Matlab的fmincon函数(非线性等式不等式约束优化问题求解)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

fmincon函数优化问题
fmincon解决的优化模型如下:
min F(X)
subject to: A*X <= B (线性不等式约束)
Aeq*X = Beq (线性等式约束)
C(X) <= 0 (非线性不等式约束)
Ceq(X) = 0 (非线性等式约束)
LB <= X <= UB (参数x的取值范围)
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
fmincon是求解目标fun最小值的内部函数
x0是初值
A b线性不等式约束
Aeq beq线性等式约束
lb下边界
ub上边界
nonlcon非线性约束条件
options其他参数,对初学者没有必须,直接使用默认的即可
优化工具箱提供fmincon函数用于对有约束优化问题进行求解,其语法格式如下:x=fmincon(fun,x0,A,b)
x=fmincon(fun,x0,A,b,Aeq,beq)
x=fmincon(fun,x0,A,b,Aeq,beq,lb,ub)
x=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)
x=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
x=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options,P1,P2,...) [x,fval]=fmincon(...)
[x,fval,exitflag]=fmincon(...)
[x,fval,exitflag,output]=fmincon(...)
其中,x,b,beq,lb,和ub为线性不等式约束的下、上界向量,A和Aeq为线性不等式约束和等式约束的系数矩阵矩阵,fun为目标函数,nonlcon为非线性约束函数。

显然,其调用语法中有很多和无约束函数fminunc的格式是一样的,其意义也相同,在此不在重复介绍。

对应上述调用格式的解释如下:
x=fmincon(fun,x0,A,b)给定初值x0,求解fun函数的最小值x。

fun函数的约束条件为A*x<=b,x0可以是标量或向量。

x=fmincon(fun,x0,A,b,Aeq,beq)最小化fun函数,约束条件为Aeq*x=beq和
A*x<=b。

若没有不等式线性约束存在,则设置A=[]、b=[]。

x=fmincon(fun,x0,A,b,Aeq,beq,lb,ub)定义设计变量x的线性不等式约束下界lb和上界ub,使得总是有lb<=x<=ub。

若无等式线性约束存在,则令Aeq=[]、beq=[]。

x=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)在上面的基础上,在nonlcon 参数中提供非线性不等式c(x)或等式ceq(x)。

fmincon函数要求c(x)<=0且ceq(x)=0。

x=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)用options参数指定的参数进行最小化。

x=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options,P1,P2,...)将问题参数P1,P2等直接传递给函数fun和nonlin。

若不需要这些变量,则传递空矩阵到A,b,Aeq,beq,lb,ub,nonlcon和options。

[x,fval]=fmincon(...)返回解x处的目标函数值到fval。

[x,fval,exitflag]=fmincon(...)返回exitflag参数,描述函数计算的有效性,意义同无约束调用。

[x,fval,exitflag,output]=fmincon(...)返回包含优化信息的输出参数output。

非线性不等式约束nonlcon的定义方法
该参数计算非线性不等式约束c(x)<=0和非线性等式约束ceq(x)=0。

nonlcon
参数是一个包含函数名的字符串。

该函数可以是M文件、内部文件或MEX文件。

它要求输入一个向量x,返回两个变量—解x处的非线性不等式向量c和非线性等式向量ceq。

例如,若nonlcon='mycon',则M文件mycon.m须具有下面的形式:
function[c,ceq]=mycon(x)
c=...%计算x处的非线性不等式。

ceq=...%计算x处的非线性等式。

若还计算了约束的梯度,即options=optimset('GradConstr','on')
则nonlcon函数必须在第三个和第四个输出变量中返回c(x)的梯度GC和ceq(x)的梯度Gceq。

function[c,ceq,GC,GCeq]=mycon(x)
c=...%解x处的非线性不等式。

ceq=...%解x处的非线性等式。

ifnargout>2%被调用的nonlcon函数,要求有4个输出变量。

GC=...%不等式的梯度。

GCeq=...%等式的梯度。

end
应用举例
已知某设计问题可以简化为如下数学模型:显然,此模型属于一个二维约束优化问题。

应用fmincon函数求解此优化模型,需要如下几个步骤:
1)创建目标函数M文件myobj.m
程序为:
function f=myobj(x)
f=2*x(1)^2+2*x(2)^2-2*x(1)*x(2)-4*x(1)-6*x(2);
2)创建非线性约束函数M文件mycon.m
程序为:
function[c,ceq]=mycon(x)
c(1)=x(1)+5*x(2)^2-5;
ceq=[];
3)创建优化函数主程序,youhua.m 并进行初始化及线性约束条件设置
程序为:
%求优化函数极小值
A=[11];%线性不等式约束左边矩阵
b=[2];%线性不等式约束右边向量
Aeq=[];%线性等式约束左边矩阵
beq=[];%线性等式约束右边向量
lb=[0;0];%自变量下限
ub=[inf;inf];%自变量上限
x0=[1 ;1];%初始值
options=optimset('LargeScale','off','display','iter');
[x,fval,exitflag]=fmincon(@myobj,x0,A,b,[],[],lb,ub,@mycon,options)
在Command Window中,输入youhua回车
得到程序结果为:
youhua
max Directional First-order
Iter F-count f(x) constraint Step-size derivative optimality Procedure
0 3 -8 1 Infeasible start point
1 7 -7.7037 0.06173 1 0.37 0.83
2 11 -7.67725 0.0003061 1 0.0268 0.0149
3 15 -7.67712 7.682e-009 1 0.00013
4 7.35e-007 Optimization terminated: first-order optimality measure less
than options.TolFun and maximum constraint violation is less
than options.TolCon.
Active inequalities (to within options.TolCon = 1e-006):
lower upper ineqlin ineqnonlin
1 1
x =
1.1190 0.8810
fval =
-7.6771
exitflag =
1。

相关文档
最新文档