(完整word版)动量守恒定律及其应用一
(完整word版)动量、动量守恒定律知识点总结
龙文教育动量知识点总结一、对冲量的理解1、I =Ft :适用于计算恒力或平均力F 的冲量,变力的冲量常用动量定理求。
2、I 合 的求法:A 、若物体受到的各个力作用的时间相同,且都为恒力,则I 合=F 合.tB 、若不同阶段受力不同,则I 合为各个阶段冲量的矢量和。
1、意义:冲量反映力对物体在一段时间上的积累作用,动量反映了物体的运动状态。
2、矢量性:ΔP 的方向由v ∆决定,与1p 、2p 无必然的联系,计算时先规定正方向。
三、对动量守恒定律的理解:1、研究对象:相互作用的物体所组成的系统2、条件: A 、理想条件:系统不受外力或所受外力有合力为零。
B 、近似条件:系统内力远大于外力,则系统动量近似守恒。
C 、单方向守恒:系统单方向满足上述条件,则该方向系统动量守恒。
四、碰撞类型及其遵循的规律:结论:等质量 弹性正碰 时,两者速度交换。
依据:动量守恒、动能守恒五、判断碰撞结果是否可能的方法:碰撞前后系统动量守恒;系统的动能不增加;速度符合物理情景。
动能和动量的关系:mp E K 22= K mE p 2=六、反冲运动:1、定义:静止或运动的物体通过分离出一部分物体,使另一部分向反方向运动的现象叫反冲运动。
2、规律:系统动量守恒3、人船模型:条件:当组成系统的2个物体相互作用前静止,相互作用过程中满足动量守恒。
七、临界条件:“最”字类临界条件如压缩到最短、相距最近、上升到最高点等的处理关键是——系统各组成部分具有共同的速度v。
八、动力学规律的选择依据:1、题目涉及时间t,优先选择动量定理;2、题目涉及物体间相互作用,则将发生相互作用的物体看成系统,优先考虑动量守恒;3、题目涉及位移s,优先考虑动能定理、机械能守恒定律、能量转化和守恒定律;4、题目涉及运动的细节、加速度a,则选择牛顿运动定律+运动学规律;九、表达规范:说明清楚研究对象、研究过程、规律、规定正方向。
典型练习一、基本概念的理解:动量、冲量、动量的改变量1、若一个物体的动量发生了改变,则物体的()A、速度大小一定变了B、速度方向一定变了C、速度一定发生了改变D、加速度一定不为02、质量为m的物体从光滑固定斜面顶端静止下滑到底端,所用的时间为t, 斜面倾角为θ。
动量守恒定律的应用DOC
动量守恒定律的应用1.物体与平板间的相对滑动【例1】如图所示,一质量为M的平板车B放在光滑水平面上,在其右端放一质量为m 的小木块A,m<M,A、B间动摩擦因数为μ,现给A和B以大小相等、方向相反的初速度v0,使A开始向左运动,B开始向右运动,最后A不会滑离B,求:(1)A、B最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小。
【例9】两块厚度相同的木块A和B,紧靠着放在光滑的水平面上,其质量分别为,,它们的下底面光滑,上表面粗糙;另有一质量的滑块C(可视为质点),以的速度恰好水平地滑到A的上表面,如图所示,由于摩擦,滑块最后停在木块B上,B和C的共同速度为3.0m/s,求:(1)木块A的最终速度;(2)滑块C离开A时的速度。
2.子弹射击物体【例3】设质量为m的子弹以初速度v0射向静止在光滑水平面上的质量为M的木块,并留在木块中不再射出,子弹钻入木块深度为d。
求木块对子弹的平均阻力的大小和该过程中木块前进的距离。
3.两物体作用时间极短,内力远大于外力碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。
【例4】甲乙两球在水平光滑轨道上向同方向运动,已知它们的动量分别是P1=5kg.m/s,P2=7kg.m/s,甲从后面追上乙并发生碰撞,碰后乙球的动量变为10 kg.m/s,则二球质量m1与m 2间的关系可能是下面的哪几种?()A、m1=m2B、2m1=m2C、4m1=m2D、6m1=m2.【例5】如右图,半径为R的光滑圆形轨道固定在竖直面内。
小球A、B质量分别为m、βm(β为待定系数)。
A球从左边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B球相撞,碰撞后A、B球能达到的最大高度均为1/4R,碰撞中无机械能损失。
重力加速度为g。
试求:(1)待定系数β;(2)第一次碰撞刚结束时小球A、B各自的速度和B球对轨道的压力;(3)小球A、B在轨道最低处第二次碰撞刚结束时各自的速度,并讨论小球A、B在轨道最低处第n次碰撞刚结束时各自的速度。
动量守恒定律及其应用
动量守恒定律及其应用一、基本规律物理情景:质量分别为m 1和m 2的两个物体分别以v 1和v 2的速度运动,m 1追上m 2发生碰撞,碰撞后两个物体的速度分别为v 1/和v 2/. 研究碰撞前后两个物体运动量的关系。
11'1121v m v m F -= 22'2212v m v m F -=根据牛顿第三定律:1221F F -=22112211v m v m v m v m '+'=+--------------动量守恒定律动量守恒定律应用在由几个相互作用的物体组成的系统,即研究对象是“系统”。
动量守恒定律的表达式是矢量式。
对于两个物体,相互作用前后在同一直线上,动量守恒定律的一般表达式为:,即p 1+p 2=p 1/+p 2/、Δp 1+Δp 2=0、Δp 1= -Δp 2 和1221v v m m ∆∆-=动量守恒定律成立的条件:①系统不受外力或者所受外力之和为零;②系统受外力,但外力远小于内力,可以忽略不计;③系统在某一个方向上不受外力或者所受的外力分量之和为零,则该方向上分动量守恒。
④全过程的某一阶段符合以上条件之一,则该阶段动量守恒。
动量守恒定律的/ /12还常应用于碰撞、爆炸、反冲等类问题,碰撞、爆炸类问题的共同特点是:物体间的相互作用突然发生,作用时间很短,相互作用的内力远大于系统所受的外力,此时外力的影响可以忽略不计,可以应用动量守恒定律。
喷气式飞机、火箭等都是利用反冲运动的实例,在反冲现象的问题中,系统的动量守恒。
二、应用例1:如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动。
两球质量关系为m B=2m A,规定向右为正方向,A、B两球的动量均为 6 kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4 kg·m/s。
则()(A)左方是A球,碰撞后A、B两球速度大小之比为2∶5(B)左方是A球,碰撞后A、B两球速度大小之比为1∶10(C)右方是A球,碰撞后A、B两球速度大小之比为2∶5(D)右方是A球,碰撞后A、B两球速度大小之比为1∶10思路:根据所设定的正方向及A、B两球的碰前动量,可确定A球位置。
物理理解动量守恒定律及其应用
物理理解动量守恒定律及其应用动量守恒定律是物理学中非常重要的一个定律,它能够帮助我们解释许多自然界现象,也能够应用于各种实际情况中。
本文将介绍动量守恒定律的基本概念、公式以及其在不同场景下的应用。
一、动量守恒定律的基本概念动量是物体运动的一个重要物理量,它的大小与物体的质量和速度有关。
动量守恒定律指的是,在没有外力作用的封闭系统中,系统的总动量保持不变。
动量守恒定律可以用以下公式来表示:m1v1 + m2v2 = m1v1' + m2v2'其中,m1和m2分别是两个物体的质量,v1和v2是它们的初始速度,v1'和v2'是它们的最终速度。
二、动量守恒定律的应用1. 弹性碰撞在弹性碰撞中,物体之间没有能量损失。
根据动量守恒定律,碰撞前后系统的总动量保持不变。
因此,我们可以利用动量守恒定律来解决弹性碰撞问题。
例如,当一个球以一定的速度撞击另一个静止的球时,可以通过动量守恒定律计算出两个球的最终速度。
2. 爆炸在爆炸过程中,物体由于内部能量释放而迅速分离。
由于没有外力的作用,根据动量守恒定律,系统的总动量在爆炸过程中保持不变。
我们可以利用动量守恒定律来计算碎片在爆炸中的速度和方向。
3. 荷枪实验荷枪实验是研究物体间相互作用力的实验之一。
在荷枪实验中,一个质量较大的物体以一定的速度撞击另一个质量较小的物体,并通过观察两个物体的反弹情况来研究它们之间的力。
根据动量守恒定律,我们可以推断出相互作用力的大小和方向。
4. 双轨道实验双轨道实验是研究动量守恒定律的一种经典实验。
在双轨道实验中,两个小车在两条平行轨道上运动,当它们发生碰撞时,会发生动量的转移。
根据动量守恒定律,我们可以通过测量小车的速度和质量,计算出碰撞前后系统的总动量是否守恒。
三、结论动量守恒定律是物理学中的重要定律,它能够帮助我们解释和预测各种物体间碰撞、爆炸等情况下的运动状态。
通过运用动量守恒定律,我们可以计算出系统中物体的速度和方向,研究相互作用力的大小和方向。
动量守恒定律及应用
动量守恒定律及应用引言:动量守恒定律是物理学中的基本原理之一,它描述了物体在相互作用过程中动量的守恒。
本文将介绍动量守恒定律的基本原理和应用,并探讨其在实际生活中的重要性。
一、动量守恒定律的基本原理动量守恒定律是基于牛顿第二定律和牛顿第三定律发展起来的。
根据牛顿第二定律,物体所受合外力等于其质量与加速度的乘积,即 F = ma。
而根据牛顿第三定律,物体间的相互作用力具有相等且相反的特性。
基于以上两个定律,我们可以得出动量守恒定律的表达式:在一个孤立系统中,如果没有外力作用,则系统总动量守恒,即∑mi * vi = ∑mf *vf,其中mi和vi分别表示初始时刻物体的质量和速度,mf和vf 表示最终时刻物体的质量和速度。
二、动量守恒定律的应用1. 碰撞问题动量守恒定律在碰撞问题中有着广泛的应用。
无论是完全弹性碰撞还是非完全弹性碰撞,都可以通过动量守恒定律来求解。
在完全弹性碰撞中,碰撞前后物体的动量总和保持不变,但动能可以转化;而在非完全弹性碰撞中,除了动量总和守恒外,动能还会发生损失。
2. 火箭推进原理火箭推进原理也是动量守恒定律的应用之一。
火箭通过喷射燃料气体产生动量,由于气体的质量很小,喷射速度较大,因此动量的改变可以达到较大的数值,从而推动火箭。
3. 交通事故分析交通事故中的动量守恒定律可以用于分析碰撞力的大小以及事故发生后车辆的速度变化。
通过研究车辆的质量和速度,可以帮助调查人员还原事故过程并查明责任。
三、动量守恒定律在实际生活中的重要性动量守恒定律不仅在物理学研究中有重要意义,也在我们的日常生活中发挥了重要作用。
1. 运动防护在进行各种运动时,了解动量守恒定律可以帮助我们做好自我防护。
例如,在滑雪运动中,如果遇到碰撞,通过合理控制自己的速度和方向,可以减少事故的发生。
2. 交通安全在道路交通中,了解动量守恒定律可以帮助我们更好地理解碰撞的力量。
这可以提醒我们保持安全距离,正确操作车辆,从而减少交通事故的发生。
动量守恒定律及其应用课件
动量守恒定律适用于没有外力作用或外力为系统内力的情况。
详细描述
动量守恒定律的应用条件包括系统不受外力作用或系统所受外力之和为零。当系统受到的外力相对于内力来说很 小,或者系统内的相互作用远大于外力作用时,也可以近似地应用动量守恒定律。此外,动量守恒定律还适用于 微观粒子、弹性碰撞和非弹性碰撞等许多物理现象。
子弹射击实验
用子弹射击静止的木块,观察子弹 和木块在碰撞后的运动轨迹和速度 变化,验证动量守恒定律。
摆锤实验
通过摆锤的摆动和碰撞,验证动量 守恒定律。
实验验证的意义
证实理论
通过实验验证可以证实动量守恒 定律的正确性和普适性,提高理
论的可信度。
发现新现象
在实验过程中可能会发现一些新 的现象和规律,有助于深入研究
和理解动量守恒定律。
应用价值
实验验证可以为实际应用提供依 据和指导,例如在航天、军事、 体育等领域中应用动量守恒定律
解决实际问题。
THANKS
感谢观看
反冲运动
要点一
总结词
反冲运动是指一个物体在受到外力作用时,向相反方向运 动的现象,也是动量守恒定律的一个重要应用。
要点二
详细描述
反冲运动中,物体在受到外力作用时,根据动量守恒定律 ,物体向相反方向运动的动量等于外力作用的动量。例如 ,枪械的子弹射出时,枪身会向相反方向运动,这是由于 子弹射出时对枪身施加了一个向后的作用力,根据动量守 恒定律,枪身会向相反方向运动。反冲运动在日常生活和 工业生产中有着广泛的应用,如喷气式飞机、火箭等。
动量守恒定律的表述
总结词
动量守恒定律表明,在一个封闭系统中,没有外力作用时,系统的总动量保持不 变。
详细描述
动量守恒定律是自然界的基本定律之一,它指出在没有外力作用的情况下,系统 内的总动量保持不变。也就是说,在一个封闭系统中,无论发生何种相互作用, 系统的总动量不会改变。
第十三章第一节动量守恒定律及其应用(实验:验证动量守恒定律).
2016高考导航考纲展示1.动量、动量定理、动量守恒定律及其应用Ⅱ2.弹性碰撞和非弹性碰撞Ⅰ3.光电效应Ⅰ4.爱因斯坦光电效应方程Ⅰ5.氢原子光谱Ⅰ6.氢原子的能级结构、能级公式Ⅰ7.原子核的组成、放射性、原子核的衰变、半衰期Ⅰ8.放射性同位素Ⅰ9.核力、核反应方程Ⅰ10.结合能、质量亏损Ⅰ11.裂变反应和聚变反应、裂变反应堆Ⅰ12.射线的危害与防护Ⅰ实验:验证动量守恒定律说明:碰撞与动量守恒只限于一维.热点视角1.动量守恒定律的应用是本部分的重点和难点,也是高考的热点,动量和动量的变化量这两个概念常穿插在动量守恒定律的应用中考查.2.动量守恒定律结合能量守恒定律来解决碰撞、打击、反冲等问题,以及动量守恒定律与圆周运动、核反应的结合已成为近几年高考命题的热点.3.波粒二象性部分的重点内容是光电效应现象、实验规律和光电效应方程,光的波粒二象性和德布罗意波是理解的难点.4.核式结构、玻尔理论、能级公式、原子跃迁条件在选做题部分出现的几率将会增加,可能单独命题,也可能与其他知识结合出题.5.半衰期、质能方程的应用、计算和核反应方程的书写是高考的热点问题,试题一般以基础知识为主,较简单.第一节动量守恒定律及其应用(实验:验证动量守恒定律)一、动量动量定理1.冲量(1)定义:力和力的作用时间的乘积.(2)公式:I=Ft,适用于求恒力的冲量.(3)方向:与力F的方向相同.2.动量(1)定义:物体的质量与速度的乘积.(2)公式:p=m v.(3)单位:千克·米/秒,符号:kg·m/s.(4)意义:动量是描述物体运动状态的物理量,是矢量,其方向与速度的方向相同.3.动量定理(1)内容:物体所受合力的冲量等于物体动量的增量.(2)表达式:F·Δt=Δp=p′-p.(3)矢量性:动量变化量方向与合力的方向相同,可以在某一方向上用动量定理.4.动量、动能、动量的变化量的关系(1)动量的变化量:Δp=p′-p.(2)动能和动量的关系:E k=p2 2m.1.下列说法正确的是()A.速度大的物体,它的动量一定也大B.动量大的物体,它的速度一定也大C.只要物体的运动速度大小不变,物体的动量也保持不变D.物体的动量变化越大则该物体的速度变化一定越大答案:D二、动量守恒定律1.守恒条件(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒.(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒.2.动量守恒定律的表达式:m1v1+m2v2=m1v′1+m2v′2或Δp1=-Δp2.2.(2014·高考浙江自选模块)如图所示,甲木块的质量为m1,以v的速度沿光滑水平地面向前运动,正前方有一静止的、质量为m2的乙木块,乙上连有一轻质弹簧.甲木块与弹簧接触后()A.甲木块的动量守恒B.乙木块的动量守恒C.甲、乙两木块所组成系统的动量守恒D.甲、乙两木块所组成系统的动能守恒答案:C三、碰撞1.碰撞物体间的相互作用持续时间很短,而物体间相互作用力很大的现象.2.特点在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒.3.分类动量是否守恒机械能是否守恒弹性碰撞 守恒 守恒 非完全弹性碰撞 守恒 有损失 完全非弹性碰撞守恒损失最大3.A 球的质量是m ,B 球的质量是2m ,它们在光滑的水平面上以相同的动量运动,B 在前,A 在后,发生正碰后,A 球仍朝原方向运动,但其速率是原来的一半,碰后两球的速率比v ′A ∶v ′B 为( )A.12B.13C .2 D.23答案:D考点一 动量定理的理解及应用1.动量定理不仅适用于恒定的力,也适用于随时间变化的力.这种情况下,动量定理中的力F 应理解为变力在作用时间内的平均值.2.动量定理的表达式F ·Δt =Δp 是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F 是物体或系统所受的合力.3.应用动量定理解释的两类物理现象(1)当物体的动量变化量一定时,力的作用时间Δt 越短,力F 就越大,力的作用时间Δt 越长,力F 就越小,如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎.(2)当作用力F 一定时,力的作用时间Δt 越长,动量变化量Δp 越大,力的作用时间Δt 越短,动量变化量Δp 越小在水平力F =30 N 的作用下,质量m =5 kg 的物体由静止开始沿水平面运动.已知物体与水平面间的动摩擦因数μ=0.2,若F 作用6 s 后撤去,撤去F 后物体还能向前运动多长时间才停止?(g 取10 m/s 2)[解析] 法一:用动量定理解,分段处理.选物体为研究对象,对于撤去F 前物体做匀加速运动的过程,受力情况如图甲所示,始态速度为零,终态速度为v ,取水平力F 的方向为正方向,根据动量定理有(F -μmg )t 1=m v -0.对于撤去F 后,物体做匀减速运动的过程,受力情况如图乙所示,始态速度为v ,终态速度为零.根据动量定理有-μmgt 2=0-m v . 以上两式联立解得t 2=F -μmg μmg t 1=30-0.2×5×100.2×5×10×6 s =12 s.法二:用动量定理解,研究全过程.选物体作为研究对象,研究整个运动过程,这个过程的始、终状态的物体速度都等于零. 取水平力F 的方向为正方向,根据动量定理得 (F -μmg )t 1+(-μmg )t 2=0解得t 2=F -μmg μmg t 1=30-0.2×5×100.2×5×10×6 s =12 s.[答案] 12 s[规律方法] 应用动量定理解题的一般步骤 (1)明确研究对象和研究过程.研究过程既可以是全过程,也可以是全过程中的某一阶段. (2)进行受力分析.只分析研究对象以外的物体施加给研究对象的力,不必分析内力. (3)规定正方向.(4)写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和),根据动量定理列方程求解.1.我国女子短道速滑队在世锦赛上实现了女子3 000 m 接力三连冠.观察发现,“接棒”的运动员甲提前站在“交棒”的运动员乙前面,并且开始向前滑行,待乙追上甲时,乙猛推甲一把,使甲获得更大的速度向前冲出.在乙推甲的过程中,忽略运动员与冰面间在水平方向上的相互作用,则( )A .甲对乙的冲量一定等于乙对甲的冲量B .甲、乙的动量变化一定大小相等方向相反C .甲的动能增加量一定等于乙的动能减少量D .甲对乙做多少负功,乙对甲就一定做多少正功解析:选B.乙推甲的过程中,他们之间的作用力大小相等,方向相反,作用时间相等,根据冲量的定义,甲对乙的冲量与乙对甲的冲量大小相等,但方向相反,选项A 错误;乙推甲的过程中,遵守动量守恒定律,即Δp 甲=-Δp 乙,他们的动量变化大小相等,方向相反,选项B 正确;在乙推甲的过程中,甲、乙的位移不一定相等,所以甲对乙做的负功与乙对甲做的正功不一定相等,结合动能定理知,选项C 、D 错误.考点二 动量守恒定律与碰撞 1.动量守恒定律的不同表达形式(1)p =p ′,系统相互作用前的总动量p 等于相互作用后的总动量p ′.(2)m 1v 1+m 2v 2=m 1v ′1+m 2v ′2,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(3)Δp 1=-Δp 2,相互作用的两个物体动量的增量等大反向. (4)Δp =0,系统总动量的增量为零. 2.碰撞遵守的规律(1)动量守恒,即p 1+p 2=p ′1+p ′2.(2)动能不增加,即E k1+E k2≥E ′k1+E ′k2或p 212m 1+p 222m 2≥p ′212m 1+p ′222m 2.(3)速度要合理.①碰前两物体同向,则v 后>v 前;碰后,原来在前的物体速度一定增大,且v ′前≥v ′后. ②两物体相向运动,碰后两物体的运动方向不可能都不改变. 3.两种碰撞特例 (1)弹性碰撞两球发生弹性碰撞时应满足动量守恒和机械能守恒.以质量为m 1、速度为v 1的小球与质量为m 2的静止小球发生正面弹性碰撞为例,则有 m 1v 1=m 1v ′1+m 2v ′2① 12m 1v 21=12m 1v ′21+12m 2v ′22② 由①②得v ′1=(m 1-m 2)v 1m 1+m 2 v ′2=2m 1v 1m 1+m 2结论:①当m 1=m 2时,v ′1=0,v ′2=v 1,两球碰撞后交换了速度. ②当m 1>m 2时,v ′1>0,v ′2>0,碰撞后两球都向前运动.③当m 1<m 2时,v ′1<0,v ′2>0,碰撞后质量小的球被反弹回来. (2)完全非弹性碰撞两物体发生完全非弹性碰撞后,速度相同,动能损失最大,但仍遵守动量守恒定律.(2014·高考新课标全国卷Ⅰ)如图,质量分别为mA 、mB 的两个弹性小球A 、B 静止在地面上方,B 球距地面的高度h =0.8 m ,A 球在B 球的正上方.先将B 球释放,经过一段时间后再将A 球释放.当A 球下落t =0.3 s 时,刚好与B 球在地面上方的P 点处相碰.碰撞时间极短,碰后瞬间A 球的速度恰好为零.已知m B =3m A ,重力加速度大小g =10 m/s 2,忽略空气阻力及碰撞中的动能损失.求:(1)B 球第一次到达地面时的速度; (2)P 点距离地面的高度.[审题点睛] 由于两球碰撞时间极短,并且没有能量损失,所以在碰撞过程中动量守恒,碰撞前后总动能相等,分别列方程求解.[解析] (1)设B 球第一次到达地面时的速度大小为v B ,由运动学公式有v B =2gh ① 将h =0.8 m 代入上式,得v B =4 m/s. ②(2)设两球相碰前后,A 球的速度大小分别为v 1和v ′1(v ′1=0),B 球的速度分别为v 2和v ′2.由运动学规律可得v 1=gt ③由于碰撞时间极短,重力的作用可以忽略,两球相撞前后的动量守恒,总动能保持不变.规定向下的方向为正,有m A v 1+m B v 2=m B v ′2 ④ 12m A v 21+12m B v 22=12m B v ′22 ⑤ 设B 球与地面相碰后的速度大小为v ′B ,由运动学及碰撞的规律可得v ′B =v B ⑥ 设P 点距地面的高度为h ′,由运动学规律可得h ′=v ′2B -v 222g⑦联立②③④⑤⑥⑦式,并代入已知条件可得 h ′=0.75 m.[答案] (1)4 m/s (2)0.75 m[规律总结] 应用动量守恒定律解题的步骤(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程); (2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒); (3)规定正方向,确定初、末状态动量; (4)由动量守恒定律列出方程;(5)代入数据,求出结果,必要时讨论说明.2.两球A 、B 在光滑水平面上沿同一直线、同一方向运动,m A =1 kg ,m B=2 kg ,v A =6 m/s ,v B =2 m/s. 当A 追上B 并发生碰撞后,两球A 、B 速度的可能值是( )A .v ′A =5 m/s ,v ′B =2.5 m/s B .v ′A =2 m/s ,v ′B =4 m/sC .v ′A =-4 m/s ,v ′B =7 m/sD .v ′A =7 m/s ,v ′B =1.5 m/s解析:选B.虽然题中四个选项均满足动量守恒定律,但A 、D 两项中,碰后A 的速度v ′A大于B 的速度v ′B ,必然要发生第二次碰撞,不符合实际;C 项中,两球碰后的总动能E ′k =12m A v ′2A +12m B v ′2B =57 J ,大于碰前的总动能E k =22 J ,违背了能量守恒定律;而B 项既符合实际情况,也不违背能量守恒定律,故B 项正确.考点三 爆炸和反冲 人船模型 1.爆炸的特点(1)动量守恒:由于爆炸是在极短的时间内完成的,爆炸时物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒.(2)动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总动能增加.(3)位移不变:爆炸的时间极短,因而作用过程中物体运动的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸时的位置以新的动量开始运动.2.反冲(1)现象:物体的不同部分在内力的作用下向相反方向运动.(2)特点:一般情况下,物体间的相互作用力(内力)较大,因此系统动量往往有以下几种情况:①动量守恒;②动量近似守恒;③某一方向动量守恒.反冲运动中机械能往往不守恒.注意:反冲运动中平均动量守恒.(3)实例:喷气式飞机、火箭、人船模型等. 3.人船模型若人船系统在全过程中动量守恒,则这一系统在全过程中的平均动量也守恒.如果系统由两个物体组成,且相互作用前均静止,相互作用后均发生运动,则由m 1v 1=-m 2v2得m 1x 1=-m 2x 2.该式的适用条件是:(1)系统的总动量守恒或某一方向上的动量守恒.(2)构成系统的两物体原来静止,因相互作用而反向运动. (3)x 1、x 2均为沿动量方向相对于同一参考系的位移.如图所示,一辆质量为M =3 kg 的小车A 静止在光滑的水平面上,小车上有一质量为m =1 kg 的光滑小球B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p =6 J ,小球与小车右壁距离为L ,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:(1)小球脱离弹簧时小球和小车各自的速度大小; (2)在整个过程中,小车移动的距离.[解析] (1)设小球脱离弹簧时小球和小车各自的速度大小分别为v 1、v 2,则m v 1-M v 2=0 12m v 21+12M v 22=E p 解得:v 1=3 m/s ,v 2=1 m/s.(2)设小车移动x 2距离,小球移动x 1距离 m x 1t =M x 2t x 1+x 2=L 解得:x 2=L 4.[答案] (1)3 m/s 1 m/s (2)L43.(2014·高考重庆卷)一弹丸在飞行到距离地面5 m 高时仅有水平速度v =2m/s ,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1,不计质量损失,取重力加速度g =10 m/s 2.则下列图中两块弹片飞行的轨迹可能正确的是( )解析:选B.弹丸爆炸瞬间爆炸力远大于外力,故爆炸瞬间动量守恒.因两弹片均水平飞出,飞行时间t =2h g =1 s ,取向右为正,由水平速度v =xt知,选项A 中,v 甲=2.5 m/s ,v 乙=-0.5 m/s ;选项B 中,v 甲=2.5 m/s ,v 乙=0.5 m/s ;选项C 中,v 甲=1 m/s ,v 乙=2 m/s ;选项D 中,v 甲=-1 m/s ,v 乙=2 m/s.因爆炸瞬间动量守恒,故m v =m 甲v 甲+m 乙v 乙,其中m 甲=34m ,m 乙=14m ,v =2 m/s ,代入数值计算知选项B 正确.考点四 动量与能量观点的综合应用1.若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律(机械能守恒定律).2.若研究对象为单一物体,且涉及功和位移问题时,应优先考虑动能定理.3.因为动量守恒定律、能量守恒定律(机械能守恒定律)、动能定理都只考查一个物理过程的始末两个状态有关物理量间的关系,对过程的细节不予细究,这正是它们的方便之处.特别对于变力做功问题,就更显示出它们的优越性.(2013·高考新课标全国卷Ⅱ)如图,光滑水平直轨道上有三个质量均为m 的物块A 、B 、C .B 的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A 以速度v 0朝B 运动,压缩弹簧;当A 、 B 速度相等时,B 与C 恰好相碰并粘接在一起,然后继续运动.假设B 和C 碰撞过程时间极短,求从A 开始压缩弹簧直至与弹簧分离的过程中,(1)整个系统损失的机械能;(2)弹簧被压缩到最短时的弹性势能.[审题点睛] A 、B 碰撞时动量守恒、能量也守恒,而B 、C 相碰粘接在一块时,动量守恒.系统产生的内能则为机械能的损失.当A 、B 、C 速度相等时,弹性势能最大.[解析] (1)从A 压缩弹簧到A 与B 具有相同速度v 1时,对A 、B 与弹簧组成的系统,由动量守恒定律得m v 0=2m v 1①此时B 与C 发生完全非弹性碰撞,设碰撞后的瞬时速度为v 2,损失的机械能为ΔE .对B 、C 组成的系统,由动量守恒定律和能量守恒定律得m v 1=2m v 2② 12m v 21=ΔE +12(2m )v 22③ 联立①②③式得ΔE =116m v 20.④(2)由②式可知v 2<v 1,A 将继续压缩弹簧,直至A 、B 、C 三者速度相同,设此速度为v 3,此时弹簧被压缩至最短,其弹性势能为E p .由动量守恒定律和能量守恒定律得m v 0=3m v 3⑤ 12m v 20-ΔE =12(3m )v 23+E p ⑥ 联立④⑤⑥式得 E p =1348m v 20.[答案] (1)116m v 20 (2)1348m v 24.(2015·银川模拟)在光滑水平面上静置有质量均为m的木板AB 和滑块CD ,木板AB 上表面粗糙,动摩擦因数为μ,滑块CD 上表面是光滑的1/4圆弧,其始端D 点切线水平且在木板AB 上表面内,它们紧靠在一起,如图所示.一可视为质点的物块P ,质量也为m ,从木板AB 的右端以初速度v 0滑上木板AB ,过B 点时速度为v 0/2,又滑上滑块CD ,最终恰好能滑到滑块CD 圆弧的最高点C 处,求:(1)物块滑到B 处时木板的速度v AB ; (2)滑块CD 圆弧的半径R .解析:(1)由点A 到点B ,取向左为正,由动量守恒得m v 0=m v B +2m ·v AB ,则v AB =v 04.(2)由点D 到点C ,滑块CD 与物块P 的动量守恒,机械能守恒,得m ·v 02+m ·v 04=2m v共mgR =12m ⎝⎛⎭⎫v 022+12m ⎝⎛⎭⎫v 042-12×2m v 2共解得R =v 2064g .答案:(1)v 04 (2)v 2064g考点五 实验:验证动量守恒定律 [学生用书P 252]1.实验原理在一维碰撞中,测出物体的质量m 和碰撞前后物体的速率v 、v ′,找出碰撞前的动量p =m 1v 1+m 2v 2及碰撞后的动量p ′=m 1v ′1+m 2v ′2,看碰撞前后动量是否守恒.2.实验方案方案一:利用气垫导轨完成一维碰撞实验 (1)测质量:用天平测出滑块质量. (2)安装:正确安装好气垫导轨. (3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块的质量.②改变滑块的初速度大小和方向).(4)验证:一维碰撞中的动量守恒.方案二:利用等长悬线悬挂等大小球完成一维碰撞实验 (1)测质量:用天平测出两小球的质量m 1、m 2. (2)安装:把两个等大小球用等长悬线悬挂起来.(3)实验:一个小球静止,拉起另一个小球,放下时它们相碰.(4)测速度:可以测量小球被拉起的角度,从而算出碰撞前对应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度.(5)改变条件:改变碰撞条件,重复实验. (6)验证:一维碰撞中的动量守恒.方案三:在光滑桌面上两车碰撞完成一维碰撞实验 (1)测质量:用天平测出两小车的质量.(2)安装:将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器,连在小车的后面,在两小车的碰撞端分别装上撞针和橡皮泥.(3)实验:接通电源,让小车A 运动,小车B 静止,两车碰撞时撞针插入橡皮泥中,把两小车连接成一体运动.(4)测速度:通过纸带上两计数点间的距离及时间由v =ΔxΔt算出速度.(5)改变条件:改变碰撞条件,重复实验. (6)验证:一维碰撞中的动量守恒.方案四:利用斜槽上滚下的小球验证动量守恒定律(1)用天平测出两小球的质量,并选定质量大的小球为入射小球. (2)按照如图所示安装实验装置,调整固定斜槽使斜槽底端水平.(3)白纸在下,复写纸在上,在适当位置铺放好.记下重垂线所指的位置O .(4)不放被撞小球,让入射小球从斜槽上某固定高度处自由滚下,重复10次.用圆规画尽量小的圆把所有的小球落点圈在里面,圆心P 就是小球落点的平均位置.(5)把被撞小球放在斜槽末端,让入射小球从斜槽同一高度自由滚下,使它们发生碰撞,重复实验10次.用步骤(4)的方法,标出碰后入射小球落点的平均位置M 和被碰小球落点的平均位置N .如图所示.(6)连接ON ,测量线段OP 、OM 、ON 的长度.将测量数据填入表中.最后代入m 1OP =m 1OM +m 2ON ,看在误差允许的范围内是否成立.(7)整理好实验器材放回原处.(8)实验结论:在实验误差范围内,碰撞系统的动量守恒.气垫导轨是常用的一种实验仪器.它是利用气泵使带孔的导轨与滑块之间形成气垫,使滑块悬浮在导轨上,滑块在导轨上的运动可视为没有摩擦.我们可以用带竖直挡板C和D的气垫导轨以及滑块A和B来验证动量守恒定律,实验装置如图所示(弹簧的长度忽略不计):采用的实验步骤如下:a.用天平分别测出滑块A、B的质量m A、m B.b.调整气垫导轨,使导轨处于水平.c.在A和B间放入一个被压缩的轻弹簧,用电动卡销锁定,静止放置在气垫导轨上.d.用刻度尺测出A的左端至C板的距离L1.e.按下电钮放开卡销,同时使分别记录滑块A、B运动时间的计时器开始工作.当A、B滑块分别碰撞C、D挡板时停止计时,记下A、B分别到达C、D的运动时间t1和t2.(1)实验中还应测量的物理量是________.(2)利用上述测量的实验数据,验证动量守恒定律的表达式是__________,上式中算得的A、B两滑块的动量大小并不完全相等,产生误差的原因是________________________________________________________________________.(3)利用上述实验数据能否测出被压缩弹簧的弹性势能的大小?如能,请写出表达式.[解析](1)验证动量守恒,需要知道物体的运动速度,在已经知道运动时间的前提下,需要测量运动物体的位移,即需要测量的量是B的右端至D板的距离L2.(2)由于运动前两物体是静止的,故总动量为零,运动后两物体是向相反方向运动的,设向左运动为正,则有m A v A-m B v B=0,即m AL1t1-m BL2t2=0.造成误差的原因:一是测量本身就存在误差,如测量质量、时间、距离等存在误差;二是空气阻力或者是导轨不是水平的等原因.(3)根据能量守恒知,两运动物体获得的动能就是弹簧的弹性势能.故有ΔE p=12⎝⎛⎭⎫m AL21t21+m BL22t22.[答案]见解析扫一扫进入91导学网()气垫导轨证明动量守恒实验方法技巧——动量守恒中的临界问题1.滑块与小车的临界问题滑块与小车是一种常见的相互作用模型.如图所示,滑块冲上小车后,在滑块与小车之间的摩擦力作用下,滑块做减速运动,小车做加速运动.滑块刚好不滑出小车的临界条件是滑块到达小车末端时,滑块与小车的速度相同.2.两物体不相碰的临界问题两个在光滑水平面上做匀速运动的物体,甲物体追上乙物体的条件是甲物体的速度v甲大于乙物体的速度v乙,即v甲>v乙,而甲物体与乙物体不相碰的临界条件是v甲=v乙.3.涉及弹簧的临界问题对于由弹簧组成的系统,在物体间发生相互作用的过程中,当弹簧被压缩到最短时,弹簧两端的两个物体的速度相等.4.涉及最大高度的临界问题在物体滑上斜面(斜面放在光滑水平面上)的过程中,由于弹力的作用,斜面在水平方向将做加速运动.物体滑到斜面上最高点的临界条件是物体与斜面沿水平方向具有共同的速度,物体在竖直方向的分速度等于零.(7分)(2013·高考山东卷)如图所示,光滑水平轨道上放置长板A(上表面粗糙)和滑块C,滑块B置于A的左端,三者质量分别为m A=2 kg、m B=1 kg、m C=2 kg.开始时C静止,A、B一起以v0=5 m/s的速度匀速向右运动,A与C发生碰撞(时间极短)后C向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C发生碰撞.求A与C碰撞后瞬间A的速度大小.[审题点睛](1)A、C发生相碰,B与A的相互作用可忽略,A、C系统动量守恒;(2)碰后A、B相互作用达到共同速度,A、B系统动量守恒;(3)A、C碰后,A恰好不再与C相碰,则A、B的共同速度与C碰后速度相等.[规范解答]—————————该得的分一分不丢!因碰撞时间极短,A与C碰撞过程动量守恒,设碰后瞬间A的速度为v A,C的速度为v C,以向右为正方向,由动量守恒定律得m A v0=m A v A+m C v C①(2分)A与B在摩擦力作用下达到共同速度,设共同速度为v AB,由动量守恒定律得m A v A+m B v0=(m A+m B)v AB②(2分)A与B达到共同速度后恰好不再与C碰撞,应满足v AB=v C③(1分)联立①②③式,代入数据得v A=2 m/s.(2分)[答案] 2 m/s[总结提升]正确把握以下两点是求解动量守恒定律中的临界问题的关键:(1)寻找临界状态看题设情景中是否有相互作用的两物体相距最近,避免相碰和物体开始反向运动等临界状态.(2)挖掘临界条件在与动量相关的临界问题中,临界条件常常表现为两物体的相对速度关系与相对位移关系,即速度相等或位移相等.1.(2015·苏北四市调研)A 、B 两球之间压缩一根轻弹簧,静置于光滑水平桌面上,已知A 、B 两球质量分别为2m 和m .当用板挡住A 球而只释放B 球时,B 球被弹出落于距桌边距离为x 的水平地面上,如图所示.若用同样的程度压缩弹簧,取走A 左边的挡板,将A 、B 同时释放,则B 球的落地点距离桌边距离为 ( )A.x 3B.3x C .x D.63x 解析:选D.当用板挡住小球A 而只释放B 球时,根据能量守恒有:E p =12m v 20,根据平抛运动规律有:x =v 0t .当用同样的程度压缩弹簧,取走A 左边的挡板,将A 、B 同时释放,设A 、B 的速度分别为v A 和v B ,则根据动量守恒和能量守恒有:2m v A -m v B =0,E p =12×2m v 2A +12m v 2B ,解得v B =63v 0,B 球的落地点距桌边距离为x ′=v B t =63x ,D 选项正确. 2.(2015·湖北孝感模拟)如图所示,质量为M 的滑槽内有半径为R 的半圆轨道,将滑槽放在水平面上,左端紧靠墙壁.一质量为m 的物体从半圆轨道的顶端a 点无初速度释放,b 点为半圆轨道的最低点,c 点为半圆轨道另一侧与a 等高的点.不计一切摩擦,下列说法正确的是( )A .m 从a 点运动到b 点过程中,m 与M 系统的机械能守恒、水平动量守恒B .m 从a 点释放后运动的全过程中,m 的机械能守恒C .m 释放后能够到达c 点D .当m 首次从右向左到达最低点b 时,M 的速度达到最大解析:选D.m 首次下滑过程,墙对系统有向右的弹力,因此系统水平动量不守恒;系统没有摩擦和介质阻力,因此m 释放后运动的全过程系统机械能始终守恒,但M 的机械能比初状态增加了,因此m 的机械能不守恒;m 第一次到最低点后,M 离开墙,系统水平动量守恒,当m 和M 共速时,系统具有动能,因此m 的势能必小于mgR ;m 第一次在圆轨道右半侧上滑行过程对M 的弹力始终向右下方,有水平向右的分力,因此M 始终加速,m 从右向左通过最低点b 后,M 开始减速,故选项D 正确.3.(2015·陕西西工大附中模拟)如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球.甲车静止在平面上,乙车以v 0=8 m/s 的速度向甲车运动,乙车上有接收装置,总质量M 2=2 kg ,问:甲车至少以多大的水平速度将小球发射到乙车上(球很快与乙车达到相对静止),两车才不会相撞?解析:要使两车不相撞,则两车速度相等,。
高中物理必备知识点:动量守恒定律及其应用总结
高中物理必备知识点:动量守恒定律及其应用总结第二课时动量守恒定律及其应用第一关:基本关与高考前景基础知识一、动量守恒定律知识解释(1)内容:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变.(2)数学表达式①p=p′.也就是说,系统相互作用前的总动量P等于相互作用后的总动量P',如果有两个相互作用的物体,通常写为:m1v1+m2v2=m1v1'+m2v2'② δp=p′-p=0。
即系统总动量的增量为零.③δp1=-δp2.也就是说,相互作用系统中的物体被分成两部分,其中一部分动量的增量等于另一部分动量的增量,且方向相反(3)动量守恒定律成立的条件内力不会改变系统的总动量,而外力可以改变系统的总动量。
在以下三种情况下,可以使用动量守恒定律:①系统不受外力或所受外力的矢量和为零.② 系统上的外力远小于系统的内力。
例如,在碰撞或爆炸的瞬间,外力可以忽略③系统某一方向不受外力或所受外力的矢量和为零,或外力远小于内力,则该方向动量守恒(分动量守恒).灵活的学习和应用1.如图所示,a、b两物体的质量ma>mb,中间用一段细绳相连并在一被压缩的弹簧,放在平板小车c上后,a、b、c均处于静止状态.若地面光滑,则在细绳被剪断后,a、b从c上未滑离之前,a、b在c上向相反方向滑动过程中()a、如果a、B和C之间的摩擦力相同,由a和B组成的系统的动量守恒,由a、B和C组成的系统的动量也守恒b.若a、b与c之间的摩擦力大小不相同,则a、b组成的系统动量不守恒,a、b、c组成的系统动量也不守恒c、如果a、B和c之间的摩擦力不同,由a和B组成的系统的动量不守恒,但由a、B和c组成的系统的动量守恒d.以上说法均不对分析:当两个物体a和B形成一个系统时,弹簧力是内力,a、B和C之间的摩擦力是外力。
当a、B和C之间的摩擦力相反时,由a和B组成的系统的合力为零,动量守恒;当a、B和C之间的摩擦力不相等时,由a和B组成的系统上的组合外力不为零,对于由a、B和C组成的系统,动量不守恒,因为弹簧的弹性力以及a和B和C之间的摩擦力都是内力,无论a和B之间的摩擦力,B和C是否相等,由a、B和C组成的系统的合力为零,动量守恒,因此选项a和C是正确的,选项B和D是错误的答案:ac注:(1)动量守恒的条件是系统不受外力或组合外力为零。
动量守恒定律应用
(4)同步性:等号左侧是作用前各物体旳动量和,等号右 边是作用后各物体旳动量和,不同步刻旳动量不能相加。
(4)同步性 :动量守恒指旳是系统内物体相互作 用过程中任一时刻旳总动量都相同,故Vl 、 V2必 须时某同一时刻旳速度,Vl′、V2′必须是另同 一时刻旳速度。
问题.光滑水平面上静止着一小车,某人站在 小车旳一端,在人从车旳一端走到另一端旳过程
3、相对性:对于同一种运动旳物体,选不同旳参照系,
描述它旳速度是不同旳。因而在应用动量守恒定律中一定 要选同一种参照系(一般选地面)。
4、同步性:动量守恒定律旳体现式中,等式左边表达
同一时刻t系统内各部分旳瞬时动量旳矢量和, 等式右边 表达另一时刻 t′系统内部各部分旳瞬时动量旳矢量和。
了解:动量守恒旳“四性”
【例题】 质量为M旳金属球,和质量为m旳木球用 细线系在一起,以速度v在水中匀速下沉,某一 时刻细线断了,则当木块停止下沉旳时刻,铁块 下沉旳速率为多少?(水足够深,水旳阻力不计)
系统外力之和总为零,系统动量守恒:
(取初速度方向为正向)
(M m)v Mv
v M m v
v
M
v’
练习:某炮车旳质量为M,炮弹旳质量为m,炮
D.在任意时刻,小球和小车在水平方 向旳动量一定大小相等、方向相反
反思:系统所受外力旳合力虽不为零,但在水平 方向所受外力为零,故系统水平分向动量守恒。
例2
一辆质量为M旳小车以速率v2在光滑旳水
平 体面 以上 俯运 角动60时。旳,速恰度遇方一向质落量在为车m上,并速陷率于为车v1里物
旳砂中,求今后车旳速度。
动量守恒定律
一、动量守恒定律
(一)、动量守恒定律旳内容:相互作用旳几种物体构成旳系统, 假如不受外力作用,或它们受到旳外力旳合力为0,则系统旳总动 量保持不变。
动量守恒定律及其应用
在核反应中,由于反应前后系统的内力远大于外力,因此系 统动量守恒。
02
通过测量反应产物的动量,可以推算出反应前原子核的动量 ,从而研究核反应机制。
03
动量守恒定律在核反应中的应用有助于理解原子核的结构和 性质。
原子核衰变过程中动量守恒应用
01 原子核衰变时,衰变产物遵循动量守恒定律。 02 通过测量衰变产物的动量,可以研究原子核的衰
动量守恒方程建立
根据动量守恒原理,有 MV0 = m1v1 + m2v2。
速度求解
通过解方程,可以得到 v1 和 v2 的 表达式,进而计算出具体的数值。需 要注意的是,由于爆炸过程的复杂性 ,实际计算中可能还需要考虑其他因 素,如碎片形状、空气阻力等。
05 动量守恒定律在核物理中 应用
核反应过程中动量守恒分析
天体物理学中动量守恒现象探讨
01 02 03
天体运动中的动量守恒
在天体物理学中,动量守恒定律适用于描述天体运动中的 动量传递和转化过程。例如,行星绕太阳运动时,它们之 间的引力作用导致动量的传递和转化,但系统内的总动量 保持不变。
天体碰撞与合并
动量守恒定律可以解释天体碰撞和合并过程中的动量变化 。当两个天体发生碰撞时,它们的动量会发生变化并重新 分配,但系统内的总动量保持不变。这种动量的重新分配 可能导致天体的破碎、变形或合并。
流体中的冲击现象
动量守恒定律还可以解释流体中的冲击现象,如水流冲击岩石、空气冲击物体等。在这些情况下,流体 的动量转化为物体的动量和内能,导致物体受到冲击力和产生变形。
等离子体物理中动量守恒应用
等离子体中的动量传 递
在等离子体物理中,动量守恒定 律用于描述等离子体内部粒子之 间的动量传递过程。等离子体中 的粒子通过碰撞和电磁相互作用 传递动量,维持系统内的总动量 守恒。
动量守恒定律及其应用
动量守恒定律及其应用动量守恒定律是物理学中一项重要的基本定律,它描述了在没有外力作用的情况下,一个系统内的总动量保持不变。
在本文中,我们将探讨动量守恒定律的基本原理,以及它在实际应用中的重要性。
一、动量守恒定律的基本原理动量是物体的运动特性,它与物体的质量和速度相关。
动量守恒定律指出,在一个系统内,如果没有外力作用,系统的总动量将保持不变。
具体而言,如果一个系统中没有任何物体进入或离开,那么系统的总动量在运动过程中将始终保持不变。
根据动量守恒定律,一个物体的动量改变量等于作用在该物体上的外力的合力乘以时间。
数学上可以表示为:Δp = FΔt。
其中,Δp代表物体动量的改变量,F代表外力的合力,Δt代表时间变化。
二、动量守恒定律的应用1. 碰撞问题动量守恒定律在碰撞问题中有着广泛的应用。
当两个物体发生碰撞时,如果没有外力作用于它们,那么碰撞前后的总动量保持不变。
这个原理在交通安全中有重要的应用,例如汽车碰撞时的速度计算和事故重建等。
2. 火箭发射火箭发射是动量守恒定律的重要应用之一。
根据牛顿第三定律,火箭喷出的排气具有反冲作用,从而使火箭本身获得相应的动量。
通过控制喷射速度和时间,可以实现火箭的加速和改变方向。
3. 运动员的跳远和投掷项目在跳远和投掷项目中,运动员可以利用动量守恒定律来改变自己的动作,从而获得更好的成绩。
例如,在跳远中,运动员可以利用蹲下时的动量来改变腿部的运动轨迹,从而实现更远距离的跳跃。
4. 枪械原理动量守恒定律在枪械原理中也起到关键作用。
当枪械发射子弹时,燃气的反冲力将使枪械本身获得相应的反冲动量。
通过控制子弹的质量和速度,可以实现有效的射击。
三、结论动量守恒定律是物理学中的重要定律,它在广泛的领域中发挥着作用。
通过应用动量守恒定律,我们可以更好地理解物体的运动行为,并应用于实际问题的解决。
动量守恒定律的应用不仅可以提高我们对物体运动的认识,还可以帮助我们改进技术和提高运动成绩。
动量守恒定律及应用
动量守恒定律及应用动量守恒定律是物理学中一个重要的基本定律,它描述了物体在没有外力作用下动量守恒的现象。
本文将介绍动量守恒定律的基本原理,并探讨其在实际应用中的一些例子。
动量守恒定律的理论基础是相对于一个惯性参考系,系统的总动量在任何一个时间点都保持不变。
动量是一个矢量量,它的大小等于物体质量与速度的乘积。
在一个封闭系统中,如果没有外力作用于系统,系统内各个物体之间的动量之和保持不变。
动量守恒定律的最常见应用之一是弹性碰撞问题。
在弹性碰撞中,碰撞前后动量的总和保持不变。
例如,考虑两个质量分别为m1和m2的物体,在碰撞前物体1的速度为v1,物体2的速度为v2。
根据动量守恒定律,在碰撞后,物体1和物体2的速度分别为v1'和v2',且满足以下等式:m1v1 + m2v2 = m1v1' + m2v2'通过解这个方程组,我们可以计算出碰撞后物体的速度。
这在实际应用中具有广泛的意义,例如汽车碰撞测试、保龄球运动等都可以通过动量守恒定律来解释和计算。
除了弹性碰撞,动量守恒定律还可以应用于不同的物理现象。
例如,火箭喷射原理。
当火箭燃料喷出时,燃料离开火箭的速度较大,火箭则以相反的方向获得一定的速度。
根据动量守恒定律,喷气速度越大,火箭获得的速度越大。
另一个例子是炮弹射击。
当炮弹离开炮管时,炮弹的质量和速度都会影响到后坐力。
根据动量守恒定律,在射击过程中,炮弹的动量和火炮的动量必须保持平衡,因此炮弹越大越快,火炮的后坐力就越大。
动量守恒定律还可以解释一些日常生活中的现象。
例如,当我们走路时,推开一扇门时,我们会感受到门反推的力。
这是因为根据动量守恒定律,在我们推门的过程中,门的速度变化,进而施加给我们一个反向的力。
总之,动量守恒定律在物理学中发挥着重要作用。
它帮助我们理解和解释了许多运动现象,并在实际应用中提供了可靠的计算方法。
通过运用动量守恒定律,我们可以更好地分析和预测物体的运动规律,从而应用于各种领域的研究和设计中。
动量守恒定律及其应用
动量守恒定律及其应用动量守恒定律是物理学中的一条基本定律,它描述了在没有外力作用下,一个系统的总动量保持不变。
这个定律在许多领域都有广泛的应用,例如机械、流体力学、电磁学等。
本文将探讨动量守恒定律的原理以及其在实际中的应用。
首先,我们来了解一下动量的概念。
动量是物体运动的一种量度,它等于物体的质量乘以其速度。
即动量(p)=质量(m)×速度(v)。
动量是一个矢量量,具有方向和大小。
当一个物体的质量和速度发生变化时,其动量也会相应改变。
根据动量守恒定律,一个系统的总动量在没有外力作用下保持不变。
这意味着,当一个物体在一个封闭系统中发生碰撞或运动时,其动量的改变必须通过其他物体的动量改变来实现。
换句话说,如果一个物体的动量增加了,那么其他物体的动量必须减少,使得系统的总动量保持不变。
动量守恒定律在实际中有许多重要的应用。
其中一个应用是在交通事故中。
当两辆车相撞时,根据动量守恒定律,两辆车的总动量在碰撞前后应该保持不变。
因此,如果一辆车的速度减小,那么另一辆车的速度必须增加,以保持总动量不变。
这个原理可以帮助我们理解交通事故发生的原因和严重程度。
另一个应用是在火箭发射中。
当火箭喷射燃料时,燃料的速度增加,从而使火箭的速度增加。
根据动量守恒定律,火箭的动量增加必须通过燃料的动量减小来实现。
这就是为什么火箭在发射时会喷射燃料的原因。
动量守恒定律在火箭发射中的应用使得人类能够进入太空并进行探索。
动量守恒定律还可以应用于运动中的碰撞问题。
当两个物体碰撞时,它们之间会发生相互作用。
根据动量守恒定律,两个物体的总动量在碰撞前后应该保持不变。
根据这个原理,我们可以计算碰撞后物体的速度和方向,从而了解碰撞的结果。
除了碰撞问题,动量守恒定律还可以应用于流体力学中的问题。
例如,在水流中有一个旋涡,根据动量守恒定律,旋涡内部的流速必须比旋涡外部的流速更快,以保持总动量不变。
这个原理可以帮助我们理解旋涡的形成和运动。
完整word版,人教版高中物理选修3-5教案
物理选修3-5教案第十六章 动量和动量守恒定律16.1 动量守恒定律(一)1.动量及其变化(1)动量的定义:物体的质量与速度的乘积,称为(物体的)动量。
记为p=mv . 单位:kg ·m/s 读作“千克米每秒”。
①矢量性:动量的方向与速度方向一致。
动量的大小等于质量和速度的乘积,动量的方向与速度方向一致。
(2)动量的变化量:定义:若运动物体在某一过程的始、末动量分别为p 和p ′,则称:△p= p ′-p 为物体在该过程中的动量变化。
强调指出:动量变化△p 是矢量。
方向与速度变化量△v 相同。
一维情况下:Δp =m Δυ= m υ2- m Δυ1 矢量差2.系统 内力和外力(1)系统:相互作用的物体组成系统。
(2)内力:系统内物体相互间的作用力(3)外力:外物对系统内物体的作用力3.动量守恒定律(1)内容:一个系统不受外力或者所受外力的和为零,这个系统的总动量保持不变。
这个结论叫做动量守恒定律。
公式:m 1υ1+ m 2υ2= m 1υ1′+ m 2υ2′(2)注意点:① 研究对象:几个相互作用的物体组成的系统(如:碰撞)。
② 矢量性:以上表达式是矢量表达式,列式前应先规定正方向;③ 同一性(即所用速度都是相对同一参考系、同一时刻而言的)④ 条件:系统不受外力,或受合外力为0。
要正确区分内力和外力;当F 内>>F 外时,系统动量可视为守恒;16.2动量守恒定律(二)1.分析动量守恒定律成立条件有:答:①F 合=0(严格条件)②F 内 远大于F 外(近似条件)③某方向上合力为0,在这个方向上成立。
22112211v m v m v m v m '+'=+ 这就是动量守恒定律的表达式。
2.应用动量守恒定律解决问题的基本思路和一般方法(1)分析题意,明确研究对象。
在分析相互作用的物体总动量是否守恒时,通常把这些被研究的物体总称为系统.对于比较复杂的物理过程,要采用程序法对全过程进行分段分析,要明确在哪些阶段中,哪些物体发生相互作用,从而确定所研究的系统是由哪些物体组成的。
(word完整版)高中物理选修3-5动量守恒定律及其应用
t动量守恒定律及其应用1 •动量守恒定律成立的条件⑴系统不受外力或者所受外力之和为零;⑵系统受外力,但外力远小于内力,可以忽略不计;⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。
⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。
2. 动量守恒定律的表达形式(1) m1v1 m2v2m1v1 m2v2,即p i + p2=p i/+p2/,(2) A p i+ A p2=0, A p i= - A p2 和―2m2v13. 应用动量守恒定律解决问题的基本思路和一般方法(1)分析题意,明确研究对象。
(2)对各阶段所选系统内的物体进行受力分析,判断能否应用动量守恒。
(3)确定过程的始、末状态,写出初动量和末动量表达式。
注意:在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系。
(4)建立动量守恒方程求解。
4. 注意动量守恒定律的“五性”:①条件性;②整体性;③矢量性;④相对性;⑤同时性.二、动量守恒定律的应用1.碰撞两个物体作用时间极短,满足内力远大于外力,可以认为动量守恒。
碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。
如:光滑水平面上,质量为 m i 的物体A 以速度w 向质量为m 2的静止物体B 运动,B 的左端连有轻弹簧。
分析:在I 位置 A 、B 刚好接触,弹簧开始被压缩,A 开始减速,B 开始加速;到H 位置A 、B 速度刚好相等(设为 v ),弹簧被压缩到最短;再往后 A 、B 远离,到川位位置恰好分开。
(1)弹簧是完全弹性的。
压缩过程系统动能减少全部转化为弹性势能,n 状态系统动能 最小而弹性势能最大; 分开过程弹性势能减少全部转化为动能;因此I 、川状态系统动能相等。
这种碰撞叫做弹性碰撞。
由动量守恒和能量守恒可以证明A 、B 的最终速度分别为:1一 V i 。
(这个结论最好背下来,以后经常要用到。
m 1m 2(2) 弹簧不是完全弹性的。
压缩过程系统动能减少,一部分转化为弹性势能,一部分转化为内能,n 状态弹性势能仍最大,但比损失的动能小; 分离过程弹性势能减少, 部分转化为动能,部分转化为内能;因为全过程系统动能有损失。
动量守恒定律及其应用
动量守恒定律只适用于封闭系统,无法考虑系统外力的影响
系统外力的影响可能会导致系统的动量和能量发生变化,从而影响系统的安全性和可靠性
系统外力的存在可能会导致系统的动量和能量发生变化,从而影响系统的稳定性和性能
系统外力可能会改变系统的动量和能量,导致动量守恒定律不再适用
动量守恒定律在低速、宏观条件下成立
动量守恒定律的应用还可以帮助我们更好地理解和解决环境问题,对于推动可持续发展具有重要意义。
动量守恒定律的应用广泛,包括在航天、航空、航海等领域,对于推动科技进步具有重要作用。
航空航天领域:动量守恒定律在航天器姿态控制、轨道设计等方面具有广泛应用前景。
机械制造领域:动量守恒定律在机械系统设计、优化等方面具有重要应用价值。
系统内力的平衡条件:系统内各物体受到的力之和为零
系统内力的应用:在碰撞、爆炸等过程中,系统内力对动量的影响非常重要
外力是系统受到的力,包括重力、摩擦力、电磁力等
外力对系统的作用是改变系统的动量和能量
外力对系统的作用可以通过牛顿第二定律来描述
外力对系统的作用是动量守恒定律推导过程中的重要因素
推导过程:从牛顿第二定律出发,结合动量定义,推导出动量守恒定律。
与动量守恒定律的关系:牛顿第三定律是动量守恒定律的基础,动量守恒定律是牛顿第三定律在系统层面的推广
应用:解释日常生活中的许多现象,如弹力、摩擦力等
推导过程:从牛顿第二定律出发,通过受力分析得到
系统内力:作用在系统内部的力
系统内力的特点:不改变系统的动量
系统内力的作用效果:使系统内各物体的动量发生变化
非弹性碰撞:两个物体碰撞后,动能和动量不守恒
汽车安全气囊:当汽车发生碰撞时,安全气囊迅速膨胀,吸收大量动能,保护乘客安全。
动量守恒定律的应用和实例
动量守恒定律的应用和实例动量守恒定律是物理学中一个重要的基本定律,它描述了一个封闭系统中的总动量保持不变。
本文将探讨动量守恒定律的应用和实例,并分析其在真实世界中的重要性。
一、动量守恒定律的基本原理动量是物体运动的一种物理量,它是质量与速度的乘积。
动量守恒定律指出,在一个封闭系统中,如果没有外力的作用,该系统的总动量将保持不变。
换句话说,当一个物体在没有外力作用下发生运动时,它的动量将保持不变。
二、动量守恒定律在碰撞中的应用碰撞是动量守恒定律最常见的应用之一。
碰撞可以分为完全弹性碰撞和非完全弹性碰撞两种情况。
1. 完全弹性碰撞完全弹性碰撞是指两个物体发生碰撞后,既不改变动量也不改变动能的碰撞。
在完全弹性碰撞中,动量守恒定律可以表示为:m1*v1i + m2*v2i = m1*v1f + m2*v2f其中,m1和m2分别是两个物体的质量,v1i和v2i是碰撞前的速度,v1f和v2f是碰撞后的速度。
2. 非完全弹性碰撞非完全弹性碰撞是指碰撞后物体的动能发生了改变的碰撞。
在非完全弹性碰撞中,动量守恒定律仍然成立,但动能不再守恒。
三、动量守恒定律在火箭运动中的应用火箭运动是动量守恒定律在实际应用中的重要例子。
当火箭喷射出高速气体时,火箭会向相反的方向获得推力。
根据动量守恒定律,火箭获得的动量与喷射气体的动量相等但方向相反。
火箭的动量变化可以用以下公式表示:m1*v1 + m2*v2 = (m1 + m2)*v其中,m1和v1是火箭质量和速度,m2和v2是喷射气体的质量和速度,(m1 + m2)*v是火箭的最终速度。
火箭利用动量守恒定律实现了垂直起飞和太空探索的壮举,具有重要的科学和技术价值。
四、动量守恒定律在汽车碰撞中的应用动量守恒定律在汽车碰撞中也具有重要应用。
当两辆车在道路上发生碰撞时,动量守恒定律可以帮助我们分析碰撞的后果以及减少事故造成的伤害。
根据动量守恒定律,两辆车碰撞前的总动量等于碰撞后的总动量。
第六章 第2讲 动量守恒定律及其应用
基础知识·自主梳理 高频考点·分类突破 学科素养提升 课时作业•巩固提升
首页 上页 下页 尾页
基础知识·自主梳理
(5)飞船做圆周运动时,若想变轨通常需要向前或向后喷出气体,该过程中飞船与喷 出的气体的总动量守恒.( √ ) (6)无论碰撞、反冲还是爆炸类问题,动能都不会增大.( × ) (7)只要系统内存在摩擦力,系统的动量就不可能守恒.( × ) (8)系统所受合外力的冲量为零,则系统动量一定守恒.( √ )
基础知识·自主梳理 高频考点·分类突破 学科素养提升 课时作业•巩固提升
首页 上页 下页 尾页
基础知识·自主梳理
2.动量守恒定律的应用条件 不受外力或所受外力的合力为零,不是系统内每个物体所受的合外力都为零,更不 能认为系统处于 平衡 状态. 二、弹性碰撞和非弹性碰撞 1.碰撞:碰撞是指物体间的相互作用持续时间很短,而物体间相互作用力 很大 的 现象. 2.特点:在碰撞现象中,一般都满足内力 远大于 外力,可认为相互碰撞的系统 动量守恒.
矢量性 应先选取正方向,凡是与选取的正方向一致的动量为正值,相反为负值
普适性
不仅适用低速宏观系统,也适用于高速微观系统
基础知识·自主梳理 高频考点·分类突破 学科素养提升 课时作业•突破
3.动量守恒定律的表达式 (1)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等 于作用后的动量和. (2)Δp1=-Δp2,相互作用的两个物体动量的增量等大反向. (3)Δp=0,系统总动量的增量为零.
动量保持不变.
(2)四种表达式
①p=p′,系统相互作用前总动量 p 等于相互作用后的总动量 p′. ②m1v1+m2v2= m1v1′+m2v2′ ,相互作用的两个物体组成的系统,作用前的动量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动量守恒定律及其应用一、教学目标:知识与技能(1)掌握动量守恒定律的内容、条件和适用范围。
(2)会运用动量守恒定律的条件判断系统动量是否守恒。
(3)会熟练运用动量守恒定律分析有关现象,解决有关问题,加深对动量守恒定律的理解。
过程与方法(1)通过分组学习,让学生学会合作,学会交流,学会探究。
(2)培养学生发现问题,提出问题和解决问题的能力以及分析,推理和归纳等能力。
情感态度与价值观(1)结合物理学前沿进行教学,激发学生的求知欲,让学生体验科学态度、感悟科学精神。
(2)通过应用动量守恒定律,解决实际问题,培养学生关注生活的态度。
二.重点、难点:重点:会运用动量守恒定律的条件判断系统动量是否守恒,会运用动量守恒定律分析有关现象,解决有关问题。
难点:会运用动量守恒定律分析有关现象,解决有关问题。
三.教学方法:讲练法、归纳法、探究法和合作学习法四.教学用具:教学课件、小黑板和学案。
五.教学过程设计:﹙一﹚、复习总结、引入新课在复习动量定理的基础上,指出动量定理的研究对象可以是一个单体,也可以是物体系统。
对于一个物体系统,如果不受外力或外力之和为零,由动量定理可知,该系统的动量变化量总为零或不变,即动量守恒,从而引入本节复习课题。
﹙二﹚、新课教学问题1.动量守恒定律的内容是什么?学生分组回忆,回答。
动量守恒定律的内容:一个系统不受外力或所受外力之和为零,这个系统的总动量保持不变。
说明:动量守恒不只是系统在初、末两时刻的总动量相等,而是在整个相互作用过程中任意两时刻的总动量相等。
问题2.动量守恒定律的表达式有哪些?学生合作分组讨论,总结归纳。
常用的四种表达式:⑴.m1v 1 + m2v2 = m1v1′+m2v2′⑵.P = P′⑶.△p = 0⑷.△p1 = -△p2问题3.如何判断系统动量是否守恒,即动量守恒定律的适用条件是什么?学生合作分组讨论,总结归纳。
动量守恒定律的适用条件:⑴、系统不受外力或所受外力之和为零。
⑵、系统所受外力之和虽不为零,但比系统内力小得多。
⑶、系统所受外力之和虽不为零,但系统某一方向上不受外力或所受外力之和为零问题4.如何从矢量、速度的瞬时性和相对性、研究对象和适用范围等方面理解动量守恒定律?学生合作分组讨论,总结归纳。
动量守恒定律的五性:⑴、矢量性。
(动量守恒定律的表达式是一个矢量式)⑵、瞬时性。
(动量是个状态量,具有瞬时性)⑶、相对性。
(速度与参考系的选择有关,相互作用前后的速度必须针对同一参考系,一般选地面)⑷.系统性。
(动量守恒定律的研究对象是由两个或两个以上的物体组成的系统)⑸.普适性。
(无论宏观低速,还是微观高速都适用)例1.A、B两物体质量之比M A : M B =3 :2,他们原来静止在平板车C上,A、B间有一根被压缩了的轻质弹簧,地面光滑,当弹簧突然释放后(BCD)A、若A、B与平板车表面间的动摩擦因数相同, A、B组成的系统动量守恒。
B、若A、B与平板车表面间的动摩擦因数相同,A、B、C组成的系统动量守恒。
C、若A、B所受的摩擦力大小相等,A、B组成的系统动量守恒。
D、若A、B所受的摩擦力大小相等,A、B、C组成的系统动量守恒。
(引导学生思考.讨论.分析出结果,教师点评)练习1.如图所示的装置中,木块与地面间无摩擦,子弹以一定的速度沿水平方向射向木块并留在其中,然后将弹簧压缩至最短。
现将木块、子弹、弹簧作为研究对象,从子弹开始射入木块到弹簧压缩到最短的过程中,系统的( D )A、动量守恒,机械能守恒。
B、动量守恒,机械能不守恒。
C、动量不守恒,机械能守恒D、动量不守恒,机械能不守恒。
(练习1重在训练学生合作探究,教师要适时引导和帮助)例2.质量为M 的小船以速度V 0行驶,船上有两个质量皆为m 的小孩a 和b ,分别静止站在船头和船尾,现小孩a 沿水平方向以速率v (相对于静止水面)向前跃入水中,然后小孩b 沿水平方向以同一速率 v (相对于静止水面)向后跃入水中,求小孩b 跃出后小船的速度.(引导学生思考.讨论.分析出结果,教师点评)解析 : 对于船和两个小孩组成的系统,在从静止至两个小孩先后跳下的过程中,系统水平方向不受外力,所以动量守恒,设定船前进的方向为正方向,设小孩b 跃出后小船向前行驶的速度为V ,根据动量守恒定律:(M +2m )V 0=MV +mv -mv解得 V =(1+Mm 2)V 0 方向与V 0的方向相同。
练习2. 总质量为M 的装砂的小车,正以速度v 0在光滑水平面上前进、突然车底漏了,不断有砂子漏出来落到地面,问在漏砂的过程中,小车的速度是A 、变大B 、变小C 、不变D 、无法确定(引导学生思考.讨论.分析出结果,教师点评)【错解】 质量为m 的砂子从车上漏出来,漏砂后小车的速度为v ,由动量守恒守律得: Mv 0=(M-m)v解得: V=mM Mv 0 即小车的速度发生变化,随着m 的增大而增大,砂子漏得越多,小车的速度越大。
【正确解答】 设质量为m 的砂子从车上漏出来,漏砂后小车的速度为V ,砂子做平抛运动,在水平方向上的速度为v 0 ,对于车和全部砂子,在质量为m 的砂子从车上漏出来至没有落地的过程中, 水平方向上由动量守恒定律得:Mv 0=m v 0+(M-m)v解得: v=v 0 即砂子漏出后小车的速度是不变的。
问题5.通过例3解题过程的分析,应用动量守恒定律解题的基本思路是什么?学生合作分组讨论,总结归纳。
应用动量守恒定律解题的基本步骤:⑴.明确研究对象,进行受力分析,过程分析。
⑵.判断系统动量是否守恒;⑶.规定正方向明确过程初.末状态系统的动量;⑷.应用动量守恒定律列式求解;⑸.必要时进行求讨论。
练习3.如图所示,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A 点由静止出发绕O 点下摆,当摆到最低点B 时,女演员在极短时间内将男演员沿水平方向推出,然后自已刚好能回到高处A 。
求男演员落地点C 与O 点的水平距离s 。
已知男演员质量m 1和女演员质量m 2之比21m m =2,秋千的质量不计,秋千的摆长为R , C 点比O 点低5R 。
(重在训练学生合作探究,教师要适时引导和帮助)解析:设分离前男女演员在秋千最低点B 的速度为v 0,由机械能守恒定律:(m 1+m 2)gR=21(m 1+m 2)v 02 ①设刚分离时男演员速度的大小为v 1,方向与v 0相同;女演员速度的大小为v 2,方向与v 0相反,由动量守恒:(m 1+m 2)v 0=m 1v 1-m 2v 2 ②分离后,男演员做平抛运动,设男演员从被推出到落在C 点所需的时间为t ,根据题给条件,由运动学规律: 4R=21gt 2 s=v 1t ③ 根据题给条件,女演员刚好回到A 点,由机械能守恒律:m 2gR=21 m 2v 22 ④已知m 1=2m ,由以上各式可得: s=8R六.归纳总结:1.本节课,同学们复习了动量守恒定律内容、条件和适用范围,重点练习了运用动量守恒定律判断系统动量是否守恒和运用动量守恒定律分析有关现象,解决有关问题,以加深对动量守恒定律的理解。
2。
动量守恒定律的应用是高考考查的热点,在高考中重现率为100﹪,对动量守恒定律的考查,主要是运用该定律确定相互作用的各物体作用完成后的运动状态,且常与能量守恒问题相结合,有时还与带电粒子在电场,磁场中的运动,核反应等联系起来综合考查。
七.优化训练设计:练习1:如图所示,半径为R ,质量为M ,内表面光滑的半球物体放在光滑的水平面上,左端紧靠着墙壁,一个质量为m 的物块从半球形物体的顶端的a 点无初速释放,图中b 点为半球的最低点,c 点为半球另一侧与a 同高的顶点,关于物块M和m 的运动,下列说法的正确的有(BD )A .m 从a 点运动到b 点的过程中,m 与M 系统的机械能守恒、动量守恒B .m 从a 点运动到b 点的过程中,m 的机械能守恒C .m 释放后运动到b 点右侧,m 能到达最高点cD .当m 首次从右向左到达最低点b 时,M 的速度达到最大练习2:如图所示,一质量为M ,长为L 的木板固定在光滑水平面上。
一质量为m 的小滑块以水平速度v 0从木板的左端开始滑动,滑到木板的右端时速度恰好为零。
(1)小滑块在木板上的滑动时间;(2)若木块不固定,其他条件不变,小滑块相对木板静止时距木板左端的距离。
解:(1)设小滑块在木板上的滑动时间为t ,动摩擦因数为μ,小滑块所受合外力为滑动摩擦力,对小滑在从木板的左端滑到右端的过程中,分别由动能定理和动量定理有:μmgL mv =1202 ① μmgt mv =0 ② 解得 t Lv =20(2)设小滑块与木板的共同速度为v ,小滑块距木板左端的距离为L',对 小滑块和木板 ,在从小滑块滑上木板至相对木板静止的过程中,分别由动量守恒定律和能量守恒定律有:mv m M v 0=+() ③μmgL mv m M v '()=-+1212022 ④解得 L M m M L '=+八.板书设计:动量守恒定律及其应用1.内容:一个系统不受外力或所受外力之和为零,这个系统的总动量保持不变。
2.常用的四种表达式:⑴.m1v 1 + m2v2 = m1v1′+m2v2′⑵.P = P′⑶.△p1 = -△p2⑷.△p = 03.动量守恒定律的适用条件:⑴.理想守恒。
⑵.为近似守恒。
⑶.为分方向守恒。
4.对动量守恒定律的理解:⑴矢量性。
⑵.瞬时性。
⑶.相对性。
⑷.系统性。
⑸.普适性。
5.应用动量守恒定律解题的基本步骤:⑴.明确研究对象;⑵.进行受力分析,判断系统动量是否守恒;⑶.规定正方向明确初末状态动量;⑷.用动量守恒定律列式求解;⑸.必要时进行求讨论。