高考物理动量守恒定律的应用解题技巧及练习题含解析

合集下载

高中物理动量守恒定律解题技巧及练习题(含答案)

高中物理动量守恒定律解题技巧及练习题(含答案)

高中物理动量守恒定律解题技巧及练习题(含答案)一、高考物理精讲专题动量守恒定律1.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。

已知磁场的磁感应强度B=0.5T ,导轨的间距与导体棒的长度均为L=0.5m ,导轨的半径r=0.5m ,导体棒的电阻R=1Ω,其余电阻均不计,重力加速度g=10m/s 2,不计空气阻力。

(1)求导体棒刚进入凹槽时的速度大小;(2)求导体棒从开始下落到最终静止的过程中系统产生的热量;(3)若导体棒从开始下落到第一次通过导轨最低点的过程中产生的热量为16J ,求导体棒第一次通过最低点时回路中的电功率。

【答案】(1) 210/v m s = (2)25J (3)9W 4P = 【解析】 【详解】解:(1)根据机械能守恒定律,可得:212mgh mv = 解得导体棒刚进入凹槽时的速度大小:210/v m s =(2)导体棒早凹槽导轨上运动过程中发生电磁感应现象,产生感应电流,最终整个系统处于静止,圆柱体停在凹槽最低点根据能力守恒可知,整个过程中系统产生的热量:()25Q mg h r J =+=(3)设导体棒第一次通过最低点时速度大小为1v ,凹槽速度大小为2v ,导体棒在凹槽内运动时系统在水平方向动量守恒,故有:12mv Mv = 由能量守恒可得:2212111()22mv mv mg h r Q +=+- 导体棒第一次通过最低点时感应电动势:12E BLv BLv =+回路电功率:2E P R=联立解得:94P W =2.如图,两块相同平板P 1、P 2置于光滑水平面上,质量均为m =0.1kg .P 2的右端固定一轻质弹簧,物体P 置于P 1的最右端,质量为M =0.2kg 且可看作质点.P 1与P 以共同速度v 0=4m/s 向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起,P 压缩弹簧后被弹回(弹簧始终在弹性限度内).平板P 1的长度L =1m ,P 与P 1之间的动摩擦因数为μ=0.2,P 2上表面光滑.求:(1)P 1、P 2刚碰完时的共同速度v 1; (2)此过程中弹簧的最大弹性势能E p .(3)通过计算判断最终P 能否从P 1上滑下,并求出P 的最终速度v 2. 【答案】(1)v 1=2m/s (2)E P =0.2J (3)v 2=3m/s 【解析】 【分析】 【详解】(1)P 1、P 2碰撞过程,由动量守恒定律 01m 2v mv = 解得012/2v v m s ==,方向水平向右 ; (2)对P 1、P 2、P 系统,由动量守恒定律 1022(2)mv Mv m M v '+=+ 解得2033/4v v m s ='=,方向水平向右, 此过程中弹簧的最大弹性势能222102111•2+Mv 2m )0.2222P E mv M v J =-='+(; (3)对P 1、P 2、P 系统,由动量守恒定律 103222mv Mv mv Mv +=- 由能量守恒定律得2222103211112+Mv 2mv +Mg 2222mv Mv L ⋅=⋅+μ 解得P 的最终速度23/0v m s =>,即P 能从P 1上滑下,P 的最终速度23/v m s =3.光滑水平面上质量为1kg 的小球A ,以2.0m/s 的速度与同向运动的速度为1.0m/s 、质量为2kg 的大小相同的小球B 发生正碰,碰撞后小球B 以1.5m/s 的速度运动.求:(1)碰后A 球的速度大小;(2)碰撞过程中A 、B 系统损失的机械能. 【答案】 1.0/A v m s '=,0.25E J =损【解析】试题分析:(1)碰撞过程中动量守恒,由动量守恒定律可以求出小球速度. (2)由能量守恒定律可以求出损失的机械能.解:(1)碰撞过程,以A 的初速度方向为正,由动量守恒定律得: m A v A +m B v B =m A v′A +m B v′B 代入数据解:v′A =1.0m/s②碰撞过程中A 、B 系统损失的机械能量为:代入数据解得:E 损=0.25J答:①碰后A 球的速度为1.0m/s ;②碰撞过程中A 、B 系统损失的机械能为0.25J .【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以正确解题,应用动量守恒定律解题时要注意正方向的选择.4.在日常生活中,我们经常看到物体与物体间发生反复的多次碰撞.如图所示,一块表面水平的木板静止放在光滑的水平地面上,它的右端与墙之间的距离L =0.08 m .现有一小物块以初速度v 0=2 m/s 从左端滑上木板,已知木板和小物块的质量均为1 kg ,小物块与木板之间的动摩擦因数μ=0.1,木板足够长使得在以后的运动过程中小物块始终不与墙接触,木板与墙碰后木板以原速率反弹,碰撞时间极短可忽略,取重力加速度g =10 m/s 2.求:(1)木板第一次与墙碰撞时的速度大小;(2)从小物块滑上木板到二者达到共同速度时,木板与墙碰撞的总次数和所用的总时间; (3)小物块和木板达到共同速度时,木板右端与墙之间的距离. 【答案】(1)0.4 s 0.4 m/s (2)1.8 s. (3)0.06 m 【解析】试题分析:(1)物块滑上木板后,在摩擦力作用下,木板从静止开始做匀加速运动,设木板加速度为a ,经历时间T 后与墙第一次碰撞,碰撞时的速度为1v则mg ma μ=,解得21/a g m s μ==①212L at =②,1v at =③ 联立①②③解得0.4t s =,10.4/v m s =④(2)在物块与木板两者达到共同速度前,在每两次碰撞之间,木板受到物块对它的摩擦力作用而做加速度恒定的匀减速直线运动,因而木板与墙相碰后将返回至初态,所用时间也为T .设在物块与木板两者达到共同速度v 前木板共经历n 次碰撞,则有:()02v v nT t a a t =-+∆=∆⑤式中△t 是碰撞n 次后木板从起始位置至达到共同速度时所需要的时间.由于最终两个物体一起以相同的速度匀速前进,故⑤式可改写为022v v nTa =-⑥ 由于木板的速率只能处于0到1v 之间,故有()01022v nTa v ≤-≤⑦ 求解上式得1.5 2.5n ≤≤ 由于n 是整数,故有n=2⑧由①⑤⑧得:0.2t s ∆=⑨;0.2/v m s =⑩从开始到物块与木板两者达到共同速度所用的时间为:4 1.8t T t s =+∆=(11) 即从物块滑上木板到两者达到共同速度时,木板与墙共发生三次碰撞,所用的时间为1.8s .(3)物块与木板达到共同速度时,木板与墙之间的距离为212s L a t =-∆(12) 联立①与(12)式,并代入数据得0.06s m = 即达到共同速度时木板右端与墙之间的距离为0.06m . 考点:考查了牛顿第二定律,运动学公式【名师点睛】本题中开始小木块受到向后的摩擦力,做匀减速运动,长木板受到向前的摩擦力做匀加速运动;当长木板反弹后,小木块继续匀减速前进,长木板匀减速向左运动,一直回到原来位置才静止;之后长木板再次向右加速运动,小木块还是匀减速运动;长木板运动具有重复性,由于木板长度可保证物块在运动过程中不与墙接触,故直到两者速度相同,一起与墙壁碰撞后反弹;之后长木板向左减速,小木块向右减速,两者速度一起减为零.5.如图所示,固定的光滑圆弧面与质量为6kg 的小车C 的上表面平滑相接,在圆弧面上有一个质量为2kg 的滑块A ,在小车C 的左端有一个质量为2kg 的滑块B ,滑块A 与B 均可看做质点.现使滑块A 从距小车的上表面高h =1.25m 处由静止下滑,与B 碰撞后瞬间粘合在一起共同运动,最终没有从小车C 上滑出.已知滑块A 、B 与小车C 的动摩擦因数均为μ=0.5,小车C 与水平地面的摩擦忽略不计,取g =10m/s 2. 求: (1)滑块A 与B 弹性碰撞后瞬间的共同速度的大小; (2)小车C 上表面的最短长度.【答案】(1) v =2.5m/s (2) L =0.375m 【解析】【试题分析】(1)根据机械能守恒求解块A 滑到圆弧末端时的速度大小,由动量守恒定律求解滑块A 与B 碰撞后瞬间的共同速度的大小;(2)根据系统的能量守恒求解小车C 上表面的最短长度.(1)设滑块A 滑到圆弧末端时的速度大小为1v ,由机械能守恒定律有:2A A 11m gh m v 2= 代入数据解得12gh 5m/s v ==.设A 、B 碰后瞬间的共同速度为2v ,滑块A 与B 碰撞瞬间与小车C 无关,滑块A 与B 组成的系统动量守恒, ()12A A B m v m m v =+ 代入数据解得2 2.5m/s v =.(2)设小车C 的最短长度为L ,滑块A 与B 最终没有从小车C 上滑出,三者最终速度相同设为3v ,根据动量守恒定律有:()()A B 2A B C 3m m v m m m v +=++ 根据能量守恒定律有:()()()222311gL=22A B A B A B C m m m m v m m m v μ++-++ 联立以上两代入数据解得0.375m L =【点睛】本题要求我们要熟练掌握机械能守恒、能量守恒和动量守恒的条件和公式,正确把握每个过程的物理规律是关键.6.如图所示,一轻质弹簧的一端固定在滑块B 上,另一端与滑块C 接触但未连接,该整体静止放在离地面高为H 的光滑水平桌面上.现有一滑块A 从光滑曲面上离桌面h 高处由静止开始滑下,与滑块B 发生碰撞并粘在一起压缩弹簧推动滑块C 向前运动,经一段时间,滑块C 脱离弹簧,继续在水平桌面上匀速运动一段后从桌面边缘飞出.已知,2,3A B C m m m m m m ===,求:(1)滑块A 与滑块B 碰撞结束瞬间的速度v ; (2)被压缩弹簧的最大弹性势能E Pmax ; (3)滑块C 落地点与桌面边缘的水平距离 s. 【答案】(1)111233v v gh ==(2)6mgh (323Hh 【解析】 【详解】解:(1)滑块A 从光滑曲面上h 高处由静止开始滑下的过程,机械能守恒,设其滑到底面的速度为1v ,由机械能守恒定律有:2112=A A m gh m v解之得:12v gh =滑块A 与B 碰撞的过程,A 、B 系统的动量守恒,碰撞结束瞬间具有共同速度设为v ,由动量守恒定律有:()1A A B m v m m v =+ 解之得:111233v v gh == (2)滑块A 、B 发生碰撞后与滑块C 一起压缩弹簧,压缩的过程机械能守恒,被压缩弹簧的弹性势能最大时,滑块A 、B 、C 速度相等,设为速度2v 由动量守恒定律有: ()12A A B C m v m m m v =++ 由机械能守恒定律有: ()22max 21()2A A CB B P m v m m m m E v -++=+ 解得被压缩弹簧的最大弹性势能:max 16P E mgh =(3)被压缩弹簧再次恢复自然长度时,滑块C 脱离弹簧,设滑块A 、B 的速度为3v ,滑块C 的速度为4v ,分别由动量守恒定律和机械能守恒定律有:()()34A B A B C m m v m m v m v +=++()()22234111222A B A B C m m v m m v m v +=++ 解之得:30=v ,4123v gh =滑块C 从桌面边缘飞出后做平抛运动:4 s v t =212H gt =解之得滑块C 落地点与桌面边缘的水平距离:23s Hh =7.如图所示,内壁粗糙、半径R =0.4 m 的四分之一圆弧轨道AB 在最低点B 与光滑水平轨道BC 相切。

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析
11.在竖直平面内有一个半圆形轨道ABC,半径为R,如图所示,A、C两点的连线水平,B点为轨道最低点 其中AB部分是光滑的,BC部分是粗糙的 有一个质量为m的乙物体静止在B处,另一个质量为2m的甲物体从A点无初速度释放,甲物体运动到轨道最低点与乙物体发生碰撞,碰撞时间极短,碰撞后结合成一个整体,甲乙构成的整体滑上BC轨道,最高运动到D点,OD与OB连线的夹角 甲、乙两物体可以看作质点,重力加速度为g,求:
【详解】
解:(1)设小物块在B点时的速度大小为 ,根据动能定理得:
设小物块在B点时的速度大小为 ,物块从B点滑到圆弧面上最高点C点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒则有:
根据系统机械能守恒有:
联立解得:
(2)若整个水平面光滑,物块以 的速度冲上圆弧面,根据机械能守恒有:
解得:
解之得:
(2)滑块 、 发生碰撞后与滑块 一起压缩弹簧,压缩的过程机械能守恒,被压缩弹簧的弹性势能最大时,滑块 、 、 速度相等,设为速度
由动量守恒定律有:
由机械能守恒定律有:
解得被压缩弹簧的最大弹性势能:
(3)被压缩弹簧再次恢复自然长度时,滑块 脱离弹簧,设滑块 、 的速度为 ,滑块 的速度为 ,分别由动量守恒定律和机械能守恒定律有:
m( v0)+mv1=(m+m)v2③
m( v0)2+ mv12= (2m)v22+mgR④
联立①③④解得:R=
点睛:该题考查动量守恒定律的应用,要求同学们能正确分析物体的运动情况,列出动量守恒以及能量转化的方程;注意使用动量守恒定律解题时要规定正方向.
8.一个静止的铀核 (原子质量为232.0372u)放出一个 粒子(原子质量为4.0026u)后衰变成钍核 (原子质量为228.0287 u).(已知:原子质量单位 , 相当于931MeV)

高考物理动量定理解题技巧讲解及练习题(含答案)及解析

高考物理动量定理解题技巧讲解及练习题(含答案)及解析

高考物理动量定理解题技巧讲解及练习题(含答案)及解析一、高考物理精讲专题动量定理1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ;(2)求运动员在AB 段所受合外力的冲量的I 大小;(3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小.【答案】(1)100m (2)1800N s ⋅(3)3 900 N 【解析】(1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即2202v v aL -=可解得:221002v v L m a-==(2)根据动量定理可知合外力的冲量等于动量的该变量所以01800B I mv N s =-=⋅(3)小球在最低点的受力如图所示由牛顿第二定律可得:2Cv N mg m R-= 从B 运动到C 由动能定理可知:221122C B mgh mv mv =-解得;3900N N =故本题答案是:(1)100L m = (2)1800I N s =⋅ (3)3900N N =点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小.2.如图所示,一质量m 1=0.45kg 的平顶小车静止在光滑的水平轨道上.车顶右端放一质量m 2=0.4 kg 的小物体,小物体可视为质点.现有一质量m 0=0.05 kg 的子弹以水平速度v 0=100 m/s 射中小车左端,并留在车中,已知子弹与车相互作用时间极短,小物体与车间的动摩擦因数为μ=0.5,最终小物体以5 m/s 的速度离开小车.g 取10 m/s 2.求:(1)子弹从射入小车到相对小车静止的过程中对小车的冲量大小. (2)小车的长度.【答案】(1)4.5N s ⋅ (2)5.5m 【解析】①子弹进入小车的过程中,子弹与小车组成的系统动量守恒,有:0011()o m v m m v =+,可解得110/v m s =;对子弹由动量定理有:10I mv mv -=-, 4.5I N s =⋅ (或kgm/s); ②三物体组成的系统动量守恒,由动量守恒定律有:0110122()()m m v m m v m v +=++;设小车长为L ,由能量守恒有:22220110122111()()222m gL m m v m m v m v μ=+-+- 联立并代入数值得L =5.5m ;点睛:子弹击中小车过程子弹与小车组成的系统动量守恒,由动量守恒定律可以求出小车的速度,根据动量定理可求子弹对小车的冲量;对子弹、物块、小车组成的系统动量守恒,对系统应用动量守恒定律与能量守恒定律可以求出小车的长度.3.汽车碰撞试验是综合评价汽车安全性能的有效方法之一.设汽车在碰撞过程中受到的平均撞击力达到某个临界值F 0时,安全气囊爆开.某次试验中,质量m 1=1 600 kg 的试验车以速度v 1 = 36 km/h 正面撞击固定试验台,经时间t 1 = 0.10 s 碰撞结束,车速减为零,此次碰撞安全气囊恰好爆开.忽略撞击过程中地面阻力的影响. (1)求此过程中试验车受到试验台的冲量I 0的大小及F 0的大小;(2)若试验车以速度v 1撞击正前方另一质量m 2 =1 600 kg 、速度v 2 =18 km/h 同向行驶的汽车,经时间t 2 =0.16 s 两车以相同的速度一起滑行.试通过计算分析这种情况下试验车的安全气囊是否会爆开.【答案】(1)I 0 = 1.6×104 N·s , 1.6×105 N ;(2)见解析 【解析】【详解】(1)v 1 = 36 km/h = 10 m/s ,取速度v 1 的方向为正方向,由动量定理有 -I 0 = 0-m 1v 1 ①将已知数据代入①式得 I 0 = 1.6×104 N·s ② 由冲量定义有I 0 = F 0t 1 ③将已知数据代入③式得 F 0 = 1.6×105 N ④(2)设试验车和汽车碰撞后获得共同速度v ,由动量守恒定律有 m 1v 1+ m 2v 2 = (m 1+ m 2)v ⑤对试验车,由动量定理有 -Ft 2 = m 1v -m 1v 1 ⑥ 将已知数据代入⑤⑥式得 F = 2.5×104 N ⑦可见F <F 0,故试验车的安全气囊不会爆开 ⑧4.如图所示,在倾角θ=37°的足够长的固定光滑斜面的底端,有一质量m =1.0kg 、可视为质点的物体,以v 0=6.0m/s 的初速度沿斜面上滑。

高中物理动量守恒定律解题技巧分析及练习题(含答案)含解析

高中物理动量守恒定律解题技巧分析及练习题(含答案)含解析

高中物理动量守恒定律解题技巧分析及练习题(含答案)含解析一、高考物理精讲专题动量守恒定律1.冰球运动员甲的质量为80.0kg 。

当他以5.0m/s 的速度向前运动时,与另一质量为100kg 、速度为3.0m/s 的迎面而来的运动员乙相撞。

碰后甲恰好静止。

假设碰撞时间极短,求:(1)碰后乙的速度的大小; (2)碰撞中总动能的损失。

【答案】(1)1.0m/s (2)1400J 【解析】试题分析:(1)设运动员甲、乙的质量分别为m 、M ,碰前速度大小分别为v 、V ,碰后乙的速度大小为V′,规定甲的运动方向为正方向,由动量守恒定律有:mv-MV=MV′…① 代入数据解得:V′=1.0m/s…②(2)设碰撞过程中总机械能的损失为△E ,应有:mv 2+MV 2=MV′2+△E…③ 联立②③式,代入数据得:△E=1400J 考点:动量守恒定律;能量守恒定律2.[物理─选修3-5] (1)天然放射性元素23994Pu 经过次α衰变和 次β衰变,最后变成铅的同位素 。

(填入铅的三种同位素20682Pb 、20782Pb 、20882Pb 中的一种)(2)某同学利用如图所示的装置验证动量守恒定律.图中两摆摆长相同,悬挂于同一高度,A 、B 两摆球均很小,质量之比为1∶2.当两摆均处于自由静止状态时,其侧面刚好接触.向右上方拉动B 球使其摆线伸直并与竖直方向成45°角,然后将其由静止释放.结果观察到两摆球粘在一起摆动,且最大摆角成30°.若本实验允许的最大误差为±4%,此实验是否成功地验证了动量守恒定律?【答案】(1)8,4,20782Pb ;(2)211P P P ≤4% 【解析】 【详解】(1)设发生了x 次α衰变和y 次β衰变, 根据质量数和电荷数守恒可知,2x -y +82=94, 239=207+4x ;由数学知识可知,x =8,y =4.若是铅的同位素206,或208,不满足两数守恒, 因此最后变成铅的同位素是20782Pb(2)设摆球A 、B 的质量分别为A m 、B m ,摆长为l ,B 球的初始高度为h 1,碰撞前B 球的速度为v B .在不考虑摆线质量的情况下,根据题意及机械能守恒定律得1(1cos 45)h l =-︒①2112B B B m v mgh =② 设碰撞前、后两摆球的总动量的大小分别为P 1、P 2.有P 1=m B v B ③联立①②③式得12(1cos45)B P m gl =-︒ ④ 同理可得2()2(1cos30)A B P m m gl =+-︒ ⑤联立④⑤式得211cos301cos 45A B BP m m P m +-︒=-︒ ⑥ 代入已知条件得221 1.03P P⎛⎫= ⎪⎝⎭⑦ 由此可以推出211P P P -≤4% ⑧ 所以,此实验在规定的范围内验证了动量守恒定律.3.一轻质弹簧一端连着静止的物体B ,放在光滑的水平面上,静止的物体A 被水平速度为v 0的子弹射中并且嵌入其中,随后一起向右运动压缩弹簧,已知物体A 的质量是物体B 的质量的34,子弹的质量是物体B 的质量的14,求:(1)物体A 被击中后的速度大小; (2)弹簧压缩到最短时B 的速度大小。

高考物理动量守恒定律的应用及其解题技巧及练习题(含答案)

高考物理动量守恒定律的应用及其解题技巧及练习题(含答案)

高考物理动量守恒定律的应用及其解题技巧及练习题 (含答案)一、高考物理精讲专题动量守恒定律的应用1.竖直平面内存在着如图甲所示管道,虚线左侧管道水平,虚线右侧管道是半径R=1m 的半圆形,管道截面是不闭合的圆,管道半圆形部分处在竖直向上的匀强电场中,电场强度 E=4X 10/m .小球a 、b 、c 的半径略小于管道内径, b 、c 球用长L 2m 的绝缘细轻杆连接,开始时c 静止于管道水平部分右端P 点处,在M 点处的a 球在水平推力F 的作用下由静止向右运动,当 F 减到零时恰好与b 发生了弹性碰撞,F-t 的变化图像如图乙所示,且满足F 2 t 2 —.已知三个小球均可看做质点且 m a =0.25kg , m b =0.2kg , m c =0.05kg ,小球 (1) 小球a 与b 发生碰撞时的速度 v o ; (2) 小球c 运动到Q 点时的速度v ;(3) 从小球c 开始运动到速度减为零的过程中,小球 c 电势能的增加量.【答案】(1) V 4m/s (2) v=2m/s (3) E p 3.2J 【解析】【分析】对小球 a ,由动量定理可得小球 a 与b 发生碰撞时的速度;小球a 与小球b 、c 组 成的系统发生弹性碰撞由动量守恒和机械能守恒可列式,小球c 运动到Q 点时,小球b 恰好运动到P 点,由动能定理可得小球 c 运动到Q 点时的速度;由于b 、c 两球转动的角速 度和半径都相同,故两球的线速度大小始终相等,从c 球运动到Q 点到减速到零的过程列能量守恒可得; 解:⑴对小球a ,由动量定理可得I m a V 。

0 由题意可知,F-图像所围的图形为四分之一圆弧 ,面积为拉力F 的冲量,由圆方程可知S 1m 2 代入数据可得:v 0 4m/s(2)小球a 与小球b 、c 组成的系统发生弹性碰撞 , 由动量守恒可得 m a V 0 m a V | (m b m c )v 21 2 1 2 12由机械能守恒可得 m a v 0m a v 1 (m b m c )v 222 2解得 V 1 0, V 2 4m/ sA E阳1r c 带q=5 x 1'0)C 的正电荷,其他小球不带电,不计一切摩擦, g=10m/s 2,求小球c运动到Q点时,小球b恰好运动到P点,由动能定理1 2 1 2 m c gR qER ㊁血 mjv ㊁血 mjv ?代入数据可得v 2m/ s⑶由于b 、c 两球转动的角速度和半径都相同,故两球的线速度大小始终相等,假设当两球速度减到零时,设b 球与O 点连线与竖直方向的夹角为 从c 球运动到Q 点到减速到零的过程列能量守恒可得:1 2(m b m c )v qERsin 22.如图所示,小明参加户外竞技活动,站在平台边缘抓住轻绳一端,轻绳另一端固定在 '点,绳子刚好被拉直且偏离竖直方向的角度0 =60.小明从A 点由静止往下摆,达到 O 点正下方B 点突然松手,顺利落到静止在水平平台的平板车上,然后随平板车一起向右运 动•到达C 点,小明跳离平板车(近似认为水平跳离),安全落到漂浮在水池中的圆形浮漂 上•绳长L=1.6m ,浮漂圆心与 C 点的水平距离x=2.7m 、竖直高度y=1.8m ,浮漂半径 R=0.3m 、不计厚度,小明的质量m=60kg ,平板车的质量 m=20kg ,人与平板车均可视为质点,不计平板车与平台之间的摩擦.重力加速度g=10m/s 2,求:_*』吩(1) 轻绳能承受最大拉力不得小于多少? (2) 小明跳离平板车时的速度在什么范围?(3) 若小明跳离平板车后恰好落到浮漂最右端,他在跳离过程中做了多少功 ?【答案】(1) 1200N (2) 4m/s Wv< 5m/s( 3) 480J 【解析】 【分析】(1)首先根据机械能守恒可以计算到达B 点的速度,再根据圆周运动知识计算拉力大小.(2)由平抛运动规律,按照位移大小可以计算速度范围( 3)由动量守恒和能量守恒规律计算即可. 【详解】解(I)从A 到B .由功能关系可得1 2 mgL(1 cos ) mv ①2代人数据求得v=4 m/s ②m b gR(1cos ) m c gRsin 解得sin0637因此小球c 电势能的增加量: E p qER(1 sin ) 3.2J2在最低点B处,T mg mv③联立①②解得,轻绳能承受最大拉力不得小于T=1200N(2) 小明离开滑板后可认为做平抛运动1 2竖直位移y gt1 2 3④2离C点水平位移最小位移x R v min t⑤离C点水平位移最大为X R V min t⑥联立④⑤⑥解得小明跳离滑板时的速度 4 m/s Wvw 5 m/s(3) 小明落上滑板时,动量守恒mv (m m0)V| ⑦代人数据求得V i=3 m/s⑧离开滑板时,动量守恒(m m0)v| mv C m o V2⑨将⑧代人⑨得V2=-3 m/s由功能关系可得1 2 1 2 1 2 W ( — mv C m0v2) m m0 v1⑩.2 2 2解得W=480 J3. 某种弹射装置的示意图如图所示,光滑的水平导轨MN右端N处于倾斜传送带理想连接,传送带长度L=15.0m,皮带以恒定速率v=5m/s顺时针转动,三个质量均为m=1.0kg的滑块A、B C置于水平导轨上, B C之间有一段轻弹簧刚好处于原长,滑块B与轻弹簧连接,C未连接弹簧,B C处于静止状态且离N点足够远,现让滑块A以初速度V0=6m/s 沿B、C 连线方向向B运动,A与B碰撞后粘合在一起•碰撞时间极短,滑块C脱离弹簧后滑上倾角0 =37的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C与传送带之间的动摩擦因数卩=0.8重力加速度g=10m/s2, sin37=0.6, cos37°0.8.1滑块A、B碰撞时损失的机械能;2滑块C在传送带上因摩擦产生的热量Q;3若每次实验开始时滑块A的初速度V。

高考物理动量定理及其解题技巧及练习题(含答案)含解析

高考物理动量定理及其解题技巧及练习题(含答案)含解析

高考物理动量定理及其解题技巧及练习题(含答案)含解析一、高考物理精讲专题动量定理1.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停在沙坑里.求:⑴沙对小球的平均阻力F ;⑵小球在沙坑里下落过程所受的总冲量I . 【答案】(1)122()mg t t t (2)1mgt 【解析】试题分析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t 1+t 2,而阻力作用时间仅为t 2,以竖直向下为正方向,有: mg(t 1+t 2)-Ft 2=0, 解得:方向竖直向上⑵仍然在下落的全过程对小球用动量定理:在t 1时间内只有重力的冲量,在t 2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有: mgt 1-I=0,∴I=mgt 1方向竖直向上 考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法.2.如图所示,在倾角θ=37°的足够长的固定光滑斜面的底端,有一质量m =1.0kg 、可视为质点的物体,以v 0=6.0m/s 的初速度沿斜面上滑。

已知sin37º=0.60,cos37º=0.80,重力加速度g 取10m/s 2,不计空气阻力。

求: (1)物体沿斜面向上运动的加速度大小;(2)物体在沿斜面运动的过程中,物体克服重力所做功的最大值; (3)物体在沿斜面向上运动至返回到斜面底端的过程中,重力的冲量。

【答案】(1)6.0m/s 2(2)18J (3)20N·s ,方向竖直向下。

【解析】 【详解】(1)设物体运动的加速度为a ,物体所受合力等于重力沿斜面向下的分力为:F=mg sin θ根据牛顿第二定律有:F=ma ;解得:a =6.0m/s 2(2)物体沿斜面上滑到最高点时,克服重力做功达到最大值,设最大值为v m ;对于物体沿斜面上滑过程,根据动能定理有:2120m W mv -=-解得W =18J ;(3)物体沿斜面上滑和下滑的总时间为:02262s 6v t a ⨯=== 重力的冲量:20N s G I mgt ==⋅方向竖直向下。

高考物理动量定理解题技巧及经典题型及练习题(含答案)及解析

高考物理动量定理解题技巧及经典题型及练习题(含答案)及解析

高考物理动量定理解题技巧及经典题型及练习题(含答案)及解析一、高考物理精讲专题动量定理1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。

车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。

【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】(1)设运动过程中摩擦阻力做的总功为W ,则W =-kmgL -2kmgL =-3kmgL即整个过程中摩擦阻力所做的总功为-3kmgL 。

(2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得mv 1=2mv 222101122kmgL mv mv -=- 221(2)0(2)2k m gL m v -=-由以上各式得010v kgL =所以人给第一辆车水平冲量的大小010I mv m kgL ==2.如图1所示,水平面内的直角坐标系的第一象限有磁场分布,方向垂直于水平面向下,磁感应强度沿y 轴方向没有变化,与横坐标x 的关系如图2所示,图线是双曲线(坐标是渐近线);顶角θ=53°的光滑金属长导轨MON 固定在水平面内,ON 与x 轴重合,一根与ON 垂直的长导体棒在水平向右的外力作用下沿导轨MON 向右滑动,导体棒在滑动过程中始终保持与导轨良好接触,已知t =0时,导体棒位于顶角O 处;导体棒的质量为m =4kg ;OM 、ON 接触处O 点的接触电阻为R =0.5Ω,其余电阻不计,回路电动势E 与时间t 的关系如图3所示,图线是过原点的直线,求:(1)t =2s 时流过导体棒的电流强度的大小; (2)在1~2s 时间内导体棒所受安培力的冲量大小;(3)导体棒滑动过程中水平外力F (单位:N )与横坐标x (单位:m )的关系式. 【答案】(1)8A (2)8N s ⋅(3)32639F x =+【解析】 【分析】 【详解】(1)根据E-t 图象中的图线是过原点的直线特点,可得到t =2s 时金属棒产生的感应电动势为4V E =由欧姆定律得24A 8A 0.5E I R === (2)由图2可知,1(T m)x B =⋅ 由图3可知,E 与时间成正比,有E =2t (V )4EI t R== 因θ=53°,可知任意t 时刻回路中导体棒有效切割长度43x L = 又由F BIL =安所以163F t 安=即安培力跟时间成正比所以在1~2s 时间内导体棒所受安培力的平均值163233N 8N2F +==故8N s I F t =∆=⋅安(3)因为43vE BLv Bx ==⋅所以1.5(m/s)v t =可知导体棒的运动时匀加速直线运动,加速度21.5m/s a =又212x at =,联立解得 32639F x =+【名师点睛】本题的关键首先要正确理解两个图象的数学意义,运用数学知识写出电流与时间的关系,要掌握牛顿运动定律、闭合电路殴姆定律,安培力公式、感应电动势公式.3.图甲为光滑金属导轨制成的斜面,导轨的间距为1m l =,左侧斜面的倾角37θ=︒,右侧斜面的中间用阻值为2R =Ω的电阻连接。

高中物理动量守恒定律的应用技巧(很有用)及练习题含解析

高中物理动量守恒定律的应用技巧(很有用)及练习题含解析

高中物理动量守恒定律的应用技巧(很有用)及练习题含解析一、高考物理精讲专题动量守恒定律的应用1.如图所示质量为m的物块A在光滑的水平面上以一定的速度向右滑行,质量为2m的圆弧体静止在光滑水平面上,光滑圆弧面最低点与水平面相切,圆弧的半径为R,圆弧所对的圆心角θ=53°,物块滑上圆弧体后,刚好能滑到圆弧体的最高点,重力加速度为g。

求(1)物块在水平面上滑行的速度大小;(2)若将圆弧体锁定,物块仍以原来的速度向右滑行并滑上圆弧体,则物块从圆弧面上滑出后上升到最高点的速度大小及最高点离地面的高度。

【答案】(1)06 5v gR=(2)232 55v gR =66125 h R =【解析】【分析】(1)A、B组成的系统在水平方向动量守恒,应用动量守恒定律与机械能守恒定律可以求出物块A的速度。

(2)圆弧体固定,物块上滑过程机械能守恒,应用机械能守恒定律可以求出到达圆弧体上端时的速度,离开圆弧体后物块做斜上抛运动,应用运动的合成与分解可以求出到达最高点的速度,应用机械能守恒定律可以求出上升的最大高度。

【详解】(1)物块与圆弧体组成的系统在水平方向动量守恒,物块到达最高点时两者速度相等,以向右为正方向,由动量守恒定律得:mv0=(m+2m)v,由机械能守恒定律得:12m v02=12(m+2m)v2+mgR(1−cosθ),解得:06 5v gR =(2)对物块,由机械能守恒定律得:12m v02=12m v12+mgR(1−cosθ),解得:12 5v gR=物块从圆弧最高点抛出后,在水平方向做匀速直线运动,竖直方向做竖直上抛运动,物块到达最高点时,物块的速度:v2=v1cosθ=3255gR,由机械能守恒定律得:12m v02=mgh+12m v22,解得:h=66125R ; 【点睛】本题考查了动量守恒定律与机械能守恒定律的应用,分析清楚物体运动过程是解题的前提,应用动量守恒定律、机械能守恒定律即可解题。

高考物理动量守恒定律的应用解题技巧及练习题(含答案)及解析

高考物理动量守恒定律的应用解题技巧及练习题(含答案)及解析

高考物理动量守恒定律的应用解题技巧及练习题(含答案)及解析一、高考物理精讲专题动量守恒定律的应用1.如图所示,粗糙斜面与光滑水平面通过半径可忽略的光滑小圆弧平滑连接,斜面倾角α=37°,A 、B 是两个质量均为m =1kg 的小滑块(可看作质点),C 为左端附有胶泥的薄板(可移动且质量不计),D 为两端分别连接B 和C 的轻质弹簧.当滑块A 置于斜面上且受到大小为F =4N 、方向垂直于斜面向下的恒力作用时,恰能沿斜面向下匀速运动.现撤去F ,让滑块A 从斜面上距斜面末端L =1m 处由静止下滑.(g 取10m/s 2,sin37°=0.6,cos37°=0.8)(1)求滑块A 到达斜面末端时的速度大小(2)滑块A 与C (原来C 、B 、D 处于静止状态)接触后粘连在一起,求此后两滑块和弹簧构成的系统在相互作用过程中弹簧的最大弹性势能是多少? 【答案】(1) v =2m/s (2) E P =1J 【解析】 【分析】 【详解】(1)滑块A 匀速下滑时,受重力mg 、恒力F 、斜面支持力N 和摩擦力f 作用 由平衡条件有: ()sin cos 0mg mg F αμα-+= 代入数据解得: μ=0.5撤去F 后,滑块A 匀加速下滑,由动能定理有: ()21sin cos 2mg mg L mv αμα-= 代入数据得: v =2m/s(2)两滑块和弹簧构成的系统在相互作用过程中动量守恒,当它们速度相等时,弹簧具有最大弹性势能,设共同速度为v 1, 由动量守恒: mv =2mv 1 由能量守恒定律有: 22111222P E mv mv =-⨯ 联立解得: E P =1J2.如图所示,质量为M=2kg 的木板A 静止在光滑水平面上,其左端与固定台阶相距x ,右端与一固定在地面上的半径R=0.4m 的光滑四分之一圆弧紧靠在一起,圆弧的底端与木板上表面水平相切。

质量为m=1kg 的滑块B(可视为质点)以初速度08/v m s =从圆弧的顶端沿圆弧下滑,B 从A 右端的上表面水平滑入时撤走圆弧。

高中物理动量定理及其解题技巧及练习题(含答案)及解析

高中物理动量定理及其解题技巧及练习题(含答案)及解析

高中物理动量定理及其解题技巧及练习题(含答案)及解析一、高考物理精讲专题动量定理1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ;(2)求运动员在AB 段所受合外力的冲量的I 大小;(3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小.【答案】(1)100m (2)1800N s ⋅(3)3 900 N 【解析】(1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即2202v v aL -=可解得:221002v v L m a-==(2)根据动量定理可知合外力的冲量等于动量的该变量所以01800B I mv N s =-=⋅(3)小球在最低点的受力如图所示由牛顿第二定律可得:2Cv N mg m R-= 从B 运动到C 由动能定理可知:221122C B mgh mv mv =-解得;3900N N =故本题答案是:(1)100L m = (2)1800I N s =⋅ (3)3900N N =点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小.2.图甲为光滑金属导轨制成的斜面,导轨的间距为1m l =,左侧斜面的倾角37θ=︒,右侧斜面的中间用阻值为2R =Ω的电阻连接。

在左侧斜面区域存在垂直斜面向下的匀强磁场,磁感应强度大小为10.5T B =,右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁场,磁感应强度为20.5T B =。

高考物理动量定理常见题型及答题技巧及练习题(含答案)含解析

高考物理动量定理常见题型及答题技巧及练习题(含答案)含解析

高考物理动量定理常见题型及答题技巧及练习题(含答案)含解析一、高考物理精讲专题动量定理1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。

车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。

【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】(1)设运动过程中摩擦阻力做的总功为W ,则W =-kmgL -2kmgL =-3kmgL即整个过程中摩擦阻力所做的总功为-3kmgL 。

(2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得mv 1=2mv 222101122kmgL mv mv -=- 221(2)0(2)2k m gL m v -=-由以上各式得010v kgL =所以人给第一辆车水平冲量的大小010I mv m kgL ==2.汽车碰撞试验是综合评价汽车安全性能的有效方法之一.设汽车在碰撞过程中受到的平均撞击力达到某个临界值F 0时,安全气囊爆开.某次试验中,质量m 1=1 600 kg 的试验车以速度v 1 = 36 km/h 正面撞击固定试验台,经时间t 1 = 0.10 s 碰撞结束,车速减为零,此次碰撞安全气囊恰好爆开.忽略撞击过程中地面阻力的影响. (1)求此过程中试验车受到试验台的冲量I 0的大小及F 0的大小;(2)若试验车以速度v 1撞击正前方另一质量m 2 =1 600 kg 、速度v 2 =18 km/h 同向行驶的汽车,经时间t 2 =0.16 s 两车以相同的速度一起滑行.试通过计算分析这种情况下试验车的安全气囊是否会爆开.【答案】(1)I 0 = 1.6×104N·s , 1.6×105N ;(2)见解析 【解析】 【详解】(1)v 1 = 36 km/h = 10 m/s ,取速度v 1 的方向为正方向,由动量定理有 -I 0 = 0-m 1v 1 ①将已知数据代入①式得 I 0 = 1.6×104 N·s ② 由冲量定义有I 0 = F 0t 1 ③将已知数据代入③式得 F 0 = 1.6×105 N ④(2)设试验车和汽车碰撞后获得共同速度v ,由动量守恒定律有 m 1v 1+ m 2v 2 = (m 1+ m 2)v ⑤对试验车,由动量定理有 -Ft 2 = m 1v -m 1v 1 ⑥ 将已知数据代入⑤⑥式得 F = 2.5×104 N ⑦可见F <F 0,故试验车的安全气囊不会爆开 ⑧3.北京将在2022年举办冬季奥运会,滑雪运动将速度与技巧完美地结合在一起,一直深受广大观众的欢迎。

高中物理动量守恒定律解题技巧讲解及练习题(含答案)

高中物理动量守恒定律解题技巧讲解及练习题(含答案)

【答案】 v0 v0
【解析】设 A、B 球碰撞后速度分别为 v1 和 v2 由动量守恒定律得 2mv0=2mv1+mv2
且由题意知

解得 v1= v0,v2= v0 视频
7.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到 108K 时,可
以发生“氦燃烧”。
①完成“氦燃烧”的核反应方程:
由于 A、B 整体恰好不再与 C 碰撞,故 v1 vC
联立以上三式可得 vA =2m/s。
【考点定位】(1)核反应方程,半衰期。
(2)动量守恒定律。
8.如图,一质量为 M 的物块静止在桌面边缘,桌面离水平地面的高度为 h.一质量为 m 的 子弹以水平速度 v0 射入物块后,以水平速度 v0/2 射出.重力加速度为 g.求: (1)此过程中系统损失的机械能; (2)此后物块落地点离桌面边缘的水平距离.
mgL=
1 2
mv02-
1 2
m(
v0 2
)2-
1 2
2m(
v0 4
)2
解得 5v02 16gL
(3)对 A 滑上 C 直到最高点的作用过程,A、C 系统水平方向上动量守恒,则有:
A、C 系统机械能守恒:
mv0 +mvB=2mv 2
mgR=1 m(v0 )2 1 m(v0 )2 1 2mv2 22 24 2
小球 B 与地面碰撞后根据没有动能损失所以 B 离开地面上抛时速度 v0 vB 4m / s
所以 P 点的高度 hp
v02 vB 2g
'2
0.75m
考点:动量守恒定律 能量守恒
6.牛顿的《自然哲学的数学原理》中记载,A、B 两个玻璃球相碰,碰撞后的分离速度和 它们碰撞前的接近速度之比总是约为 15∶ 16.分离速度是指碰撞后 B 对 A 的速度,接近速 度是指碰撞前 A 对 B 的速度.若上述过程是质量为 2m 的玻璃球 A 以速度 v0 碰撞质量为 m 的静止玻璃球 B,且为对心碰撞,求碰撞后 A、B 的速度大小.

高考物理动量定理解题技巧及练习题(1)

高考物理动量定理解题技巧及练习题(1)

高考物理动量定理解题技巧及练习题(1)一、高考物理精讲专题动量定理1.如图所示,一光滑水平轨道上静止一质量为M =3kg 的小球B .一质量为m =1kg 的小球A 以速度v 0=2m/s 向右运动与B 球发生弹性正碰,取重力加速度g =10m/s 2.求:(1)碰撞结束时A 球的速度大小及方向; (2)碰撞过程A 对B 的冲量大小及方向.【答案】(1)-1m/s ,方向水平向左(2)3N·s ,方向水平向右 【解析】【分析】A 与B 球发生弹性正碰,根据动量守恒及能量守恒求出碰撞结束时A 球的速度大小及方向;碰撞过程对B 应用动量定理求出碰撞过程A 对B 的冲量; 解:(1)碰撞过程根据动量守恒及能量守恒得:0A B mv mv Mv =+2220111222A B mv mv Mv =+ 联立可解得:1m/s B v =,1m/s A v =- 负号表示方向水平向左 (2)碰撞过程对B 应用动量定理可得:0B I Mv =- 可解得:3I N s =⋅ 方向水平向右2.如图所示,在倾角θ=37°的足够长的固定光滑斜面的底端,有一质量m =1.0kg 、可视为质点的物体,以v 0=6.0m/s 的初速度沿斜面上滑。

已知sin37º=0.60,cos37º=0.80,重力加速度g 取10m/s 2,不计空气阻力。

求: (1)物体沿斜面向上运动的加速度大小;(2)物体在沿斜面运动的过程中,物体克服重力所做功的最大值; (3)物体在沿斜面向上运动至返回到斜面底端的过程中,重力的冲量。

【答案】(1)6.0m/s 2(2)18J (3)20N·s ,方向竖直向下。

【解析】 【详解】(1)设物体运动的加速度为a ,物体所受合力等于重力沿斜面向下的分力为:F=mg sin θ根据牛顿第二定律有:F=ma ;解得:a =6.0m/s 2(2)物体沿斜面上滑到最高点时,克服重力做功达到最大值,设最大值为v m ;对于物体沿斜面上滑过程,根据动能定理有:2120m W mv -=-解得W =18J ;(3)物体沿斜面上滑和下滑的总时间为:02262s 6v t a ⨯=== 重力的冲量:20N s G I mgt ==⋅方向竖直向下。

高中物理动量守恒定律的应用解题技巧及经典题型及练习题(含答案)及解析

高中物理动量守恒定律的应用解题技巧及经典题型及练习题(含答案)及解析
8.如图所示,质量为m=0.5kg的小球用长为r=0.4m的细绳悬挂于O点,在O点的正下方有一个质量为m1=1.0kg的小滑块,小滑块放在一块静止在光滑水平面上、质量为m2=1.0kg的木板左端.现将小球向左上方拉至细绳与竖直方向夹角θ=60°的位置由静止释放,小球摆到最低点与小滑块发生正碰并被反弹,碰撞时间极短,碰后瞬间细绳对小球的拉力比碰前瞬间的减小了△T=4.8N,而小滑块恰好不会从木板上掉下.已知小滑块与木板之间的动摩擦因数为μ=0.12,不计空气阻力,重力加速度g取10m/s2.求:
4.在游乐场中,父子两人各自乘坐的碰碰车沿同一直线相向而行,在碰前瞬间双方都关闭了动力,此时父亲的速度大小为v,儿子的速度大小为2v.两车瞬间碰撞后儿子沿反方向滑行,父亲运动的方向不变且经过时间t停止运动.已知父亲和车的总质量为3m,儿子和车的总质量为m,两车与地面之间的动摩擦因数均为μ,重力加速度大小为g,求:
(2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R;
(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q.
【详解】
(1)设弹簧恢复到自然长度时A、B的速度分别为vA、vB,由动量守恒定律: 由能量关系:
解得vA=2m/s;vB=4m/s
(2)设B经过d点时速度为vd,在d点:
v′= 0.4m/s
(2)小球与小滑块碰撞过程,动量守恒
mv= -mv′+m1v1
v1= (v+v′) = 1.2m/s
小滑块在木板上滑动过程中,动量守恒
m1v1=(m1+m2)v2
v2= v1= 0.6m/s
由能量守恒可得
μm1gL= m1v12- (m1+m2)v22

高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)

高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)

(1)A、B 相碰后瞬间的共同速度的大小; (2)A、B 相碰前弹簧具有的弹性势能; (3)若在斜面顶端再连接一光滑的半径 R=x0 的半圆轨道 PQ,圆弧轨道与斜面相切 于最高点 P,现让物块 A 以初速度 v 从 P 点沿斜面下滑,与 B 碰后返回到 P 点还具有向上 的速度,则 v 至少为多大时物块 A 能沿圆弧轨道运动到 Q 点.(计算结果可用根式表示)
mv2 (m M )v mv2
解得:v=0.40m/s

P1、P2、M
为系统:
f2L
1 2
mv22
1 (m 2
M )v2
代入数值得:L=3.8m
滑板碰后,P1 向右滑行距离: s1
v2 2a1
0.08m
P2 向左滑行距离: s2
v22 2a2
2.25m
所以 P1、P2 静止后距离:△S=L-S1-S2=1.47m
根据能量守恒定律得: m + = m +
解得:vB = - +
因为 B 不改变运动方向,所以 vB = - + ≥0
解得: q≤ Q
则 B 所带电荷量的最大值为:qm = Q
5.如图所示,质量为 m 的由绝缘材料制成的球与质量为 M=19m 的金属球并排悬挂.现将 绝缘球拉至与竖直方向成 θ=600 的位置自由释放,下摆后在最低点与金属球发生弹性碰 撞.在平衡位置附近存在垂直于纸面的磁场.已知由于磁场的阻尼作用,金属球将于再次 碰撞前停在最低点处.求经过几次碰撞后绝缘球偏离竖直方向的最大角度将小于
450.
【答案】最多碰撞 3 次 【解析】 解:设小球 m 的摆线长度为 l
小球 m 在下落过程中与 M 相碰之前满足机械能守恒:

高考物理动量守恒定律专题训练答案及解析

高考物理动量守恒定律专题训练答案及解析

高考物理动量守恒定律专题训练答案及解析一、高考物理精讲专题动量守恒定律1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v;②23v 【解析】试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v =②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223v v =考点:动量守恒定律2.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A 、B 、C ,三球的质量分别为m A =1kg 、m B =2kg 、m C =6kg ,初状态BC 球之间连着一根轻质弹簧并处于静止,B 、C 连线与杆垂直并且弹簧刚好处于原长状态,A 球以v 0=9m/s 的速度向左运动,与同一杆上的B 球发生完全非弹性碰撞(碰撞时间极短),求:(1)A 球与B 球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中B 球的最小速度. 【答案】(1);(2);(3)零.【解析】试题分析:(1)A 、B 发生完全非弹性碰撞,根据动量守恒定律有:碰后A 、B 的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A、B已由向左的共同速度减小到零后反向加速到向右的,故B 的最小速度为零.考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A、B发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A球与B球碰撞中损耗的机械能.当B、C速度相等时,弹簧伸长量最大,弹性势能最大,结合B、C在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答3.如图所示,一辆质量M=3 kg的小车A静止在光滑的水平面上,小车上有一质量m=l kg 的光滑小球B,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p=6J,小球与小车右壁距离为L=0.4m,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。

高中物理动量定理解题技巧(超强)及练习题(含答案)及解析

高中物理动量定理解题技巧(超强)及练习题(含答案)及解析
(2)木板向右滑行的最大速度v2
(3)木块在木板滑行的时间t
【答案】(1)v1= 6m/s (2)v2=2m/s (3)t=1s
【解析】
【详解】
(1)子弹打入木块过程,由动量守恒定律可得:
m0v0=(m0+m)v1
解得:
v1= 6m/s
(2)木块在木板上滑动过程,由动量守恒定律可得:
(m0+m)v1=(m0+m+M)v2
联立以上各式解得
代入数据得 =8.15m/s =1.85m/s
【名师点睛】
两杆同向运动,回路中的总电动势等于它们产生的感应电动势之差,即与它们速度之差有关,对甲杆由牛顿第二定律列式,对两杆分别运用动量定理列式,即可求解.
7.如图所示,木块A和四分之一光滑圆轨道B静置于光滑水平面上,A、B质量mA=mB=2.0kg。现让A以v0=4m/s的速度水平向右运动,之后与墙壁发生弹性碰撞(碰撞过程中无机械能损失),碰撞时间为t=0.2s。取重力加速度g=10m/s2.求:
解得:
v2=2m/s
(3)对子弹木块整体,由动量定理得:
﹣μ(m0+m)gt=(m0+m)(v2﹣v1)
解得:物块相对于木板滑行的时间
4.在距地面20m高处,某人以20m/s的速度水平抛出一质量为1kg的物体,不计空气阻力(g取10m/s2)。求
(1)物体从抛出到落到地面过程重力的冲量;
(2)落地时物体的动量。
(1)小球与地面碰撞前后的动量变化?
(2)小球受到地面的平均作用力是多大?
【答案】(1)2kg•m/s,方向竖直向上;(2)12N.
【解析】
(1)取竖直向上为正方向,碰撞地面前小球的动量
碰撞地面后小球的动量

高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)含解析

高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)含解析

高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)含解析一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P .现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s ,此时乙尚未与P 相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I =8N 【解析】 【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。

(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。

已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。

求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅ ⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J3.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A 、B 、C ,三球的质量分别为m A =1kg 、m B =2kg 、m C =6kg ,初状态BC 球之间连着一根轻质弹簧并处于静止,B 、C 连线与杆垂直并且弹簧刚好处于原长状态,A 球以v 0=9m/s 的速度向左运动,与同一杆上的B 球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A、B的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A、B已由向左的共同速度减小到零后反向加速到向右的,故B 的最小速度为零.考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A、B发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答4.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。

高考物理动量守恒定律的应用解题技巧及经典题型及练习题(含答案)含解析

高考物理动量守恒定律的应用解题技巧及经典题型及练习题(含答案)含解析

高考物理动量守恒定律的应用解题技巧及经典题型及练习题(含答案)含解析一、高考物理精讲专题动量守恒定律的应用1.如图所示质量为m的物块A在光滑的水平面上以一定的速度向右滑行,质量为2m的圆弧体静止在光滑水平面上,光滑圆弧面最低点与水平面相切,圆弧的半径为R,圆弧所对的圆心角θ=53°,物块滑上圆弧体后,刚好能滑到圆弧体的最高点,重力加速度为g。

求(1)物块在水平面上滑行的速度大小;(2)若将圆弧体锁定,物块仍以原来的速度向右滑行并滑上圆弧体,则物块从圆弧面上滑出后上升到最高点的速度大小及最高点离地面的高度。

【答案】(1)06 5v gR=(2)232 55v gR =66125 h R =【解析】【分析】(1)A、B组成的系统在水平方向动量守恒,应用动量守恒定律与机械能守恒定律可以求出物块A的速度。

(2)圆弧体固定,物块上滑过程机械能守恒,应用机械能守恒定律可以求出到达圆弧体上端时的速度,离开圆弧体后物块做斜上抛运动,应用运动的合成与分解可以求出到达最高点的速度,应用机械能守恒定律可以求出上升的最大高度。

【详解】(1)物块与圆弧体组成的系统在水平方向动量守恒,物块到达最高点时两者速度相等,以向右为正方向,由动量守恒定律得:mv0=(m+2m)v,由机械能守恒定律得:12m v02=12(m+2m)v2+mgR(1−cosθ),解得:06 5v gR =(2)对物块,由机械能守恒定律得:12m v02=12m v12+mgR(1−cosθ),解得:12 5v gR=物块从圆弧最高点抛出后,在水平方向做匀速直线运动,竖直方向做竖直上抛运动,物块到达最高点时,物块的速度:v2=v1cosθ=3255gR,由机械能守恒定律得:12m v02=mgh+12m v22,解得:h=66125R ; 【点睛】本题考查了动量守恒定律与机械能守恒定律的应用,分析清楚物体运动过程是解题的前提,应用动量守恒定律、机械能守恒定律即可解题。

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析一、高考物理精讲专题动量守恒定律1.如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h="0.3" m (h 小于斜面体的高度).已知小孩与滑板的总质量为m 1="30" kg ,冰块的质量为m 2="10" kg ,小孩与滑板始终无相对运动.取重力加速度的大小g="10" m/s 2.(i )求斜面体的质量;(ii )通过计算判断,冰块与斜面体分离后能否追上小孩? 【答案】(i )20 kg (ii )不能 【解析】试题分析:①设斜面质量为M ,冰块和斜面的系统,水平方向动量守恒:222()m v m M v =+系统机械能守恒:22222211()22m gh m M v m v ++= 解得:20kg M =②人推冰块的过程:1122m v m v =,得11/v m s =(向右)冰块与斜面的系统:22223m v m v Mv '=+ 22222223111+222m v m v Mv ='解得:21/v m s =-'(向右) 因21=v v ',且冰块处于小孩的后方,则冰块不能追上小孩. 考点:动量守恒定律、机械能守恒定律.2.光滑水平轨道上有三个木块A 、B 、C ,质量分别为3A m m =、B C m m m ==,开始时B 、C 均静止,A 以初速度0v 向右运动,A 与B 相撞后分开,B 又与C 发生碰撞并粘在一起,此后A 与B 间的距离保持不变.求B 与C 碰撞前B 的速度大小.【答案】065B v v = 【解析】 【分析】【详解】设A 与B 碰撞后,A 的速度为A v ,B 与C 碰撞前B 的速度为B V ,B 与C 碰撞后粘在一起的速度为v ,由动量守恒定律得: 对A 、B 木块:0A A A B B m v m v m v =+对B 、C 木块:()B B B C m v m m v =+由A 与B 间的距离保持不变可知A v v = 联立代入数据得:065B v v =.3.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到108K 时,可以发生“氦燃烧”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)a、b整体从B到D的过程中.由动能定理有 ,解得 ,在D点.对滑块受力分析得: ,解得 ,所以滑块能通过D点接着水平飞出,在竖直方向; ,解得 水平方问受电场力加速度不变则
7.将一轻弹簧竖直放置在地面上,在其顶端由静止释放一质量为m的物体,当弹簧被压缩到最短时,其压缩量为l.现将该弹簧的两端分别栓接小物块A与B,并将它们静置于倾角为30°的足够长固定斜面上,B靠在垂直于斜面的挡板上,P点为斜面上弹簧自然状态时A的位置,如图所示.由斜面上距P点6l的O点,将另一物块C以初速度t=5 沿斜面向下滑行,经过一段时间后与A发生正碰,碰撞时间极短,碰后C、A紧贴在一起运动,但不粘连,已知斜面P点下方光滑、上方粗糙,A、B、C的质量均为4m,与斜面间的动摩擦因数均为μ= ,弹簧劲度系数k= ,弹簧始终在弹性限度内,重力加速度为g.求:
同理滑块B在圆形轨道最低点被弹出时的速度大小也为v0,弹簧将两滑块弹开的过程,对于A、B两滑块所组成的系统水平方向动量守恒,(mA+mB)v0=mAv1-mBv0
解得:h=0.8 m
(3)设弹簧将两滑块弹开的过程中释放的弹性势能为Ep,对于弹开两滑块的过程,根据机械能守恒定律,有 (mA+mB)v02+ Ep= mAv12+ mBv02
2.如图所示,质量为mc=2mb的物块c静止在倾角均为α=30°的等腰斜面上E点,质量为ma的物块a和质量为mb的物块b通过一根不可伸长的匀质轻绳相连,细绳绕过斜面顶端的小滑轮并处于松驰状态,按住物块a使其静止在D点,让物块b从斜面顶端C由静止下滑,刚下滑到E点时释放物块a,细绳正好伸直且瞬间张紧绷断,之后b与c立即发生完全弹性碰撞,碰后a、b都经过t=1 s同时到达斜面底端.已知A、D两点和C、E两点的距离均为l1=0.9m,E、B两点的距离为l2=0.4m.斜面上除EB段外其余都是光滑的,物块b、c与EB段间的动摩擦因数均为μ= ,空气阻力不计,滑轮处摩擦不计,细绳张紧时与斜面平行,取g=10 m/s2.求:
解得:v2= m/s
(2)设滑块A在圆形轨道最低点被弹出时的速度大小为v1,对于滑块A从圆形轨道最低点运动到最高点的过程,根据机械能守恒定律,有
mAv12=mAg•2R+ mAv22
可得:v1=6m/s
设滑块A和B运动到圆形轨道最低点速度大小为v0,对滑块A和B下滑到圆形轨道最低点的过程,根据动能定理,有(mA+mB)gh= (mA+mB)v02
【解析】
【详解】
(1)对滑块从A点运动到B点的过程,根据动能定理有:Fd= m1v2,
代入数据解得:v=6m/s
小球到达P点时,受力如图所示,由平衡条件得:qE=m2gtanθ,
解得:E=7.5×104N/C。
(2)小球所受重力与电场力的合力大小为:G等= ①
小球到达P点时,由牛顿第二定律有:G等=m2 ②
【解析】
【详解】
(1)a从A到B的过程用动能定理得 ,解得 对a与b碰撞用动量守恒定律得mv1=2mv2,解得
(2)当滑块重力与电场力合力方向和圆轨道径向一致时,滑块速度最大.如图,则有 ,对滑块从碰后到最大速度的过程用动能定理有 ,解得滑块最大速度 ,滑块在P点用牛顿第二定律得, ,解得滑块受到轨道支持力 ,由牛顿第三定律.此时滑块对轨道作用力
(1)物块b由C点下滑到E点所用时间.
(2)物块a能到达离A点的最大高度.
(3)a、b物块的质量之比 .
【答案】(1)0.6;(2)0.578;(3)15/16
【解析】
【分析】
【详解】
本题考查物体沿斜面的运动,以及碰撞;需运用牛顿运动定律、运动学公式、动量及能量守恒、动量定理等知识.
(1)物块b在斜面上光滑段CE运动的加速度为
(1)滑块A运动到圆形轨道最高点时速度的大小;
(2)两滑块开始下滑时距圆形轨道底端的高度h;
(3)弹簧在将两滑块弹开的过程中释放的弹性势能.
【答案】(1) m/s;(2)0.8 m;(3)4 J
【解析】
【分析】
【详解】
(1)设滑块A恰能通过圆形轨道最高点时的速度大小为v2,
根据牛顿第二定律有mAg=mA
高考物理动量守恒定律的应用解题技巧及练习题含解析
一、高考物理精讲专题动量守恒定律的应用
1.如图所示质量为m的物块A在光滑的水平面上以一定的速度向右滑行,质量为2m的圆弧体静止在光滑水平面上,光滑圆弧面最低点与水平面相切,圆弧的半径为R,圆弧所对的圆心角θ=53°,物块滑上圆弧体后,刚好能滑到圆弧体的最高点,重力加速度为g。求
(1)物块在水平面上滑行的速度大小;
(2)若将圆弧体锁定,物块仍以原来的速度向右滑行并滑上圆弧体,则物块从圆弧面上滑出后上升到最高点的速度大小及最高点离地面的高度。
【答案】(1) (2)
【解析】
【分析】
(1)A、B组成的系统在水平方向动量守恒,应用动量守恒定律与机械能守恒定律可以求出物块A的速度。
(2)圆弧体固定,物块上滑过程机械能守恒,应用机械能守恒定律可以求出到达圆弧体上端时的速度,离开圆弧体后物块做斜上抛运动,应用运动的合成与分解可以求出到达最高点的速度,应用机械能守恒定律可以求出上升的最大高度。
(1)求撤去该恒力瞬间滑块的速度大小v以及匀强电场的电场强度大小E;
(2)求小球到达P点时的速度大小vP和B、C两点间的距离x;
(3)若小球从P点飞出后落到水平轨道上的Q点(图中未画出)后不再反弹,求Q、C两点间的距离L。
【答案】(1)撤去该恒力瞬间滑块的速度大小是6m/s,匀强电场的电场强度大小是7.5×104N/C;(2)小球到达P点时的速度大小是2.5m/s,B、C两点间的距离是0.85m。(3)Q、C两点间的距离为0.5625m。
由以上式子得:
(2)依题意,当竖直放置的弹簧被压缩l时,质量为m的物体的动能为零,其重力势能转化为弹簧的弹性势能,由机械能守恒定律,弹簧的弹性势能为:
C与A碰撞过程中动量守恒,有
C与A后返回P点过程,B始终未动,对A、C及弹簧组成的系统,根据机械能守恒定律得:
此后C与A分离,C沿斜面向上做匀减速运动直至停下,根据动能定理可得:
(1)A与B开始释放时,A、B的加速度 和 ;
(2)A与B第一次相碰后,B的速率 ;
(3)从A开始运动到两滑块第二次碰撞所经历的时间t.
【答案】(1) ; (2) (3)
【解析】
【详解】
解:(1)对 分析:
, 仍处于静止状态
对 分析,底面光滑,则有:
解得:
(2)与 第一次碰撞前的速度,则有:
解得:
所用时间由: ,解得:
代入数据,得
解得 的大小为
物块b刚下滑到E点时的速度为
若取 ,则 的大小为 ,与事实不符,所以舍去.
取 ,则 ,方向沿斜面向下.
设细绳对物块a和b的冲量大小为I,由
解得
点睛:绳绷紧瞬间,对两端物体的冲量大小相等.
3.如图所示,倾角 的足够长的斜面上,放着两个相距L0、质量均为m的滑块A和B,滑块A的下表面光滑,滑块B与斜面间的动摩擦因数 .由静止同时释放A和B,此后若A、B发生碰撞,碰撞时间极短且为弹性碰撞.已知重力加速度为g,求:
(1)C与A碰撞前瞬间的速度大小;
(2)C最终停止的位置与O点的距离
(3)判断上述过程中B能否脱离挡板,并说明理由.
【答案】(1) (2) (3) ,说明此时A仍有沿斜面向上速度,故B可以离开挡板
【解析】
【详解】
(1)刚开始A压缩弹簧,设此时弹簧压缩量为 ,对A根据平衡条件可得
解得
设C与A碰前瞬间速度大小为 ,由动能定理得:
对 ,由动量守恒定律得:
由机械能守恒得:
解得:
(3)碰后, 做初速度为0的匀加速运动, 做速度为 的匀速直线运动,设再经时间 发生第二次碰撞,则有:
第二次相碰:
解得:
从 开始运动到两滑块第二次碰撞所经历的的时间:
解得:
4.如图所示,在竖直面内有一个光滑弧形轨道,其末端水平,且与处于同一竖直面内光滑圆形轨道的最低端相切,并平滑连接.A,B两滑块(可视为质点)用轻细绳拴接在一起,在它们中间夹住一个被压缩的微小轻质弹簧.两滑块从弧形轨道上的某一高度P点处由静止滑下,当两滑块刚滑入圆形轨道最低点时拴接两滑块的绳突然断开,弹簧迅速将两滑块弹开,其中前面的滑块A沿圆形轨道运动恰能通过圆形轨道的最高点,后面的滑块B恰能返回P点.己知圆形轨道的半径 ,滑块A的质量 ,滑块B的质量 ,重力加速度g取 ,空气阻力可忽略不计.求:
解得:Ep=4J
5.如图所示,竖直平面内有一固定绝缘轨道ABCDP,由半径r=0.5m的圆弧轨道CDP和与之相切于C点的水平轨道ABC组成,圆弧轨道的直径DP与竖直半径OC间的夹角θ=37°,A、B两点间的距离d=0.2m。质量m1=0.05kg的不带电绝缘滑块静止在A点,质量m2=0.1kg、电荷量q=1×10﹣5C的带正电小球静止在B点,小球的右侧空间存在水平向右的匀强电场。现用大小F=4.5N、方向水平向右的恒力推滑块,滑块到达B点前瞬间撤去该恒力,滑块与小球发生弹性正碰,碰后小球沿轨道运动,到达P点时恰好和轨道无挤压且所受合力指向圆心。小球和滑块均视为质点,碰撞过程中小球的电荷量不变,不计一切摩擦。取g=10m/s2,sin37°=0.6,cos37°=0.8.
由 解得:
(2)取沿AC方向为正方向,由 , 解得
a沿斜面上滑距离有
所以物块a能到达离A点的最大高度
(3)设绳断时物块b的速度为 ,b与c相碰后b的速度为 ,c的速度为 ,则
联立解得
因 的方向沿斜面向下,故 的方向沿斜面向下, 的方向沿斜面向上.
在EB段上的加速度为 ,物块b在EB段上作匀速运动.
和c相碰后b先向上滑再下滑到E点时的速度仍为 ,则
联立①②,代入数据得:vP=2.5m/s
相关文档
最新文档