卫生统计学名词解释

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1,总体总体是根据研究目的确定的同质的研究对象的全体。更确切地说,是性质相同的所有观察单位某种变量值的集合。2,样本医学研究中实际观测或调查的一部分个体称为样本

3,参数用来描述总体特征的指标叫做参数。4,统计量

5,抽样误差抽样误差是指由于随机抽样的偶然周素使样本各单位的结构对总体各单位结构的代表性差别,而引起的抽样指标和全及指标之间的绝对离差。如抽样平均数与总体平均数的绝对离差,抽样成数与总体成数的绝对离差等等。

6,概率7,小概率事件

8,定量资料定量资料是以数字形式表现出来的研究资料。

9,定性资料定性资料是以文字、图形、录音、录象等非数字形式表现出来的研究资料。定性资料有两个来源——实地源和文献源。

10,正态分布指变量的频数或频率呈中间最多,两端逐渐对称地减少,表现为钟形的一种概率分布

11,正态曲线高峰位于中央(均数所在处),两侧逐渐降低且左右对称,不与横轴相交的光滑曲线图3.1(3)。这条曲线称为频数曲线或频率曲线,近似于数学上的正态分布

12,医学参考值范围医学参考值范围是指绝大多数正常人的人体形态、功能和代谢产物等各种生理及生化指标的波动范围。这里的“绝大多数”可以是90%、95%或99%等,最常用的是95%。所谓“正常人”不是指完全健康的人,而是指排除了影响所研究指标的疾病和有关因素的同质人群。对于服从正态分布的指标,其参考值范围可根据正态分布曲线下面积分布规律确定;对于不服从正态分布的指标,可先进行变量变换使之服从正态分布或直接利用百分位数法制定医学参考值范围。制定某指标的医学参考值范围时,应根据专业知识确定计算双侧参考值范围或单侧参考值范围。若一个指标过大或过小均属异常,则相应的参考值范围既有上限,又有下限,是双侧参考值范围;若一个指标仅过大属于异常,则参考值范围仅有上限;若一个指标仅过小属于异常,参考值范围仅有下限,即所谓单侧参考值范围。

13

,置信区间总体率的估计包括点估计和区间估计。点估计是直接用样本率来估计总体率,没有考虑抽样误差。区间估计则考虑到抽样误差,按一定的概率1-α(即置信度为1-α)估计总体率的可能范围,此范围称为总体率的置信区间。

14,率15,构成比16,相对比17,相关系数18,回归系数

19,

统计推断(statistical inference):通过样本指标来说明总体特征,这种通过样本获取有关总体信息的过程称为统计推断。

nonparametric statistics:非参数检验,针对某些资料的总体分布难以用某种函数式来表达,或者资料的总体分布函数式是未知的,只知道总体分布是连续型的或离散型的,用于解决这类问题需要一种不依赖总体分布的具体形式的统计分析方法。由于该方法不受总体参数的限制,故称为非参数检验,或称为不拘分布的统计分析方法,又称为无分布形式假定的统计分析方法。

46、方差(variance):是用来描述一组数据平均离散程度的指标,由离均差的平方和除以样本个数得到。

标准正态分布:均数为0,标准差为1的正态分布被称为标准正态分布(standard normal distribution),通常记为N(0, 12)。

66、检验效能(power of test):1-β称为检验效能,它是指当两总体确有差别,按照规定的检验水准α所能发现该差异的能力。

1、总体:根据研究目的确定的同质的观察单位其变量值的集合。

2、计量资料:又称为定量资料,指构成其的变量值是定量的,其表现为数值大小,有单位。

3、抽样误差:由于抽样造成的统计量与参数之间的差别,特点是不能避免的,可用标准误描述其大小。

4、总体均数的可信区间:按一定的概率大小估计总体均数所在的范围(CI)。常用的可信度为95%和99%,故常用95%和99%的可信区间。

1.总体:总体(population)是根据研究目的确定的同质的观察单位的全体,更确切的说,是同质的所有观察单位某种观察值(变量值)的集合。总体可分为有限总体和无限总体。总体中的所有单位都能够标识者为有限总体,反之为无限总体。

样本:从总体中随机抽取部分观察单位,其测量结果的集合称为样本(sample)。样本应具有代表性。所谓有代表性的样本,是

指用随机抽样方法获得的样本。

2.随机抽样:随机抽样(random sampling)是指按照随机化的原则(总体中每一个观察单位都有同等的机会被选入到样本中),从总体中抽取部分观察单位的过程。随机抽样是样本具有代表性的保证。

3.变异:在自然状态下,个体间测量结果的差异称为变异(variation)。变异是生物医学研究领域普遍存在的现象。严格的说,在自然状态下,任何两个患者或研究群体间都存在差异,其表现为各种生理测量值的参差不齐。

4.计量资料:对每个观察单位用定量的方法测定某项指标量的大小,所得的资料称为计量资料(measurement data)。计量资料亦称定量资料、测量资料。.其变量值是定量的,表现为数值大小,一般有度量衡单位。如某一患者的身高(cm)、体重(kg)、红细胞计数(1012/L)、脉搏(次/分)、血压(KPa)等

计数资料:将观察单位按某种属性或类别分组,所得的观察单位数称为计数资料(count data)。计数资料亦称定性资料或分类资料。其观察值是定性的,表现为互不相容的类别或属性。如调查某地某时的男、女性人口数;治疗一批患者,其治疗效果为有效、无效的人数;调查一批少数民族居民的A、B、AB、O 四种血型的人数等。

等级资料:将观察单位按测量结果的某种属性的不同程度分组,所得各组的观察单位数,称为等级资料(ordinal data)。等级资料又称有序变量。如患者的治疗结果可分为治愈、好转、有效、无效或死亡,各种结果既是分类结果,又有顺序和等级差别,但这种差别却不能准确测量;一批肾病患者尿蛋白含量的测定结果分为+、++、+++等。

等级资料与计数资料不同:属性分组有程度差别,各组按大小顺序排列。

等级资料与计量资料不同:每个观察单位未确切定量,故亦称为半计量资料。

5.概率:概率(probability)又称几率,是度量某一随机事件A发生可能性大小的一个数值,记为P(A),P(A)越大,说明A 事件发生的可能性越大。0﹤P(A)﹤1。频率:在相同的条件下,独立重复做n 次试验,事件A 出现了m 次,则比值m/n 称为随机事件A 在n 次试验中出现的频率(freqency)。当试验重复很多次时P(A)= m/n。

2.概率是描述随机事件发生可能性大小的数值,常用P表示。随机事件概率的大小在0与1之间,P越接近1,表示某事件发生的可能性越大;P越接近0,表示某事件发生的可能性越小。习惯上将P≤0.05的事件,称为小概率事件,表示在一次实验或观察中该事件发生的可能性很小,可视为不发生。

6. 随机误差:随机误差(random error)又称偶然误差,是指排除了系统误差后尚存的差。它受多种因素的影响,使观察值不按方向性和系统性而随机的变化。误差变量一般服从正态分布。随机误差可以通过统计处理来估计。

抽样误差(sampling error )是指样本统计量与总体参数的差别。在总体确定的情况下,总体参数是固定的常数,统计量是在总体参数附近波动的随机变量。

7.系统误差:系统误差(systematic error)是指由于仪器未校正、测量者感官的某种偏差、医生掌握疗效标准偏高或偏低等原因,使观察值不是分散在真值的两侧,而是有方向性、系统性或周期性地偏离真值。系统误差可以通过实验设计和完善技术措施来消除或使之减少。

8.随机变量:随机变量(random variable)是指取指不能事先确定的观察结果。随机量的具体内容虽然是各式各样的,但共同的特点是不能用一个常数来表示,而且,理论上讲,每个变量的取值服从特定的概率分布。

9.参数:参数(paramater)是指总体的统计指标,如总体均数、总体率等。总体参数是固定的常数。多数情况下,总体参数是不易知道的,但可通过随机抽样抽取有代表性的样本,用算得的样本统计量估计未知的总体参数。

10.统计量:统计量(statistic)是指样本的统计指标,如样本均数、样本率等。样本统计量可用来估计总体参数。总体参数是固定的常数,统计量是在总体参数附近波动的随机变量。

11.频数表(frequency table)用来表示一批数据各观察值或在不同取值区间的出现的频繁程度(频数)。对于离散数据,每一个观察值即对应一个频数,如某医院某年度一日内死亡0,1,2…个病人的天数。对于散布区间很大的离散数据和连续型数据,数据散布区间由若干组段组成,每个组段对应一个频数。

12.算术均数(arithmetic mean)描述一组数据在数量上的平均水平。总体均数用μ表示,样本均数用X 表示。

13.几何均数(geometric mean)用以描述对数正态分布或数据呈倍数变化资料的水平。记为G。

14.中位数(median)Md将一组观察值由小到大排列,n 为奇数时取位次居中的变量值;为偶数时,取位次居中的两个变量的平均值。反映一批观察值在位次上的平均水平。

15.极差(range)亦称全距,即最大值与最小值之差,用于资料的粗略分析,其计算简便但稳定性较差。

16.百分位数(percentile)是将n 个观察值从小到大依次排列,再把它们的位次依次转化为百分位。百分位数的另一个重要用途是确定医学参考值范围。

17.四分位数间距(inter-quartile range)是由第3 四分位数和第1 四分位数相减计算而得,常与中位数一起使用,描述偏态分布资料的分布特征,较极差稳定。

18.方差(variance):方差表示一组数据的平均离散情况,由离均差的平方和除以样本个数得到。

19.标准差(standard deviation)是方差的正平方根,使用的量纲与原量纲相同,适用于近似正态分布的资料,大样本、小样本均可,最为常用。

20.变异系数(coefficient of variation)用于观察指标单位不同或均数相差较大时两组资料变异程度的比较。用CV 表示。计算:标准差/均数*100%

21.统计推断:通过样本指标来说明总体特征,这种从样本获取有关总体信息的过程称为统计推断(statistical inference)。

22.抽样误差:由个体变异产生的,抽样造成的样本统计量与总体参数的差异,称为抽样误差(sampling error)。

23.标准误及X s :通常将样本统计量的标准差称为标准误。许多样本均数的标准差X s称为均数的标准误(standard error of mean,SEM ),它反映了样本均数间的离散程度,也反映了样本均数与总体均数的差异,说明均数抽样误差的大小。

24.可信区间:按预先给定的概率确定的包含未知总体参数的可能范围。该范围称为总体参数的可信区间(confidence interval,

相关文档
最新文档