人教版七年级上册数学-期中综合检测试卷
2024-2025学年人教版七年级上学期数学期中质量检测卷(含答案)
新人教版七年级上期中质量检测卷(原卷+答案)[时量:120分钟 分值:120分]一、选择题(共10小题,每小题3分,共30分)1. ―6的相反数是( )A. 6B. ―6C. 16D. ―162. 某市某天的最高气温为8℃,最低气温为―9℃,则最高气温与最低气温的差为( )A. 17℃ B. 1℃C. ―17℃D. ―1℃3. 深圳图书馆北馆是深圳首批建设并完工的新时代重大文化设施,其建筑面积约为7.2万平方米,设计藏书量为800万册.其中800万用科学记数法表示为( )A. 8×102B. 8×105C. 8×106D. 0.8×1074. 用四舍五入法把数25.862精确到十分位,所得的近似数是( )A. 25.8B. 25.9C. 25.86D. 25.875. 下列计算正确的是( )A. 3a ―a =aB. ―2(x ―4)=2x +4C. ―(―32)=9D. 4+54×45―4+1=06. 下列各式―12xy ,0,1m ,2x +1,2x ―y 5中,整式有( )A. 1个 B. 2个 C. 3个D. 4个7. 小兰房间窗户的装饰物如图所示,该装饰物由两个四分之一圆组成(半径相同),则窗户中能射进阳光的部分的面积为( )A. ab ―π9a 2B. ab ―π18a 2C. ab ―π4b 2D. ab ―π8b 28. 若|a +3|+(b ―2)2=0,则(a +b )2025的值是( )A. 1B. ―1C. ―2024D. 无法计算9. 下列说法正确的是( )①有理数是整数和分数的统称;②一个数的绝对值的相反数一定是负数;③如果一个数的倒数等于它本身,则这个数是0和±1;④3ab 3的次数为4;⑥如果ab >0,那么a >0,b >0.A. ①②⑤B. ①④C. ①②④D. ③⑤10. 对于任意实数a和b,如果满足a3+b4=a+b3+4+23×4,那么我们称这一对数a,b为“友好数对”,记为(a,b).若(x,y)是“友好数对”,则2x―3[6x+(3y―4)]的值为()A. ―4B. ―3C. ―2D. ―1二、填空题(共6小题,每小题3分,共18分)11. ―3的倒数是.12. 已知点A,B在数轴上对应的数分别为―4和5,则A,B两点间的距离为.13. 比较大小:-34―35.(填“>”或“<”)14. 单项式―32πab5c27的系数是,次数是.15. 如果单项式3x m y与―5x3y n是同类项,那么mn=.16. 已知在多项式x2+3kxy―y2―9xy+10中不含xy项,则k=.三、解答题(共9小题,共72分)17. (6分)计算:(1)―12×(512+23―34)+5;(2)―12024+(―10)÷12×2―[2―(―3)3].18. (6分)计算:(1)―3(2a2b―ab2)―2(12ab2―2a2b);(2)4xy2―12(x3y+4xy2)―2[14x3y―(x2y―xy2)∖].19. (6分)已知A=3x2―x+2y―4xy,B=2x2―3x―y+xy.(1)化简:4A―6B;(2)当x+y=67,xy=―1时,求4A―6B的值.20. (8分)某水果店以每箱200元的价格从水果批发市场购进20箱樱桃,若以每箱净重10 kg为标准,超过的千克数记为正数,不足的千克数记为负数,称重记录如表:与标准质量的差值/kg―0.5―0.2500.250.30.5箱数1246n2(1)求n的值及这20箱樱桃的总质量;(2)实际上该水果店第一天以每千克25元销售了这批樱桃的60%,第二天因为害怕剩余樱桃腐烂,决定降价把剩余的樱桃以原零售价的70%全部售出,水果店在销售这批樱桃过程中是盈利还是亏损?盈利或亏损多少元?21. (8分)理解与思考:“整体思想”是中学数学解题中的一种重要思想,它在整式的化简与求值中应用极为广泛.例如:已知2x2+3x=1,求代数式2x2+3x+2025的值.我们可以将2x2+3x作为一个整体代入:2x2+3x+2025=(2x2+3x)+2025=1+2025=2026.请仿照上面的解题方法,完成下列问题:(1)已知2x2+3x=―1,求代数式2x2+3x+2028的值;(2)已知x+y=3,求代数式6(x+y)―3x―3y+2026的值.22. (9分)习近平总书记强调:“加强学校体育工作,推动青少年文化学习和体育锻炼协调发展,帮助学生在体育锻炼中享受乐趣、增强体质、健全人格、锻炼意志”.体育是教育的重要组成部分,其功能既包括锻炼身体、增强体质,也包括塑造品格、养成精神.某校为积极响应国家的号召,决定添置一批体育器材.学校准备在网上订购一批某品牌足球和跳绳,在查阅天猫网店后发现足球每个定价140元,跳绳每根定价30元.现有A,B两家网店均提供包邮服务,并提出了各自的优惠方案.A网店:买一个足球送一根跳绳;B网店:足球和跳绳都按定价的90%付款.已知要购买足球60个,跳绳x根(x>60).(1)若在A网店购买,需付款元;若在B网店购买,需付款元.(均用含x的代数式表示)(2)当x=200时,通过计算说明此时在哪一家网店购买较为合算?(3)当x=200时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元.23. (9分)有理数a,b,c在数轴上的对应点位置如图所示:(1)用“>”或“<”填空:b―c0,b―a0,a+b0;(2) 化简:|b ―c |+|b ―a |―|c ―a |―|a +b |.24. (10分)我们规定:对于任何有理数a ,b ,使得a ―b =ab 成立的一对数a ,b 称为“积差等数对”,记为(a ,b ).例如:因为1.5―0.6=1.5×0.6,(―2)―2=(―2)×2,所以数对(1.5,0.6),(―2,2)都是“积差等数对”.(1) 下列数对是“积差等数对”的是 (填序号);①(1,12); ②(2,1); ③(―12,―1).(2) 若数对(m ,3)是“积差等数对”,求m 的值;(3) 若数对(a ,b )是“积差等数对”,求代数式4[3ab ―a ―2(ab ―2)]―2(3a 2―2b )+6a 2的值.25. (10分)已知M ,N 两点在数轴上所表示的数分别为m ,n ,且m ,n 满足:|m ―7|+(n +2)2=0.(1) 求m ,n 的值;(2) 情境:有一个玩具火车AB 如图所示放置在数轴上,将火车沿数轴左右水平移动,当点A 移动到点B 时,点B 所对应的数为m ,当点B 移动到点A 时,点A 所对应的数为n ,则玩具火车AB 的长为 个单位长度.应用:如图,当玩具火车AB 匀速向右运动时,若火车从车头到车尾完全经过点M 需要2s ,则火车的速度为每秒 个单位长度.(3) 在(2)的条件下,当玩具火车AB 匀速向右运动,同时点P 和点Q 从点N ,M 出发,分别以每秒1个单位长度和2个单位长度的速度向左和向右运动,记玩具火车AB 运动后对应的位置为A 1B 1.点P ,Q 间的距离用a 表示,点B 1,A 间的距离用b 表示,是否存在常数k ,使得ka ―b 的值与它们的运动时间无关?若存在,请求出k 和这个定值;若不存在,请说明理由.参考答案一、选择题(共10小题,每小题3分,共30分)1.A2.A3.C4.B5.C6.D7.D8.B9.B10.C二、填空题(共6小题,每小题3分,共18分)11.―1312.913.<14.―9π7; 815.316.3三、解答题(共9小题,共72分)17.(1) 解:原式=―12×512―12×23+12×34+5=―5―8+9+5=1.(2) 原式=―1+(―10)×2×2―[2―(―27)]=―1+(―40)―29=―70.18.(1) 解:原式=―6a 2b +3ab 2―ab 2+4a 2b=―2a 2b +2ab 2.(2) 原式=4xy 2―12x 3y ―2xy 2―2(14x 3y ―x 2y +xy 2)=4xy 2―12x 3y ―2xy 2―12x 3y +2x 2y ―2xy 2=―x 3y +2x 2y .19.(1) 解:原式=4(3x 2―x +2y ―4xy )―6(2x 2―3x ―y +xy )=12x 2―4x +8y ―16xy ―12x 2+18x +6y ―6xy=14x +14y ―22xy .(2) 当x +y =67,xy =―1时,4A―6B=14x+14y―22xy=14(x+y)―22xy―22×(―1)=14×67=12+22=34.20.(1)解:n=20―1―2―4―6―2=5.10×20+(―0.5)×1+(―0.25)×2+0.25×6+0.3×5+0.5×2=203(kg).答:n的值为5,这20箱樱桃的总质量是203kg.(2)25×203×60%+25×203×(1―60%)×70%―200×20=466(元).答:是盈利的,盈利466元.21.(1)解:∵2x2+3x=―1,∴原式=―1+2028=2027.(2)∵x+y=3,∴原式=6(x+y)―3(x+y)+2026=3(x+y)+2026=3×3+2026=9+2026=2035.22.(1)(30x+6600);(27x+7560)(2)解:当x=200时,A网店付款:30x+6600=30×200+6600=12600(元);B网店付款:27x+7560=27×200+7560=12960(元).∵12600<12960,∴在A网店购买较为合算.(3)当x=200时,先从A网店购买60个足球,送60根跳绳,再从B网店购买140根跳绳,共付款:60×140+140×30×90%=8400+3780=12180(元).∴当x=200时,先从A网店购买60个足球,送60根跳绳,再从B网店购买140根跳绳,这样购买更省钱.共付款12 180元.23.(1)<;>;<(2)解:∵b―c<0,b―a>0,c―a>0,a+b<0,∴|b―c|+|b―a|―|c―a|―|a+b|=c―b+b―a―c+a+a+b=a +b .24.(1) ①③(2) 解:∵(m ,3)是“积差等数对”,∴m ―3=3m ,解得m =―32,∴m 的值为―32.(3) 原式=4(3ab ―a ―2ab +4)―6a 2+4b +6a 2=12ab ―4a ―8ab +16―6a 2+4b +6a 2=4ab ―4a +4b +16.∵(a ,b )是“积差等数对”,∴a ―b =ab ,∴ 原式=4ab ―4(a ―b )+16=4ab ―4ab +16=16.25.(1) 解:∵|m ―7|+(n +2)2=0,∴m ―7=0,n +2=0,∴m =7,n =―2.(2) 3; 32(3) 存在,k =12,定值为32.设玩具火车AB 的运动的时间为t s ,则B 1A =32t +3.由题意,得点Q 表示的数是2t +7,点P 表示的数是―2―t ,∴PQ =2t +7―(―2―t )=9+3t ,∴ka ―b =k (9+3t )―(32t +3)=(9k ―3)+(3k ―32)t .∵ 常数k 使得ka ―b 的值与它们的运动时间无关,∴3k ―32=0,解得k =12,∴9k ―3=32.故当k =12时,常数k 使得ka ―b 的值与它们的运动时间无关,此时定值为32.。
期中综合检测卷(课件)人教版(2024)数学七年级上册
2
1 +2 +3 +…+ n = n (n+1)(2 n +1)
1
2
3
4
5
6
7
8
;
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
(3)用你发现的规律计算132+142+152+…+242的值.
解:原式=(12+22+32+…+242)-(12+22+32+…+122)
= ×24×25×49- ×12×13×25
1
2
C. -4
B. 1
3
4
5
6
7
8
9
10
11
D. -8
12
13
14
15
16
17
18
19
20
21
22
23
5. 下列运算正确的是( D
)
A. -3-3=0
C.
B. -2+5=-7
1
- ÷2=-1
2
D. (-3)2-32=0
6. 数轴上,原点及原点左边的点所表示的数是( C )
A. 正数
7.
B. 负数
2
23
(2)请用含 n 的代数式表示出第 n 个图形中点的个数,并求出第100个图形
中点的个数.
解:第 n 个图形中点的个数为6 n +1.
当 n =100时,6 n +1=6×100+1=601.
所以第100个图形中点的个数为601.
1
2
3
4
5
6
7
人教版2024-2025学年七年级数学上册期中考试检测试卷(原卷版)
2024-2025学年人教版七年级数学上册期中考试检测试卷一、选择题(每题3分,共计36分)1. 有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A. 8−B. 3C. 13D. 3−2. 在2−、1−、0、1这四个数中,最小的数是( )A. 1B. 0C. -1D. -23. 某市某天的最高气温为8C °,最低气温为9C −°,则最高气温与最低气温的差为( )A. 17C °B. 1C °C. 17C −°D. 1C −° 4. 水结成冰体积增大111,现有体积为a 水结成冰后体积为( ) A 111a B. 1211a C. 1011a D. 1112a 5. 截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( )A. 717.510×B. 81.7510×C. 91.7510×D. 90.17510× 6. 李伯家有山羊m 2倍多18只,绵羊的数量为( )A. 18m +B. 18m −C. 218m −D. 218m + 7. “△”表示一种运算符号,其意义是:2a b a b =− ,那么13 等于( )A. 1B. 1−C. 5D. 5−8. 已知表示有理数a ,b 的点在数轴上的位置如图所示,则a b a b+的值是( )A. 2−B. 1−C. 0D. 29. 如果13x +=,5y =,0y x −>,那么y x −的值是( ) A. 2或0 B. 2−或0C. 1−或3D. 7−或9 10. 用8m 长的铝合金做成一个如图所示的长方形窗框,设长方形窗框的横条长度为m x ,则长方形窗框的面积为( )的.A. ()24m x x −B. ()283m x x − C. 234m 2x x−D. 228m 3x x − 11. 如果()32a =−−,()33b =−,223c =−,那么a bc +的值为( ) A. 4− B. 4 C. 20 D. 20−12. 小强根据学习“数与式”积累的经验,111111111111122232334344545=−=−=−=−×××× ,,,,,则111111223344520202021+++++××××× 的值为( ). A. 2020 B. 20212022C. 2021D. 20202021 二、填空题(每题4分,共计24分) 13. 计算:23−=____________. 14. 对于有理数a b 、,若规定a b a ab ∗=−,则(2)5−∗的值为_______.15. 若()22430||a b ++−-=,则b =___________;a =___________. 16. 若220230x y −−=,则代数式202424x y −+的值是__________. 17. 如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的_____.18. 计算:111123344520132014++++=×××× ( ) 三、解答题(19、20、21每题10分,22-26题每题12分,共计90分,写出必要的解答过程和步骤才给分)19. 计算:(1)112712623−−++−; (2)273132515858 ++−−−−+.20. 把下列各数分别填入相应的集合里. 1,0.20−,135,325,789−,0,23.13−,0.618,2004− 非正数集合:{ …};非负数集合:{ …};非正整数集合:{ …};非负整数集合:{ …}.21. 如图,在一条数轴上,点O 为原点,点A 、B 、C 表示数分别是1m +,2m −,94m −.(1)求AC 的长;(用含m 的代数式表示) (2)若5AB =,求BC 中点D 表示的数.22. 已知:()21102a b −++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c ,d 值:(2)试求代数式()()328b a c d −+−的值.23. 已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.24. 先阅读下列解题过程,再解答问题:解方程:32x +=. 解:当30x +≥时,原方程可化为32x +=,解得1x =−;当30x +<时,原方程可化为32x +=−,解得 5.x =−所以原方程的解是1x =−或5x =−.(1)解方程:3150x −−=;的的的(2)若1x a x −++的最小值为4,求a 的值.25. 随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤); 星期一 二 三 四 五 六 日 与计划量的差值4+ 3− 5− 14+ 8− 21+ 6−(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售 斤;(2)本周实际销售总量达到了计划数量没有?(3)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元? 26. 阅读材料:求2342020122222++++++ 的值.解:设234201920201222222S =+++++++ ,将等式两边同时乘2,得 ,23452020202122222222S =+++++++将下式减上式,得2021221S S −=−,即202121S =−, 即 2342020202112222221++++++=− .请你仿照此法计算:(1)23410122222++++++ ;(2)234133333n ++++++ (其中n 为正整数).。
2024年全新七年级数学上册期中试卷及答案(人教版)
专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 29C. 35D. 392. 下列哪个数是偶数?A. 23B. 27C. 33D. 363. 一个等差数列的首项是3,公差是2,那么第10项是多少?A. 19B. 20C. 21D. 224. 下列哪个图形是平行四边形?A. 正方形B. 长方形C. 梯形D. 圆形5. 下列哪个是无理数?A. √9B. √16C. √25D. √26二、判断题(每题1分,共5分)1. 两个质数相乘一定是合数。
()2. 0是偶数。
()3. 1是等差数列的首项。
()4. 平行四边形的对边相等。
()5. 所有的无理数都是开方开不尽的数。
()三、填空题(每题1分,共5分)1. 100的平方根是______。
2. 一个等差数列的公差是3,第5项是17,那么首项是______。
3. 下列图形中,______是轴对称图形。
4. 下列数中,______是立方数。
5. 如果a+b=12,ab=4,那么a和b的值分别是______和______。
四、简答题(每题2分,共10分)1. 请简述等差数列的定义。
2. 请简述平行四边形的性质。
3. 请简述无理数的概念。
4. 请简述勾股定理的内容。
5. 请简述一次函数的图像特点。
五、应用题(每题2分,共10分)1. 一个等差数列的前5项和是35,求这个数列的第10项。
2. 一个长方形的长是10厘米,宽是6厘米,求这个长方形的面积。
3. 如果一个数的平方是64,那么这个数的立方是多少?4. 如果a=5,b=3,求a²+b²的值。
5. 请画出一个一次函数y=2x+1的图像。
六、分析题(每题5分,共10分)七、实践操作题(每题5分,共10分)1. 请用直尺和圆规画出一个边长为5厘米的正方形。
2. 请用直尺和圆规画出一个半径为3厘米的圆。
八、专业设计题(每题2分,共10分)1. 设计一个等差数列,其首项为3,公差为2,求前10项的和。
人教版七年级数学(上册)期中综合检测卷
C 区域是边长为
c m 的正方形 .
(
宽是 m;
1)①B 区域长方形场地的长是 m,
a+3)
x3 +
4x2+9x+2 是关于 x 的二次多项式,一次项系数为c.
(
1)
a= ,
b= ,
c= ;
(
2)将数轴折叠,使得点 A 与点C 重合,若点 B 与点 D 重合,求点
D 表示的数;
(
3)当点 A 、点 B 和点C 分别以每秒 4 个单位长度、每秒 2 个单位
长度和每秒 1 个 单 位 长 度 的 速 度 沿 数 轴 同 时 向 左 运 动 时,设
七年级数学(上册)
数学 -
1
31 - 七年级·上册
(
19.
8 分)人在运动时 的 心 跳 速 率 通 常 和 人 的 年 龄 有 关,如 果 用 x 表
示一个人的年龄,那么正常 情 况 下 这 个 人 在 运 动 时 所 能 承 受 的 每
4
(
220-x).
5
(
1)正常情况下,一个 15 岁 的 少 年 在 运 动 时 所 能 承 受 的 每 分 钟 心
D
2
2
若火箭发射点火前 5s记作 -5s,则火箭发射点火后 10s记作
2.
二、填空题(共 5 题,每题 3 分,共 15 分)
A+5s
B
-5s
C
+10s
D
-10s
餐 桌 边 的 一 蔬 一 饭 ,舌 尖 上 的 一 饮 一 酌 ,实 属 来 之 不 易 ,舌 尖
3.
若 m,
13.
人教版七年级数学上册期中测试卷(七套)(含知识点)
A、 B、 C、 D、
8、若 与 是同类项,那么 ()
A、0 B、1 C、-1 D、-2
9、有理数a、b、c的大小关系为:c<b<0<a,则下面的判断正确的是()
A、 B、 C、 D、
10、已知a、b为有理数,下列式子:① ② ③ ④ 其中一定能够表示a、b异号的有()个
(1)若A点在数轴上表示的数为-3,则蜗牛停在数轴上何处,请通过计算加以说明
(2)若蜗牛的爬行速度为每秒 ,请问蜗牛一共爬行了多少秒?
24、(6分)便民超市原有 桶食用油,上午卖出 桶,中午休息时又购进同样的食用油 桶,下午清仓时发现该食用油只剩下5桶,请问:
(1)便民超市中午过后一共卖出多少桶食用油?(用含有X的式子表达)
(1)通过计算,比较下列各组中两个数的大小(填“>”,“<”,“=”)
① ; ②
③ ; ④
⑤ ; ……
(2)从第(1)题的结果经过归纳,可以猜想出 与 的大小关系是
(3)根据上面的归纳猜想得到的一般结论,试比较下面两个数的大小:
23.如图,大正方形的边长为 ,小正方形的边长为2,
求阴影部分的面积。
六、(本大题共2小题,每小题6分,共12分)
24.我国股市交易中每卖一次需交0.75﹪的各种费用,某投资者以每股10元的价格买入某股票 股,当该股票涨到12元时全部卖出。
(1)用式子表示投资者实际盈利多少?
(2)若该投资者买入1000股,则他盈利了多少元?
25.某地出租车收费标准是:起步价为4元,可乘3km,3km到5km,每km收费1.2元;5km后,每km收费2元,若某人乘坐了 ( )km的路,请写出他支付的费用;若他支付的费用是10.4元,你能算出他乘坐的路程吗?(注:km为千米)
2024-2025学年人教版(2024)七年级数学上册期中测试卷
2024-2025学年人教版(2024)七年级数学上册期中测试卷1.某品牌酸奶外包装上标明“净含量:”.随机抽取四种口味的这种酸奶分别称重如下表.其中,净含量不合格的是()种类原味草莓味香草味巧克力味净含量190195203200A.原味B.草莓味C.香草味D.巧克力味2.的相反数是()A.B.C.D.3.绝对值大于且小于的所有负整数的和为()A.B.C.D.4.下列说法:①若m满足,则;②若,则;③若,则是正数;④若三个有理数a,b,c满足,则,其中正确的是有()个A.1B.2C.3D.45.如图所示的“杨辉三角”告诉了我们展开式的各项系数规律,如:第三行的三个数,恰好对应展开式中各项的系数;第四行的四个数恰好对应的系数.根据数表中前四行的数字所反映的规律计算:()A.B.C.D.6.计算机利用的是二进制数,它共有两个数码0,1.将一个十进制数转化为二进制,只需把该数写出若干个数的和,依次写出1或0即可.如为二进制下的五位数,则十进制1025是二进制下的()A.10位数B.11位数C.12位数D.13位数7.下列各式中,不是代数式的是()A.B.C.D.8.已知,,且,则的值为()A.1B.5C.1或5D.1或9.按下图所示的程序进行计算,若输入的数是4,则输出的数是()A.1B.C.D.10.如图,阶梯图的每个台阶上都标有一个数,数列呈现一定的符号变化规律和绝对值的变化规律,请计算()A.1013B.1011C.0D.以上都不对11.气象台记录了某地一周七天的气温变化情况(如下表).星期一二三四五六日气温变化其中正数表示这天与前一天相比气温上升的温度,负数表示这天与前一天相比气温下降的温度.已知上周日的气温是,根据表中数据,请你判断该地本周最低气温是_____.12.定义一种新运算:对于任意实数、,满足,当,时,的最大值为______.13.已知一个数减去2.4的差的绝对值为0,那么这个数是______.14.若规定运算,则______.15.若,则的值是_________.16.丽丽写了一个三位数,个位上的数是最小的质数,十位上的数是最小的合数,且这个三位数是3的倍数,这个数最大是_________.17.明明用500元去买篮球,每个篮球a元.若他买了6个篮球,还剩_____元;若,买6个篮球还剩_______元.18.如图是一个计算程序,若输入a的值为,则输出的结果________.19.计算:(1);(2)20.先化简,再求值:,其中,.21.已知x是最大的负整数的相反数,a是的倒数,b的绝对值是2,且.求的值.22.已知互为相反数,互为倒数,,求的值.23.将如图所示的长为,宽为,高为的大理石运往某地用以建设革命历史博物馆.(1)求每块大理石的体积;(结果用科学记数法表示)(2)如果一列火车总共运送了块大理石,共约重千克,求每块大理石约重多少千克?(结果用科学记数法表示)24.外卖送餐为我们生活带来了许多便利,某学习小组调查了一名外卖小哥一周的送餐情况,规定送餐量超过40单(送一次外卖称为一单)的部分记为“”,低于40单的部分记为“”,如表是该外卖小哥一周的送餐量:星期一二三四五六日选餐量(单位:单)(1)送餐最多的一天比送餐最少的一天多送______单;(2)求该外卖小哥这一周平均每天送餐多少单?(3)外卖小哥每天的工资由底薪40元加上送单补贴构成.送单补贴的方案如下:每天送餐量不超过40单的部分,每单补贴4元;超过40单的部分,每单补贴8元.求该外卖小哥这一周工资收入多少元?25.【阅读理解】整体思想是从问题的整体性质出发,突出对问题的整体结构的分析和改造,把某些式子或图形看成一个整体,进行整体处理.它作为一种思想方法在数学学习中有广泛的应用,因为一些问题按常规不容易求某一个(或多个)未知量时,根据题目的结构特征,把某一组数或某一个代数式看作一个整体,找出整体与局部的联系,从而找到解决问题的新途径.例如,求的值,我们将作为一个整体代入,则原式.【教材原题】如图,若,求长方形A与B的面积差.【尝试应用】当时,代数式的值为m,当时,求代数式的值;(用含m的代数式表示)【拓展应用】A,B两地相距60千米,某日,甲从A地出发前往B地,同时,乙从B地出发前往A地.已知甲每小时行a千米,乙每小时行b千米,经过2小时,甲、乙二人相遇.直接写出甲、乙两人相距20千米的时间.26.【概念学习】定义新运算:求若干个相同的有理数(均不等于)的商的运算叫做除方.比加,等,类比有理数的乘方,我们把写作,读作“的圈次方”,写作,读作“的圈次方”.一般地,把记作:,读作“的圈次方”.特别地,规定:.【初步探究】(1)直接写出计算结果:;;(2)若为任意正整数,下列关于除方的说法中,正确的有;(横线上填写序号)A.任何非零数的圈次方都等于B.任何非零数的圈次方都等于它的倒数C.圈次方等于它本身的数是或D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数E.互为相反数的两个数的圈次方互为相反数F.互为倒数的两个数的圈次方互为倒数【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?(3)请把有理数的圈次方写成幂的形式:;(4)计算:.。
人教版七年级上学期期中考试数学试卷(带答案)
人教版七年级上学期期中考试数学试卷(带答案)(考试时间:120分钟;试卷满分:150分)一.选择题:(每小题4分,共40分)1.9的相反数是( )A.-9B.﹣19C.19D.92.截至2023年底,我国森林面积约为3465000000亩,森林覆盖率达到24.02%,将数字3465000000用科学记数法表示为( )A.0.3465x109B.3.465x109C.3.465x108D.34.65x1083.黑陶是继彩陶之后中国新石器时代制陶工艺的又一个高峰,被誉为"土与火的艺术,力与美的结晶".如图是山东博物馆收藏的蛋壳黑陶高柄杯.关于它的三视图,下列说法正确的是( )A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同(第3题图)(第4题图)(第7题图)4.一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是"祝你考试顺利",把它折成正方体后,与"祝"相对的字是()A.考B.试C.顺D.利5.过某个多边形一个顶点的所有对角线,将这个多边形分成了5个三角形,则这个多边形是( )A.五边形B.六边形 C.七边形D.八边形6.下列各式正确的是( )A.3x+3y=6xyB.x+x=2x2C.-9a2b-9a2b=0D.-9y2+16y2=7y27.有理数a,b在数轴上对应的位置如图所示,则下列结论成立的是( )A.a<0B.b>0C.a-b<0D.ba<08.直线l上有三点A、B、C,其中AB=8cm, BC=6cm, M、N分别是AB、BC的中点,则MN的长是()A.6cm或2cmB.7cm或1cmC.4cm或3cmD.16cm或12cm9.我国古代数学著作《孙子算经》中有"多人共车"问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐,问人数和车数各多少?设车x 辆,根据题意,可列出的方程是()A.3x-2=2x+9B.3(x-2)=2x+9C.x3+2=x2-9 D.3(x-2)=2(x+9)10.定义一种新运算:T(x,y)=2x+yx+y ,其中x+y≠0,比如:T(2,5)=2×2+52+5=97,则T(1,2)+T(2,3)+...+T(100,101)+T(101,101)+T(101,100)+...+T(3,2)+(2,1)的值为()A.5972B.6032C.300D.303二.填空题:(每小题4分,共24分)11.据介绍,我国计划2030年前实现中国人首次登陆月球,开展月球科学考查及相关技术试验.月球表面没有大气层保温,昼夜温差非常大.面对太阳的一面温度可以达到零上127C 记作+127℃,背向太阳的一面温度可以达到零下183℃,记作℃.12.单项式﹣3xy24的系数是.13.如果单项式﹣x m﹣1y2n与﹣54x3y n+3是同类项,那么mn= .14.若x =3是方程2x-10=4a的解,则a= .15.如图,点C,D在线段AB上,且AC=CD=DB,点E是线段AB的中点.若AD=8,则CE的长为.(第15题图) (第16题图)16.如图所示,将形状、大小完全相同的"●"和线段按照一定规律摆成下列图形,第1幅图形中"●"的个数为a1,第2幅图形中"●"的个数为a2,第3幅图形中"●"的个数为a3,…,以此类推,则1a1+1a2+1a3+...+1a81的值为.三.解答题:(10小题,共86分)17.(6分)计算:(1)5+(-6)+3-(-4) (2)-23÷49×(﹣23)218.(6分)先化简,再求值:2(6a 2-ab)-3(4a 2-5ab+3),其中a=-1,b=2.19.(9分)如图是由7个相同的小正方体组成的几何体,请在下面的方格中画出这个几何体从正面、左面和上面看到的形状图.20.(8分)解方程:(1)2x -9=4x+7 (2)x+12﹣1=2+2﹣x 421.(6分)如图所示,点O 是直线AB 上一点,∠COE=90° OD 平分∠BOC ,若∠AOC=40°,求∠DOE 的度数.(请补全以下求解过程中的空格)解:∵O 是直线AB 上一点∴∠AOB=∵∠AOC=40°∴∠BOC=∠AOB﹣∠AOC=∵OD平分∠BOC∴∠COD= =又∵∠COE=90°∴∠DOE =∠COE﹣= ·22.(9分)足球比赛中,根据场上攻守形势,守门员会在球门前来回跑动,如果以球门线为基准,向前跑记作正数,返回则记作负数,一段时间内,某守门员的跑动情况记录如下(单位:m)+10,-2,+5,-6,+12,-9,+4,-14(假定开始计时时,守门员正好在球门线上).(1)守门员最后是否回到了球门线上?(2)守门员在这段时间内共跑了多少米?(3)如果守门员离开球门线的距离超过10m(不包括10m),那么对方球员挑射极有可能破门,请问在这段时间内,对方球员有几次挑射破门的机会?23.(10分)为举办校园文化艺术节,甲、乙两班准备给合唱同学购买演出服装(一人一套),两班共92人(其中甲班比乙班人多,且甲班不到90人),下面是供货商给出的演出服装的价格表:如果两班单独给每位同学购买一套服装,那么一共应付5020元.(1)甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省多少钱?(2)甲、乙两班各有多少名同学?24.(10分)阅读下列材料:小明为了计算1+2+22+…+22023+22024的值,采用以下方法:设S=1+2+22+…+22023+22024①则2S=2+22+...+22024+22025②②-①得,2S-S =S=22025-1.请仿照小明的方法解决以下问题:(1)1+2+22+...+29= .(2)3+32+33+...+320= .(3)求1+a+a2+a3+…+ a n-1的和(a >1,n是正整数,请写出计算过程,答案用含有a和n的式子表示).25.(10分)定义:如图①,射线OC在∠AOB的内部,图中共有3个角:∠AOB,∠AOC ,∠BOC .若其中有一个角是另一个角的3倍,则称射线OC 是∠AOB 的"巧分线".(1)如图①,若∠AOB =60°,且射线OC是∠AOB 的"巧分线",则∠AOC 的度数=.(2)如图②,若∠MPN =60°,射线PQ 绕点P 从PN 位置开始,以每秒4°的速度顺时针旋转,同时射线PM 绕点P 以每秒3°的速度顺时针旋转,当PQ 与PN 第一次成100°角时,射线PQ和射线PM 同时停止旋转,设旋转的时间为t秒,求t为何值时,射线PQ是∠MPN的"巧分线"?26.(12分)(1)【特例感知】如图1,已知线段MN=45cm,AB=3cm,点C和点D分别是AM , BN 的中点,若AM =18cm,则CD = cm.(2)【知识迁移】我们发现角的很多规律和线段一样,如图2,已知∠AOB在∠MON 内部转动,射线OC 和射线OD 分别平分∠AOM 和∠BON :①若∠MON =150°,∠AOB =30°,求∠COD 的度数:②请你猜想∠AOB ,∠COD和∠MON 三个角有怎样的数量关系?请说明理由.(3)【类比探究】如图3,∠AOB 在∠MON 内部转动,若∠MON =150°,∠AOB =30°,∠MOC = k∠AOC ,∠NOD = k∠BOD ,求∠COD 的度数.(用含有k的式子表示计算结果).参考答案一.选择题:(每小题4分,共40分)1.9的相反数是( A )A.-9B.﹣19C.19D.92.截至2023年底,我国森林面积约为3465000000亩,森林覆盖率达到24.02%,将数字3465000000用科学记数法表示为( B )A.0.3465x109B.3.465x109C.3.465x108D.34.65x1083.黑陶是继彩陶之后中国新石器时代制陶工艺的又一个高峰,被誉为"土与火的艺术,力与美的结晶".如图是山东博物馆收藏的蛋壳黑陶高柄杯.关于它的三视图,下列说法正确的是( A )A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同(第3题图)(第4题图)(第7题图)4.一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是"祝你考试顺利",把它折成正方体后,与"祝"相对的字是( C )A.考B.试C.顺D.利5.过某个多边形一个顶点的所有对角线,将这个多边形分成了5个三角形,则这个多边形是( C )A.五边形B.六边形 C.七边形D.八边形6.下列各式正确的是( D )A.3x+3y=6xyB.x+x=2x2C.-9a2b-9a2b=0D.-9y2+16y2=7y27.有理数a,b在数轴上对应的位置如图所示,则下列结论成立的是( D )A.a<0B.b>0C.a-b<0D.ba<08.直线l上有三点A、B、C,其中AB=8cm, BC=6cm, M、N分别是AB、BC的中点,则MN的长是( B )A.6cm或2cmB.7cm或1cmC.4cm或3cmD.16cm或12cm9.我国古代数学著作《孙子算经》中有"多人共车"问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐,问人数和车数各多少?设车x 辆,根据题意,可列出的方程是( B )A.3x-2=2x+9B.3(x-2)=2x+9C.x3+2=x2-9 D.3(x-2)=2(x+9)10.定义一种新运算:T(x,y)=2x+yx+y,其中x+y≠0,比如:T(2,5)=2×2+52+5=97,则T(1,2)+T(2,3)+...+T(100,101)+T(101,101)+T(101,100)+...+T(3,2)+(2,1)的值为( B )A.5972B.6032C.300D.303二.填空题:(每小题4分,共24分)11.据介绍,我国计划2030年前实现中国人首次登陆月球,开展月球科学考查及相关技术试验.月球表面没有大气层保温,昼夜温差非常大.面对太阳的一面温度可以达到零上127C 记作+127℃,背向太阳的一面温度可以达到零下183℃,记作 ﹣183 ℃. 12.单项式﹣3xy 24的系数是 ﹣34 .13.如果单项式﹣x m ﹣1y 2n 与﹣54x 3y n+3是同类项,那么mn= 12 . 14.若x =3是方程2x -10=4a 的解,则a= ﹣1 .15.如图,点C,D 在线段AB 上,且AC=CD=DB ,点E 是线段AB 的中点.若AD=8,则CE 的长为 2 .(第15题图) (第16题图)16.如图所示,将形状、大小完全相同的"●"和线段按照一定规律摆成下列图形,第1幅图形中"●"的个数为a 1,第2幅图形中"●"的个数为a 2,第3幅图形中"●"的个数为a 3,…,以此类推,则1a 1+1a 2+1a 3+...+1a 81的值为 2945 .三.解答题:(10小题,共86分)17.(6分)计算:(1)5+(-6)+3-(-4) (2)-23÷49×(﹣23)2=8﹣6+4 =﹣8×94×49 =6 =﹣818.(6分)先化简,再求值:2(6a 2-ab)-3(4a 2-5ab+3),其中a=-1,b=2. 解:原式=12a 2-2ab -12a 2+15ab ﹣9 =13ab ﹣9将a=-1,b=2代入得13×(﹣1)×2﹣9=﹣3519.(9分)如图是由7个相同的小正方体组成的几何体,请在下面的方格中画出这个几何体从正面、左面和上面看到的形状图.20.(8分)解方程:(1)2x -9=4x+7 (2)x+12﹣1=2+2﹣x 4解:2x ﹣4x=9+7 解:2x+2﹣4=8+2﹣xx=﹣8 x=421.(6分)如图所示,点O 是直线AB 上一点,∠COE=90° OD 平分∠BOC ,若∠AOC=40°,求∠DOE 的度数.(请补全以下求解过程中的空格)解:∵O 是直线AB 上一点 ∴∠AOB= 180° ∵∠AOC=40°∴∠BOC=∠AOB ﹣∠AOC= 140° ∵OD 平分∠BOC∴∠COD= 12∠BOC = 70﹣ 又∵∠COE=90°∴∠DOE =∠COE ﹣ ∠COD = 20° ·22.(9分)足球比赛中,根据场上攻守形势,守门员会在球门前来回跑动,如果以球门线为基准,向前跑记作正数,返回则记作负数,一段时间内,某守门员的跑动情况记录如下(单位:m)+10,-2,+5,-6,+12,-9,+4,-14(假定开始计时时,守门员正好在球门线上).(1)守门员最后是否回到了球门线上?(2)守门员在这段时间内共跑了多少米?(3)如果守门员离开球门线的距离超过10m(不包括10m),那么对方球员挑射极有可能破门,请问在这段时间内,对方球员有几次挑射破门的机会?解:(1)+10-2+5-6+12-9+4-14=8﹣1+3﹣10=0答:守门员最后正好回到球门线上;(2)10+2+5+6+12+9+4+14=12+11+21+18=62米答:守门员在这段时间内共跑了62 米;(3)第一次10米,第二次10﹣2=8米,第三次8+5=13米,第四次13﹣6=7米,第五次7+12=19米,第六次19﹣9=10米,第七次10+4=14米,第八次14﹣14=0米答:对方球员有三次挑射破门的机会.23.(10分)为举办校园文化艺术节,甲、乙两班准备给合唱同学购买演出服装(一人一套),两班共92人(其中甲班比乙班人多,且甲班不到90人),下面是供货商给出的演出服装的价格表:如果两班单独给每位同学购买一套服装,那么一共应付5020元.(1)甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省多少钱?(2)甲、乙两班各有多少名同学?解:(1)由题意,得:5020﹣92×40=1340元即两班联合起来购买服装比各自购买服装共可以节省 1340 元.(2)设甲班有x 名学生准备参加演出,依题意,则乙班有学生(92﹣x )人.依题意得:50x+60(92﹣x )=5020解得:x=50于是:92﹣50=42人答:甲班有 50 人,乙班有 42 人24.(10分)阅读下列材料:小明为了计算1+2+22+…+22023+22024的值,采用以下方法: 设S=1+2+22+…+22023+22024①则2S=2+22+...+22024+22025②②-①得,2S -S =S=22025-1.请仿照小明的方法解决以下问题:(1)1+2+22+...+29= .(2)3+32+33+...+320= .(3)求1+a+a 2+a 3+…+ a n -1的和(a >1,n 是正整数,请写出计算过程,答案用含有a 和n 的式子表示).(1)210﹣1(2)321﹣32(3)S=1+a+a 2+a 3+…+ a n -1①aS=a+a 2+a 3+a 4...+a n ②②﹣①得(a ﹣1)S=a n ﹣1S=a n ﹣1a ﹣125.(10分)定义:如图①,射线OC 在∠AOB 的内部,图中共有3个角:∠AOB,∠AOC ,∠BOC .若其中有一个角是另一个角的3倍,则称射线OC 是∠AOB 的"巧分线".(1)如图①,若∠AOB =60°,且射线OC 是∠AOB 的"巧分线",则∠AOC 的度数= .(2)如图②,若∠MPN =60°,射线 PQ 绕点 P 从 PN 位置开始,以每秒4°的速度顺时针旋转,同时射线 PM 绕点 P 以每秒3°的速度顺时针旋转,当PQ 与PN 第一次成100°角时,射线PQ 和射线 PM 同时停止旋转,设旋转的时间为t 秒,求t 为何值时,射线PQ 是∠MPN 的"巧分线"?(1)15°或20°或40°或45°(2)根据题意得:当∠MPQ=3∠NPQ 时,则60+3t ﹣4t=3×4t ,解得t=6013当∠MPN=3∠NPQ 时,则60+3t=3×4t ,解得t=203;当∠MPN=3∠MPQ 时,则60+3t=3×(60+3t ﹣4t),解得t=20;当∠NPQ=3∠MPQ 时,则4t=3(3t+60﹣4t),解得t=1807; 此时∠NPQ=4°×1807=7207>100°,故t=1807不符合题意,舍去; 综上,当t 为6013或203或20°时,射线PQ 是∠MPN 的"巧分线.26.(12分)(1)【特例感知】如图1,已知线段MN=45cm,AB=3cm,点C 和点D 分别是AM , BN 的中点,若AM =18cm ,则CD = cm.(2)【知识迁移】我们发现角的很多规律和线段一样,如图2,已知∠AOB 在∠MON 内部 转动,射线 OC 和射线 OD 分别平分∠AOM 和∠BON :①若∠MON =150°,∠AOB =30°,求∠COD 的度数:②请你猜想∠AOB ,∠COD 和∠MON 三个角有怎样的数量关系?请说明理由.(3)【类比探究】如图3,∠AOB 在∠MON 内部转动,若∠MON =150°,∠AOB =30°,∠MOC = k ∠AOC ,∠NOD = k ∠BOD ,求∠COD 的度数.(用含有k 的式子表示计算结果).(1)24(2)①∵OC 和OD 分别平分∠AOM 和∠BON∴∠AOC=12∠AOM ,∠BOD=12∠BON∴∠AOC+∠BOD=12∠AOM+12∠BON=12(∠AOM+∠BON) ∵∠MON=150°,∠AOB=30°∴∠AOM+∠BON=∠MON ﹣∠AOB=150°﹣30°=120° ∴∠AOC+∠BOD=60°∴∠COD=∠AOC+∠AOB+∠BOD=60°+30°=90° ②2∠COD=∠MON+∠AOB∵OC 和OD 分别平分∠AOM 和∠BON∴∠AOC=12∠AOM ,∠BOD=12∠BON∴∠AOC+∠BOD=12∠AOM+12∠BON=12(∠AOM+∠BON) ∴∠COD=∠AOC+∠AOB+∠BOD=12(∠AOM+∠BON)+∠AOB=12(∠M ON ﹣∠A OB)+∠AOB=12(∠M ON+∠AOB)即2∠COD=∠MON+∠AOB(3)∵∠MON=150°,∠AOB=30°∴∠AOM+∠BON=120°∵∠MOC = k ∠AOC ,∠NOD = k ∠BOD∴∠AOC+∠BOD=∠AOM+∠BON k+1=120°k+1∴∠COD=∠AOC+∠AOB+∠BOD=120°k+1+30°。
人教版七年级数学上册期中综合卷(含答案)
人教版七年级数学上册期中综合卷(时间:90分钟满分120分)一、选择题(每小题3分,共30分)1.-5的相反数是()。
A.-5B.5C.±5D. -152.已知地球距离月球表面约为383900km,那么这个距离用科学记数法表示为()。
A.3.839x104kmB.3.839x105kmC.3.839x106kmD.38.39x104km3.计算-1-2×(-2)的结果等于()。
A.3B.-3C.5D.-54.若一χ²уⁿ与3уχ²是同类项,则n的值是()。
A.-1B.3C.1D.25.一个整式与χ²-у²的和是χ²+у²,则这个整式是()。
A.2χ²B.2у²C.-2χ²D.-2у²6.下列计算正确的是()。
A.3a+2b=5abB.6a-3a=3C.4ab -ab=abD.6ab2-9b2a=-3ab27.实数a、b、c、d数轴上对应点位置如图所示,这四个数中绝对值最小的是( )A.a B.b C.c D.d8.已知|a|=2,(b+1)2 =25,且a<b,则a+b的值是()。
A.-2或-8B.-8 或6C.2 或6D.2或-89.规定一种新的运算&:对于任意实数χ,у,满足χ&у=χ-у+χу。
如3&2=3-2 +3×2=7,则2&1=A.4B.3C.2D.110.有一种石棉瓦,每块宽60 cm,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10 cm,那么n(n为正整数)块石棉瓦覆盖的宽度为A.60n cmB.50n cmC.(50n+10)cmD.(60n-10)cm二、填空题(每小题3分,共24分)11.|-2|= 。
12.-112的相反数是 ,倒数是 ,绝对值是。
13.用四舍五人法把3.1415926精确到千分位是。
14.单项式--16πa b3的系数为。
2024年最新人教版七年级数学(上册)期中试卷及答案(各版本)
2024年最新人教版七年级数学(上册)期中试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列哪个数是有理数?A. √2B. 3/4C. πD. √12. 下列哪个数是整数?A. 1.5B. 2/3C. 3/4D. 53. 下列哪个数是无理数?A. 2/3B. 3.25C. √3D. 1/24. 下列哪个式子是正确的?A. √9 = 3B. √9 = 3C. √9 = 2D. √9 = 45. 下列哪个式子是错误的?A. 2^3 = 8B. 3^2 = 9C. 4^2 = 16D. 5^2 = 20二、判断题5道(每题1分,共5分)1. 任何两个有理数的和都是有理数。
()2. 任何两个整数的积都是整数。
()3. 任何两个无理数的积都是无理数。
()4. 任何两个实数的和都是实数。
()5. 任何两个实数的积都是实数。
()三、填空题5道(每题1分,共5分)1. 两个有理数的和是______数。
2. 两个整数的积是______数。
3. 两个无理数的积是______数。
4. 两个实数的和是______数。
5. 两个实数的积是______数。
四、简答题5道(每题2分,共10分)1. 请简要说明有理数的定义。
2. 请简要说明整数的定义。
3. 请简要说明无理数的定义。
4. 请简要说明实数的定义。
5. 请简要说明有理数和无理数的区别。
五、应用题:5道(每题2分,共10分)1. 计算下列式子的值:2^3 + 3^2 4^22. 计算下列式子的值:√9 + √16 √253. 计算下列式子的值:3/4 + 2/3 1/24. 计算下列式子的值:2/3 3/4 4/55. 计算下列式子的值:√2 √3 √6六、分析题:2道(每题5分,共10分)1. 请分析并解释为什么√1是无理数。
2. 请分析并解释为什么π是无理数。
七、实践操作题:2道(每题5分,共10分)1. 请用计算器计算下列式子的值:2^10 + 3^5 4^32. 请用计算器计算下列式子的值:√9.6 + √36.9 √81.25八、专业设计题:5道(每题2分,共10分)1. 设计一个函数,使其输入一个正整数n,输出n的所有正因数。
2023-2024学年全国初中七年级上数学人教版期中试卷(含答案解析)
20232024学年全国初中七年级上数学人教版期中试卷一、选择题(每题2分,共20分)1.下列数中,哪个是整数?A. 3.14B. 5C. 2/3D. 0.252.一个等边三角形的每个内角是多少度?A. 60°B. 90°C. 120°D. 180°3.下列哪个是方程?A. 3x + 5 = 7B. x + y = 5C. 2x 3yD. 4x + 2y = 64.下列哪个数是负数?A. 0B. 3C. 5D. 25.一个长方形的长是8厘米,宽是4厘米,它的面积是多少平方厘米?A. 12B. 16C. 24D. 326.下列哪个数是质数?A. 4B. 6C. 7D. 97.下列哪个数是分数?A. 0B. 3C. 5/7D. 88.一个等腰三角形的底边长是10厘米,腰长是12厘米,它的周长是多少厘米?A. 24B. 30C. 32D. 349.下列哪个数是偶数?A. 3B. 5C. 8D. 910.一个正方形的边长是5厘米,它的面积是多少平方厘米?A. 10B. 15C. 20D. 25二、填空题(每题2分,共20分)1.一个等差数列的前三项分别是2,5,8,那么它的第四项是多少?2.一个长方形的长是12厘米,宽是6厘米,它的面积是多少平方厘米?3.一个等腰三角形的底边长是10厘米,腰长是12厘米,它的周长是多少厘米?4.一个正方形的边长是8厘米,它的面积是多少平方厘米?5.一个等差数列的前三项分别是3,7,11,那么它的第四项是多少?6.一个长方形的长是15厘米,宽是5厘米,它的面积是多少平方厘米?7.一个等腰三角形的底边长是8厘米,腰长是10厘米,它的周长是多少厘米?8.一个正方形的边长是7厘米,它的面积是多少平方厘米?9.一个等差数列的前三项分别是1,5,9,那么它的第四项是多少?10.一个长方形的长是10厘米,宽是4厘米,它的面积是多少平方厘米?三、解答题(每题10分,共50分)1.解方程:2x 3 = 72.一个长方形的长是12厘米,宽是5厘米,求它的面积。
人教版2024-2025学年七年级数学上册期中综合测评
人教版2024-2025学年七年级数学上册期中综合测评(时间∶120分钟,满分∶150分)一、选择题(每小题5分,共60分)1.若盈余2万元记作2+万元,则2-万元表示()A.盈余2万元B.亏损2万元C.亏损2-万元D.不盈余也不亏损2.150000用科学记数法可表示为()A..41510⨯ B.41510⨯ C.51.510⨯ D.51510⨯3.下列代数式中,符合代数式书写要求的有()①113x ②ab c÷③()2m n +④3a -千米A.1个B.2个C.3个D.4个4.下列变形中,运用运算律正确的是()A.5(3)35+-=+ B.8(5)9(5)89+-+=-++C .[6(3)]5[6(5)]3+-+=+-+ D.1212(2)(2)3333⎛⎫⎛⎫+-++=+++ ⎪ ⎪⎝⎭⎝⎭5.将()22313333----,,,按从小到大的顺序排列,正确的是()A.()22313333-<-<-<- B.()23213333-<-<-<-C .()22313333-<-<-<- D.()22313333-<-<-<-6.下列各组中的两个数,运算后的结果相等的是()A .32-和23- B.35-和()35- C.24-和()24- D.8--和8-7.若单项式2122m x y --与43n xy +是同类项,则代数式m n -的值为()A.2- B.2C.3D.1-8.若45(2)1n x y m x +--是关于,x y 的六次三项式,则下列说法错误的是()A.m 可以是任意数B.六次项是45n x yC.2n = D.常数项是1-9.按如图所示的流程图操作,若输入x 的值是7-,则输出的结果是()A.0B.7C.14D.4910.已知2231A x x =-+-,5B ax =+,若关于x 的多项式A B -不含一次项,则a =()A.3- B.2- C.2D.311.已知,a b 两数在数轴上的位置如图所示,则化简代数式12a b a b +--++的结果是()A.1B.221a b ++C.23a -+D.1-12.中国古代用算筹来进行记数,算筹的摆放形式有纵、横两种形式(如图所示),表示一个多位数时,把各个数位的数码由高位到低位从左到右排列,但各位数码的筹式需要纵横相间,其中个位、百位、万位……用纵式表示,十位、千位、十万位……用横式表示,则56846可用算筹表示为()A. B.C.D.二、填空题(每小题5分,共30分)13.若一个负数的绝对值等于8,则这个负数是_____.14.往返于甲、乙两地的航班,某天由甲地飞往乙地,当天风速为24km/h ,飞机顺风飞行需要1.5h 到达.如果设无风时飞机的速度为km/h x ,顺风时飞机的速度是无风时的速度加上风速,则甲地到乙地的距离是__________km .(用含x 的式子表示)15.已知()22650x y -++=,则x y +=__________.16.若非零数a ,b 互为相反数,c ,a 互为倒数,则2024b ac a ⎛⎫-= ⎪⎝⎭________.17.若关于a b ,的多项式()()222242a ab bamab b ----+化简后不含ab 项,则m =___________18.当23a =-时,代数式()()32326522a a a a a -+--的值为__________.三、解答题(共60分)19.计算:(1)3(5)2(8)-+-+--.(2)215(1)512⎛⎫-+-⨯-⨯-- ⎪⎝⎭.20.下面是王叔叔记录的本周体育锻炼的用时情况(以60min 为标准,时间多于60min 的部分用正数表示,时间少于60min 的部分用负数表示):星期一二三四五六日锻炼用时对应的数3-2+4+1-−79+10+(1)王叔叔这一周内锻炼时间最少的是星期;(2)王叔叔这一周内锻炼时间最多的一天比锻炼时间最少的一天多锻炼多少分钟?(3)求王叔叔这一周平均每天锻炼的时间.21.已知:关于x 的多项式2272432mx x x nx ⎛⎫--++ ⎪⎝⎭的值与x 的取值无关.(1)求m n ,的值;(2)求()()223235161m mn m m mn ---+-+-的值.22.某校组织学生外出研学,旅行社报价每人收费300元,当研学人数超过50人时,旅行社给出两种优惠方案:方案一:研学团队先交1500元后,每人收费240元;方案二:5人免费,其余每人收费打九折(九折即原价的90%)(1)用代数式表示,当参加研学的总人数是(50)x x >人时,用方案一共收费元;用方案二共收费元;(2)当参加旅游的总人数是80人时,采用哪种方案省钱?说说你的理由.23.阅读材料∶我们知道,()424213x x x x x -+=-+=,类似地,我们把(()a b +看成一个整体,则()()()()()()424213a b a b a b a b a b +-+++=-++=+.“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把()22a b +看成一个整体,化简()()()222326222a b a b a b +-+++的结果是(2)已知224x y -=,求2236x y -+的值.(3)若22241m n n mn +=-=,,求222m mn n +-的值.。
2024年最新人教版初一数学(上册)期中考卷及答案(各版本)
2024年最新人教版初一数学(上册)期中考卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最小的数是()A. 1B. 0C. 1D. 22. 已知a > b,则下列不等式正确的是()A. a b > 0B. a + b < 0C. a b < 0D. a + b > 03. 下列各数中,是有理数的是()A. √2B. √3C. √5D. √94. 下列运算中,先进行乘除后进行加减的是()A. 2 + 3 × 4 5B. 2 × 3 + 4 ÷ 2C. (2 + 3) × 4 ÷ 2D. 2 ÷ 3 × 4 + 55. 已知等差数列的前5项和为25,公差为2,则第3项是()A. 3B. 4C. 5D. 6二、判断题5道(每题1分,共5分)1. 任何两个实数的和都是实数。
()2. 任何两个实数的积都是实数。
()3. 0是最小的自然数。
()4. 任何数乘以0都等于0。
()5. 任何数除以0都有意义。
()三、填空题5道(每题1分,共5分)1. 两个数的和为10,其中一个数为3,另一个数为______。
2. 两个数的差为5,被减数为10,减数为______。
3. 两个数的积为24,其中一个数为6,另一个数为______。
4. 两个数的商为3,被除数为9,除数为______。
5. 1千克等于______克。
四、简答题5道(每题2分,共10分)1. 请简述有理数的定义。
2. 请简述等差数列的定义。
3. 请简述实数的分类。
4. 请简述方程的定义。
5. 请简述不等式的定义。
五、应用题:5道(每题2分,共10分)1. 小明买了3本书,每本书的价格为8元,请计算小明一共花了多少钱。
2. 小红买了4个苹果,每个苹果的价格为2元,请计算小红一共花了多少钱。
3. 一个长方形的长为5厘米,宽为3厘米,请计算这个长方形的面积。
人教版七年级上册数学期中考试试卷含答案
人教版七年级上册数学期中考试试题一、单选题1.2-的相反数是()A .2-B .2C .12D .12-2.下列运算中结果正确的是()A .-1+1=0B .133444-⨯=C .369777-+=-D .(-10)÷(-5)=-53.有理数a ,b 在数轴上的位置如图所示,则a+b 是()A .正数B .负数C .零D .都有可能4.下列说法不正确的是()A .相反数等于本身的数是0B .绝对值最小的数是0C .平方最小的数是0D .最小的整数是0.5.请将88300000用科学记数法表示为()A .0.883×109B .8.83×108C .8.83×107D .88.3×1066.下列各式与a b c --的值不等的是()A .()()a b c -++-B .()()a b c -+--C .()()a b c +-+-D .()()a b c -+-+7.若ab >0,则必有()A .a >0,b >0B .a <0,0b <C .0a >,0b <D .a 、b 同号8.下列各组数中是同类项的是()A .3x 与3yB .2xy 2与﹣x 2yC .﹣3x 2y 与4yx 2D .﹣x 2与99.下列关于单项式-235x y的说法中,正确的是()A .系数、次数都是3B .系数是35,次数是3C .系数是35-,次数是2D .系数是35-,次数是310.若a 2+2a -1=0,则2a 2+4a +2021的值是()A .2019B .2020C .2021D .2023二、填空题11.比较大小-12______-13;-(-3.2)______- 3.2-.12.已知4,5x y ==,且x y >,则x—y =______.13.用四舍五入法求5.4349精确到0.01的近数是______.14.绝对值小于3的所有整数的和是______.15.若单项式x 2ym +2与﹣3xny 的和仍然是一个单项式,则m +n 的值为______.16.如图是某年10月份的月历,用正方形圈出9个数.如果用相同的方法,在月历中用正方形圈出9个数,设最中间一个是x ,则用x 表示这9个数的和是________.17.一个多项式A 减去多项式2x2+5x ﹣3,马虎同学将2x2+5x ﹣3抄成了2x2+5x+3,计算结果是﹣x2+3x ﹣7,那么这个多项式A 是_____.18.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯…,计算:111111223344520202021+++++⨯⨯⨯⨯⨯ 的结果为___________.三、解答题19.把下列各数分类,并填在表示相应集合的大括号内:35-, 3.2-,0,12,-6.4;4%-,2001(1)-.(1)整数集合:(2)分数集合:(3)正数集合:(4)负数集合20.把下列各数表示的点画在数轴上,并用“<”把这些数连接起来.-5, 1.5-,0,-132,-(-4).21.计算(1)1(2)8(3)(8)--++--+(2)131(1)(6448-+÷-(3)﹣(3﹣5)+(﹣3)2×(1﹣3)(4)5(2x -7y )-3(4x -10y )(5)()421110.52(3)3⎡⎤---⨯⨯--⎣⎦22.若│a│=4,b 是绝对值最小的数,c 是最大的负整数,求a +b -c 的值.23.先化简、再求值22222523(42)xy x y xy xy x y ⎡⎤-+--⎣⎦,其中x =2、y =-124.为了有效控制酒后驾驶,金昌市某交警的汽车在一条东西方向的大街上巡逻,规定向东为正,向西为负,已知从出发点开始所行使的路程(单位:千米)为:+4,﹣3,+2,+1,﹣2,﹣1,+2(1)若此时遇到紧急情况要求这辆汽车回到出发点,请问司机应该怎么走?要走多远?(2)该辆汽车的时速为每小时6千米,问该车回到出发点共用了多少时间?25.对于任何有理数,规定符号a b c d 的意义是a b ad bc c d=-.例如:1214—23234=⨯⨯=-.(1)计算23-11的值.(2)当21(2)0x y ++-=时,求22231x yx y ----值.26.已知1520a b c ++-++=,且a ,b ,c 分别是点A ,B ,C 在数轴上对应的数.(1)求a ,b ,c 的值,并在数轴上标出点A ,B ,C .(2)若动点P ,Q 同时从A ,B 出发沿数轴负方向运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度,求运动几秒后,Q 可以追上点P ?(3)在数轴上找一点M ,使点M 到A ,B 两点的距离之和等于10,请求出所有点M 对应的数,并说明理由.参考答案1.B【解析】【分析】根据相反数的定义可得结果.【详解】因为-2+2=0,所以-2的相反数是2,故选:B .【点睛】本题考查求相反数,熟记相反数的概念是解题的关键.2.A【解析】【分析】根据有理数的运算法则,逐条分析计算即可判断.【详解】解:A 、-1+1=0,正确;B 、1334416-⨯=-,错误;C 、363777-+=,错误;D 、(-10)÷(-5)=2,错误.故选:A .【点睛】本题考查的了绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,即:a÷b=a•1b(b≠0).两数相除,同号得正,异号得负,并把绝对值相除.3.B【解析】【分析】根据数轴得到0,0a b <>,且a b >,再有理数的加法进行分析即可得到答案.【详解】根据数轴得到0,0a b <>,且a b >,则a+b<0,故选择B.【点睛】本题考查用数轴表示有理数、绝对值和有理数的加法,解题的关键是掌握用数轴表示有理数和有理数的加法.4.D【解析】【分析】A 、根据有理数的相反数定义可得;B 、由有理数的绝对值规律可得;C 、计算正数、0与负数的平方进行比较;D 、根据整数的定义得出.【详解】解:选项A 、B 、C 的说法都正确,只有D ,因为没有最小的整数,所以D 错误.故选:D .【点睛】本题考查了相反数、绝对值、平方的有关知识,应注意既没有最大的整数,也没有最小的整数.5.C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:将88300000用科学记数法表示为:8.83×107.故选:C .【点睛】本题考查用科学记数法表示绝对值大于1的数,能正确确定a 和n 是解题关键.6.B【解析】【分析】直接根据去括号法则将选项进行整理化简即可得出答案.【详解】解:A 、()()a b c a b c -++-=--,不符合题意;B 、a b c a b c -+≠--,符合题意;C 、()()a b c +-+-=a b c --,不符合题意;D 、()()a b c -+-+=a b c --,不符合题意;故选:B .【点睛】本题考查了整式的加减,熟练掌握去括号法则是解本题的关键.7.D【解析】【分析】根据有理数的乘法法则求解即可.【详解】解:∵ab>0,∴a 与b 同号,故选:D .【点睛】本题考查了有理数的乘法,比较简单,掌握ab >0,a 和b 同号,ab <0,a 和b 异号是关键.8.C【解析】【分析】根据同类项的定义进行判断即可得到答案.【详解】解:A.所含字母不同,不是同类项,故本选项不合题意;B.所含字母的指数不同,不是同类项,故本选项不合题意;C.所含字母相同,相同字母的指数相同,是同类项,故本选项符合题意;D.﹣x 2与9不是同类项,故本选项不符合题意;故选:C【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项:所含字母相同,且相同字母的指数相同.9.D【解析】【分析】根据单项式系数、次数的定义:单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数先求出单项式-23 5x y 的系数和次数,然后确定正确选项.【详解】解:根据单项式系数、次数的定义可知:单项式-23 5x y 的系数是﹣35,次数是2+1=3,只有D 正确,故选:D .x 2【点睛】本题考察了单项式的系数和次数的求法,熟记它们的概念是解题的关键10.D【解析】【分析】先把a 2+2a -1=0变形为a 2+2a =1,再代入原式化简后的式子22(2)2021a a ++得出结果.【详解】解:∵a 2+2a -1=0,∴a 2+2a =1,∴2a 2+4a +2021=22(2)2021a a ++=2×1+2021=2023,故选:D .【点睛】本题考查了代数式求值,考查了整体思想,把a 2+2a =1整体代入求值是解题的关键.11.<>【解析】【分析】根据两个负数比较,绝对值大的反而小,正数大于负数,即可判断.【详解】解:∵12-=1326=;13-=12=36,∴36>26,∴-12<-13;∵-(-3.2)=3.2, 3.2--=-3.2,∴-(-3.2)>- 3.2-,故答案为:<,>.【点睛】本题考查了有理数的大小比较,掌握“两个负数比较,绝对值大的反而小”是解题的关键.12.1或9##9或1【解析】【分析】由题意依据|x|=4,|y|=5,所以x=±4,y=±5,因为x>y,所以x=4,y=-5或x=-4,y=-5.然后分两种情况分别计算x-y的值.【详解】解:因为|x|=4,|y|=5,所以x=±4,y=±5,因为x>y,所以x=4,y=-5或x=-4,y=-5.4-(-5)=9,-4-(-5)=1,所以x-y=1或9.故答案为:1或9.【点睛】本题主要考查绝对值的定义以及有理数的减法法则,注意结合分类讨论的数学思想分析,解题时注意分类要不重不漏.13.5.43【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:5.4349精确到0.01的近数是5.43.故答案为5.43.【点睛】本题考查了近似数,经过四舍五入得到的数为近似数,近似数与精确数的接近程度,可以用精确度表示.近似数的最后一个数字实际在什么位上,即精确到了什么位,要求精确到某一位,应当对下一位的数字进行四舍五入.14.0【解析】【分析】绝对值的意义:一个数的绝对值表示数轴上对应的点到原点的距离.互为相反数的两个数的和为0.依此即可求解.【详解】解:根据绝对值的意义得绝对值小于3的所有整数为0,±1,2±.所以011220+-+-=.故答案为:0.【点睛】本题考查了绝对值的意义,解题的关键是理解绝对值的意义并运用到实际当中.15.1【解析】【分析】根据同类项的定义,单项式22m x y +与3n x y -的和仍然是一个单项式,意思是22m x y +与3n x y -是同类项,根据同类项中相同字母的指数相同得出m 、n 的值,然后代入计算即可得出答案.【详解】解: 单项式22m x y +与3n x y -的和仍然是一个单项式,∴单项式22m x y +与3n x y -是同类项,2n ∴=,21+=m ,2n ∴=,1m =-,121m n ∴+=-+=;故答案是:1.【点睛】本题主要考查了同类项定义,解题的关键是掌握同类项定义中的三个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.16.9x【解析】【分析】由题意根据最中间的为x ,进而由日历中数字的规律表示出其他8个数,求出之和即可.【详解】解:设最中间的一个是x ,这9个数的和可表示为:x-8+x-7+x-6+x-1+x+x+1+x+6+x+7+x+8=9x .故答案为:9x .【点睛】本题考查列代数式和整式的加减,注意月历中日期和日期的关系,设出一个日期后将其他日期表示出来然后求解.17.x2+8x ﹣4【解析】【分析】根据题意列出算式A=(-x 2+3x-7)+(2x 2+5x+3),再去括号,合并同类项即可得.【详解】根据题意知,A=(-x 2+3x-7)+(2x 2+5x+3)=-x 2+3x-7+2x 2+5x+3=x 2+8x-4,故答案为x 2+8x-4.【点睛】本题考查的是整式的加减,熟知整式的加减实质上是去括号,合并同类项是解答此题的关键.18.20202021【分析】根据题干的例子,可以对所求代数式化简,再依次抵消即可.【详解】解:111111223344520202021+++++⨯⨯⨯⨯⨯ =1111111111...223344*********-+-+-+-=112021-=20202021.故答案为:20202021.【点睛】本题考查探索与表达规律.解答本题的关键是明确题意,发现题目中式子的变化特点,求出所求式子的值.19.(1)0,12,2001(1)-;(2)35-, 3.2-,-6.4;4%-;(3) 3.2-,12;(4)35-,-6.4;4%-,2001(1)-.【解析】【分析】根据有理数的分类解答即可.【详解】(1)整数集合:0,12,2001(1)-;(2)分数集合:35-, 3.2-,-6.4;4%-;(3)正数集合: 3.2-,12;(4)负数集合:35-,-6.4;4%-,2001(1)-.【点睛】本题考查有理数的分类,掌握有理数的两种分类方法是解决问题的关键.20.作图见解析,-5<-132<0< 1.5-<-(-4)【解析】根据绝对值、相反数和有理数大小比较的性质排序,结合数轴的性质作图,即可得到答案.【详解】1.5 1.5-=,()44--=数轴如下图:∴-5<-132<0<1.5-<-(-4).【点睛】本题考查了有理数的知识;解题的关键是熟练掌握绝对值、相反数、有理数大小比较、数轴的性质,从而完成求解.21.(1)0;(2)-76;(3)-16;(4)-2x-5y;(5)1 6【解析】【分析】(1)原式利用减法法则变形,计算即可求出值;(2)先把除法转化成乘法,再用括号中的每一项与(-48)进行相乘即可求出答案;(3)原式先算乘方,再算乘除法、最后算加减法;(4)先去括号,然后合并同类项即可解答本题;(5)原式先算括号里边的乘方、乘法及减法,再算括号外边的乘方、乘除即可得到结果.【详解】(1)1(2)8(3)(8)--++--+=1+2+8-3-8=0;(2)(1-16+34)÷(-148)=(1-16+34)×(-48)=1×(-48)-16×(-48)+34×(-48)=-76;(3)﹣(3﹣5)+(﹣3)2×(1﹣3)=﹣(﹣2)+9×(﹣2)=2+(﹣18)=﹣16;(4)解:5(2x -7y )-3(4x -10y )=10x -35y -12x+30y=-2x -5y ;(5)解:原式=[]1112923--⨯⨯-=[]111723--⨯⨯-=716-+=16【点睛】本题考查了有理数的混合运算,以及整式的加减,熟练掌握运算法则是解题的关键.22.-3或5【解析】【分析】根据|a|=4、b 是绝对值最小的数、c 是最大的负整数,即可求出a 、b 、c 的值,将其代入a+b-c 中即可求出结论.【详解】解:∵│a│=4,∴a=4或a=-4,∵b 是绝对值最小的数,∴b=0,又∵c 是最大的负整数,∴c=-1∴a+b-c=4+0-(-1)=4+1=5,或a+b-c=-4+0-(-1)=-4+1=-3,∴a+b -c=-3或5.【点睛】本题考查了代数式求值、绝对值以及正、负数,根据给定条件求出a 、b 、c 的值是解题的关键.23.24xy ,8.【解析】【分析】去括号后,再合并同类项,最后把x 、y 的值代入计算即可.【详解】原式2222252342xy x y xy xy x y =-+-+,24xy =,当2x =,1y =-时,原式242(1)8=⨯⨯-=.【点睛】本题主要考查了整式的加减运算,关键是掌握去括号法则:整式中如果有多重括号应按照先去小括号,再去中括号,最后去大括号的顺序进行.24.(1)向西走3千米;(2)2.5小时【解析】【分析】(1)把+4,﹣3,+2,+1,﹣2,﹣1,+2加起来,即可求解;(2)先求出该汽车行驶的总路程,再用总路程除以速度,即可求解.【详解】解:(1)4+(﹣3)+2+1+(﹣2)+(﹣1)+2=3,答:司机应该向西走3千米;(2)|4|+|﹣3|+|+2|+|+1|+|﹣2|+|﹣1|+|+2|=4+3+2+1+2+1+2=15(千米);15÷6=2.5(小时).答:该车回到出发点共用了2.5小时.【点睛】本题主要考查了有理数的应用,明确题意,理解正负数实际意义是解题的关键.25.(1)5;(2)-3【解析】【分析】(1)原式利用题中的新定义计算即可求出值;(2)原式利用题中的新定义化简,再利用非负数的性质求出x 与y 的值,代入计算即可求出值.【详解】解:(1)根据题中的新定义得:原式=213(1)235⨯-⨯-=+=;(2)原式=22222(2)(1)+3()2+332x y x y x y x y x y -⋅--=-+-=-,由于()2120x y ++-=,∴10,20x y +=-=,∴1,2x y =-=,∴原式=2(1)22143--⨯=-=-.26.(1)1a =-,b=5,c=-2,数轴作图见解析;(2)6秒;(3)-3或7,理由见解析【分析】(1)结合题意,根据绝对值的性质计算,即可得到a ,b ,c 的值;结合数轴的性质作图,即可得到答案;(2)结合题意,设时间为t 秒,通过列方程并求解,即可得到答案;(3)结合题意列方程,再根据绝对值、一元一次方程的性质求解,即可得到答案.【详解】(1)根据题意得:105020a b c ⎧+=⎪-=⎨⎪+=⎩∴105020a b c +=⎧⎪-=⎨⎪+=⎩∴1a =-,b=5,c=-2数轴如图所示:(2)设时间为t 秒()516AB =--=∵动点P 、Q 同时从A 、B 出发沿数轴负方向运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度∴26t t =-∴t=6秒∴运动6秒后,点Q 可以追上点P ;(3)点M 到A ,B 两点的距离之和等于10,设点M 在数轴上对应的点为x ∴1510x x --+-=当M 在A 点左侧,即1x <-,则1050x x -->⎧⎨->⎩()()1510x x --+-=∴3x =-,即M 对应的数是-3当M 在A 点和B 点之间,即15x -≤≤,则1050x x --≤⎧⎨-≥⎩∴()()1510x x ---+-=,此时等式不成立,故舍去当M 在B 点右侧,即5x >,则1050x x --<⎧⎨-<⎩∴()()1510x x ---+--=⎡⎤⎣⎦∴1510x x ++-=∴7x =,即M 对应的数是7∴所有点M 对应的数是-3或7.。
2024-2025学年期中测试卷 七年级上册数学 人教版(2024)(第1~4章)
2024-2025学年期中测试卷七年级上册数学人教版(2024)(第1~4章)1.多项式的次数是()A .4B .5C .6D .92.“个3相加”可以用代数式表示为()A.B.C.D .3.某生产厂家检测4个篮球的质量,结果如图所示.超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是()A .B.C.D .4.下列说法中,正确的是()A.2与互为倒数B.2与互为相反数C .0的相反数是0D .2的绝对值是5.若x 是3的相反数,,则的值为()A.B.C .或D .5或16.老师在黑板写了一个正确的演算过程,随后用手掌捂住了如图所示的一个二次三项式,形式如图:,则所捂的二次三项式为()A.B.C .D.7.下列式子中,成立的是()A.B.C .D .8.有理数m、n 在数轴上的对应点如图所示,则下列各式子正确的是().A.B.C .D .9.有一个数值转换器,原理如图所示,若开始输入x 的值是5,可发现第1次输出的结果是16,第2次输出的结果是8,第3次输出的结果是4,依次继续下去,第2025次输出的结果是()A.1B.2C.4D.810.如图1,将一个边长为m的正方形纸片剪去两个小长方形,得到一个“S”图案,如图2所示,再将剪下的两个小长方形拼成一个新的长方形,如图3所示,则新长方形的周长可表示为()A.B.C.D.11.下列书写:①;②;③;④;⑤;⑥千克中,正确的是:______.(填写序号即可)12.数轴上到的距离是3的数是________.13.黄河是中华民族的母亲河,发源于巴颜喀拉山北麓,注入渤海,长度约为5464000米,将数据5464000用科学记数法表示为______.14.已知两个单项式与是同类项,则的值是_____________.15.当时,整式的值为2023,则当时,整式的值为______.16.如图,在数轴上,点表示1,现将点沿数轴做如下移动:第一次将点向左移动3个单位长度到达点,第2次将点向右平移6个单位长度到达点,第3次将点向左移动9个单位长度到达点则第6次移动到点;按照这种规律移动下去,至少移动________次后该点到原点的距离不小于41.17.用数轴上的点表示下列各数,并按照由小到大的顺序用“”号把它们连接起来:,,,0,.18.计算(1);(2).19.先化简下式,再求值:,其中,.20.已知互为倒数,互为相反数,.(1)根据已知条件回答:______,______,______;(2)求的值.21.(1)已知,小明在计算时,误将其按计算,结果得到.求多项式,并计算出的正确结果.(2)已知,.若多项式的值与字母的取值无关,求、的值.22.某电器商销售一种微波炉和电磁炉,微波炉每台定价元,电磁炉每台定价元.“双十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一台微波炉送一台电磁炉;方案二:微波炉和电磁妒都按定价的付款.现某客户要到该卖场购买微波炉2台,电磁炉台.(1)若该客户按方案一购买,需付款_________元.(用含的代数式表示),若该客户按方案二购买,需付款_________元.(用含的代数式表示)(2)若时,通过计算说明此时按哪种方案购买较为合算?23.探究活动:(1)将图①中阴影部分裁剪下来,重新拼成图②一个长方形,则图②长方形的长表示为______,宽为______.(2)则图②中阴影部分周长表示为______知识应用:运用(2)题你得到的代数式解决以下问题(3)计算:已知,则阴影部分周长是多少?24.数轴是初中数学的一个重要工具,利用数轴可以将数与形进行完美地结合,研究数轴我们发现了很多重要的规律,如果数轴上点、在数轴上分别表示有理数、,那么、两点之间的距离表示为.例如数轴上表示4和的两点之间的距离可表示为.(1)如图,已知数轴上点A表示的数为,点B表示数为2,则线段的长度是______.(2)x表示任意一个有理数,利用数轴回答下列问题:若,则________;的最小值是________.(3)如图,一条笔直的高速公路边有四个村庄A、B、C、D和某乡镇O,四个村庄A、B、C、D分别位于某乡镇O左侧,左侧,右侧,右侧.现需要在该公路边上建一个便民服务点P,那么这个便民服务点P建在何处,才能使服务点P到四个村庄A、B、C、D总路程最短?最短路程是多少?试说明理由.。
期中达标测试卷(含答案)2024-2025学年人教版(2024)数学七年级上册
人教版(2024)数学七年级上册期中达标测试卷(本试卷满分120分)一、选择题(本大题共10小题,每小题3分,共30分)1.的倒数是( )A.B .C .D .2.李老师在实验室中发现了四个因操作不规范沾染污垢或被腐蚀的砝码,经过测量,超出标准质量的部分记为正数、不足标准质量的部分记为负数,它们中质量最接近标准质量的是( )ABCD3.单项式-12x 3y 的系数和次数分别是( )A .-12,4B .-12,3C .12,3D .12,44.著名的数学家苏步青被誉为“数学大王”.为纪念其卓越贡献,国际上将一颗距地球约218 000 000公里的行星命名为“苏步青星”.数据218 000 000用科学记数法表示为( )A .0.218×109B .2.18×108C .2.18×109D .218×1065.下列运算结果正确的是( )A .a +2a 2=3a 2B .3a 2b -2ba 2=a 2b C .5a -a =5D .2a +b =2ab6.下列说法中正确的是( )A .0不是单项式B .-a 一定小于0C .最大的负有理数是-1D .2-a -ab 是二次三项式7.若-x 3y m 与2x n y 是同类项,则2024m +n 的值为( )A .2027B .2021C .4051D .40458.2024年,第33届夏季奥林匹克运动会在法国巴黎举行.如图1,将5个城市的国际标准时间(单位:时)在数轴上表示,那么开幕式的巴黎时间7月26日19时30分对应的是( )A .纽约时间7月26日14时30分B .伦敦时间7月26日18时30分23-233232-23-C .北京时间7月27日3时30分D .汉城时间7月26日3时30分图19.多项式x 3-3x 2+2x +1与多项式-2x 3-3x 2+3x +5相减,化简后不含的项是( )A .三次项B .二次项C .一次项D .常数项10.【跨学科】苯是一种有机化合物,是组成结构最简单的芳香烃,可以合成一系列衍生物.如图2是某小组用小木棒摆放的苯及其衍生物的结构式,第1个图形需要9根小木棒,第2个图形需要16根小木棒,第3个图形需要23根小木棒……按此规律,第n 个图形需要的小木棒的根数是( )A .7n +2B .7n +5C .7n +7D .7n +9图2二、填空题(本大题共6小题,每小题4分,共24分)11.化简:-(-4)=__________.12.2024年3月8日,我国在南海珠江口盆地发现首个深水深层大油田——开平南油田,探明油气地质储量1.02亿吨油当量.该油田是全球核杂岩型凹陷最大的商业发现.数据“1.02亿”精确到的数位是______位. 13强p 与受力面积S 成__________比例关系.14=__________.15.如图3是一个数据转换器的示意图,它的作用是求转换器内各代数式的和.现输入x 的值,经过转换器,输出的值为y ,若无论输入的x 为何值,输出的y 不变,则m =__________.图3图416.如图4,若从一个宽为5 cm 的长方形纸片中剪去两个形状和大小完全相同的小长方形卡片,那么余下的两块阴影部分的周长之和是__________ cm .三、解答题(本大题共7小题,共66分)17.(6分)根据下列语句列代数式:(1)b 的倍的相反数;(2)比a 与b 的积的2倍小5的数;(3)一件商品原价为a 元,现按原价的九折销售,则售价是多少元?18.(8分)计算:.阅读下面的解答过程并完成相应任务:解:原式………… 第一步=(-15)÷(-1)………………………第二步=15.………………………………………第三步任务:(1)上面解题过程中,第__________步开始就出现了错误,错误的原因是____________________;(2)把正确的解题过程写出来.19.(8分)先化简,再求值:3(a 2b +b )-2(4a 2b -2),其中a =-3,b =2.43()1115632⎛⎫-÷-⨯ ⎪⎝⎭()11566⎛⎫=-÷-⨯ ⎪⎝⎭20.(10分)某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表:(增加的车辆数记为正数,减少的车辆数记为负数)(1)星期三生产了__________辆摩托车,本周产量最多的一天比产量最少的一天多生产__________辆;(2)本周总生产量与计划生产量相比,是增加还是减少了?增加或减少了多少辆?21.(10分)食品加工厂准备把一批新酿的醋装瓶运往商店,每瓶容量和所装瓶数如下表:(1)表中a=____________;(2)用n表示所装瓶数,m表示每瓶容量,用式子表示n与m的关系,n与m成什么比例关系?(3)如果把这批新酿的醋装了150瓶,那么每瓶的容量是多少毫升?22.(12分)用数学的眼光观察:甲、乙两位同学用标有数字1,2,…,9的9张卡片做游戏.甲同学:“你先从这9张卡片中随意抽取两张(按抽取的先后顺序分别称为“卡片A”和“卡片B”),别告诉我卡片上是什么数字,然后你把卡片A上的数字先乘5,再加7,再乘2,再加上卡片B的数字,把最后得到的数告诉我,我就能猜出你抽出的是哪两张卡片啦!”乙同学:“这么神奇?我不信.”……用数学的思维思考:(1)如果乙同学抽出的卡片A上的数字为3,卡片B上的数字为6,他最后得到的数M为__________;(2)若乙同学最后得到的数M为76,则卡片A上的数字为_________,卡片B上的数字为_________;用数学的语言表达:(3)请你说明:对任意告知的数M,甲同学是如何猜到乙抽出的是哪两张卡片的.23.(13分)已知A,B,P为数轴上三点,我们规定:点P到点A的距离是点P到点B的距离的k倍,则称P是[A,B]的“k倍点”,记作P[A,B]=k.例如:若点P表示的数为0,点A表示的数为-2,点B表示的数为1,则P是[A,B]的“2倍点”,记作P[A,B]=2.【知识运用】(1)如图5,A,B,P为数轴上三点,回答下面问题:①P[B,A]=__________;②若点C在数轴上,且C[A,B]=1,则点C表示的数为__________ ;③若D是数轴上一点,且D[A,B]=2,求点D所表示的数.图5【知识拓展】(2)E,F为数轴上两点(点E在点F的左边),M,N为线段EF上的两点,且M,N两点之间的距离为a,若M[E,N]=3,N[F,M]=2,直接写出E,F两点之间的距离.(用含a的代数式表示)期中自我评估 参考答案答案速览一、1. C 2. D 3. A 4. B 5. B 6. D 7. A 8. B 9. B 10. A 二、11. 4 12. 百万 13. 反 14. 9 15. -3 16. 20三、17.(1)-b ;(2)2ab -5;(3)0.9a .18.解:(1)二运算顺序错误(2)原式=(-15)×(-6)×6=540.19.解:原式=3a 2b +3b -8a 2b +4=-5a 2b +3b +4.当a =-3,b =2时,原式=-5×(-3)2×2+3×2+4=-5×9×2+3×2+4=-90+6+4=-80.20.解:(1)335 114(2)根据题意,得-50-72+35+42+10=-35(辆).答:本周总生产量与计划生产量相比,减少了35辆.21.解:(1)600(2.(3)每瓶的容量是2000毫升.22. 解:(1)50(2)6 2(3)设卡片A 上的数字为x ,卡片B 上的数字为y .经过题中的计算后得到的数M =2(5x +7)+y =10x +y +14.所以10x +y 的值为M-14.因为x ,y 都是1至9这9个数字,所以由告知的数M 减去14,所得两位数的十位上数字为卡片A 上的数字x ,个位上数字为卡片B 上的数字y .23. 解:(1)①4②2③因为D 是数轴上一点,且D [A ,B]=2,所以DA =2DB .因为点A 表示的数为-1,点B 表示的数为5,所以AB =5-(-1)=6.当点D 在点B 的右边时,点D 表示的数为-1+2×6=11.所以点D 表示的数为3或11.(2)E ,F 两点之间的距离为6a 或4a .43()11566⎛⎫=-÷-⨯ ⎪⎝⎭解析:因为M,N两点之间的距离为a,M[E,N]=3,N[F,M]=2,所以ME=3MN=3a,NF=2MN=2a.因为M,N为线段EF上的两点,所以分两种情况:当点M在点N的左边时,如图2-①,E,F两点之间的距离为ME+MN+NF=3a+a+2a=6a.①②图2当点M在点N的右边时,如图2-②,E,F两点之间的距离为ME-MN+NF=3a-a+2a=4a.综上,E,F两点之间的距离为6a或4a.。
人教版2024-2025学年上学期七年级上册期中考试数学试卷解析版
人教版2024-2025学年上学期七年级上册期中考试数学试卷解析版一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本题共10个小题,每小题3分,共30分)1. 2023的倒数是 ( )A. - 2023B. 2023C.12023D.−12023【答案】C2. 《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则-3℃表示气温为( )A. 零上3℃B. 零下3℃C. 零上7℃D. 零下7℃【答案】B3. 下列各式中,与3x²y³是同类项的是( )A. 6x⁵B.3x³y²C.−12x2y3D.−14x5【答案】C4.2023年10月26日神舟十七号载人飞船发射取得圆满成功,我国载人航天工程发射任务实现30战30捷,航天员在中国空间站俯瞰地球的高度约为400000米,将400000用科学记数法表示应为( )A.4×10⁵B.4×10⁶C.40×10⁴D.0.4×10⁶【答案】A5. 下列是根据等式的性质进行变形,正确的是 ( )A. 若x=y, 则x+5=y-5B. 若a-x=b+x, 则a=bC. 若 ax= ay, 则x=yD. 若x2=y2,则x=y【答案】D6. 下列各式正确的是 ( )A. - |-5|=5B. - (-5)=-5C. |-5|=-5D. - (-5)=5【答案】D7. 下列说法错误的是( )A.2x²−3xy−1是二次三项式B. - x+1的项是-x、 1C.−x²y的系数是-1D.−2ab²是二次单项式【答案】D8. 已知有理数a,b在数轴上对应的点的位置如图所示,则下列结论正确的是( )A. b>a>0B. b>0>aC. a+b>0D. a-b>0【答案】B9. 解方程x+14=x−5x−112时,去分母正确的是( )A.3 (x+1)=x - (5x-1)B.3 (x+1)=12x-5x-1C.3 (x+1)=12x - (5x-1)D.3x+1=12x-5x+1【答案】C10. 已知整数a₁, a₂, a₃, a₄, 满足下列条件:a₁=0,a₂=−|a₁+1|,a₃=−|a₂+2|,a₄=−|a₃+3|,依此类推, 则a₁₀₀₁的值为( )A. - 500B. - 501C. - 1000D. - 1001【答案】A二、填空题(本题共6小题,每小题3分,共18分)11. 点A在数轴上的位置如图所示,则点A 表示的数的相反数是 .【答案】-212. 比较大小:−65¯−34(填“>” 、“<” 或“=” ).【答案】<13. 已知关于x的方程 mx+2=x的解是x=6, 则m的值为 .【答案】2 314. 已知a,b互为相反数,m,n互为倒数,x是最小正整数,则(mn)2−a+b2024+x=¯.【答案】215. 若2m--n=2, 则代数式6+4m-2n 值为 .【答案】1016. 如图所示为一个数值运算程序,当输入大于1的正整数x时,输出的结果为8,则输入的x值为【答案】2或3##3或2三、解答题(本题共9个小题, 第17、18、19题每题6分, 第20、21题每题8分, 第22、23每题9分, 第24、25每题10分, 共72分)17. 计算: −1²⁰²³+(−2)³×5−(−28)÷4+|−2|.【详解】原式=-1-40+7+2,=-32.18. 解方程:(1) 3(x-3)=x+1(2)x+24−2x−36=2【详解】(1) 解: 3x-9=x+1,3x-x=9+1,2x=10,x=5;(2) 解:3(x+2)−2(2x−3)=24,3x+6−4x+6=24,−x=12,x=−12.19. 先化简, 再求值:3y²−x²+2(2x²−3xy)−3(x²+y²)的值,其中.x=2,y=−3.【详解】解:3y²−x²+2(2x²−3xy)−3(x²+y²)=3y²−x²+4x²−6xy−3x²−3y²=−6xy:当x=2,y=−3时,原式:=−6×2×(−3)=36.20. 已知关于x的多项式2mx³−2x²+3x−(2x³+nx)不含三次项和一次项,求((m−n)³的值.【详解】解:2mx³−2x²+3x−(2x³+nx)=2mx³−2x²+3x−2x³−nx=(2m−2)x³−2x²+(3−n)x,由题意,得:2m−2=0,3−n=0所以m=1, n=3.则(m−n)³=(−2)³=−8.21. 外卖送餐为我们生活带来了许多便利,某学习小组调查了一名外卖小哥一周的送餐情况,规定每天送餐量超过(1) 该外卖小哥这一周送餐量最多的一天比最少的一天多多少单?(2) 求该外卖小哥这一周总共送餐多少单?【小问1详解】14−(−8)=14+8=22 (单),即该外卖小哥这一周送餐量最多的一天比最少的一天多22单;【小问2详解】50×7+(−3+4−5+14−8+7+10)=350+19=369369 (单),即该外卖小哥这一周一共送餐369单.22. 如图所示:已知a,b,c在数轴上的位置(1) 化简:|a+b|−|c−b|+|b−a|(2) 若a的绝对值的相反数是-2,-b的倒数是它本身,c²=4,求−a+2b+c−(a+b−c)的值.【小问1详解】解: 由数轴可得: c<b<0<a,∴a+b>0,c-b<0,b-a<0,∴原式=a+b+c-b-b+a=2a-b+c.【小问2详解】∵a的绝对值的相反数是-2,-b的倒数是它本身,c²=4,c<0,∴a=2,b=-1,c=-2,∴-a+2b+c-(a+b-c)=-a+2b+c-a-b+c=-2a+b+2c=-4-1-4=-9.23. 已知A=2a²−a−ab,B=a²−b+ab.(1) 化简A-2B;(2) 若A-2B的值与a的取值无关, 求A-2B的值.【小问1详解】解: A-2B=(2a²−a−ab)−2(a²−b+ab)=2a²−a−ab−2a²+2b−2ab=-a+2b-3ab;【小问2详解】解: 由(1) 得:A−2B=−a+2b−3ab=(−1−3b)a+2b,∵A-2B的值与a的取值无关,∴--1-3b=0,,解得:b=−13∴A−2B=2b=−2324. 如图,在数轴上点A表示数a,点B表示数b,且(a+5)²+|b−16|=0.(1) 填空:a=;(2) 若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,已知点C为数轴上一动点,且满足AC+BC=29,求出点C表示的数;(3) 若点A以每秒3个单位长度的速度向左运动,同时点B以每秒2个单位长度的速度向右运动,动点D从原点开始以每秒m个单位长度运动,运动时间为t秒,运动过程中,点D始终在A,B两点之间上,且BD -5AD的值始终是一个定值,求此时m的值.【小问1详解】解:∵(a+5)²+|b−16|=0,∴a+5=0,b−16=0,∴a=−5,b=16,故答案为: - 5, 16:【小问2详解】解:设点C在数轴上表示的数为x,①点C在点A的左侧时,∵AC=−5−x,BC=16−x,AC+BC=29。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期中综合检测试卷
(第一章~第二章 满分:120分)
一、选择题(每小题3分,共30分) 1.-8的绝对值是( A ) A .8 B .18
C .-8
D .-18
2.下列运算结果为正数的是( A ) A .(-3)2 B .-3÷2 C .0×(-2020)
D .2-3 3.已知下列各式:abc,2πR ,x +3y,0,x -y
2m ,其中单项式有( B )
A .2个
B .3个
C .4个
D .5个
4.下列计算正确的是( D ) A .3a +2a =5a 2 B .3a -a =3 C .2a 3+3a 2=5a 5
D .-a 2b +2a 2b =a 2b 5.我们的祖国地域辽阔,其中领水面积约为370 000 km 2.把370 000这个数用科学记数法表示为( B )
A .37×104
B .3.7×105
C .0.37×106
D .3.7×106
6.计算12+(-18)÷(-6)-(-3)×2的结果是( C ) A .7 B .8 C .21
D .36
7.已知代数式x -2y 的值是3,则代数式1-x +2y 的值是( A ) A .-2 B .2 C .4
D .-4
8.不改变多项式3b 3-2ab 2+4a 2b -a 3的值,把后三项放在前面是“-”号的括号中,以下正确的是( D )
A .3b 3-(2ab 2+4a 2b +a 3)
B .3b 3-(-2ab 2+4a 2b -a 3)
C .3b 3-(2ab 2+4a 2b -a 3)
D .3b 3-(2ab 2-4a 2b +a 3)
9.计算6m 2-5m +3与5m 2+2m -1的差,结果正确的是( D ) A .m 2-3m +4
B .m 2-3m +2
C .m 2-7m +2
D .m 2-7m +4
10.甲、乙、丙三家超市为了促销一种定价均为m 元的商品,甲超市连续两次降价20%,乙超市一次性降价40%,丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,应到的超市是( B )
A .甲
B .乙
C .丙
D .乙或丙
二、填空题(每小题3分,共18分)
11.如果向东走6 m 记作+6 m ,那么向西走2 m 记作__-2 m__. 12.若3a n +1b 2与12a 3b m +
3的和仍是单项式,则m +n =__1__.
13.单项式-35x 2yz 3的系数是__-3
5
__,次数是__6__.
14.一种零件的直径尺寸在图纸上是30+
0.03-0.02(单位:mm),它表示这种零件的标准尺寸是30 mm ,合格产品的尺寸范围是__29.98~30.03__mm.
15.若||a -11+(b +12)2=0,则(a +b )2020=__1__.
16.如图是一个运算程序的示意图,若开始输入x 的值为625,则第2020次输出的结果为__1__.
三、解答题(一)(每小题6分,共18分) 17.计算下列各题:
(1)-14-(-6)+2-3×⎝⎛⎭⎫-1
3; 解:原式=-1+6+2+1=8. (2)⎝⎛⎭⎫29-14+118÷⎝⎛⎭⎫
-136;
解:原式=⎝⎛⎭⎫29-14+118×(-36)=29×(-36)-14×(-36)+1
18×(-36)=-1. (3)3(x 2-5xy )-4(x 2+2xy -y 2)-5(y 2-3xy );
解:原式=3x 2-15xy -4x 2-8xy +4y 2-5y 2+15xy =-x 2-8xy -y 2. (4)(x -x 2+1)-2(x 2-1+3x ).
解:原式=x -x 2+1-2x 2+2-6x =-3x 2-5x +3.
18.下面的运算是否正确,如果正确,说明每一步的依据;如果不正确,说明从哪一步开始出现了错误,错误的原因,并写出正确的解答过程.
计算:-18+23+56-1
4
.
解:原式=⎝⎛⎭⎫-18+14+⎝⎛⎭⎫56-2
3(第①步) =18+1
6(第②步) =7
24
.(第③步) 解:从第①步开始出现了错误:加数交换位置时应和前面的符号一起交换.正确的解答如下:原式=⎝⎛⎭⎫-18-14+⎝⎛⎭⎫23+56=-38+96=98
. 19.先化简,再求值:3x 3-(4x 2+5x )-3(x 3-2x 2-2x ),其中x =-2.
解:原式=3x 3-4x 2-5x -3x 3+6x 2+6x =2x 2+x .当x =-2时,原式=2×(-2)2-2=6. 四、解答题(二)(每小题7分,共21分)
20.随着人们生活水平的提高,家用轿车越来越多地进入家庭.小明家买了一辆小轿车,国庆节期间,他连续记录了7天中每天行驶的路程(如下表),以50 km 为标准,多于50 km 的记为“+”,不足50 km 的记为“-”,刚好50 km 的记为“0”.
(2)若每行驶100 km 需用汽油6升,汽油价5.2元/升,请估计小明家一个月(按30天计)的汽油费用是多少元?
解:(1)这七天中平均每天行驶50+(-8-11-14+0-16+41+8)÷7=50(千米). (2)平均每天所需汽油费用为50×6÷100×5.2=15.6(元),即估计小明家一个月的汽油费用是15.6×30=468(元).
21.现定义一种新运算“⊕”:对于任意有理数x ,y ,都有x ⊕y =3x +2y ,例如:5⊕1=3×5+2×1=17.
(1)求(-4)⊕(-3)的值; (2)化简:a ⊕(3-2a ).
解:(1)(-4)⊕(-3)=3×(-4)+2×(-3)=-12-6=-18. (2)a ⊕(3-2a )=3×a +2×(3-2a )=3a +6-4a =-a +6.
22.已知A =5x 2-mx +n ,B =3y 2-2x -1(A ,B 为关于x ,y 的多项式).如果A -B 的结果中不含一次项和常数项,求:
(1)m ,n 的值; (2)m 2+n 2-2mn 的值.
解:(1)因为A =5x 2-mx +n ,B =3y 2-2x -1,所以A -B =5x 2-mx +n -3y 2+2x +1=5x 2
-3y 2+(2-m )x +n +1.由结果中不含一次项和常数项,得2-m =0,n +1=0,解得m =2,n =-1. (2)当m =2,n =-1时,原式=22+(-1)2-2×2×(-1)=4+1+4=9.
五、解答题(三)(每小题9分,共27分)
23.有3个有理数x ,y ,z ,若x =2
(-1)n -1,且x 与y 互为相反数,y 是z 的倒数.
(1)当n 为奇数时,你能求出x ,y ,z 这三个数吗?当n 为偶数时,你能求出x ,y ,z 这三个数吗?若能,请计算并写出结果;若不能,请说明理由;
(2)根据(1)的结果计算xy -y n -(y -z )2020的值.
解:(1)当n 为奇数时,x =-1.因为x 与y 互为相反数,所以y =-x =1.因为y 是z 的倒数,所以z =1.所以x =-1,y =1,z =1;当n 为偶数时,因为分母不能为零,所以不能求出x ,y ,z 的值.
(2)当x =-1,y =1,z =1时,原式=(-1)×1-1n -02020=-2.
24.如图,一个用铝合金材料加工的长方形窗框,它的宽和高分别为a 厘米、b 厘米,解答下列问题(结果可用含a ,b 的代数式表示).
(1)长方形窗框的面积是__ab __平分厘米;
(2)铝合金窗分为上、下两栏,四周框架和中间隔栏的材料均为宽度为6厘米的铝合金材料,上栏和下栏的框内高度(不含铝合金部分)的比为1∶2(接口用料忽略不计).
①求制作一个该种窗框所需铝合金材料的总长度; ②求该种(2)窗框的透光部分的面积.
解:(2)①由题意,得上栏内高度为b -183厘米,下栏内高度为2(b -18)
3厘米,所以所需铝
合金材料的总长度为3a +b -183×2+2(b -18)3
×3=⎝⎛⎭⎫3a +8
3b -48厘米. ②透光部分的面积为ab -6⎝⎛⎭⎫3a +8
3b -48=(ab -18a -16b +288)平方厘米. 25.一张桌子可坐4人,按照如图所示的方式将桌子拼在一起.
(1)2张桌子拼在一起可坐几人?3张桌子拼在一起可坐几人?n 张桌子拼在一起可坐几人?
(2)一家酒楼有60张这样的正方形桌子,按上图的方式每4张桌子拼成一张大桌子,则
60张桌子可拼成15张大桌子,共可坐多少人?
(3)若这家酒楼的60张这样的正方形桌子,每4张拼成一张大的正方形桌子,则共可坐多少人?
(4)(2)、(3)中,哪种拼桌子的方式坐的人更多?
解:(1)2张桌子拼在一起可坐4+2=6(人);3张桌子拼在一起可坐4+2+2=8(人);n 张桌子拼在一起可坐4+2(n-1)=(2n+2)人.(2)按图中方式拼一张大桌子可坐4+2×(4-1)=10(人),则15张大桌子共可坐15×10=150(人).(3)若每4张桌子拼成一张大正方形桌子,则一张大的正方形桌子可坐8人,15张大正方形桌子共可坐15×8=120(人).(4)由(2)、(3)可知,按(2)中拼桌子的方式坐的人更多.。