且弹簧都处于伸长状态B .从t 3到t 4时刻弹簧由压缩状态恢复到原长C .两物块的质量之比为m 1∶m 2=1∶2D .在t 2时刻A 与B 的动能之比为E k1∶E k2=8∶18.(多选)[2022·杭二中月考] 物理兴趣小组在研究竖直方向的碰撞问题时,将网球和篮球同时从某高度处自由释放(如图所示),发现网球反弹的高度比单独释放时的高度高很多.若两球均为弹性球,释放时两球互相接触,且球心在同一竖直线,某同学将两球从离地高为h处自由落下,此高度远大于两球半径,已知网球质量为m,篮球质量为7m,重力加速度为g,设所有碰撞均为弹性碰撞且只发生在竖直方向上.忽略空气阻力,则下列说法正确的是()A.两球下落过程中,网球对篮球有竖直向下的压力B.篮球与网球相碰后,篮球的速度为零C.落地弹起后,篮球上升的最大高度为ℎ4D.篮球从地面反弹与网球相碰后网球上升的最大高度为6.25h二、计算题9.如图甲所示,质量均为m=0.5 kg的相同物块P和Q(可视为质点),分别静止在水平地面上A、C两点.P在水平力F作用下由静止开始向右运动,力F与时间t的关系如图乙所示,3 s末撤去力F,此时P运动到B点,之后继续滑行并与Q发生弹性碰撞.已知B、C两点间的距离L=3.75 m,P、Q与地面间的动摩擦因数均为μ=0.2,g取10 m/s2,求:(1)P到达B点时的速度大小v及P与Q碰撞前瞬间的速度大小v1;(2)Q运动的时间t.10.如图甲,打桩船是海上风电场、跨海大桥、港口码头等海洋工程建设的重要装备.其工作原理等效简化图如图乙所示,某次打桩过程中,质量为M=200 t的桩竖直放置,质量为m=50 t 的打桩锤从离桩上端h=0.8 m处由静止释放,下落后垂直打在桩上,打桩锤与桩作用时间极短,然后二者以相同速度一起向下运动h1=0.4 m后停止.桩向下打入海床过程中受到海床的阻力大小不恒定.重力加速度g取10 m/s2.(1)求打桩锤击中桩后,二者的共同速度的大小;(2)求打桩锤与桩作用的极短时间内损失的机械能;(3)打桩后,锤与桩向下打入海床的运动过程中,求克服阻力做功.甲 乙章末学业测评(一)1.C [解析] 惯性只与质量有关,质量越大惯性越大,根据公式p=mv 可知,物体的动量越大,物体的质量不一定大,故A 错误;根据公式p=mv 可知,动量相同的物体,速度不一定相同,故B 错误;动量是矢量,有大小也有方向,动量的方向即为物体运动的速度方向,与该时刻加速度方向无直接关系,物体的速度方向改变,其动量一定改变,故D 错误,C 正确.2.D [解析] 以铁锤为研究对象,设钉子对铁锤的平均作用力为F ,取竖直向上为正方向,由动量定理得(F-mg )t=0-(-mv ),代入数据解得F=255 N,根据牛顿第三定律知,铁锤打击钉子的平均作用力为255 N,方向竖直向下,故D 正确,A 、B 、C 错误.3.C [解析] 由机械能守恒得mgh=12mv 2,绳在刚绷紧时人的速度大小为v=√2gh=30 m/s,以竖直向上为正方向,在绷紧的过程中根据动量定理有(F-mg )t=0-(-mv ),代入数据解得F=1500 N,故A 错误;根据动量定理可知,运动员在弹性绳绷紧后,动量的变化量等于弹性绳作用力的冲量与重力冲量的和,故B 错误;运动员整个过程中动量的变化量为零,则重力冲量与弹性绳作用力的冲量等大反向,故C 正确,D 错误.4.BC [解析] 小车与C 组成的系统在水平方向上动量守恒,C 向右运动时,小车应向左运动,故A 错误;设碰前C 的速率为v 1,小车的速率为v 2,则0=mv 1-Mv 2,得v 1v 2=Mm ,故B 正确;设C 与油泥粘在一起后,小车与C 的共同速度为v 共,则0=(M+m )v 共,得v 共=0,故C 正确,D 错误. 5.C [解析] 设其中一块质量为m ,另一块质量为3m.爆炸过程中系统在水平方向上动量守恒,由动量守恒定律得mv-3mv'=0,解得v'=13v ,设两块爆竹落地用的时间为t ,根据h=12gt 2,解得t=√2ℎg ,两块爆竹落地点的距离为x=(v+v')t=4v 3√2ℎg.6.BC [解析] 小球恰好能到达管道的最高点,说明在管道最高点时小球和管道之间相对静止,小球从滑进管道到滑到最高点的过程中,由动量守恒定律,有mv=(m+2m )v',得v'=v3,小车动量变化量大小Δp 车=2m ·v3=23mv ,D 错误;小球从滑进管道到滑到最高点的过程中,由机械能守恒定律,有mgH=12mv 2-12(m+2m )v'2,得H=v 23g ,C 正确;小球从滑上小车到滑离小车的过程,由动量守恒定律和机械能守恒定律,有mv=mv 1+2mv 2,12mv 2=12m v 12+12×2m v 22,得v 1=-v3,v 2=23v ,则小球滑离小车时相对小车的速度大小为23v+13v=v ,B 正确;由以上分析可知,在整个过程中小车一直向右运动,A 错误.7.BD [解析] 由A 的速度图像可知,t 1时刻正在加速,说明弹簧被拉伸,t 3时刻正在减速,说明弹簧被压缩,故选项A 错误;t 3时刻A 正在减速,说明弹簧被压缩,t 4时刻A 的加速度为零,说明弹簧处于原长,故选项B 正确;对0~t 1过程,由动量守恒定律得m 2×3 m/s =(m 1+m 2)×1 m/s,故m 1∶m 2=2∶1,选项C 错误;动能E k =12mv 2,t 2时刻A 与B 的速度大小之比为2∶1,则动能之比为8∶1,故选项D 正确.8.CD [解析] 两球下落过程中,均处于完全失重状态,两球间没有作用力,故A 错误;根据自由落体运动规律可知,两球落地前瞬间速度大小相等,设为v ,篮球从地面反弹与网球相碰过程,根据动量守恒和能量守恒有7mv-mv=7mv 1+mv 2,12×7mv 2+12mv 2=12×7m v 12+12m v 22,解得v 1=v2,v 2=52v ,故B 错误;根据机械能守恒定律有7mgh=12×7mv 2,7mgh'=12×7m v 12,解得,篮球上升的最大高度为h'=ℎ4,故C 正确;根据机械能守恒定律有mgh″=12m v 22,解得,网球上升的最大高度为h″=6.25h ,故D 正确.9.(1)8 m/s 7 m/s (2)3.5 s[解析] (1)以向右为正方向,在0~3 s 内,对P ,由动量定理有 F 1t 1+F 2t 2-μmg (t 1+t 2)=mv-0其中F 1=2 N,F 2=3 N,t 1=2 s,t 2=1 s 解得v=8 m/s设P 在B 、C 两点间滑行的加速度大小为a ,由牛顿第二定律有 μmg=maP 在B 、C 两点间做匀减速直线运动,有v 2-v 12=2aL 解得v 1=7 m/s .(2)设P 与Q 发生弹性碰撞后瞬间P 、Q 的速度大小分别为v'1、v 2,有 mv 1=mv'1+mv 212m v 12=12mv '12+12m v 22碰撞后Q 做匀减速直线运动,Q 运动的加速度大小为 μmg=ma'Q 运动的时间为t=v2a '解得t=3.5 s .10.(1)0.8 m/s (2)3.2×105 J (3)1.08×106 J [解析] (1)打桩锤击中桩前瞬间的速度为v 1=√2gℎ=4 m/s打桩锤与桩作用时间极短,作用过程动量守恒,有 mv 1=(M+m )v 共 解得v 共=0.8 m/s(2)打桩锤与桩作用的极短时间内损失的机械能为ΔE=12m v 12-12(M+m )v 共2=3.2×105 J(3)打桩后,锤与桩向下打入海床的运动过程中,根据动能定理,有(M+m )gh 1+W=0-12(M+m )v 共2解得W=-1.08×106 J,所以克服阻力做功为1.08×106 J。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五动量守恒定律的应用练习题及答案Revised final draft November 26, 2020五 动量守恒定律应用 姓名一、选择题(每小题中至少有一个选项是正确的)1、甲球与乙球相碰,甲球的速度减少5m/s ,乙球的速度增加了3m/s ,则甲、乙两球质量之比m 甲∶m 乙是 ( )A 、2∶1 B、3∶5 C、5∶3 D、1∶22、A 、B 两球在光滑水平面上相向运动,两球相碰后有一球停止运动,则下述说法中正确的是 ( )A 、若碰后,A 球速度为0,则碰前A 的动量一定大于B 的动量B 、若碰后,A 球速度为0,则碰前A 的动量一定小于B 的动量C 、若碰后,B 球速度为0,则碰前A 的动量一定大于B 的动量D 、若碰后,B 球速度为0,则碰前A 的动量一定小于B 的动量3、小车静止在光滑的水平面上,A 、B 二人分别站在车的左、右两端,A 、B 二人同时相向运动,此时小车向左运动,下述情况可能是( )A 、A 、B 质量相等,速率相等 B 、A 、B 质量相等,A 的速度小C 、A 、B 速率相等,A 的质量大D 、A 、B 速率相等,B 的质量大4、在光滑水平面上有两辆车,上面分别站着A 、B 两个人,人与车的质量总和相等,在A 的手中拿有一个球,两车均保持静止状态,当A 将手中球抛给B ,B 接到后,又抛给A ,如此反复多次,最后球落在B 的手中,则关于A 、B 速率大小是 ( )A 、A 、B 两车速率相等 B 、A 车速率大C 、A 车速率小D 、两车均保持静止状态5.如图1所示,A 、B 两物体质量m A =2m B ,水平面光滑,当烧断细线后(原来弹簧被压缩),则下列说法正确的是( )A .弹开过程中A 的速率小于B 的速率B .弹开过程中A 的动量小于B 的动量C .A 、B 同时达到速度最大值D .当弹簧恢复原长时两物体同时脱离弹簧6.下列说法中,违反动量守恒定律的是( )A .两个运动物体A 和B 相碰后合为一体,A 减少的动量等于B 增加的动量B .质量相等的两个物体,以相同速率相向运动,做正碰后以原来的速率分开C .质量不等的两个物体,以相同的速率相向运动,做正碰以后以某一相同速率向同一方向运动D .质量不等的两个物体,以相同的速率相向运动,做正碰后各以原来的速率分开7.如图2所示,人站在小车上,不断用铁锤敲击小车的一端.下列各种说法哪些是正确的( )①如果地面水平、坚硬光滑,则小车将在原地附近做往复运动②如果地面的阻力较大,则小车有可能断断续续地水平向右运动③因为敲打时,铁锤跟小车间的相互作用力属于内力,小车不可能发生运动④小车能否运动,取决于小车跟铁锤的质量之比,跟其他因素无关A .①②B .只有①C .只有③D .只有④8、在以下几种情况中,属于动量守恒的有哪些A .车原来静止,放于光滑水平面,车上的人从车头走到车尾.图1 图2B.水平放置的弹簧一端固定,另一端与置于光滑水平面的物体相连,令弹簧伸长,使物体运动起来.C.斜面体放于光滑水平地面上,物体由斜面顶端自由滑下,斜面体后退.D.光滑水平地面上,用细线拴住一个弹簧,弹簧的两边靠放两个静止的物体,用火烧断弹簧的瞬间,两物体被弹出.*9.如图4所示,两块小木块A和B,中间夹上轻弹簧,用线扎在一起,放在光滑的水平台面上,烧断线,弹簧将木块A、B弹出,最后落到水平地面上,根据图中的有关数据,可以判定下列说法中正确的有(弹簧原长远小于桌面长度)()A.木块A先落到地面上B. B.弹簧推木块时,两木块加速度之比a:a B=1:2AC.从烧断线时到两木块滑离桌面前,两木图4块各自所受合冲量之比I A∶I B=l∶2D.两木块在空中飞行时所受的冲量之比I A′:I B′=2:1*10.两球A、B在光滑水平面上沿同一直线,同一方向运动,m A=1 kg,m B=2 kg,v A=6 m/s,v B=2 m/s。
当A追上B并发生碰撞后,两球A、B速度的可能值是()A.v A′=5 m/s,v B′= m/s B.v A′=2 m/s,v B′=4 m/sC.v A′=-4 m/s,v B′=7 m/s D.v A′=7 m/s,′= m/svB二、填空题(把正确答案填写在题中的横线上,或按题目要求作答。
)11、A、B两小球质量之比为1 :2,速度大小之比为1 :3,则A、B两小球动量之比为 .12、在光滑水平面上,质量为1kg的子弹以 3m/s的速度射入静止的质量为2kg的木块中,则子弹和木块的共同速度为.*13.A物体的质量为m,B物体的质量为2m,它们在同一直线上运动且发生正碰,碰撞前A 和B的动量大小相等,碰撞后A的速度方向不变,但大小变为原来的一半,则碰撞后A和B的速度方向_____(填“相同”或“相反”),其大小之比v A∶v B=_______.*14.质量为M的玩具汽车拉着质量为m的小拖车,在水平地面上以速度v匀速前进,某一时刻拉拖车的线突然断了,而小汽车的牵引力不变,汽车和拖车与地面动摩擦因数相同,一切阻力也不变.则在小拖车停止运动时,小汽车的速度大小为_______三、计算题(要求写出必要的文字说明、主要方程式和重要演算步骤)15.质量m1=10g的小球在光滑的水平桌面上以v1=30cm/s的速率向右运动,恰好遇上在同一条直线上向左运动的另一个小球。
另一个小球的质量为m2=50g,速率v2=10cm/s,碰撞后,小球m2恰好停止。
那么碰撞后小球m1的速度是多大,方向如何*16.两磁铁各固定放在一辆小车上,小车能在水平面上无摩擦地沿同一直线运动.已知甲车和磁铁的总质量为 kg,乙车和磁铁的总质量为 kg.两磁铁的N极相对.推动一下,使两车相向运动.某时刻甲的速率为2m/s,乙的速率为3 m/s,方向与甲相反.两车运动过程中始终未相碰,则(1)两车最近时,乙的速度为多大(2)甲车开始反向时,乙的速度为多大五 动量守恒定律应用1、B2、AD3、c4、B5. ACD【解析】 整个过程中,A 、B 系统动量守恒.二者动量大小相等、方向相反,由于m A =2m B 所以v A =v B /2.当弹簧恢复原长时,弹簧对两物体的推力消失,A 、B 的速度达到最大,之后均匀速运动.6. D【解析】两运动物体碰后合为一体,A 减少的动量等于B 增加的动量,知总动量不变;B 选项叙述的情景,碰撞前后总动量为零,也符合动量守恒定律;质量不等的两个物体,速率不同且相向运动,系统的总动量不为零,故碰后二者以相等速率运动的方向必与系统总动量的方向一致,C 选项不违反动量守恒定律;质量相等的两物体,以相同速率相向而行,其总动量必与速率大的物体同向,若正碰后各以原速率返回,则系统的总动量方向发生了改变,不再守恒.7. A【解析】如果地面水平且坚硬光滑,据铁锤下摆过程中系统水平方向动量守恒可以判断小车向左移动;敲击后铁锤弹起上摆时,小车向右运动,即小车做往复运动.如果地面的阻力足够大,小车可能不运动;如果阻力不太大,而铁锺打击力较大,致使小车受向右的合外力而断断续续地水平向右运动.8、AD9.BD【解析】 A 、B 两木块离开桌面后都做平抛运动,由平抛知识知v B =2v A ,且t A =t B .在弹簧弹开的过程中,A 、B 的动量守恒,m A v A =m B v B ,m A =2m B ,又弹力F A =F B ,故 a A :a B =m B :m A =1:2,I A :I B =F A t ∶F B t =1∶1,I A ′∶I B ′=m A gt A ∶m B gt B =2∶1.10. B【解析】这是一道同向追击碰撞问题,在分析时应注意考虑三个方面的问题:动量是否守恒,机械能是否增大,是否符合实际物理情景。
针对这三点,要逐一验证。
取两球碰撞前的运动方向为正,则碰撞前,系统总动量p =m A v A +m B v B =10 kg·m/s,逐一验证各个选项,发现碰撞后,四个选项均满足动量守恒。
碰前,系统总动能E k =222121B B A A v m v m =22 J 。
碰后系统总动能应不大于磁前总动能,即E k ′≤22 J,把各选项代入计算,知选项C 、D 不满足,被排除。
对于选项A ,虽然满足机械能不增加的条件,但仔细分析,发现v A ′>v B ′,显然不符合实际情况,故本题正确答案为选项B 。
11、1:612、1m/s13、 相同;2:3【解析】 设碰撞前A 的速度为v ,则碰撞后v A =v /2.若碰前,A 、B 相向运动,则 mv A +2mv B =0.由此得当v A =2v 时v B =-4v ,这一结果说明,碰撞后A 、B仍沿各自碰前的方向相向运动,显然这是不可能的,故碰前A 、B 不可能相向运动,而应同向运动.由于碰前A 和B 的动量大小相等.所以A 的速度大于B 的速度,碰前应是B 在前,A 在后面追上B 与之相碰.由动量守恒定律得 mv +2m ·2v =m ·2v +2mv B .则碰后B 的速度为v B =43v .故碰后A 、B 速度方向相同,速度大小之比为 324/32/==v v v v B A . 14、Mv m M )(+ 【解析】 由于汽车和拖车组成的系统所受的牵引力和阻力始终是一对平衡力,故系统动量守恒.由(M +m )v =mv ′,得v ′=Mv m M )(+ 15、 20cm/s ,方向向左。
16、(1)两车相距最近时,两车的速度相同,设该速度为v ,取乙车的速度方向为正方向.由动量守恒定律得 m 乙v 乙-m 甲v 甲=(m 甲+m 乙)v (3分)所以两车最近时,乙车的速度为v =15.025.031+⨯-⨯=+-乙甲甲甲乙乙m m v m v m m/s=34 m/s (3分) (2)甲车开始反向时,其速度为0,设此时乙车的速度为v 乙′,由动量守恒定律得m 乙v 乙-m 甲v 甲=m 乙v 乙′ (3分)得 v 乙′=125.031⨯-⨯=-乙甲甲乙乙m v m v m m/s =2 m/s (3分)。