汽车发动机波形分析七

合集下载

汽车点火波形分析

汽车点火波形分析

汽车点火波形分析摘要汽车电子化的发展,应用之广与日俱增,尤其是计算机、网络技术的发展为汽车电子化带来了根本性的变革。

因此,当代汽车的维修不是单纯的机械维修,而是机械与电子为一体的维修。

由于电子控制元件的维修比较抽象,给汽车维修技术提出了新的挑战,使许多维修人员望而止步,感到神秘莫测。

汽车电控系统技术的发展,使现代的汽车成为了一个高科技的结晶体,这就要求汽车故障诊断技术也向高新技术方向发展。

传统的故障诊断方式根本不能适应现代汽车故障诊断的要求,尤其对电控系统故障的诊断,必须采用先进的检测设备,先进的工作模式。

波形分析技术应用于汽车维修业,可以大大提高汽车故障诊断的速度与准确性,利用波形分析检测时,示波器可以显示出电子信号的各种参数,利用这些参数就能够判定这个电子信号的波形是否正常,然后,通过波形分析便可以进一步检查出电路中传感器,执行器以及电路和控制电脑等各部分的故障,从而进行修理。

本文叙述了汽车点火系统波形连接、检测、分析方法;并结合波形图形象深刻的分析汽车故障类型、位置、原因。

使学者有一目了然的深刻视觉感受,发掘学习者的兴趣。

【关键词】:点火系统;点火波形图;波形分析;故障波形分析目录第1章绪论 (1)1.1引言 (1)1.2 点火系统概述 (1)第2章点火系统检测连接及点火波形种类、特点 (3)2.1点火系统检测连接方法 (3)2.2点火波形种类 (4)2.3次级点火波形的特点 (5)第3章点火波形分析 (7)3.1点火波形分析方法 (7)3.2各类点火系波形 (8)3.2.1触点式点火系波形 (8)3.2.2无触点点火系波形 (9)3.2.3 无分电器点火系统波形 (9)3.3次级点火波形可查明的故障 (9)3.4分析次级点火波形的要点(五常看) (10)3.5点火系统的加载调试 (12)第4章故障波形分析 (13)4.1典型故障波形分析 (13)4.1.1初级电压分析 (14)4.1.2次级电压波形分析 (15)4.2次级点火故障波形分析 (16)4.3点火波形分析举例 (17)结论 (20)参考文献 (21)致谢 (22)2第1章绪论第1章绪论1.1引言汽车自1886年诞生以来,发展及其快速,已成为集机、电、液、气于一体。

【图文并茂】汽车点火系统结构原理及波形分析

【图文并茂】汽车点火系统结构原理及波形分析

【图文并茂】汽车点火系统结构原理及波形分析很多朋友都在微信问这个示波器点火波形该怎么来测量怎么来通过一段波形来判别各个电器部件的好坏,所以就这个问题我们分别从点火系统的结构原理及初级次级点火波形来和朋友们来入手。

下图为一个老外用电锯锯开的一个点火线圈的横截面图片,从上面我们能清楚的看到两个线圈绕组。

外面一层为初级线圈,里面一层为次级线。

次级线圈的绕组线要比初级线圈的绕组线要密很多,但没有初级线圈绕组粗。

我们都知道发动机点火系统的分类分为三种:第一种是发动机所有气缸共用一个点火线圈,点火线圈产生的高压电通过分电器分配给各缸的火花塞。

早期化油器时均采用此方式,在电控发动机也有采用此种点火系统的,如桑塔纳(采用M1.5.4电控系统)夏利面包车。

第二种是两缸共用一个点火线圈,像伊兰特别克凯越。

对于常见的四缸发动机,一缸和四缸共用一个点火线圈,二缸和三缸共用一个点火线圈。

第三种被称为独立点火,即每缸火花塞上一个点火线圈,这种点火系统有3大优点:1.点火的能量强2.密封性好抗干扰能力强3.使用寿命长, 现在的车基本上都是这种点火系统.我们知道初级点火的波形是由初级线圈产生的,次级点火波形是由次级线圈产生的。

初级点火产生的相对是低压,次级点火产生的是上万伏的高压。

注意这里的高压只是一个瞬间击穿火花塞电极点燃缸内混合气的脉冲信号,原理可以理解为打火机点火一样,这个上万伏的高压不会对人身造成伤害。

无论是初级点火的电压还是次级点火的电压,其能量都是由12V或24V的电瓶电压经过初级线圈产生的初级电压,经过次级线圈产生的次级高压,这一过程是一个升压的过程。

而我们的手机充电器给手机充电是将220v的电压变成5v的电压是一个降压的过程,都是通过线圈作用下实现的。

(火花塞装的时候注意一点装错了会抖动无力甚至发生爆震现象)由于点火系统是与火花塞工作情况联系十分密切,所以我们顺带讲一下关于火花塞的热值和电阻。

火花塞自身所受热量的散发量称为热值。

电控发动机波形分析

电控发动机波形分析

电控发动机波形分析电控发动机波形分析第一节:示波器在汽车诊断上的应用一:概论汽车上的电子设备每年都在增加,而且电子设备在汽车上所占比例每年都在上升,所以在维修汽车时,电子设备的修理工作也就越来越多,这就向今天的汽车维修技术提出了新的挑战。

现代的汽车修理工作,已经不再是一个单纯的机械修理,而是机械和电子一体化的维修,如果一个汽车维修企业不具备有效地排除汽车电子设备的故障能力,那么无论是现在还是将来,这个企业部将面临被淘汰的危险。

为了取得这方面的成功就必须具备以下三个基本条件:①必备的测试设备;②必须的维修资料;③必要的技术培训,如果其中任何一个条件不具备,那么汽车修理的质量就很难保证。

汽车示波器的诞生为汽车修理技术人员快速判断汽车电子设备故障提供了有力的工具,用普通的示波器去测试电子设备时,最大的困难是设定示波器(即调整示波器的各个按纽,使显示的波形更为清楚)和分析波形的形状,汽车示波器将汽车电子设备的测试设定变的非常简单,只要象点菜单一样选择要测试的内容,无需任何设定和调整就可以直接观察波形了,这是因为汽车示波器是专门为汽车维修人员设计的“傻瓜”示波器,它的设定调整是全自动的,使用汽车示波器,就像使用一台“傻瓜”照相机一样方便。

示波器与万用表相比有着更为精确及描述细致的优点,万用表通常只能用一、二个电参数来反映电信号的特征,而示波器则用电压随时间的变化的图象来反应一个电信号,它显示电信号比万用表更准确、更形象。

所以“一个画面通常要胜过一千个数字”。

汽车电子设备的信号有些是变化速率非常快的,变化周期达到千分之一秒,通常测试仪器的扫描速度应该是被测信号的5-10倍,许多故障信号是间歇的,时有时无,这就需要仪器的测试速度高于故障信号的速度。

汽车示波器完全可以胜任这个速度,汽车示波器不仅可以快速捕捉电路信号,还可以用较慢的速度来显示这些波形,以便可以一面观察,一面分析。

它还可以用储存的方式记录信号波形,可以倒回来观察已经发生过的快速信号,这就为分析故障提供了极大方便。

汽车发动机执行器波形的检测与分析

汽车发动机执行器波形的检测与分析

任务5.1 喷油驱动器波形检测
2.峰值保持型: 1波形分析: 从左至右波形轨迹从蓄电池电压开始这表示喷油驱动器关闭当控制模
块打开喷油驱动器时它对整个电路提供接地 控制模块继续将电路接地保持波形踪迹在0V直到检测到流过喷油驱动器 的电流达到4A时控制模块将电流切换到1A 靠限流电阻开关实现电流减少 引起喷油驱动器中的磁场突变产生类似点火线圈的电压峰值第一个峰值 剩下的喷油驱动器喷射时间由控制模块继续保持工作然后它通过完全断 开接地电路而关闭喷油驱动器这就产生了第二个峰值
小提示 怠速控制实质是控制怠速时的充气量进气量
任务5.2.1 怠速控制阀波形检测
二、旁通空气式怠速控制机构的种类、组成与工作原理
旁通空气式的怠速控制机构种类比较多一般可按结构分为双金属片式、 石蜡式、平动电磁阀式、旋转电磁阀式和步进电机式五种随着汽车电子技 术的发展机械式的双金属片式与石蜡式已经渐渐被淘汰现在汽车上大多采 用可电子控制的电磁阀式和步进电机式
如图所示采用电压驱动时由于脉冲 电压是恒定的当VT1导通时电流流 过电磁线圈使针阀打开;当VT1截 止时针阀关闭喷油器停止工作另外 电压驱动没有电流控制回路流过电 磁线圈的电流基本保持不变导致 VT1导通时流过电磁线圈的电流较 小针阀迟滞时间较长
任务5.1 喷油驱动器波形检测
2电流驱动型:
如图所示采用电流驱动方式时喷油器直接 ECU 连 接 ECU 通 过 检 测 回 路 中 电 磁 线 圈 的电流进行控制当输入脉冲信号时VT1导 通流过电磁线圈的电流迅速增大当针阀升 至最大升程时Imax为8A此时电流检测电 阻回路A点电压达到设定值时ECU便控制 三极管VT1在喷油期间以20MHz的频率交 替导通截止流过电磁线圈的电流便下降为 保持针阀开启的电流InIn一般为2A由于导 通开始时电流可以迅速增大所以针阀迟滞 时间较短响应特性好可缩短无效喷油时间

发动机点火波形分析

发动机点火波形分析
发动机点火波形与故障分析
点火波形 故障分析简述
• 在点火系的故障中,主要的故障有无火、缺火、 乱火、火弱及点火正时失准等。这些故障将会造 成发动机不能起动或工作不正常。点火系故障部 位可分为低压线路和高压线路两部分。 • 点火波形是汽油机在点火过程中,分缸高压线上 的电压随时间的变化规律。 • 如果实测的点火波形与标准波形出现明显差异, 说明点火系统(或供油系统)有故障。
• A区为断电器触点故障反映区,B区为电容器、点火线圈 故障反映区,C区为电容器、断电器触点故障反映区,D 区为配电器、火花塞故障反映区。
单缸次级点火波形
多缸并列次级点火波形
故障波形一:两缸点火电压相差太大
故障波形二:各缸点火电压峰值高于正 常值4 kV以上
故障波形三:一个或多个缸点火电压过高
分析次级点火)
• 一.看闭合部分 • 二.看点火线
• 三.看火花线及 燃烧电压 • 四.看燃烧时间
• 五.看线圈振荡 情况
一.看闭合部分(如图3-4)
二.看点火线(如图3-5)
三、看火花线及燃烧电压
四、看燃烧时间
五、看线圈振荡情况
典型故障波形分析

电控发动机检测诊断-波形分析概述.

电控发动机检测诊断-波形分析概述.

五、常见元件标准波形分析
1、翼板式空气流量计
2、BOSCH热丝式空气流量计
3、卡门涡旋式空气流量计
4、模拟输出进气压力传感器
5、福特数字输出进气压力传感器
6、进气温度传感器
7、冷却水温度传感器
8、节气门位置传感器
9、爆震传感器
10、霍尔效应传感器
11、磁电式曲轴位置传感器
12、光电式凸轮轴位置传感器
四、汽车电子信号的五个判定依据
1、幅值--电子信号在一定点上的即时电压; 2、频率--电子信号在两个事件或循环之间的时间,一般指 每秒的循环数; 3、脉冲宽度--电子信号所占的时间或占空比; 4、形状--电子信号的外形特征;它的曲线、轮廓和上升 沿、下降沿等; 5、阵列--组成专门信息信号的重复方式,例如#1缸传送给 发动机控制电脑的上止点同步脉冲信号,或传给解码器的有关 冷却水温度是210华氏度的串行数据流等。
13、上止点位置传感器
14、废气再循环阀位置传感器波形
15、饱和开关型(PFI/SFI)喷油器驱动器
16、怠速控制(IAC)电磁阀
17、碳罐清洗电磁阀
18、涡轮增压电磁阀
19、废气再循环电磁阀
3、频率调制信号 在汽车中产生可变频率信号的传感器和装置有:数字式空 气流量计、福特数字式进气压力传感器、光电式车速传感器 (VSS)、霍尔式车速传感器(VSS)、光电式凸轮轴和曲轴转角 (CKP)传感器、霍尔式凸轮轴(CAM)和曲轴转角(CKP)传感器。 4、脉宽调制信号 在汽车中产生脉宽调制信号的电路或装置有:初级点火线 圈、电子点火正时电路、废气再循环控制(EGR)、净化、涡轮 增压和其它控制电磁阀、喷油嘴、怠速控制马达和电磁阀。 5、串行数据(多路)信号 若汽车中具备有自诊断能力和其它串行数据送给能力的控 制模块,则串行数据是由发动机控制电脑(PCM),车身控制电 脑(BCM)和防滑制动系统(ABS)或其控制模块产生。

论文--汽车点火系统故障的波形分析

论文--汽车点火系统故障的波形分析

汽车点火系统故障的波形分析摘要汽车点火系在汽车运行中处于不可或缺的重要地位,如果其技术状况不佳,甚至出现了故障,不但影响发动机的动力性、燃油经济性、排气净化性,而且无法正常工作。

实践证明点火系是汽油机各机构、系统中故障率最高者之一。

往往是检测诊断重点对象。

而随着科学技术的突飞猛进,无触点电子点火系逐渐普及汽车界,以往的维修方法就显得力不从心。

可是点火系的波形分析法在应对汽油机的点火系故障的问题时就容易多了。

汽车点火系故障的波形分析,是当今最经济、快捷、实用的汽车故障诊断分析法。

在点火系故障的波形分析中它利用示波器测出点火系的波形,通过观测、对比波形,可直观、快速地分析、判断点火系的技术状况。

从而解决点火系的故障。

至今波形分析法已得到广泛的应用,特别是在国外。

关键字:点火系;汽油机;波形分析目录1绪论 (3)1.1 引言 (3)1.2点火系统的现状及分析波形 (3)2点火系统故障的波形分析 (3)2.1点火波形的观测方法 (3)2.2 点火系故障的波形分析 (5)2.2.1 蓄电池电源波形分析 (5)2.2.2 点火初级闭合角波形 (6)2.2.3二次多缸平列波的波形分析 (7)2.2.4 二次多缸并列波的波形分析 (9)2.2.5 二次多缸重叠波的波形分析 (14)2.2.6 标准单缸次级电压波形的波形分析 (14)2.2.7 一次并列波波形分析 (17)2.2.8其它波形分析 (20)2.2.8 无触点电子点火系点火波形的特点 (21)3案例波形分析 (22)3.1案例一丰田皇冠二次多缸平列波分析 (22)3.2案例二道奇捷龙加速不良波形分析 (23)3.3案例三奥迪100发动机工作不良分析 (25)结论 (28)参考文献 (29)致谢 (30)1绪论1.1 引言当今时代,科学技术的突飞猛进,极大的促进了汽车技术和汽车工业的高速发展。

电子技术、计算机技术、现代通讯和控制技术等现代汽车技术也就大量融进点火系统,使得无分电器电子点火系统替代了传统的点火系统,这也使得汽车的点火系统的修理越来越具有一定的难度。

汽车点火波形分析

汽车点火波形分析

汽车点火波形分析目录一、内容概要 (2)1. 背景介绍 (2)2. 目的和意义 (3)二、汽车点火系统概述 (5)1. 汽车点火系统简介 (6)2. 点火系统的基本组成 (7)3. 点火系统的工作原理 (8)三、汽车点火波形分析基础 (9)1. 波形分析的基本概念 (10)2. 波形分析的常用工具 (11)3. 波形分析的基本步骤 (12)四、汽车点火波形分析实例 (13)1. 正常点火波形分析 (14)(1)波形特征 (15)(2)数据分析 (15)2. 点火故障波形分析 (17)(1)点火过早点火波形分析 (17)(2)点火过晚点火波形分析 (18)(3)缺火波形分析 (19)(4)其他点火故障波形分析 (20)五、汽车点火系统故障诊断与排除 (21)1. 故障诊断方法 (22)2. 常见故障分析及排除方法 (23)3. 故障诊断注意事项 (25)六、汽车点火系统维护与保养 (26)1. 点火系统的日常维护 (26)2. 点火系统的定期保养 (27)3. 点火系统性能优化措施 (28)七、汽车点火技术发展趋势展望 (29)1. 新型点火系统技术介绍 (30)2. 点火系统技术发展趋势分析 (32)3. 未来汽车点火系统的挑战与机遇 (33)一、内容概要汽车点火波形分析是研究发动机在燃烧过程中混合气体的压力和点火时刻随时间变化的规律。

通过对点火波形的深入分析,可以了解发动机的燃烧状况、点火系统的性能以及混合气的燃烧特性。

本文将对汽车点火波形的基本原理、分析方法及常见故障进行详细阐述,旨在为汽车维修技术人员提供实用的参考指南。

文中首先介绍了点火波形分析的目的和意义,接着系统地阐述了点火波形的基本原理,包括点火波形的组成、特点及其在发动机运行中的作用。

结合具体案例,详细讲解了如何利用万用表等工具检测点火波形,并根据检测结果判断发动机的工作状态及故障原因。

文中还对汽车点火系统的主要部件进行了分析,包括点火线圈、分电器、火花塞等,以及它们在点火过程中的作用和相互影响。

汽车点火系统波形分析

汽车点火系统波形分析

汽车点火系统波形分析现代汽车采纳了大量的电子操纵系统,以往常规的检测方式已无法适应现代汽车的要求。

专门是在直截了当点火系统的检查中,常规的断缸测试差不多无法精确判定系统是否正常,而示波器由于其具有实时性、不间断性、直观性,越来越得到广泛的应用。

由于点火次级波形受到各种不同的发动机、燃油系统和点火条件的阻碍,因此示波器能够有效地检测动身动机机械部件和燃油系统部件以及点火系统部件的故障。

而且一个波形的不同部分还能够分别指明在汽缸中的哪个部件或哪个系统有故障。

点火次级单缸波形测试要紧用途有:1.分析单缸的点火闭合角(点火线圈充电时刻分析);2.分析点火线圈和次级高压电路性能(燃烧线或点火击穿电压分析);3.检查单缸混合气空燃比是否正常(燃烧线分析);4.分析电容性能(白金或点火系统分析);5.查出造成汽缸断火的缘故(燃烧线分析,如污染或破裂的火花塞)。

分电器点火次级标准波形如图1所示。

通过观看该波形,能够得到击穿电压、燃烧电压、燃烧时刻以及点火闭合角等信息。

由于点火次级波形受到发动机、燃油系统和点火条件的阻碍,因此它对检测发动机机械部分和燃油系统部件及点火系统相关部件的故障专门有用。

同时每个点火波形的不同部分还能分别说明其相应汽缸点火系统的相应部件和系统的故障。

对应于每一部分,能够通过参照波形图的指示点及观看波形特定段相应的变化来判定。

一、分电器点火次级波形分析1.充磁开始:点火线圈在开始充电时,应保持相对一致的波形下降沿,这说明各缸闭合角相同而且点火正时准确。

2.点火线:观看击穿电压高度的一致性,假如击穿电压太高(甚至超过了示波器的显示屏),说明在点火次级电压电路中电阻值过高(如断路或损坏的火花塞、高压线或是火花塞间隙过大);假如击穿电压太低,说明点火次级电路电阻低于正常值(污浊和破裂的火花塞或漏电的高压线等)。

3.跳火或燃烧电压;跳火或燃烧电压的相应一致性,它说明火花塞工作各缸空燃比正常与否。

假如混合气太稀,燃烧电压就比正常值低一些。

汽车波形分析[1]

汽车波形分析[1]
忽视。如果氧传感器 现了故障,将导致空燃比失调,燃油经济性变差,动力性和加速性下降的后果。
氧传感器工作在极端的环境下,它的时效都会慢慢的失去。最终产生不了信号。 氧传感器失效的原因: a. 首要原因是发动机在较浓的混合比下运行时所造成的碳阻 b. 燃油压力过高,喷油嘴损坏,电脑传感器损坏,操作不当, c. 使用年限及行驶里 导致它正常失效; d. 汽油中含铅,冷却液中的硅胶腐蚀。
火花塞
火花线有斜坡 (4 中央高压线电阻失 更换
缸)
效, 分火头失效
击穿电压低,点 次级低阻(高压绝缘 更换高压
火线倾斜
失效)
一缸击穿电压过 火花塞间隙大,压

缩比过大,次级开路
汽车波形分析[1]
次级点火波形分析(3)
观察点火电压的最大值,急加速时最大的点火电压不应超过怠速时正常点火电压的1倍,也不应该超过点火线 最高点火电压的75%。如果某缸出现上述情况,加载时就会出现“断火”现象。
1=断电器触点打开时刻 断电器触点打开,初级线圈的脉冲自感电压很大
,产生瞬间电压很快消失。 2=初级峰值电压
b=衰减过程
C=断电器闭合部分 由于触点闭合,电流通过触点直接搭铁,所以电压
信号为零。使用FSA560的单波显示,通过高精度示波 器水平坐标可以测出闭合角。
FSA560
汽车波形分析[1]
次级(secondary)点火波形
2
1
b
火花保持期 衰减过程
c
断电器闭合期
1、断电器触点打开时刻 2、点火峰值:
是点火之前我们所见的最高电压,它的高度受到许多因素影响 例如:火花塞间隙、汽缸压力、混和气浓度、点火系工作情况等。 3、燃烧电压: (0.5—5.0 kV)

发动机波形分析手册

发动机波形分析手册

电子点火系统从一开始的发展,就与内燃机的发展是同步的。

关于内燃机的发展,点火系统的主要作用是使发动机迅速的输出功率和增强火花点火。

典型的线圈点火感应系统的断电器触点的设计已经保留了十年,近年来逐渐被电子点火系统所取代。

这些发展已经与尾气排放标准相联系,通过燃料的节省和通过制作新的运动型和赛车发动机。

这是决定性的突破,然而,这些迅速的发展都是建立在半导体工艺上。

电池点火在汽车发动机里影响是显著的并且在瞬间容易遭受巨大的改变。

汽车修理厂必须要紧跟发展方向。

使职员进行适当的训练,并且使他们的测试设备能力达到一定的范围。

测试设备其中的任何一条都很重要,能帮助测试于通用的发动机和点火系统。

点火示波器在一些的点火系统里,有传统的线圈点火系统或者非常现代的电子点火系统。

我们的处理是很迅速的电子有序过程。

这些都是空前的一些测试装置。

这个示波器能显示给我们电子处理过程并且很好理解。

仅可能用这种方法,也就是说能看到点火系统的里面和这些地方发生了什么。

阅读这本小册子能帮助你正确的解释示波器。

但是,我们不能完全的将理论里的情况在这儿叙述。

但不要着急,我们的目的不是要你负担很长的科学理论。

我们只想让你理解示波器和点火系统的基本原理。

当你看示波器时是否有正确的结论,知识是起决定性的。

在这本小册子里,我们故意清楚的分开了基本原理和真实的性能以及关于点火测试的评价。

我们相信这是最好的方法,一方面提供给你怎样分析示波器上的波形,另一方面给你个别描述的方法。

你会发现关于点火系统的知识逐日的与车间联和在一起,不久你就会发现博世点火示波器是不可缺少的帮助。

目录1.基本原理1.1示波器是怎么工作的1.1.1概要1.1.2示波器屏幕1.1.3使电子束偏转1.1.4触发扫描1.1.5描绘不同的电压曲线1.1.6图象拉伸,水平和垂直移动1.1.7点火示波器完整的汽缸曲线1.2点火线圈的基本原理1.2.1电能量的产生1.2.2带电导体1.2.3互感现象1.2.4变压器1.2.5电容器1.2.6阻尼震荡2.点火系统的类型和标准的点火波形2.1触发断电器感应点火系统的组成(CI)2.2标准的示波器特性曲线2.2.1闭合部分2.2.2点火电压2.2.3点火2.2.4火花衰减过程2.3晶体管点火系统的构造(TCI)2.3.1概要2.3.2晶体管2.3.3二极管单向的衰弱2.3.4晶体管线路保护2.3.5晶体管触发器2.3.6脉冲触发图象2.4晶体管点火线圈种类2.4.1电子点火触发器开关(TCI-K)2.4.2无触点电子点火的霍尔传感器(TCI-h)2.4.2.1霍尔传感器的运行原理2.4.2.2点火模块运行原理2.4.3脉冲发生器感应类型的无触点晶体管点火(TCI-i)2.4.3.1感应脉冲发生器的操做原理2.4.3.2带有开环闭合角控制的点火模块2.4.3.3开环闭合角控制的点火模块2.5电容器放电点火2.5.1概要2.5.2电容式点火系统的结构2.5.2.1充电装置2.5.2.2硅控整流器2.5.2.3变压器2.5.2.4触发CDI2.6完整的电子点火系统2.6.1概要2.6.2构造3.标准的示波器图形3.1点火线圈的触发断路器3.2晶体管点火线圈3.2.1次极点火波形TCI3.2.2初级点火波形TCI3.2.3带可变闭合角的晶体管点火系统3.2.3.1开环闭合角控制3.2.3.2控制电流3.2.4触发脉冲图形ST3.2.4.1触发断电器晶体管点火(TCI-K)3.2.4.2晶体管点火的霍尔发生器(TCI-h)3.2.4.3发电机脉冲感应类型的晶体管点火(TCI-i)3.2.5特殊的特征3.2.5.1分配器不均匀的TCL4.准备和指导问题解答4.1准备汽车4.2连接测试器4.3排除晶体管点火线圈系统里的故障4.3.1识别点火系统的类型4.3.1.1晶体管点火系统的触发断电器(TCI-k)4.3.1.2无触点式晶体管点火装置的霍尔发生器(TCI-h)4.3.1.3脉冲发生器感应类型的无触点式晶体管点火装置(TCI-i)4.3.1.4关于受电流限制的晶体管点火系统(通常设计于混和电路中)4.3.2在晶体管点火系统里接线柱名称4.3.3在晶体管点火系统里查明故障的方法5.关于示波器的故障图形5.1序言5.2评价注释5.3在所有点火系统上存在哪些相同的故障5.3.1点火峰值电压变化时的故障5.3.1.1不同的点火电压5.3.1.2火花塞瞬间放电测试5.3.2点火峰值电压变化时的故障和点火顺序5.3.2.1绝缘有问题的高压点火 5.3.2.2储备电压不足5.3.3点火顺序变化时的故障 5.3.3.1抑制电阻器的问题 5.3.3.2损坏的火花塞5.3.4闭合角和某些零件衰退变化时的故障 5.3.4.1次级点火线路断路 5.3.4.2匝间初级短路 5.3.5另外的故障5.3.5.1 关于点火线圈错误的极性连接 5.4仅在触发断电器点火系统出现的故障 5.4.1接触不良5.4.2燃烧点火不完全5.4.3点火电容器接地时的短路 5.4.4电容器电阻串联5.5仅在晶体管点火系统出现的故障 5.5.1在次级电路出现的故障 5.5.2初级电压变化时的故障 5.5.3点火模块触发时出现的故障5.5.3.1晶体管点火的断电器触发(TCI-K ) 5.5.3.2带霍尔传感器的晶体管点火(TCI-h )7.对示波器更深一层的测试5.5.3.3脉冲发生器感应类型的晶体管点火(TCI-i )5.6测量点火线圈系统 5.6.1测量闭合角5.6.2不规则的点火间隔角 5.6.3分电器不均匀的闭合角度5.7查明电容器放电点火系统的故障 5.7.1连接5.7.1.1连接触发器开关CDI 5.7.1.2连接无触点CDI5.7.2关于多脉冲充电CDI 的示波器图形 5.7.2.1标准图形 5.7.2.2故障图形6.发电机测试 6.1测试条件6.2发电机在正常工作下的图形 6.3重叠的故障图形 6.3.1励磁器二极管断路 6.3.2正极二极管断路 6.3.3负极二极管断路 6.3.4励磁器二极管短路 6.3.5正极二极管断路 6.3.6负极二极管短路 6.3.7故障状态8.博世发动机测试仪1.基本原理1.1点火示波器是怎么工作的1.1.1概要在这部分我们是想给你介绍这个先进的示波器是如何工作的。

发动机波形分析

发动机波形分析

电控元件波形分析——节气门位置传感器波形分析节气门位置传感器波形分析波形检测方法νν 1.连接好波形测试设备,探针接传感器信号输出端子,鳄鱼夹搭铁。

ν 2.打开点火开关,发动机不运转,慢慢地让节气门从关闭位置到全开位置,并重新返回至节气门关闭位置。

慢慢地反复这个过程几次。

这时波形应铺开在显示屏上。

ν查阅车型规范手册,以得到精确的电压范围,通常传感器的电压应从怠速时的低于1V到节气门全开时的低于5V。

ν波形上不应有任何断裂、对地尖峰或大跌落。

ν应特别注意在前1/4节气门开度中的波形,这是在驾驶中最常用到传感器碳膜的部分。

传感器的前1/ 8至1/3的碳膜通常首先磨损。

ν有些车辆有两个节气门位置传感器。

一个用于发动机控制,另一个用于变速器控制。

ν发动机节气门位置传感器传来的信号与变速器节气门位置传感器操作相对应。

ν变速器节气门位置传感器在怠速运转时产生低于5V电压,在节气门全开时变到低于1V。

开关型节气门位置传感器ν开关量输出型节气门位置传感器的信号波形检测同线性输出型节气门位置传感器。

ν它是由两个开关触点构成的一个旋转开关,一个常闭触点构成怠速开关,节气门处在怠速位置时,它位于闭合状态,将发动机ECU的怠速输入信号端接地搭铁,发动机ECU接到这个信号后,即可使发动机进入怠速控制,或者控制发动机“倒拖”状态时停止喷射燃油,另一个常开触点(构成全功率触点),节气门开度达到全负荷状态时,将发动机ECU的全负荷输入信号端接地搭铁,发动机ECU接到这个信号后,即可使发动机进入全负荷加浓控制状态。

波形分析开关量输出型节气门位置传感器的信号波形。

如果波形异常,则应更换开关量输出型节气门位置传感器磁电式曲轴位置传感器波形分析波形检测方法连接波形测试设备,起动发动机,怠速运转,而后加速或按照行驶性能发生故障的需要驾驶等,获得波形, 典型的磁脉冲式曲轴位置传感器信号波形对于将发动机转速和凸轮轴位置传感器制成一体的具有两个信号输出端子的曲轴位置传感器可用双通道的波形检测设备同时进行检测其信号波形ν 1.触发轮上相同的齿形应产生相同型式的连续脉冲,脉冲有一致的形状、幅值(峰对峰电压)并与曲轴(或凸轮)的转速成正比,输出信号的频率(基于触发的转动速度)及传感器磁极与触发轮间气隙对传感器信号的幅值影响极大。

汽车波形分析

汽车波形分析
氧化钛式(TiO2)
Us 按线数分为 两线型(非加热型)
三线型(加热型)
0V
氧传感器工作在极端的环境下,它的时效都会慢慢的失去。最终产生不了信号。 氧传感器失效的原因: a. 首要原因是发动机在较浓的混合比下运行时所造成的碳阻塞; b. 燃油压力过高,喷油嘴损坏,电脑传
感器损坏,操作不当, c. 使用年限及行驶里程导致它正常失效; d. 汽油中含铅,冷却液中的硅胶腐蚀。
⊙空气流量计(MAF) 空气流量计
信号电压
U
Gasstoß
空气流量计(MAF) 波形
空气流量计的分类: 按结构原理: 翼板式、热丝式、卡门涡旋式、及电位计式。 按信号类型: 数字式、摸拟式。
空气流量计的重要性
因为控制电脑依据这个信号来计算发动机负荷,点火正时,排气再循环控制及发动机怠速 控制和其它参数,不良的空气流量计会造成喘振和怠速不良,以及发动机性能和排放问题
3、燃烧电压过低 ? 4、燃烧时间短 ?
5、燃烧时间过长 ?
a. 高压线或火花塞短路; b. 火花塞电极间隙小; c. 火花塞积碳过多。
a. 高压电阻过大或开路; b. 火花塞电极间隙过大; c. 分火头与分电器盖间 过大; d. 混气过稀。 点火线圈可以产生35kV左右的电压,正常的点火只需4-17kv的电压,多余 的能量用来延长燃烧时间。如果储备电压不足或消耗在其它方面(如高压 线电阻过大),燃烧时间减少,混合气不完全燃烧,发动机工作不良。
0.0-1.0 kV
0.0-1.0 ms
高压线开路后端
高压线开路(有缺火现象)
5.0-15.0 kV 0.0-2.0 kV
1.0-5.0 kV 0.0-2.0 kV
0.8-2.4 ms 0.0-1.0 ms

数据流和波形分析诊断汽车故障法

数据流和波形分析诊断汽车故障法

数据流和波形分析诊断汽车故障法数据流和波形分析诊断故障法是排除电控发动机故障的基本方法。

由于这种方法需要一定的理论基础和一些必要的技术数据,所以在排除一般电控发动机故障时采用的较少,而大都用在排除电控发动机的疑难故障上。

(一)用数据流诊断疑难故障把电控系统的一些主要传感器和执行器正常工作时的参数值(如转速、蓄电池电压、空气流量、喷油时间、节气门开度、点火提前角、冷却液温度等)提供给维修者,然后按不同的要求进行组合,形成数据组,就称之为数据流。

这些标准数据流是厂方提供的,或者是在正常行驶的汽车上提取的数据,它能监测发动机在各种状态下的工作情况。

而电控汽车在行驶过程中,故障自诊断系统还有记录的功能,它能把汽车行驶过程中的有关数据资料记录下来。

使用中,这些数据资料可通过故障检测仪,把各种传感器和执行元件输入输出信号的瞬时值以数据的方式在显示屏上显示出来,这样可以根据汽车工作过程中各种数据的变化(有故障时的数据)与正常行驶时的数据或标准数据流对比,即可诊断出电控系统故障的原因。

例如,一辆沈阳金杯面包车,发动机在起动后,暖机阶段工作正常,正常行驶一段时间,温度升高后,发动机有间断冒黑烟现象,加速时排气管还会发出突突声,动力下降,严重时则无法挂档行驶。

因为该车动力不足,排气管有突突声,其原因可能是:个别气缸工作不好,冒黑烟,说明混合气浓度有问题。

后对电路(火花塞、点火线圈、高压线)和油路进行了检查,均未发现异常,故障原因可能在进气系统上。

用检测仪诊断,无故障码显示,利用数据流诊断法对其怠速工况(无故障时)各主要数据进行了提取,其主要数据如下:发动机转速760~800r/min喷油脉冲0.6ms点火提前角7°~14°进气压力30.8kPa冷却液温度80℃节气门开度<5.5°路试时,行驶了几十公里后,发动机就出现了上述故障现象。

一踩加速踏板,排气管有沉闷的突突声,此时再观察怠速工况的数据流,其主要数据如下:发动机转速560~920r/min喷油脉冲4.5ms点火提前角7°~21°进气压力100.2kPa冷却液温度92℃节气门开度<5.5°把热机时的数据流与冷机时的数据流对比,最明显的变化是进气压力和喷油脉冲两项数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽车发动机波形分析(七)---爆震传感器信号
2009年11月10日星期二 14:44
爆震传感器是交流信号发生器,但它们与其他大多数汽车交流信号发生器大不相同,除了像磁电式曲轴和凸轮轴位置传感器一样探测转轴的速度和位置,它们也探测振动或机械压力。

与定子和磁阻器不同,它们通常是压电装置。

它们能感知机械压力或振动(例如发动机起爆震时能产生交流电压)的特殊材料构成。

(有的通过点控制模诀)提供爆震信号,使得电脑能重新调整点火正时以阻止进一步爆震。

它们实际上是充当点火正时反馈控制循环的“氧传感器”角色。

5至15千赫范围的频率。

当控制单元接收到这些频率时,电脑重修正点火正时,以阻止继续爆震,爆震传感器通常十分耐用。

所以传感器只会因本身失效而损坏。

(峰高度或振幅)和频率(振荷的次数)将随发动机的负载和每分钟转速而增加,如果发动机因点火过早、燃烧温度不正常、排气再循环不正常流动等引起爆燃或敲击声,其幅度和频率也增加。

50毫伏/分度。

2
点火过早,排气再循环不良,低标号燃油等原因引起的发动机爆震会造成发动机损坏。

爆震传感器向电脑
爆震传感器安放在发动机体或汽缸的不同但置。

当振动或敲缸发生时,它产生一个小电压峰值,敲缸或振动越大。

爆震传感器产主峰值就越大。

一定高的频率表明是爆震或敲缸,爆震传感器通常设计成测量
测试传感器方法1,参见图14。

对发动机加载,看示波器显示。

波形结果
波形的峰值电压
为做关于爆震传感器的试验,必须改变示波器的电压分度至
测试传感器方法
打开点火开关,不起动发动机,用一些金属物敲击发动机(在传感器附近地方)。

--这通常是因为某些东西碰伤,它会造成传感器物理损坏(在传感器内晶体断裂,这就是使它不能使用)。

在敲击发动机体之后,紧接着在示波器显示上应有一振动,敲击越重,振动幅度就越大。

从一种型式的传感器至下一种传感器的峰值电压将有些变化。

爆震传感器是极耐用的。

最普通的爆振传感器失效的方式是传感器根本不产生信号
波形显示只是一条直线,但如果你转动发动机或敲击传感器时的波形是平线,检查传感器和示波器的连接,确定该回路没有接地,然后再判断传感器。

相关文档
最新文档