§ 动量守恒定律的应用

合集下载

动量守恒定律的应用课件

动量守恒定律的应用课件

公式
m1v1 + m2v2 = m1v1' + m2v2'
应用
在研究物体的碰撞时,经 常使用动量守恒定律来计 算物体的速度和方向。
非弹性碰撞
定义
两个物体碰撞后,动能部 分损失,部分动能转化为 物体的内能。
公式
m1v1 + m2v2 = m1v1' + m2v2' + Q(Q为内能 )
应用
在研究物体的碰撞时,非 弹性碰撞经常出现在实际 生活中,如车辆碰撞等。
动量守恒定律是指在一个封闭系统中,不考虑外力的情况下,动量保持不变 。
动量守恒定律的公式
动量守恒定律的公式为:m1v1 + m2v2 = m11和m2 是物体的质量,v1和v2是物体的速度,v1'和v2'是物体碰撞后的速度。
动量守恒的条件
系统不受外力或外力之和为零
01
05
动量守恒定律在工程领域 的应用
机械工程
01
机构动力学
动量守恒定律在机械工程中广泛应用于机构动力学的研究。在研究机
械系统运动规律时,动量守恒定律能够帮助我们确定系统在某一时刻
的动量,从而更好地分析机械系统的动力学行为。
02
碰撞分析
在机械工程中,动量守恒定律也被广泛应用于碰撞分析。在碰撞过程
中,物体的动量会发生变化,利用动量守恒定律可以确定碰撞后物体
在水利工程中,水面波动分析是一个重要的研究领域。 利用动量守恒定律可以帮助我们分析水面的波动情况, 进而研究如何减小波浪对水利工程的影响。
水流动力学
水流动力学是水利工程中的基础学科之一。动量守恒定 律可以帮助我们分析水流中各个方向的流速和方向,进 而研究水流的运动规律和流态。

动量守恒定律应用

动量守恒定律应用

动量守恒定律应用动量守恒定律是物理学中的重要定律之一,它描述了在没有外力作用下,一个孤立系统的总动量保持恒定不变。

这个定律在许多实际情况中都得到了广泛应用。

本文将从不同角度介绍动量守恒定律的应用。

一、碰撞问题碰撞是动量守恒定律应用最为直观的场景之一。

在碰撞过程中,物体之间相互作用,动量从一个物体转移给另一个物体。

根据动量守恒定律,碰撞前后系统的总动量保持不变。

例如,在弹性碰撞中,两个物体在碰撞过程中能量损失很小,大部分动能得以转移。

可以通过利用动量守恒定律来解决碰撞后物体的速度、方向等问题。

二、火箭原理火箭原理是动量守恒定律的另一个重要应用。

火箭发动机的推力产生是因为喷出高速燃气的动量变化产生的。

根据动量守恒定律,燃气迅速喷出的同时,火箭则会产生相等大小、相反方向的动量,从而产生推力推动火箭。

三、交通事故交通事故中也可以应用动量守恒定律进行分析。

在碰撞过程中,车辆或行人的动量会发生变化,根据动量守恒定律可以计算出某一方的速度变化情况,并对事故进行评估。

例如,当车辆发生碰撞时,可以通过测量碰撞前后车辆的速度和质量,利用动量守恒定律来推断碰撞的性质,如碰撞力大小、车辆的位移等。

四、运动中的抛掷物体抛掷物体的运动中也可以应用动量守恒定律。

比如,投掷物体、飞行器等都可以通过动量守恒来解释它们的运动轨迹。

在一个水平平面上,如果忽略空气阻力等因素,那么经过一段时间的飞行,抛掷物体的动量将保持恒定,这可以通过动量守恒定律来进行分析。

五、核反应核反应是应用动量守恒定律的重要领域之一。

核反应中发生了原子核的碰撞和释放等过程,通过动量守恒定律可以解释核反应中原子核的状态变化。

在核反应中,粒子之间碰撞过程中发生动量转移,根据动量守恒定律可以推导出反应物质的运动状态,如速度、动能等。

综上所述,动量守恒定律在碰撞问题、火箭原理、交通事故、运动中的抛掷物体以及核反应等方面都有着广泛的应用。

它不仅仅是一个基础物理定律,更是人类科技发展和实际问题解决的重要工具。

动量守恒定律的应用

动量守恒定律的应用

动量守恒定律的应用动量守恒定律是物理学中一个重要的原理,它描述了在一个封闭系统中,动量的总量保持不变。

根据动量守恒定律,当没有外力作用于一个物体或一个系统时,物体或系统的总动量将保持不变。

动量守恒定律的应用非常广泛,下面列举了几个常见的例子:1. 运动碰撞:当两个物体发生碰撞时,根据动量守恒定律可以计算碰撞后物体的速度和动量变化。

例如,在一个弹性碰撞中,碰撞前后两个物体的总动量保持不变。

运动碰撞:当两个物体发生碰撞时,根据动量守恒定律可以计算碰撞后物体的速度和动量变化。

例如,在一个弹性碰撞中,碰撞前后两个物体的总动量保持不变。

2. 火箭推进:火箭推进原理与动量守恒定律密切相关。

当火箭喷出燃料时,喷射出去的物质会产生一个反冲力,使得火箭向相反方向的运动。

根据动量守恒定律,火箭和喷出的物质的总动量在喷射过程中保持不变。

火箭推进:火箭推进原理与动量守恒定律密切相关。

当火箭喷出燃料时,喷射出去的物质会产生一个反冲力,使得火箭向相反方向的运动。

根据动量守恒定律,火箭和喷出的物质的总动量在喷射过程中保持不变。

3. 空气垫船:空气垫船利用了动量守恒定律来悬浮和移动。

通过在船下方喷射大量空气,形成压力差,从而产生反向的动力,使得船悬浮在空气层上方。

空气垫船:空气垫船利用了动量守恒定律来悬浮和移动。

通过在船下方喷射大量空气,形成压力差,从而产生反向的动力,使得船悬浮在空气层上方。

4. 运动炮弹:在炮弹射出时,考虑到重力和空气阻力的作用,根据动量守恒定律可以计算炮弹的速度和轨迹。

运动炮弹:在炮弹射出时,考虑到重力和空气阻力的作用,根据动量守恒定律可以计算炮弹的速度和轨迹。

动量守恒定律的应用在科学、工程和日常生活中都有着重要的意义。

它帮助人们理解和解释了许多物体运动的现象,并且为设计和优化许多工艺和设备提供了基础。

通过运用动量守恒定律,人们可以更好地理解和控制物体和系统的动态行为。

动量守恒定律的实际应用

动量守恒定律的实际应用

动量守恒定律的实际应用动量守恒定律是物理学中非常重要的定律之一,通过研究物体在碰撞和作用力下的运动情况,我们可以了解和应用这一定律。

本文将介绍动量守恒定律的基本原理,并探讨其在实际生活中的应用。

一、动量守恒定律简介动量守恒定律是指在一个封闭系统中,若无外力作用,物体的总动量将保持不变。

动量的大小等于物体的质量乘以其速度,即p=mv,其中p为动量,m为质量,v为速度。

当两物体发生碰撞时,它们之间的相互作用力导致动量的转移和改变,但总动量仍会保持不变。

二、交通事故中的动量守恒定律应用交通事故中常常运用到动量守恒定律来分析和解释事故发生的原因和结果。

当两车相撞时,车辆的总动量在碰撞前后仍然保持不变。

假设车辆A和车辆B碰撞前的速度分别为v1和v2,碰撞后的速度则分别为v1'和v2',根据动量守恒定律可得ma * v1 + mb * v2 = ma * v1' + mb * v2'。

通过分析这个方程,我们可以计算出事故发生时各车的速度,并据此判断碰撞的严重程度和责任。

三、火箭发射和运动中的应用火箭发射是动量守恒定律的一个重要实际应用。

在火箭发射过程中,燃料被喷出时会给火箭提供向相反方向的冲击力,推动火箭向前运动。

根据动量守恒定律,火箭推力的大小与燃料喷射速度和喷射物质的质量有关。

通过精确计算和控制火箭的喷射速度和质量,可以使火箭获得所需的速度和高度,实现进入太空或完成特定任务的目标。

四、物体落地的应用当物体从高处自由落体时,动量守恒定律可以帮助我们分析物体落地的速度和冲击力。

在没有空气阻力的情况下,物体下落时只受到重力的作用,根据动量守恒定律可得物体的速度v = gt,其中g为重力加速度,t为下落的时间。

通过计算可以得知物体落地时的速度,进而评估其落地的冲击力和对环境的影响。

五、动量守恒定律在体育运动中的应用动量守恒定律也在许多体育运动中得到应用,如击球运动和碰撞运动等。

在棒球击球中,击球手通过用球棒击打来球,将其反射出去。

第四节 动量守恒定律的应用

第四节  动量守恒定律的应用
m2 m2 m1 0 x m1
- m1 v1 + m2 v2 = m1 v1`- m2 v2`
重要应用之二 炸裂问题
一般只研究炸裂为两块的情况 特点:炸裂过程可以看作是两块物体相互作用的过 程.相互作用时间很短;相互作用力是变力;平均作 用力很大. 动量守恒条件:把在炸裂过程中,炸裂成的两部分都 受到重力的作用,所受外力之和不为零,但重力远小 于爆炸力,可认为系统的总动量守恒.
m1 v v2 3 m2 v1 v 5
练习:
1.如图所示,在水平光滑桌面上有两辆静止 的小车A和B,质量分别是0.5kg和0.2kg.两车 用细线拴在一起,中间有一被压缩的弹簧.剪 断细线后,两车初弹开,小车A以0.8m/s的速度 向左运动,小车B的速度是多大?方向如何? 解:以向左为正,根据 p = p
解析:规定向右为正. 根据动量守恒定律, 有: m1 v1 + m2 v2 = m1 v1`+(- m2 v2`) 0 = m1 v1`- m2 v2` m1 v1` = m2 v2`
V2` V1`
m2 m1
0
x
2)m1原来静止, m2以v2的速度碰m1 ,碰后 两球粘在一起.
解析:规定向右为正.
例: 质量为M的运砂车在光滑的水平地面 上 以速度V0匀速运动,突然从空中落下一 个质量为m的砖块并陷入其中,试判断, 砂 车在被击中后速度有无变化? 为什么?
m
M
解析:砖块与砂车组成的系统在水平方向上 合外力为零,系统在此方向上遵循动量守恒. 令水平的共同速度为v ,则: Mv = (M+m)v 解得: v = Mv /(M+m) 砂车在被击中后速度变小. 总结:系统在某方向合外力为 零,则在此方向上系统满足 动量守恒.

动量守恒定律的应用

动量守恒定律的应用

动量守恒定律的应用引言:物理学中的动量守恒定律是一项重要的定律,它描述了一个封闭系统中,总动量保持不变的原理。

这个定律可以应用于各种不同的领域,包括机械力学、流体力学、电磁力学等等。

本文将探讨动量守恒定律的应用,并举例说明其在实际生活中的重要性。

一、动量守恒定律的基本原理动量是一个物体的质量和速度的乘积,通常用p表示。

根据牛顿第二定律,物体的动量变化率等于受到的合外力。

而根据动量守恒定律,一个封闭系统中,总动量保持不变。

即使在发生碰撞或相互作用时,系统的总动量仍然是恒定的。

二、碰撞中的动量守恒定律应用碰撞是动量守恒定律最常见的应用之一。

考虑完全弹性碰撞的情况,其中两个物体发生碰撞后,没有能量的损失。

根据动量守恒定律,我们可以根据碰撞前后的动量来计算物体的速度和方向的变化。

举个例子,假设有两个相同质量的小球,一个以V速度向右运动,另一个静止。

当它们碰撞后,由于动量守恒定律,第一个小球停止运动,而另一个小球获得了相同速度。

三、火箭运行中的动量守恒定律应用动量守恒定律也可以应用于火箭发射中。

当火箭以一定速度释放燃料时,根据牛顿第三定律,火箭会获得相等大小的反冲力。

根据动量守恒定律,反冲力和燃料释放速度乘以质量的乘积等于火箭的质量乘以速度的变化。

通过合理设计火箭燃料的释放速度和质量,可以实现火箭的高速运行。

四、汽车碰撞中的动量守恒定律应用动量守恒定律在交通事故中也发挥重要作用。

当两辆汽车发生碰撞时,根据动量守恒定律,碰撞前后两车的总动量不变。

因此,如果一辆汽车以较高速度与另一辆汽车发生碰撞,由于动量的守恒,碰撞后的动量将会增加,可能会导致更严重的事故。

这就解释了为什么制动距离较长的车辆更容易造成安全事故。

结论:动量守恒定律是物理学中的重要定律,它在各个领域都有广泛的应用。

无论是碰撞、火箭发射还是交通事故,动量守恒定律都发挥着重要作用。

通过研究动量守恒定律,我们可以更好地理解物体运动的规律,并且在实际生活中能够做出更加明智的决策,以提高安全性和效率。

动量守恒定律的应用

动量守恒定律的应用

动量守恒定律的应用动量守恒定律是物理学中的基本定律之一。

它描述了在没有外力作用时,物体的总动量保持不变。

动量守恒定律在许多领域中有着广泛的应用,本文将重点探讨在机械和碰撞问题中的应用。

一、机械问题中的动量守恒在机械问题中,动量守恒定律用于描述物体在受到外力作用下的运动状态。

根据动量守恒定律,物体的总动量在相互作用过程中保持不变。

例如,考虑一个人推一个重物的情况。

当人用力推动重物时,人和重物之间会发生相互作用。

根据动量守恒定律,人和重物的总动量在推动过程中保持不变。

即人的动量减小,而重物的动量增大,总动量保持不变。

二、碰撞问题中的动量守恒碰撞是动量守恒定律应用最广泛的领域之一。

在碰撞问题中,动量守恒定律用于分析物体碰撞前后的运动状态。

碰撞可以分为弹性碰撞和非弹性碰撞两种情况。

在弹性碰撞中,物体碰撞前后的总动能保持不变,而在非弹性碰撞中,物体碰撞前后的总动能会发生改变。

以弹性碰撞为例,考虑两个相互碰撞的小球。

在碰撞前,两个小球分别有着不同的质量和速度。

根据动量守恒定律,碰撞过程中两个小球的总动量保持不变。

根据质量和速度的关系,可以利用动量守恒定律求解碰撞后小球的速度。

假设两个小球分别为m1和m2,碰撞前的速度分别为v1和v2,碰撞后的速度为v1'和v2',则有:m1v1 + m2v2 = m1v1' + m2v2'利用以上方程,可以计算出碰撞后小球的速度,从而揭示碰撞过程中的物体运动规律。

三、其他领域的动量守恒定律应用除了在机械和碰撞问题中的应用,动量守恒定律还可以应用于其他许多领域。

在物理学中,动量守恒定律用于解释光的反射和折射现象。

根据动量守恒定律,光束在发生反射或折射时,入射光的动量等于反射或折射光的动量。

在工程学中,动量守恒定律被应用于设计和分析流体力学中的管道和喷嘴等设备。

通过运用动量守恒定律,可以优化管道和喷嘴的设计,提高流体的传递效率。

总结:动量守恒定律是物理学中的重要定律之一,对于描述物体的运动状态和相互作用过程具有重要的意义。

动量守恒定律的应用

动量守恒定律的应用

课外练习
1、如图,两个大小相等、方向相反且作用 如图,两个大小相等、 在同一直线上的力F 在同一直线上的力F1、F2,分别作用于静止在光 滑水平地面上的物体A 滑水平地面上的物体A和B上,经相同的时间之后 以后两物体碰撞粘合在一起, 撤去力F 撤去力F1、F2,以后两物体碰撞粘合在一起,若 的质量较大,以下说法正确的是( A的质量较大,以下说法正确的是( A ) A.碰撞后两物体皆静止 碰撞后两物体运动方向与A B.碰撞后两物体运动方向与A原运动方向一致 碰撞后两物体运动方向与B C.碰撞后两物体运动方向与B原运动方向一致 D.以上三种情况都有可能发生
典型例题
1、质量为3kg的小球A在光滑水平面上以 质量为3kg的小球A 3kg的小球 6m/s的速度向右运动 恰遇上质量为5kg 的速度向右运动, 5kg的 6m/s的速度向右运动,恰遇上质量为5kg的 小球B 4m/s的速度向左运动 碰撞后, 的速度向左运动, 小球B以4m/s的速度向左运动,碰撞后,B 球恰好静止,求碰撞后A球的速度。 球恰好静止,求碰撞后A球的速度。
课外练习
3、如图所示,在光滑的滑槽M的左上端放一个 如图所示,在光滑的滑槽M 小球m 从静止释放后,小球m 小球m,从静止释放后,小球m从M的左上方将无 初速地下滑,则以下说法正确的是( C ) 初速地下滑,则以下说法正确的是( (A)球跟槽构成的系统动量守恒 (A)球跟槽构成的系统动量守恒 (B)槽一直向右运动 (B)槽一直向右运动 (C)小球能滑到槽的右上端 (C)小球能滑到槽的右上端 (D)无法确定 (D)无法确定
反思: 反思:对A、B系统所受合外力虽不为零,但弹簧弹开瞬间, 系统所受合外力虽不为零,但弹簧弹开瞬间, 弹力远大于摩擦力,故弹开瞬间A 系统近似动量守恒; 弹力远大于摩擦力,故弹开瞬间A、B系统近似动量守恒; 三者为系统,所受合外力为零,则动量始终守恒。 A、B、C三者为系统,所受合外力为零,则动量始终守恒。

动量守恒定律应用

动量守恒定律应用

(4)同步性:等号左侧是作用前各物体旳动量和,等号右 边是作用后各物体旳动量和,不同步刻旳动量不能相加。
(4)同步性 :动量守恒指旳是系统内物体相互作 用过程中任一时刻旳总动量都相同,故Vl 、 V2必 须时某同一时刻旳速度,Vl′、V2′必须是另同 一时刻旳速度。
问题.光滑水平面上静止着一小车,某人站在 小车旳一端,在人从车旳一端走到另一端旳过程
3、相对性:对于同一种运动旳物体,选不同旳参照系,
描述它旳速度是不同旳。因而在应用动量守恒定律中一定 要选同一种参照系(一般选地面)。
4、同步性:动量守恒定律旳体现式中,等式左边表达
同一时刻t系统内各部分旳瞬时动量旳矢量和, 等式右边 表达另一时刻 t′系统内部各部分旳瞬时动量旳矢量和。
了解:动量守恒旳“四性”
【例题】 质量为M旳金属球,和质量为m旳木球用 细线系在一起,以速度v在水中匀速下沉,某一 时刻细线断了,则当木块停止下沉旳时刻,铁块 下沉旳速率为多少?(水足够深,水旳阻力不计)
系统外力之和总为零,系统动量守恒:
(取初速度方向为正向)
(M m)v Mv
v M m v
v
M
v’
练习:某炮车旳质量为M,炮弹旳质量为m,炮
D.在任意时刻,小球和小车在水平方 向旳动量一定大小相等、方向相反
反思:系统所受外力旳合力虽不为零,但在水平 方向所受外力为零,故系统水平分向动量守恒。
例2
一辆质量为M旳小车以速率v2在光滑旳水
平 体面 以上 俯运 角动60时。旳,速恰度遇方一向质落量在为车m上,并速陷率于为车v1里物
旳砂中,求今后车旳速度。
动量守恒定律
一、动量守恒定律
(一)、动量守恒定律旳内容:相互作用旳几种物体构成旳系统, 假如不受外力作用,或它们受到旳外力旳合力为0,则系统旳总动 量保持不变。

动量守恒定律在碰撞中的应用

动量守恒定律在碰撞中的应用

动量守恒定律在碰撞中的应用一、动量守恒定律1.定义:在一个没有外力作用(或外力相互抵消)的系统中,系统的总动量(质量和速度的乘积之和)保持不变。

2.表达式:(P_初= P_末),其中(P_初)表示碰撞前系统的总动量,(P_末)表示碰撞后系统的总动量。

3.适用范围:适用于所有类型的碰撞,包括弹性碰撞、非弹性碰撞和完全非弹性碰撞。

二、弹性碰撞1.定义:在弹性碰撞中,碰撞物体在碰撞过程中不损失能量,即系统的总动能保持不变。

2.动量守恒:在弹性碰撞中,动量守恒定律仍然成立,即碰撞前后的总动量相等。

3.动能守恒:在弹性碰撞中,动能守恒定律也成立,即碰撞前后的总动能相等。

三、非弹性碰撞1.定义:在非弹性碰撞中,碰撞物体在碰撞过程中部分能量转化为内能(如热能、声能等),导致系统的总动能减小。

2.动量守恒:在非弹性碰撞中,动量守恒定律仍然成立,即碰撞前后的总动量相等。

3.动能损失:在非弹性碰撞中,动能损失等于碰撞前后的总动能差。

四、完全非弹性碰撞1.定义:在完全非弹性碰撞中,碰撞物体在碰撞过程中几乎所有能量都转化为内能,导致系统的总动能急剧减小。

2.动量守恒:在完全非弹性碰撞中,动量守恒定律仍然成立,即碰撞前后的总动量相等。

3.动能损失:在完全非弹性碰撞中,动能损失等于碰撞前后的总动能差,损失程度最大。

五、碰撞中动量守恒的应用1.计算碰撞后物体速度:利用动量守恒定律,可以计算碰撞后物体的速度。

2.判断碰撞类型:根据动量守恒定律和动能守恒定律,可以判断碰撞是弹性碰撞、非弹性碰撞还是完全非弹性碰撞。

3.求解碰撞问题:在解决实际碰撞问题时,可以运用动量守恒定律,简化问题并得到正确答案。

4.理解物理现象:动量守恒定律在碰撞中的应用,有助于我们理解自然界中各种碰撞现象,如体育比赛中的碰撞、交通事故等。

总结:动量守恒定律在碰撞中的应用是物理学中的重要知识点,掌握这一定律,可以帮助我们解决各类碰撞问题,并深入理解碰撞现象。

在学习和应用过程中,要结合课本和教材,逐步提高自己的物理素养。

动量守恒定律的应用场景

动量守恒定律的应用场景

动量守恒定律的应用场景动量守恒定律是物理学中的重要定律之一,它描述了在物理系统中动量的守恒性质。

动量守恒定律可以应用于许多不同的场景,从交通事故到火箭发射,都有其重要性。

本文将探讨动量守恒定律的应用场景。

1. 车辆碰撞在交通事故中,动量守恒定律的应用非常重要。

根据动量守恒定律,当两辆车发生碰撞时,它们的总动量在碰撞前后保持不变。

这意味着如果一辆车的动量增加,那么另一辆车的动量必然减少。

基于这一定律,交通事故重建专家可以利用车辆碰撞后的损坏程度来确定碰撞的速度和方向。

2. 火箭发射在火箭发射中,动量守恒定律也起着至关重要的作用。

当火箭发射时,推进剂从火箭喷射出去,火箭的质量会减小,但是火箭的动量必须保持不变。

因此,为了提高火箭的速度,火箭必须向后喷射足够大的质量的推进剂,以增加火箭的动量,从而实现推进。

3. 子弹的射击在枪械射击中,动量守恒定律同样适用。

当子弹离开枪口时,枪械和子弹所受到的动量之和必须为零。

因此,当子弹的质量较小时,枪械的反冲会更大。

这也是为什么当射击时,持枪手需要控制好后坐力以保持稳定。

4. 运动中的碰撞在各种运动比赛中,动量守恒定律也适用于描述撞球、足球、曲棍球等运动中的碰撞。

当物体发生碰撞时,它们的动量会相互转移。

例如,在足球比赛中,当一位运动员将球踢向另一位运动员时,球的动量从踢球者转移到了接球者,确保了球的移动。

5. 飞机起飞和降落动量守恒定律在飞机起飞和降落过程中也起着重要作用。

当飞机起飞时,喷气机向后喷出大量的气体,从而增加了飞机的动量,使飞机得以脱离地面。

而在降落过程中,飞机必须减小动量,以减慢飞机的速度并安全降落。

6. 物体的反弹当一个物体打击另一个物体时,根据动量守恒定律,施加力的物体的动量会转移到被打击物体上。

如果被打击的物体不能够吸收全部的动量,那么它会反弹。

例如,当篮球撞击地面时,篮球的动量会转移到地面上,然后又转移到篮球上,使篮球反弹起来。

综上所述,动量守恒定律在许多不同的场景中都有着重要的应用。

动量守恒定律的应用

动量守恒定律的应用

动量守恒定律的应用动量守恒定律是物理学中的基本定律之一,它描述了在没有外力作用下,一个系统的总动量保持不变。

本文将探讨动量守恒定律的应用,并举例说明其在不同领域中的重要性。

一、车辆碰撞中的动量守恒定律在车辆碰撞事故中,动量守恒定律可以用来分析事故发生前后车辆的速度变化。

根据动量守恒定律,两个车辆在碰撞前后的总动量保持不变。

而在碰撞瞬间,车辆之间的作用力相互抵消,总动量保持恒定。

例如,一辆质量为m1,速度为v1的汽车与另一辆质量为m2,速度为v2的汽车发生碰撞。

根据动量守恒定律,可以得到碰撞后两辆汽车的速度v'1和v'2。

假设碰撞是完全弹性碰撞,则有以下公式可以计算出速度的变化:m1 * v1 + m2 * v2 = m1 * v'1 + m2 * v'2通过解上述方程组,我们可以计算出碰撞后两辆汽车的速度变化。

这个原理可以应用于交通事故的调查和分析中,有助于确定事故的责任。

二、火箭发射中的动量守恒定律动量守恒定律在航天领域中有广泛的应用,特别是在火箭发射中。

在火箭发射过程中,废气的喷射产生了反冲力,从而推动火箭向前。

根据动量守恒定律,可以利用火箭喷射废气的速度和质量来计算火箭的加速度。

当喷射物质的质量减少时,喷射废气的速度会增加,从而使火箭的速度增加。

这个原理可以应用于航天器的设计和计算中,有助于科学家和工程师确定火箭发射的参数,以实现预定的航天任务。

三、子弹射击中的动量守恒定律动量守恒定律在射击运动中也发挥着重要的作用。

当子弹从枪口发射出去时,动量守恒定律可以用来分析子弹和被射击物体之间的相互作用。

根据动量守恒定律,可以计算出射击前后子弹和被射击物体的速度变化。

例如,一颗质量为m的子弹以速度v射击质量为M的物体,根据动量守恒定律可以得到以下公式:m * v = (m + M) * v'通过解上述方程,我们可以计算出子弹射击后的速度v'。

这个原理可以应用于枪支和弹药的设计中,以提高射击的精确性和杀伤力。

动量守恒定律的应用

动量守恒定律的应用

动量守恒定律的应用动量守恒定律是物理学中重要的基本原理之一,它描述了在一个封闭系统中,总动量在各种相互作用过程中都保持不变。

本文将探讨动量守恒定律在不同领域中的应用。

一、动量守恒在力学中的应用在力学中,动量守恒定律广泛应用于解释和预测物体的运动。

以碰撞问题为例,当两个物体碰撞后,它们之间发生的相互作用会导致动量的转移和改变,但总动量仍保持不变。

这个原理可以用来预测碰撞后的物体速度和方向。

二、动量守恒在流体力学中的应用动量守恒定律也适用于流体力学中的问题。

当液体或气体通过管道或喷嘴流动时,根据连续性方程和动量守恒定律,可以确定流速和流量的变化。

例如,在水压力送水系统中,通过控制管道的截面积变化,可以调节水流速度和水压。

三、动量守恒在电磁学中的应用在电磁学中,动量守恒定律可应用于电磁场中的粒子运动问题。

当带电粒子在电磁场中受到力的作用时,根据洛伦兹力的定义和动量守恒定律,可以计算粒子的加速度和速度变化。

这对于研究粒子在强磁场或电场中的行为具有重要意义。

四、动量守恒在化学反应中的应用动量守恒定律也适用于化学反应中的物质转化。

在反应过程中,发生物质的转移、分解或合成,但总的动量仍然保持不变。

这可以用于计算反应物质的质量改变和反应速率。

例如,燃烧反应是一种常见的化学反应,根据动量守恒定律,可以计算燃烧产生的气体的压力和速度。

五、动量守恒在天体力学中的应用动量守恒定律在天体力学中发挥着重要作用。

当天体之间发生引力相互作用时,根据牛顿万有引力定律和动量守恒定律,可以计算天体的运动轨迹和速度变化。

这对于研究行星运动和宇宙物体的相互作用具有重要意义。

总结:动量守恒定律是物理学中的重要原理,它在多个领域中都有广泛的应用。

在力学、流体力学、电磁学、化学反应和天体力学等领域,动量守恒定律为解释和预测物体的运动提供了基础,同时也为研究和应用提供了理论支持。

我们应当深入理解和应用动量守恒定律,以推动科学的发展和技术的进步。

§6.3 动量守恒定律的应用

§6.3  动量守恒定律的应用

§6.3 动量守恒定律的应用【考点提示】重点:1.知道碰撞的类型及特点;2.知道爆炸和反冲的含义及应用。

难点:1.进一步掌握应用动量守恒定律解题的基本步骤和方法;2.碰撞的可能性判断。

【知识要点】一、碰撞:(对心正碰)1、特点:作用时间极短,内力远大于外力,动量守恒。

2、种类:①弹性碰撞:动量守恒,动能守恒。

②非弹性碰撞:动量守恒,动能有损失。

③完全非弹性碰撞:动量守恒,动能损失最大;碰后速度相同。

二、爆炸及反冲:特点:作用时间短,内力远大于外力,动量守恒;有其它形式的能(化学能、弹性势能等)和动能的相互转化。

【例题分析】:一、碰撞和爆炸过程中的能量和动量的变化【例1】如图,大小相等、质量不一定相等的A、B、C三只小球排列在光滑水平面上,未碰撞前三只小球的动量(以kg·m/s为单位)分别是8、Array -13、-5,在三只小球沿一直线发生了一次相互碰撞的过程中,A、B两小球受到的冲量(以N·s为单位)分别为-9、1。

则C球对B球的冲量及C球碰后动量的大小分别为多少?【例2】两球在光滑水平面上沿同一直线、同一方向运动,甲的动量是5kg·m/s,乙的动量是7kg·m/s。

当甲追上乙发生碰撞后,甲乙两球的动量可能值分别为(以kg·m/s为单位)A.6、6 B.3、9 C.-2、14 D.-5、17第 1 页共 4 页【例3】如图所示,A、B质量分别为m1=1kg,m2=2kg,置于足够长的小车C上,小车质量m3=1kg,AB间粘有少量炸药,AB与小车间的动摩擦因数均为0.5,小车静止在光滑水平上,若炸药爆炸释放的能量有12J转化为A、B的机械能,其余的转化为内能,A、B始终在小车表面水平运动,求:①A、B开始运动的初速度各多少?②A、B在小车上滑行时间各多少?二、反冲运动【例4】某人在一只静止的小船上练习射击.已知船、人连同枪(不包括子弹)及靶的总质量为M,枪内装有n颗子弹,每颗子弹的质量为m,枪口到靶的距离为L,子弹飞出枪口时相对于地面的速度为v.若在发射后一颗子弹时,前一颗子弹已陷入固定在船上的靶中,不计水对船的阻力.问(1)射出第一颗子弹时,船的速度多大,(2)射出第n颗子弹时,船的速度多大?(3)发射完颗n子弹后,船一共能向后移动多少距离?【例5】人和冰车的总质量为M,人坐在静止于光滑水平冰面的冰车上,以相对于地的速率v 将一质量为m的木球沿冰面推向正前方的竖直固定挡板。

动量守恒定律如何应用于实际生活

动量守恒定律如何应用于实际生活

动量守恒定律如何应用于实际生活关键信息项:1、动量守恒定律的定义及公式定义:____________________________公式:____________________________2、实际生活中的应用场景体育运动:____________________交通领域:____________________工业生产:____________________3、应用中的注意事项系统的界定:____________________忽略微小因素的影响:____________________11 动量守恒定律的定义动量守恒定律是指一个系统不受外力或所受外力之和为零时,这个系统的总动量保持不变。

111 动量守恒定律的公式通常用公式表达为:m1v1 + m2v2 = m1v1' + m2v2' ,其中 m 表示质量,v 表示速度。

12 实际生活中的应用场景121 体育运动在体育运动中,动量守恒定律有诸多体现。

例如,在跳水运动中,运动员从跳板起跳后,人与跳板组成的系统在水平方向上动量守恒。

跳板给人一个向上的力,使人获得向上的速度和动量,而跳板则获得相反方向的动量。

在体操的平衡木项目中,运动员通过调整身体的姿态和动作,改变自身的动量分布,以保持平衡和完成各种高难度动作。

122 交通领域在交通领域,动量守恒定律也发挥着重要作用。

当汽车发生碰撞时,如果将碰撞的车辆和车内的乘客视为一个系统,在碰撞瞬间,外力(如地面摩擦力)相比内力(车辆之间的碰撞力)较小,可以近似认为系统动量守恒。

通过对动量守恒定律的分析,可以设计更安全的汽车结构和防护装置,以减少碰撞对乘客的伤害。

此外,在列车的编组和连接过程中,也需要考虑动量守恒的原理,以确保列车的平稳运行和连接安全。

123 工业生产在工业生产中,动量守恒定律有着广泛的应用。

例如,在火箭发射中,燃料燃烧产生的高温高压气体向下高速喷出,根据动量守恒定律,火箭则获得向上的动量,从而实现升空。

动量守恒定律的应用 课件

动量守恒定律的应用 课件

作者编号:43999
新知学习
解:以地面为参考系,取初速度方向为正方向
冰壶出手时,假设掷壶队员的速度为v,方向沿正方
向,则冰壶的对地速度为v+v1:
根据系统动量守恒定律有:
(M+m)v0 = Mv + m(v+v1)
整理可得:v=
(+)0 −1
+
代入数据求得:v= 0.5m/s,方向不变。
第一章 动量和动量守恒定律
第4节 动量守恒定律的应用
作者编号:43999
新知导入








都适合用动量守恒定律分析.
作者编号:43999
新知学习
01 动量守恒定律的应用
1.动量守恒定律的普适性:适用于计算合外力为零时系统中物体相互作用的规律。
(1)不仅适用于正碰,也适用于斜碰;
(2)不仅适用于碰撞,也适用于任何形式的互相作用;
应用中一般不会超过四级,因为级数太多时,
连接机构和控制机构的质量会增加很多,工
作的可靠性也会降低.
作者编号:43999
新知学习
3. 反冲现象的应用及防止
(1)反冲现象的应用
灌溉喷水器
作者编号:43999
礼花燃放
海上冲水
新知学习
(2)反冲现象的防止
步枪射击
作者编号:43999
大炮止退犁
枪身的反冲会影响射击的准确性,
相等。
即Mx2=mx1。
x1
x2
x1
M
m
t
t
人船模型:1.人走船走,人停船停;人快船快,人慢船慢
2.系统满足动量守恒,人、船的位移与质量成反比

动量守恒定律的应用

动量守恒定律的应用

第二节 动量守恒定律及其应用一、动量守恒定律1.动量守恒定律的内容 一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。

即:22112211v m v m v m v m '+'=+ 2.动量守恒定律成立的条件(1)系统不受外力或者所受外力之和为零;(2)系统受外力,但外力远小于内力,可以忽略不计;(3)系统在某一个方向上所受的合外力为零,则该方向上动量守恒。

(4)全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。

3.动量守恒定律的表达形式(1)22112211v m v m v m v m '+'=+,即p 1+p 2=p 1/+p 2/, (2)Δp 1+Δp 2=0,Δp 1= -Δp 2 和1221v v m m ∆∆-=4.动量守恒定律的重要意义从现代物理学的理论高度来认识,动量守恒定律是物理学中最基本的普适原理之一。

(另一个最基本的普适原理就是能量守恒定律。

)从科学实践的角度来看,迄今为止,人们尚未发现动量守恒定律有任何例外。

相反,每当在实验中观察到似乎是违反动量守恒定律的现象时,物理学家们就会提出新的假设来补救,最后总是以有新的发现而胜利告终。

例如静止的原子核发生β衰变放出电子时,按动量守恒,反冲核应该沿电子的反方向运动。

但云室照片显示,两者径迹不在一条直线上。

为解释这一反常现象,1930年泡利提出了中微子假说。

由于中微子既不带电又几乎无质量,在实验中极难测量,直到1956年人们才首次证明了中微子的存在。

(2000年高考综合题23 ②就是根据这一历史事实设计的)。

又如人们发现,两个运动着的带电粒子在电磁相互作用下动量似乎也是不守恒的。

这时物理学家把动量的概念推广到了电磁场,把电磁场的动量也考虑进去,总动量就又守恒了。

5.应用动量守恒定律解决问题的基本思路和一般方法(1)分析题意,明确研究对象.在分析相互作用的物体总动量是否守恒时,通常把这些被研究的物体总称为系统.对于比较复杂的物理过程,要采用程序法对全过程进行分段分析,要明确在哪些阶段中,哪些物体发生相互作用,从而确定所研究的系统是由哪些物体组成的。

动量守恒定律的应用

动量守恒定律的应用

动量守恒定律的应用
动量守恒定律是物理学中的一条重要定律,可以应用于多种物理现象和实际问题。

1. 碰撞问题:在碰撞过程中,物体之间的动量总和保持不变。

可以利用动量守恒定律来分析碰撞前后物体的速度和质量的关系,例如弹性碰撞和非弹性碰撞。

2. 火箭推进原理:火箭的推进是利用推出高速气体产生反作用
力来推动火箭本身运动。

根据动量守恒定律,火箭推出的气体速度越快,则火箭本身的速度增加越大。

3. 水平射击问题:当一个人射击一个物体时,物体受到子弹的
冲击力,从而获得一定的速度。

根据动量守恒定律,可以计算出物体的速度和子弹速度之间的关系。

4. 交通事故分析:在交通事故中,根据动量守恒定律可以分析
事故发生前后车辆的速度和质量的关系,从而判断事故的原因和责任。

5. 运动项目分析:例如击球运动中,击球者可以通过改变球拍
和球的质量以及速度来控制球的发射速度和方向,利用动量守恒定律进行分析和优化。

总而言之,动量守恒定律广泛应用于物理学和实际问题中,可以帮助我们理解和解释各种运动现象,并且对于工程设计、交通安全等领域也有重要的指导意义。

动量守恒定律的应用

动量守恒定律的应用

V0

26 26
2

1m /
s
V2

2m1 m1 m2
V0

22 26
2
1m /
s
(3)质量相等的两物体弹性碰撞后交换速度
∴ v1 = 0 v2=2m/s
例2.质量相等的A、B两球在光滑水平面上沿同 一直线,同一方向运动,A球动量为7kg·m/s,B 球的动量为5kg·m/s,当A球追上B球时发生碰撞, 则碰后A、B两球的动量PA、PB可能值是(A )
动量守恒定律
一、动量守恒定律的内容
相互作用的几个物体组成的系统,如果不受外力作 用,或它们受到的外力之和为0,则系统的总动量保持 不变.
二、动量守恒定律的适用条件
内力不改变系统的总动量,外力才能改变系统的总 动量,在下列三种情况下,可以使用动量守恒定律:
(1)系统不受外力或所受外力的矢量和为0.
(2)系统所受外力远小于内力,如碰撞或爆炸瞬间, 外力可以忽略不计.
v1 / v2 = - M /(M+ m)
例2、质量为50kg的小车静止在光滑水平面上,质 量为30kg 的小孩以4m/s的水平速度跳上小车的尾 部,他又继续跑到车头,以2m/s的水平速度(相对 于地)跳下,小孩跳下后,小车的速度多大? 解:动量守恒定律跟过程的细节无关 ,
对整个过程 ,以小孩的运动速度为正方向
(M+m)v0 cosα=M v +m( v – u)
v = v0 cosα+mu / (M+m)
∴Δv = mu / (M+m)
平抛的时间 t=v0sinα/g
增加的距离为 x v t m u v0sinα

物理中动量守恒定律的应用

物理中动量守恒定律的应用

物理中动量守恒定律的应用在物理学中,动量是由物体的质量和速度组成的,通常用符号p表示。

动量守恒定律是物理学中的一个基本定律,它表明在一个系统中,如果没有外力作用,系统的总动量保持不变。

这个定律可以应用于各种各样的情况,从弹道测量到汽车碰撞等等。

一、动量守恒定律的基本概念动量守恒定律是一个基本原理,它表明在一个系统中,如果没有外力作用,系统的总动量保持不变。

这意味着当一个物体获得动量时,另一个物体将减少相同数量的动量。

动量的大小可以用下面的公式计算:p = mv,其中p是动量,m是物体的质量,v是物体的速度。

这个公式表明,动量取决于物体的质量和速度,其单位是千克·米/秒。

二、动量守恒定律在弹道测量中的应用动量守恒定律在弹道测量中的应用非常广泛。

当一个物体炸裂或者碰撞时,它的分裂碎片或者碎片将分别获得动量。

如果我们知道炸裂前物体的总动量,则可以通过测量不同碎片的速度来计算炸裂后的总动量。

例如,当一枚炮弹击中一个靶子时,它的动量被转移到了靶子上。

如果可以衡量炮弹的速度和质量,就可以计算出它的动量。

同样地,如果我们可以衡量靶子的速度和质量,那么我们也可以计算出靶子的动量。

根据动量守恒定律,炮弹的动量等于靶子的动量。

因此,我们可以使用这个原理来计算炮弹的速度和靶子的速度。

三、动量守恒定律在汽车碰撞中的应用动量守恒定律在汽车碰撞中也有广泛的应用。

当两辆汽车发生碰撞时,它们的动量将相互转移。

如果我们知道碰撞前每辆汽车的速度和质量,以及碰撞后每辆汽车的速度,那么我们就可以计算碰撞时每辆汽车获得或失去的动量。

这个原理还可用来帮助设计更安全的汽车。

例如,汽车制造商可以使用动量守恒定律来计算汽车的动量,并设计更为坚固的车身结构,以便在车辆碰撞时能够更有效地保护车内的乘客。

四、动量守恒定律的其他应用动量守恒定律还可以应用于许多其他情况,例如在空气动力学或流体动力学中。

在这些领域,动量守恒定律可以用来描述流体流动的动量转移和分配。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§8·4 动量守恒定律的应用教学目标:1.知道应用动量守恒定律解决问题时应注意的问题2.掌握应用动量守恒定律解决问题的一般步骤3.会应用动量定恒定律分析、解决碰撞、爆炸等物体相互作用的问题教学重点:熟练掌握正确应用动量守恒定律解决有关力学问题的正确步骤教学难点:守恒条件的判断,守恒定律的条件性、整体性、矢量性、相对性、瞬时性教学方法:讨论,总结;通过实例分析,明确动量守恒定律的矢量性、同时性和相对性教学用具:投影片、物理课件教学过程:【复习导入新课】:1.动量守恒的条件是什么?2.动量守恒定律的研究对象是什么?在实际生活中,物体之间的相互作用种类很多,比如碰撞、爆炸等问题,本节课我们就应用动量守恒定律来解决这些问题.【讲授新课】一、动量守恒条件的分析与应用1、理想守恒情况:系统不受外力或外力的合力为零例1、如图所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中:A、动量守恒、机械能守恒B、动量不守恒、机械能不守恒C、动量守恒、机械能不守恒D、动量不守恒、机械能守恒解:若以子弹、木块和弹簧合在一起作为研究对象(系统),从子弹开始射入木块到弹簧压缩至最短时,弹簧固定端墙壁对弹簧有外力作用,因此动量不守恒.而在子弹射入木块时,存在剧烈摩擦作用,有一部分能量将转化为内能,机械能也不守恒.实际上,在子弹射入木块这一瞬间过程,取子弹与木块为系统则可认为动量守恒(此瞬间弹簧尚未形变).子弹射入木块后木块压缩弹簧过程中,机械能守恒,但动量不守恒.物理规律总是在一定条件得出的,因此在分析问题时,不但要弄清取谁作研究对象,还要弄清过程的阶段的选取,判断各阶段满足物理规律的条件.2、近似情况:系统虽受外力作用,但外力远小于内力,系统总动量近似守恒例2、质量为M的小车中挂有一个单摆,摆球的质量为M0,小车和单摆以恒定的速度V0不沿水平地面运动,与位于正对面的质量为M1的静止木块发生碰撞,碰撞时间极短,在此过程中,下列哪些说法是可能发生的()A.小车、木块、摆球的速度都发生变化,分别为V1、V2和V3,且满足:(M+M0)V0=MV1+M1V2+M0V3;B.摆球的速度不变,小车和木块的速度为V1、V2,且满足:MV0=MV1+M1V2;C.摆球的速度不变,小车和木块的速度都为V,且满足:MV0=(M+M1)V;D.小车和摆球的速度都变为V1,木块的速度变为V2,且满足:(M+M0)V0=(M+M0)V1+M1V2解:小车与木块相碰,随之发生的将有两个过程:其一是,小车与木块相碰,作用时间极短,过程结束时小车与木块速度发生了变化,而小球的速度未变;其二是,摆球将要相对于车向右摆动,又导致小车与木块速度的改变。

但是题目中已明确指出只需讨论碰撞的极短过程,不需考虑第二过程。

因此,我们只需分析B、C两项。

其实,小车与木块相碰后,将可能会出现两种情况,即碰撞后小车与木块合二为一或它们碰后又分开,前者正是C项所描述的,后者正是B项所描述的,所以B、C两项正确。

3、单方向守恒:系统在某一方向上不受外力或受到的合外力为零,系统总动量在这个方向上守恒例3、如图所示,AB为一光滑水平横杆,杆上套一质量为M的小圆环,环上系一长为L质量不计的细绳,绳的另一端拴一质量为m的小球,现将绳拉直,且与AB平行,由静止释放小球,则当线绳与A B成θ角时,圆环移动的距离是多少?解:虽然小球、细绳及圆环在运动过程中合外力不为零(杆的支持力与两圆环及小球的重力之和不相等)系统动量不守恒,但是系统在水平方向不受外力,因而水平动量守恒。

设细绳与AB成θ角时小球的水平速度为v,圆环的水平速度为V,则由水平动量守恒有:MV=mvv 1 且在任意时刻或位置V 与v 均满足这一关系,加之时间相同,公式中的V 和v 可分别用其水平位移替代,则上式可写为:Md =m [(L -L cos θ)-d ]解得圆环移动的距离:d =mL (1-cos θ)/(M +m )说明: 此题常出现的错误:(1)对动量守恒条件理解不深刻,对系统水平方向动量守恒感到怀疑,无法列出守恒方程.(2)找不出圆环与小球位移之和(L -L cos θ)。

课堂检测1、如图所示,A 、B 两物体的质量比m A ∶m B =3∶2,它们原来静止在平板车C 上,A 、B 间有一根被压缩了的弹簧,A 、B 与平板车上表面间动摩擦因数相同,地面光滑.当弹簧突然释放后,则有 ( BC )A .A 、B 系统动量守恒B .A 、B 、C 系统动量守恒C .小车向左运动D .小车向右运动 2、如图所示,两带电金属球在绝缘的光滑水平桌面上沿同一直线相向运动,A 球带电为-q ,B 球带电为+2q ,下列说法中正确的是 ( AD )A .相碰前两球的运动过程中,两球的总动量守恒B .相碰前两球的总动量随两球的距离逐渐减小而增大C .相碰分离后的两球的总动量不等于相碰前两球的总动量,因为两球相碰前作用力为引力,而相碰后的作用力为斥力D .相碰分离后任一瞬时两球的总动量等于碰前两球的总动量,因为两球组成的系统合外力为零3、把一支枪水平固定在小车上,小车放在光滑的水平面上,枪发射出一颗子弹时,关于枪、 弹、车,下列说法正确的是 ( D )A .枪和弹组成的系统,动量守恒B .枪和车组成的系统,动量守恒C .三者组成的系统,因为枪弹和枪筒之间的摩擦力很小,使系统的动量变化很小,可 以忽略不计,故系统动量近似守恒D .三者组成的系统,动量守恒,因为系统只受重力和地面支持力这两个外力作用,这两个外力的合力为零4、质量为M 的楔形物块上有圆弧轨道,静止在水平面上。

质量为m 的小球以速度v 1向物块运动。

不计一切摩擦,圆弧小于90°且足够长。

求小球能上升到的最大高度H 和物块的最终速度v 。

解:系统水平方向动量守恒,全过程机械能也守恒。

在小球上升过程中,由水平方向系统动量守恒得:()v m M mv '+=1由系统机械能守恒得:()mgH v m M mv +'+=2212121 解得()g m M Mv H +=221 全过程系统水平动量守恒,机械能守恒,得12v m M m v +=二、动量守恒定律四性(1)、动量守恒定律的系统性动量守恒定律描述的对象是由两个以上的物体构成的系统,研究的对象具有系统性。

例1、一门旧式大炮在光滑的平直轨道上以V=5m/s 的速度匀速前进,炮身质量为M=1000kg ,现将一质量为m=25kg 的炮弹,以相对炮身的速度大小u=600m/s 与V 反向水平射出,求射出炮弹后炮身的速度V /.解:以地面为参考系,设炮车原运动方向为正方向,根据动量定律有:(M+m )V=MV /+m[─(u ─V /)] 解得s m mM mV V V /6.19/=++= (2)、动量守恒定律的矢量性 动量守恒定律的表达式是矢量方程,对于系统内各物体相互作用前后均在同一直线上运动的问题,应首先选定正方向,凡与正方向相同的动量取正,反之取负。

对于方向未知的动量一般先假设为正,根据求得的结果再判断假设真伪。

例2、质量为m 的A 球以水平速度V 与静止在光滑的水平面上的质量为3m 的B 球正碰,A 球的速度变为原来的1/2,则碰后B 球的速度是(以V 的方向为正方向).A.V/2,B.─VC.─V/2D.V/2解:碰撞后A 球、B 球若同向运动,A 球速度小于B 球速度,因此,A 球碰撞后方向一定改变,A 球动量应m(─V/2). 由动量守恒定律得:/3)2(mV V m mV +-=,V /=V/2.故D 正确。

(3)、动量守恒定律的相对性动量守恒定律表达式中各速度必须是相对同一参考系。

因为动量中的速度有相对性,在应用动量守恒定律列方程时,应注意各物体的速度必须是相对同一参考系的速度。

若题设条件中物体不是相对同一参考系的,必须将它们转换成相对同一参考系的,必须将它们转换成相对同一参考系的速度。

一般以地面为参考系。

例3、某人在一只静止的小船上练习射击,船、人和枪(不包含子弹)及船上固定靶的总质量为M ,子弹质量m ,枪口到靶的距离为L ,子弹射出枪口时相对于枪口的速率恒为V ,当前一颗子弹陷入靶中时,随即发射后一颗子弹,则在发射完全部n 颗子弹后,小船后退的距离多大?(不计水的阻力)解: 设子弹运动方向为正方向,在发射第一颗子弹的过程中小船后退的距离为S ,根据题意知子弹飞行的距离为(L ─S),则由动量守恒定律有:m(L ─S)─[M+(n ─1)m]S=0解得:S=nmM mL + 每颗子弹射入靶的过程中,小船后退的距离都相同,因此n 颗子弹全部射入的过程,小船后退的总距离为nS=nmM nmL +. 4、动量守恒定律的同时性 动量守恒定律方程两边的动量分别是系统在初、末态的总动量,初态动量的速度都应该是互相作用前同一时刻的瞬时速度,末态动量中的速度都必须是相互作用后同一时刻的瞬时速度。

例4、平静的水面上有一载人小船,船和人共同质量为M ,站立在船上的人手中拿一质量为m 的物体。

起初人相对船静止,船、人、物体以共同速度V 0前进,当人相对于船以速度u 向相反方向将物体抛出时,人和船的速度为多大?(水的阻力不计)。

解:物体被抛出的同时,船速已发生变化,不再是原来的V 0,而变成了V,即V 与u 是同一时刻,抛出后物对地速度是(V-u ).由动量守恒定律得:(M+m )V 0=MV+m(V-u)解得:m M mu V V ++=0 课堂检测1、如图所示,用细线挂一质量为M 的木块,有一质量为m 的子弹自左向右水平射穿此木块,穿透前后子弹的速度分别为0v 和v (设子弹穿过木块的时间和空气阻力不计),木块的速度大小为( B )A .M mv mv /)(0+B .M mv mv /)(0-C .)/()(0m M mv mv ++D .)/()(0m M mv mv +-2、如图所示,A 、B 两物体的质量比m A ∶m B =3∶2,它们原来静止在平板车C 上,A 、B 间有一根被压缩了的弹簧,A 、B 与平板车上表面间动摩擦因数相同,地面光滑.当弹簧突然释放后,则有( BC )A .A 、B 系统动量守恒B .A 、B 、C 系统动量守恒C .小车向左运动D .小车向右运动3、如图所示,三辆相同的平板小车a 、b 、c 成一直线排列,静止在光滑水平地面上,c 车上一个小孩跳到b 车上,接着又立即从b 车跳到a 车上,小孩跳离c 车和b 车时对地的水平速度相同,他跳到a 车上没有走动便相对a 车保持静止,此后( CD )A .a 、c 两车的运动速率相等B .a 、b 两车的运动速率相等C .三辆车的运动速率关系为v c >v a >v bD .a 、c 两车的运动方向一定相反 4、质量为2kg 的小车以2m/s 的速度沿光滑的水平面向右运动,若将质量为2kg 的砂袋以3m/s 的速度迎面扔上小车,则砂袋与小车一起运动的速度的大小和方向是( C )A .2.6m/s ,向右B .2.6m/s ,向左C .0.5m/s ,向左D .0.8m/s ,向右5、总质量为M 的火箭模型 从飞机上释放时的速度为v 0,速度方向水平。

相关文档
最新文档