遗传算法在TSP问题中的应用

合集下载

实验六:遗传算法求解TSP问题实验2篇

实验六:遗传算法求解TSP问题实验2篇

实验六:遗传算法求解TSP问题实验2篇第一篇:遗传算法的原理与实现1. 引言旅行商问题(TSP问题)是一个典型的组合优化问题,它要求在给定一组城市和每对城市之间的距离后,找到一条路径,使得旅行商能够在所有城市中恰好访问一次并回到起点,并且总旅行距离最短。

遗传算法作为一种生物启发式算法,在解决TSP问题中具有一定的优势。

本实验将运用遗传算法求解TSP问题,以此来探讨和研究遗传算法在优化问题上的应用。

2. 遗传算法的基本原理遗传算法是模拟自然界生物进化过程的一种优化算法。

其基本原理可以概括为:选择、交叉和变异。

(1)选择:根据问题的目标函数,以适应度函数来评估个体的优劣程度,并按照适应度值进行选择,优秀的个体被保留下来用于下一代。

(2)交叉:从选出的个体中随机选择两个个体,进行基因的交换,以产生新的个体。

交叉算子的选择及实现方式会对算法效果产生很大的影响。

(3)变异:对新生成的个体进行基因的变异操作,以保证算法的搜索能够足够广泛、全面。

通过选择、交叉和变异操作,不断迭代生成新一代的个体,遗传算法能够逐步优化解,并最终找到问题的全局最优解。

3. 实验设计与实施(1)问题定义:给定一组城市和每对城市之间的距离数据,要求找到一条路径,访问所有城市一次并回到起点,使得旅行距离最短。

(2)数据集准备:选择适当规模的城市数据集,包括城市坐标和每对城市之间的距离,用于验证遗传算法的性能。

(3)遗传算法的实现:根据遗传算法的基本原理,设计相应的选择、交叉和变异操作,确定适应度函数的定义,以及选择和优化参数的设置。

(4)实验流程:a. 初始化种群:随机生成初始种群,每个个体表示一种解(路径)。

b. 计算适应度:根据适应度函数,计算每个个体的适应度值。

c. 选择操作:根据适应度值选择一定数量的个体,作为下一代的父代。

d. 交叉操作:对父代进行交叉操作,生成新的个体。

e. 变异操作:对新生成的个体进行变异操作,以增加搜索的多样性。

实验六:遗传算法求解TSP问题实验3篇

实验六:遗传算法求解TSP问题实验3篇

实验六:遗传算法求解TSP问题实验3篇以下是关于遗传算法求解TSP问题的实验报告,分为三个部分,总计超过3000字。

一、实验背景与原理1.1 实验背景旅行商问题(Traveling Salesman Problem,TSP)是组合优化中的经典问题。

给定一组城市和每两个城市之间的距离,求解访问每个城市一次并返回出发城市的最短路径。

TSP 问题具有很高的研究价值,广泛应用于物流、交通运输、路径规划等领域。

1.2 遗传算法原理遗传算法(Genetic Algorithm,GA)是一种模拟自然选择和遗传机制的搜索算法。

它通过选择、交叉和变异操作生成新一代解,逐步优化问题的解。

遗传算法具有全局搜索能力强、适用于多种优化问题等优点。

二、实验设计与实现2.1 实验设计本实验使用遗传算法求解TSP问题,主要包括以下步骤:(1)初始化种群:随机生成一定数量的个体(路径),每个个体代表一条访问城市的路径。

(2)计算适应度:根据路径长度计算每个个体的适应度,适应度越高,路径越短。

(3)选择操作:根据适应度选择优秀的个体进入下一代。

(4)交叉操作:随机选择两个个体进行交叉,生成新的个体。

(5)变异操作:对交叉后的个体进行变异,增加解的多样性。

(6)更新种群:将新生成的个体替换掉上一代适应度较低的个体。

(7)迭代:重复步骤(2)至(6),直至满足终止条件。

2.2 实验实现本实验使用Python语言实现遗传算法求解TSP问题。

以下为实现过程中的关键代码:(1)初始化种群```pythondef initialize_population(city_num, population_size): population = []for _ in range(population_size):individual = list(range(city_num))random.shuffle(individual)population.append(individual)return population```(2)计算适应度```pythondef calculate_fitness(population, distance_matrix): fitness = []for individual in population:path_length =sum([distance_matrix[individual[i]][individual[i+1]] for i in range(len(individual) 1)])fitness.append(1 / path_length)return fitness```(3)选择操作```pythondef selection(population, fitness, population_size): selected_population = []fitness_sum = sum(fitness)fitness_probability = [f / fitness_sum for f in fitness]for _ in range(population_size):individual = random.choices(population, fitness_probability)[0]selected_population.append(individual)return selected_population```(4)交叉操作```pythondef crossover(parent1, parent2):index1 = random.randint(0, len(parent1) 2)index2 = random.randint(index1 + 1, len(parent1) 1)child1 = parent1[:index1] +parent2[index1:index2] + parent1[index2:]child2 = parent2[:index1] +parent1[index1:index2] + parent2[index2:]return child1, child2```(5)变异操作```pythondef mutation(individual, mutation_rate):for i in range(len(individual)):if random.random() < mutation_rate:j = random.randint(0, len(individual) 1) individual[i], individual[j] = individual[j], individual[i]return individual```(6)更新种群```pythondef update_population(parent_population, child_population, fitness):fitness_sum = sum(fitness)fitness_probability = [f / fitness_sum for f in fitness]new_population =random.choices(parent_population + child_population, fitness_probability, k=len(parent_population)) return new_population```(7)迭代```pythondef genetic_algorithm(city_num, population_size, crossover_rate, mutation_rate, max_iterations): distance_matrix =create_distance_matrix(city_num)population = initialize_population(city_num, population_size)for _ in range(max_iterations):fitness = calculate_fitness(population, distance_matrix)selected_population = selection(population, fitness, population_size)parent_population = []child_population = []for i in range(0, population_size, 2):parent1, parent2 = selected_population[i], selected_population[i+1]child1, child2 = crossover(parent1, parent2)child1 = mutation(child1, mutation_rate)child2 = mutation(child2, mutation_rate)parent_population.extend([parent1, parent2]) child_population.extend([child1, child2])population =update_population(parent_population, child_population, fitness)best_individual =population[fitness.index(max(fitness))]best_path_length =sum([distance_matrix[best_individual[i]][best_individual[i +1]] for i in range(len(best_individual) 1)])return best_individual, best_path_length```三、实验结果与分析3.1 实验结果本实验选取了10个城市进行测试,遗传算法参数设置如下:种群大小:50交叉率:0.8变异率:0.1最大迭代次数:100实验得到的最佳路径长度为:1953.53.2 实验分析(1)参数设置对算法性能的影响种群大小:种群大小会影响算法的搜索能力和收敛速度。

遗传算法在优化问题中的应用

遗传算法在优化问题中的应用

遗传算法在优化问题中的应用遗传算法是一种基于进化原理的优化算法,它模拟了生物进化的过程,通过自然选择和基因交叉变异的操作,逐步寻找到最优解。

由于其优良的全局搜索性能和较好的适应性,在许多优化问题中都得到了广泛的应用。

本文将介绍遗传算法在三个典型的优化问题中的应用。

1. 旅行商问题(TSP)的优化旅行商问题是指一名商人需要穿越多个城市,且每个城市只能访问一次,要求找到一条最短的路径使得商人能够经过所有城市并返回出发点。

由于遍历所有可能的路径需要极大的计算量,使用遗传算法能够较好地解决这一问题。

在遗传算法中,将每个候选路径看做一个个体,通过编码方式将路径转化为遗传信息。

初始时,随机生成一定数量的路径表示种群。

然后使用选择、交叉、变异等操作对种群进行迭代优化。

优化终止的条件可以是达到最大迭代次数或者路径长度不再变化。

通过多轮迭代和选择操作,遗传算法可以逐渐生成新的路径,并筛选出较短的路径。

最终得到的路径就是旅行商问题的最优解。

2. 函数优化问题函数优化问题是指通过调整函数的自变量,使得函数的取值达到最大或最小。

常见的函数优化问题有参数的拟合、神经网络权值的优化等。

遗传算法可以应用于函数优化问题,通过自然选择和基因操作来逐步优化函数取值。

在遗传算法中,将函数的自变量看做个体的基因,将函数的取值看做个体的适应度。

通过选择、交叉、变异等操作,优化算法逐步在参数空间中搜索,寻找到函数的最优解。

3. 布尔函数优化问题布尔函数优化问题是指通过调整若干个布尔变量的取值,使得布尔函数的取值达到最大或最小。

布尔函数通常是指仅包含与、或和非等逻辑运算的函数。

遗传算法可以应用于布尔函数优化问题,通过基因编码和优化操作来求解函数的最优解。

在遗传算法中,将布尔函数的变量看做个体的基因,将布尔函数的取值看做个体的适应度。

通过选择、交叉、变异等操作,优化算法逐步在状态空间中搜索,寻找到布尔函数的最优解。

总结:遗传算法作为一种优化算法,在旅行商问题、函数优化问题和布尔函数优化问题等领域中发挥着重要作用。

基于遗传算法求解TSP问题

基于遗传算法求解TSP问题

适应度函数
适应度函数用于评估每个染色体的优劣程 度,根据问题的不同,适应度函数需要进 行定制设计。
交叉操作
交叉操作将两个染色体的基因进行交换, 以产生新的个体。常见的交叉方法有单点 交叉、多点交叉等。
选择操作
选择操作根据适应度函数的评估结果,选 择优秀的个体进入下一代种群。常见的选 择方法有轮盘赌选择、锦标赛选择等。
通过选择操作,优秀的个体有更大的机会被选中并参与交叉和变异操作 。交叉操作将两个个体的染色体进行交换,以产生新的个体。变异操作 则对染色体的某些基因进行随机改变,以增加种群的多样性。
遗传算法构成要素
种群
种群是由一组染色体组成的集合,每个染 色体都是优化问题的潜在解。
变异操作
变异操作对染色体的某些基因进行随机改 变,以增加种群的多样性。常见的变异方 法有位点变异、倒位变异等。
04
基于遗传算法的TSP问题求解
TSP问题的遗传算法建模
编码方式
使用染色体编码方式,将TSP问题的解编码 为染色体。
适应度函数
使用距离作为适应度函数,评估染色体的优 劣。
解码方法
通过解码方式将编码后的染色体还原为TSP 问题的解。
遗传操作
包括选择、交叉和变异等操作,用于产生新 的染色体。
编码方式与解码方法
VS
实验环境
本次实验在Windows 10操作系统下进行 ,使用Python 3.8作为编程语言,并利用 NumPy和Matplotlib等库进行数据处理 和可视化。
实验结果展示
最优解
通过运行遗传算法程序,我们得到了最优解为207.9km,与TSPLIB中的最优解206.2km相TSP问题是一个NP-hard问题,它具有以下特征

遗传算法(GA)解决TSP问题

遗传算法(GA)解决TSP问题

遗传算法(GA)解决TSP问题 遗传算法解决TSP问题遗传算法遗传算法的基本原理是通过作⽤于染⾊体上的基因寻找好的染⾊体来求解问题,它需要对算法所产⽣的每个染⾊体进⾏评价,并基于适应度值来选择染⾊体,使适应性好的染⾊体有更多的繁殖机会,在遗传算法中,通过随机⽅式产⽣若⼲个所求解问题的数字编码,即染⾊体,形成初始种群;通过适应度函数给每个个体⼀个数值评价,淘汰低适应度的个体,选择⾼适应度的个体参加遗传操作,经过遗产操作后的个体集合形成下⼀代新的种群,对这个新的种群进⾏下⼀轮的进化。

TSP问题TSP问题即旅⾏商问题,经典的TSP可以描述为:⼀个商品推销员要去若⼲个城市推销商品,该推销员从⼀个城市出发,需要经过所有城市后,回到出发地。

应如何选择⾏进路线,以使总的⾏程最短。

从图论的⾓度来看,该问题实质是在⼀个带权完全⽆向图中,找⼀个权值最⼩的哈密尔顿回路。

遗传算法解决TSP问题概念介绍:种群 ==> 可⾏解集个体 ==> 可⾏解染⾊体 ==> 可⾏解的编码基因 ==> 可⾏解编码的分量基因形式 ==> 遗传编码适应度 ==> 评价的函数值(适应度函数)选择 ==> 选择操作交叉 ==> 编码的交叉操作变异 ==> 可⾏解编码的变异遗传操作:就包括优选适应性强的个体的“选择”;个体间交换基因产⽣新个体的“交叉”;个体间的基因突变⽽产⽣新个体的“变异”。

其中遗传算法是运⽤遗传算⼦来进⾏遗传操作的。

即:选择算⼦、变异算⼦、交叉算⼦。

遗传算法的基本运算过程(1)种群初始化:个体编码⽅法有⼆进制编码和实数编码,在解决TSP问题过程中个体编码⽅法为实数编码。

对于TSP问题,实数编码为1-n的实数的随机排列,初始化的参数有种群个数M、染⾊体基因个数N(即城市的个数)、迭代次数C、交叉概率Pc、变异概率Pmutation。

(2)适应度函数:在TSP问题中,对于任意两个城市之间的距离D(i,j)已知,每个染⾊体(即n个城市的随机排列)可计算出总距离,因此可将⼀个随机全排列的总距离的倒数作为适应度函数,即距离越短,适应度函数越好,满⾜TSP要求。

遗传算法解决TSP问题【精品毕业设计】(完整版)

遗传算法解决TSP问题【精品毕业设计】(完整版)
2.2遗传算法原型:
GA(Fitness,Fitness_threshold,p,r,m)
Fitness:适应度评分函数,为给定假设赋予一个评估分数
Fitness_threshold:指定终止判据的阈值
p:群体中包含的假设数量
r:每一步中通过交叉取代群体成员的比例
m:变异率
初始化群体:P←随机产生的p个假设
在本程序的TSP问题中一共有20个城市,也就是在图模型中有20个顶点,因此一个染色体的长度为20。
3.3适应函数f(i)
对具有n个顶点的图,已知各顶点之间( , )的边长度d( , ),把 到 间的一条通路的路径长度定义为适应函数:
对该最优化问题,就是要寻找解 ,使f( )值最小。
3.4选择操作
选择作为交叉的双亲,是根据前代染色体的适应函数值所确定的,质量好的个体,即从起点到终点路径长度短的个体被选中的概率较大。
(2)交叉(Crossover):对于选中进行繁殖的两个染色体X,Y,以X,Y为双亲作交叉操作,从而产生两个后代X1,Y1.
(3)变异(Mutation):对于选中的群体中的个体(染色体),随机选取某一位进行取反运算,即将该染色体码翻转。
用遗传算法求解的过程是根据待解决问题的参数集进行编码,随机产生一个种群,计算适应函数和选择率,进行选择、交叉、变异操作。如果满足收敛条件,此种群为最好个体,否则,对产生的新一代群体重新进行选择、交叉、变异操作,循环往复直到满足条件。
3.变异:使用均匀的概率从Ps中选择m%的成员.对于选出的每个成员,在它表示中随机选择一个为取反
4.更新:P←Ps
5.评估:对于P中的每个h计算Fitness(h)
从P中返回适应度最高的假设
3.
3.1 TSP问题的图论描述

基于Matlab的遗传算法解决TSP问题的报告

基于Matlab的遗传算法解决TSP问题的报告

报告题目:基于Matlab的遗传算法解决TSP问题说明:该文包括了基于Matlab的遗传算法解决TSP问题的基本说明,并在文后附录了实现该算法的所有源代码。

此代码经过本人的运行,没有发现错误,结果比较接近理论最优值,虽然最优路径图有点交叉。

因为本人才疏学浅,本报告及源代码的编译耗费了本人较多的时间与精力,特收取下载积分,还请见谅。

若有什么问题,可以私信,我们共同探讨这一问题。

希望能对需要这方面的知识的人有所帮助!1.问题介绍旅行商问题(Traveling Salesman Problem,简称TSP)是一个经典的组合优化问题。

它可以描述为:一个商品推销员要去若干个城市推销商品,从一个城市出发,需要经过所有城市后,回到出发地,应如何选择行进路线,以使总行程最短。

从图论的角度看,该问题实质是在一个带权完全无向图中。

找一个权值最小的Hemilton回路。

其数学描述为:设有一个城市集合其中每对城市之间的距离(),i j d c c R +∈,求一对经过C中每个城市一次的路线()12,,n c c c ΠΠΠ⋯使()()()1111min ,,n i n i i d c c d c c −ΠΠΠΠ+=+∑其中()12,,12n n ΠΠΠ⋯⋯是,的一个置换。

2.遗传算法2.1遗传算法基本原理遗传算法是由美国J.Holland 教授于1975年在他的专著《自然界和人工系统的适应性》中首先提出的,它是一类借鉴生物界自然选择和自然遗传机制的随机化搜索算法。

遗传算法模拟自然选择和自然遗传过程中发生的繁殖、交叉和基因突变现象,在每次迭代中都保留一组候选解,并按某种指标从解群中选取较优的个体,利用遗传算子(选择、交叉和变异)对这些个体进行组合,产生新一代的候选解群,重复此过程,直到满足某种收敛指标为止。

遗传算法,在本质上是一种不依赖具体问题的直接搜索方法,是一种求解问题的高效并行全局搜索方法。

遗传算法在模式识别、神经网络、图像处理、机器学习、工业优化控制、自适应控制、负载平衡、电磁系统设计、生物科学、社会科学等方面都得到了应用。

遗传算法解决TSP问题,C++版(带注释)

遗传算法解决TSP问题,C++版(带注释)

//遗传算法解决简单TSP问题,(VC6.0)//一、定义头文件(defines.h)#ifndef DEFINES_H#define DEFINES_H///////////////////////////////// DEFINES /////////////////////////////////////// //窗口定义大小#define WINDOW_WIDTH 500#define WINDOW_HEIGHT 500//城市数量及城市在窗口显示的大小#define NUM_CITIES 20#define CITY_SIZE 5//变异概率,交叉概率及种群数量#define MUTATION_RATE 0.2#define CROSSOVER_RATE 0.75#define POP_SIZE 40//倍数#define NUM_BEST_TO_ADD 2//最小容许误差#define EPSILON 0.000001#endif//二、一些用得到的小函数(utils.h)// utils.h: interface for the Cutils class.//头文件名//////////////////////////////////////////////////////////////////////#ifndef UTILS_H#define UTILS_H#include <stdlib.h>#include <math.h>#include <sstream>#include <string>#include <iostream>using namespace std;//--------定义一些随机函数--------//----定义随机整数,随机[x,y]之间的整数---inline int RandInt(int x, int y){return rand()%(y-x+1)+x;}//--------------随机产生0到1之间的小数----------inline float RandFloat(){return rand()/(RAND_MAX + 1.0);}//-----------------随机产生0和1-------------inline bool RandBool(){if (RandInt(0,1))return true;elsereturn false;}//-----定义一些方便的小功能包括:整形转字符型,浮点型转字符型--- string itos(int arg);//converts an float to a std::stringstring ftos (float arg);//限制大小void Clamp(double &arg, double min, double max);void Clamp(int &arg, int min, int max);#endif//三、地图头文件(CmapTSP)#ifndef CMAPTSP_H#define CMAPTSP_H//如果没有定义那么就定义////////////////////////////////////////////////////类名:CmapTSP.h////描述:封装地图数据、城市坐标以及适应度计算。

(完整)用遗传算法求解TSP问题

(完整)用遗传算法求解TSP问题

用遗传算法求解TSP问题遗传算法(Genetic Algorithm——GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J。

Holland教授于1975年首先提出的。

J.Holland 教授和它的研究小组围绕遗传算法进行研究的宗旨有两个:抽取和解释自然系统的自适应过程以及设计具有自然系统机理的人工系统。

遗传算法的大致过程是这样的:将每个可能的解看作是群体中的一个个体或染色体,并将每个个体编码成字符串的形式,根据预定的目标函数对每个个体进行评价,即给出一个适应度值。

开始时,总是随机的产生一些个体,根据这些个体的适应度,利用遗传算子-—选择(Selection)、交叉(Crossover)、变异(Mutation)对它们重新组合,得到一群新的个体.这一群新的个体由于继承了上一代的一些优良特性,明显优于上一代,以逐步向着更优解的方向进化.遗传算法主要的特点在于:简单、通用、鲁棒性强。

经过二十多年的发展,遗传算法已经在旅行商问题、生产调度、函数优化、机器学习等领域得到成功的应用。

遗传算法是一类可用于复杂系统优化的具有鲁棒性的搜索算法,与传统的优化算法相比,主要有以下特点:1、遗传算法以决策变量的编码作为运算对象.传统的优化算法往往直接决策变量的实际植本身,而遗传算法处理决策变量的某种编码形式,使得我们可以借鉴生物学中的染色体和基因的概念,可以模仿自然界生物的遗传和进化机理,也使得我们能够方便的应用遗传操作算子.2、遗传算法直接以适应度作为搜索信息,无需导数等其它辅助信息。

3、遗传算法使用多个点的搜索信息,具有隐含并行性。

4、遗传算法使用概率搜索技术,而非确定性规则。

遗传算法是基于生物学的,理解或编程都不太难。

下面是遗传算法的一般算法步骤:1、创建一个随机的初始状态初始种群是从解中随机选择出来的,将这些解比喻为染色体或基因,该种群被称为第一代,这和符号人工智能系统的情况不一样;在那里,问题的初始状态已经给定了。

人工智能结课作业-遗传算法粒子群寻优蚁群算法解决TSP问题

人工智能结课作业-遗传算法粒子群寻优蚁群算法解决TSP问题

⼈⼯智能结课作业-遗传算法粒⼦群寻优蚁群算法解决TSP问题代码已经发布到了github:如果帮到你了,希望给个star⿎励⼀下1 遗传算法1.1算法介绍遗传算法是模仿⾃然界⽣物进化机制发展起来的随机全局搜索和优化⽅法,它借鉴了达尔⽂的进化论和孟德尔的遗传学说。

其本质是⼀种⾼效、并⾏、全局搜索的⽅法,它能在搜索过程中⾃动获取和积累有关搜索空间的知识,并⾃适应的控制搜索过程以求得最优解。

遗传算法操作使⽤适者⽣存的原则,在潜在的解决⽅案种群中逐次产⽣⼀个近似最优解的⽅案,在遗传算法的每⼀代中,根据个体在问题域中的适应度值和从⾃然遗传学中借鉴来的再造⽅法进⾏个体选择,产⽣⼀个新的近似解。

这个过程导致种群中个体的进化,得到的新个体⽐原来个体更能适应环境,就像⾃然界中的改造⼀样。

遗传算法具体步骤:(1)初始化:设置进化代数计数器t=0、设置最⼤进化代数T、交叉概率、变异概率、随机⽣成M个个体作为初始种群P(2)个体评价:计算种群P中各个个体的适应度(3)选择运算:将选择算⼦作⽤于群体。

以个体适应度为基础,选择最优个体直接遗传到下⼀代或通过配对交叉产⽣新的个体再遗传到下⼀代(4)交叉运算:在交叉概率的控制下,对群体中的个体两两进⾏交叉(5)变异运算:在变异概率的控制下,对群体中的个体进⾏变异,即对某⼀个体的基因进⾏随机调整(6)经过选择、交叉、变异运算之后得到下⼀代群体P1。

重复以上(1)-(6),直到遗传代数为 T,以进化过程中所得到的具有最优适应度个体作为最优解输出,终⽌计算。

旅⾏推销员问题(Travelling Salesman Problem, TSP):有n个城市,⼀个推销员要从其中某⼀个城市出发,唯⼀⾛遍所有的城市,再回到他出发的城市,求最短的路线。

应⽤遗传算法求解TSP问题时需要进⾏⼀些约定,基因是⼀组城市序列,适应度是按照这个基因的城市顺序的距离和分之⼀。

1.2实验代码import randomimport mathimport matplotlib.pyplot as plt#读取数据f=open("test.txt")data=f.readlines()#将cities初始化为字典,防⽌下⾯被当成列表cities={}for line in data:#原始数据以\n换⾏,将其替换掉line=line.replace("\n","")#最后⼀⾏以EOF为标志,如果读到就证明读完了,退出循环if(line=="EOF"):break#空格分割城市编号和城市的坐标city=line.split("")map(int,city)#将城市数据添加到cities中cities[eval(city[0])]=[eval(city[1]),eval(city[2])]#计算适应度,也就是距离分之⼀,这⾥⽤伪欧⽒距离def calcfit(gene):sum=0#最后要回到初始城市所以从-1,也就是最后⼀个城市绕⼀圈到最后⼀个城市for i in range(-1,len(gene)-1):nowcity=gene[i]nextcity=gene[i+1]nowloc=cities[nowcity]nextloc=cities[nextcity]sum+=math.sqrt(((nowloc[0]-nextloc[0])**2+(nowloc[1]-nextloc[1])**2)/10)return 1/sum#每个个体的类,⽅便根据基因计算适应度class Person:def__init__(self,gene):self.gene=geneself.fit=calcfit(gene)class Group:def__init__(self):self.GroupSize=100 #种群规模self.GeneSize=48 #基因数量,也就是城市数量self.initGroup()self.upDate()#初始化种群,随机⽣成若⼲个体def initGroup(self):self.group=[]i=0while(i<self.GroupSize):i+=1#gene如果在for以外⽣成只会shuffle⼀次gene=[i+1 for i in range(self.GeneSize)]random.shuffle(gene)tmpPerson=Person(gene)self.group.append(tmpPerson)#获取种群中适应度最⾼的个体def getBest(self):bestFit=self.group[0].fitbest=self.group[0]for person in self.group:if(person.fit>bestFit):bestFit=person.fitbest=personreturn best#计算种群中所有个体的平均距离def getAvg(self):sum=0for p in self.group:sum+=1/p.fitreturn sum/len(self.group)#根据适应度,使⽤轮盘赌返回⼀个个体,⽤于遗传交叉def getOne(self):#section的简称,区间sec=[0]sumsec=0for person in self.group:sumsec+=person.fitsec.append(sumsec)p=random.random()*sumsecfor i in range(len(sec)):if(p>sec[i] and p<sec[i+1]):#这⾥注意区间是⽐个体多⼀个0的return self.group[i]#更新种群相关信息def upDate(self):self.best=self.getBest()#遗传算法的类,定义了遗传、交叉、变异等操作class GA:def__init__(self):self.group=Group()self.pCross=0.35 #交叉率self.pChange=0.1 #变异率self.Gen=1 #代数#变异操作def change(self,gene):#把列表随机的⼀段取出然后再随机插⼊某个位置#length是取出基因的长度,postake是取出的位置,posins是插⼊的位置geneLenght=len(gene)index1 = random.randint(0, geneLenght - 1)index2 = random.randint(0, geneLenght - 1)newGene = gene[:] # 产⽣⼀个新的基因序列,以免变异的时候影响⽗种群 newGene[index1], newGene[index2] = newGene[index2], newGene[index1] return newGene#交叉操作def cross(self,p1,p2):geneLenght=len(p1.gene)index1 = random.randint(0, geneLenght - 1)index2 = random.randint(index1, geneLenght - 1)tempGene = p2.gene[index1:index2] # 交叉的基因⽚段newGene = []p1len = 0for g in p1.gene:if p1len == index1:newGene.extend(tempGene) # 插⼊基因⽚段p1len += 1if g not in tempGene:newGene.append(g)p1len += 1return newGene#获取下⼀代def nextGen(self):self.Gen+=1#nextGen代表下⼀代的所有基因nextGen=[]#将最优秀的基因直接传递给下⼀代nextGen.append(self.group.getBest().gene[:])while(len(nextGen)<self.group.GroupSize):pChange=random.random()pCross=random.random()p1=self.group.getOne()if(pCross<self.pCross):p2=self.group.getOne()newGene=self.cross(p1,p2)else:newGene=p1.gene[:]if(pChange<self.pChange):newGene=self.change(newGene)nextGen.append(newGene)self.group.group=[]for gene in nextGen:self.group.group.append(Person(gene))self.group.upDate()#打印当前种群的最优个体信息def showBest(self):print("第{}代\t当前最优{}\t当前平均{}\t".format(self.Gen,1/self.group.getBest().fit,self.group.getAvg())) #n代表代数,遗传算法的⼊⼝def run(self,n):Gen=[] #代数dist=[] #每⼀代的最优距离avgDist=[] #每⼀代的平均距离#上⾯三个列表是为了画图i=1while(i<n):self.nextGen()self.showBest()i+=1Gen.append(i)dist.append(1/self.group.getBest().fit)avgDist.append(self.group.getAvg())#绘制进化曲线plt.plot(Gen,dist,'-r')plt.plot(Gen,avgDist,'-b')plt.show()ga=GA()ga.run(3000)print("进⾏3000代后最优解:",1/ga.group.getBest().fit)1.3实验结果下图是进⾏⼀次实验的结果截图,求出的最优解是11271为避免实验的偶然性,进⾏10次重复实验,并求平均值,结果如下。

遗传算法解决TSP问题(C++)

遗传算法解决TSP问题(C++)

遗传算法解决TSP问题(C++版)遗传算法流程:交叉,编译,计算适应度,保存最优个体。

其中交叉过程是选择最优的两个染色体进行交叉操作,本文采用的是轮盘赌算法。

#include<iostream>#include<cstdlib>#include<ctime>using namespace std;#define population 200//种群数量#define pc 0.9//交叉的概率#define pm 0.1//变异的概率#define count 200//迭代的次数#define num 10//城市的数量int** city;//存放每个个体的访问顺序int path[10][10] = {//0, 1, 2, 3, 4, 5, 6, 7, 8, 9{ 0, 23, 93, 18, 40, 34, 13, 75, 50, 35 },//0{ 23, 0, 75, 4, 72, 74, 36, 57, 36, 22 },//1{ 93, 75, 0, 64, 21, 73, 51, 25, 74, 89 },//2{ 18, 4, 64, 0, 55, 52, 8, 10, 67, 1 }, //3{ 40, 72, 21, 55, 0, 43, 64, 6, 99, 74 }, //4{ 34, 74, 73, 52, 43, 0, 43, 66, 52, 39 },//5{ 13, 36, 51, 8, 64, 43, 0, 16, 57, 94 },//6{ 75, 57, 25, 10, 6, 66, 16, 0, 23, 11 }, //7{ 50, 36, 74, 67, 99, 52, 57, 23, 0, 42 },//8{ 35, 22, 89, 1, 74, 39, 94, 11, 42, 0 }//9};int* dis;//存放每个个体的访问顺序下的路径长度double* fitness;//存放灭个个体的适应度int min_dis = 1000000;int min_index = -1;int* min_path;//初始化种群void init(){int *a = new int[num];for (int i = 0; i<num; i++){a[i] = i;}city = new int*[population];for (int i = 0; i<population; i++){city[i] = new int[num];}for (int i = 0; i<population; i++){for (int j = num - 1; j >= 0; j--){int n = rand() % (j + 1);//产出的数是0-j,保证交换的后面的数不会再被交换swap(a[j], a[n]);//保证a里面全是0-(num-1)的数,无重复的数,只是顺序颠倒city[i][j] = a[j];}}delete[]a;dis = new int[population];fitness = new double[population];min_path = new int[num];}//计算适应度void compute(){//cout << "do compute now. " << endl;double total = 0;for (int i = 0; i<population; i++){//计算每种情况下,路径的长度dis[i] = 0;int a = city[i][0], b;for (int j = 1; j<num; j++){b = city[i][j];dis[i] += path[a][b];a = b;}dis[i] += path[b][city[i][0]];fitness[i] = 1.0 / dis[i];//以距离的倒数作为适应度函数值total += fitness[i];}}//选择适应度高的物种,采用轮盘赌算法int select(){double total = 0;for (int i = 0; i<population; i++){total += fitness[i];}double size = rand() / (double)RAND_MAX * total;//保证不产生0//cout << "size " << size << endl;double sum = 0;int i = 0;while (sum <= size&&i<population){sum += fitness[++i];}return --i;//返回被选中的个体}int getMinDis(){int result = dis[0];int index = 0;for (int i = 1; i<population; i++){if (result > dis[i]){result = dis[i];index = i;}}return index;}int getMaxDis(){int result = dis[0];int index = 0;for (int i = 1; i<population; i++){if (result < dis[i]){result = dis[i];index = i;}}return index;}void save(){int current_min_index = getMinDis();int current_max_index = getMaxDis();if (dis[current_min_index] < min_dis){min_dis = dis[current_min_index];for (int i = 0; i < num; i++){min_path[i] =city[current_min_index][i];}//cout << "current min dis is: " << min_dis << endl;}else{for (int i = 0; i<num; i++){city[current_max_index][i] = min_path[i];}dis[current_max_index] = min_dis;fitness[current_max_index] = 1.0 / min_dis;}}//最优保存算法bool isExist(int value, int* array, int len){for (int i = 0; i<len; i++){if (value == array[i])return true;}return false;}void convert(int p1, int p2, int* src, int* dst){int len = p2 - p1 + 1;int* temp = new int[len];for (int i = p1; i <= p2; i++){temp[i - p1] = src[i];}int j = (p2 + 1) % num;for (int i = 1; i <= num; i++){int index = (i + p2) % num;if (!isExist(dst[index], temp, len)){dst[j] = dst[index];j = (j + 1) % num;}}for (int i = p1; i <= p2; i++){dst[i] = src[i];}delete[]temp;}//交叉,采用次序交叉算法void cross(){//cout << "do cross now. " << endl;for (int k = 0; k<population; k += 2){int a = select();int b = select();while (a == b){b = select();//保证被选中的个体不是一样的//cout << "same " << b << endl;}//cout << "choose popuilation" << a << " " << b << endl;double p = rand() / double(RAND_MAX);//cout << "cross rate is " << p << endl;int* a1 = new int[num];int* a2 = new int[num];int* b1 = new int[num];int* b2 = new int[num];for (int i = 0; i<num; i++){a1[i] = city[a][i];a2[i] = city[b][i];b1[i] = a2[i];b2[i] = a1[i];}if (p<pc)//满足交叉条件{//选择交叉的两点,并保证p1<p2int p1 = -1;int p2 = -1;while (p1 == p2){p1 = rand() % num;p2 = rand() % num;if (p1>p2){swap(p1, p2);}}//cout << "choose pos " << p1 << " " << p2 << endl;//开始交叉convert(p1, p2, a1, b1);convert(p1, p2, a2, b2);for (int i = 0; i<num; i++){city[k][i] = b1[i];city[k + 1][i] = b2[i];}}else{for (int i = 0; i<num; i++){city[k][i] = a1[i];city[k + 1][i] = a2[i];}}delete[]a1;delete[]a2;delete[]b1;delete[]b2;}}//变异,采用对换操作进行变异void morphis(){//cout << "do morphis now. " << endl;for (int i = 0; i<population; i++){double p = rand() / double(RAND_MAX);//cout << "morphis rate is " << p << endl;if (p<pm)//执行变异{int a = -1, b = -1;while (a == b){a = rand() % num;b = rand() % num;}swap(city[i][a], city[i][b]);}}}int getdis(){//compute();int result = dis[0];int index = 0;for (int i = 1; i<population; i++){if (result > dis[i]){result = dis[i];index = i;}}return result;}//释放申请的数组的空间void dispose(){for (int i = 0; i<population; i++){delete[]city[i];}delete[]city;delete[]dis;delete[]fitness;}int main(){init();//初始化种群int i = 0;srand(time(0));compute();while (i<count){cross();//交叉morphis();//变异compute();//计算适应度save();//保存当前最优的个体//cout << "count " << i++ << endl;cout << getdis() << " ";//输出结果//cout << min_index << " ";if (++i % 10 == 0)cout << endl;}compute();cout << "min distance is: " << min_dis << endl;for (int i = 0; i<num; i++)cout << min_path[i] << " ";cout << endl;dispose();//释放空间return 0;}。

遗传算法解决TSP问题的matlab程序【精品毕业设计】(完整版)

遗传算法解决TSP问题的matlab程序【精品毕业设计】(完整版)

1.遗传算法解决TSP 问题(附matlab源程序)2.知n个城市之间的相互距离,现有一个推销员必须遍访这n个城市,并且每个城市3.只能访问一次,最后又必须返回出发城市。

如何安排他对这些城市的访问次序,可使其4.旅行路线的总长度最短?5.用图论的术语来说,假设有一个图g=(v,e),其中v是顶点集,e是边集,设d=(dij)6.是由顶点i和顶点j之间的距离所组成的距离矩阵,旅行商问题就是求出一条通过所有顶7.点且每个顶点只通过一次的具有最短距离的回路。

8.这个问题可分为对称旅行商问题(dij=dji,,任意i,j=1,2,3,…,n)和非对称旅行商9.问题(dij≠dji,,任意i,j=1,2,3,…,n)。

10.若对于城市v={v1,v2,v3,…,vn}的一个访问顺序为t=(t1,t2,t3,…,ti,…,tn),其中11.ti∈v(i=1,2,3,…,n),且记tn+1= t1,则旅行商问题的数学模型为:12.min l=σd(t(i),t(i+1)) (i=1,…,n)13.旅行商问题是一个典型的组合优化问题,并且是一个np难问题,其可能的路径数目14.与城市数目n是成指数型增长的,所以一般很难精确地求出其最优解,本文采用遗传算法15.求其近似解。

16.遗传算法:17.初始化过程:用v1,v2,v3,…,vn代表所选n个城市。

定义整数pop-size作为染色体的个数18.,并且随机产生pop-size个初始染色体,每个染色体为1到18的整数组成的随机序列。

19.适应度f的计算:对种群中的每个染色体vi,计算其适应度,f=σd(t(i),t(i+1)).20.评价函数eval(vi):用来对种群中的每个染色体vi设定一个概率,以使该染色体被选中21.的可能性与其种群中其它染色体的适应性成比例,既通过轮盘赌,适应性强的染色体被22.选择产生后台的机会要大,设alpha∈(0,1),本文定义基于序的评价函数为eval(vi)=al23.pha*(1-alpha).^(i-1) 。

《改进遗传算法及其在TSP问题中的应用》范文

《改进遗传算法及其在TSP问题中的应用》范文

《改进遗传算法及其在TSP问题中的应用》篇一一、引言遗传算法是一种基于生物进化原理的迭代搜索算法,具有全局搜索和自适应调整的特性,被广泛应用于组合优化问题。

旅行商问题(Traveling Salesman Problem,TSP)是典型的组合优化问题之一,旨在寻找访问一系列城市并返回起点的最短路径。

本文旨在探讨改进遗传算法在TSP问题中的应用,以提高算法的效率和准确性。

二、遗传算法概述遗传算法通过模拟自然进化过程,不断迭代产生新的解集,并逐步逼近最优解。

算法主要包括编码、初始化、选择、交叉和变异等操作。

在TSP问题中,遗传算法的编码通常采用整数编码方式,表示各个城市的排列顺序。

算法通过不断优化种群中的个体,最终得到最优解。

三、改进遗传算法针对传统遗传算法在TSP问题中可能存在的局限性,本文提出以下改进措施:1. 初始化策略优化:采用多种初始化方法结合的方式,提高初始解的质量和多样性,以避免陷入局部最优解。

2. 选择策略优化:引入多种选择策略,如轮盘赌选择、锦标赛选择等,以更好地平衡全局搜索和局部搜索。

3. 交叉和变异操作优化:采用多种交叉和变异操作,如部分匹配交叉、均匀变异等,以增强算法的搜索能力和适应性。

4. 适应度函数优化:针对TSP问题,设计更加精确的适应度函数,以更好地反映解的质量和优化目标。

四、改进遗传算法在TSP问题中的应用将改进后的遗传算法应用于TSP问题,可以得到更加优秀的解。

具体步骤如下:1. 对问题进行编码:采用适当的编码方式,将TSP问题转化为遗传算法可以处理的形式。

2. 初始化种群:采用多种初始化方法结合的方式生成初始种群。

3. 评估适应度:根据适应度函数计算每个个体的适应度。

4. 选择、交叉和变异操作:根据优化后的选择策略、交叉和变异操作生成新的种群。

5. 迭代优化:重复步骤3-4,直到满足终止条件(如达到最大迭代次数或解的质量达到要求)。

五、实验结果与分析为了验证改进遗传算法在TSP问题中的有效性,我们进行了多组实验。

遗传算法实验

遗传算法实验

实验四遗传算法实验一、实验目的:熟悉和掌握遗传算法的原理、流程和编码策略,并利用遗传求解函数优化问题,理解求解TSP问题的流程并测试主要参数对结果的影响。

二、实验原理:旅行商问题,即TSP问题(TravelingSalesmanProblem)是数学领域中著名问题之一。

假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路经的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。

路径的选择目标是要求得的路径路程为所有路径之中的最小值。

TSP问题是一个组合优化问题。

该问题可以被证明具有NPC计算复杂性。

因此,任何能使该问题的求解得以简化的方法,都将受到高度的评价和关注。

遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程。

它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体。

这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代。

后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程。

群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解。

要求利用遗传算法求解TSP问题的最短路径。

三、实验内容及要求1、参考实验系统给出的遗传算法核心代码,用遗传算法求解TSP的优化问题,分析遗传算法求解不同规模TSP问题的算法性能。

2、对于同一个TSP问题,分析种群规模、交叉概率和变异概率对算法结果的影响。

3、增加1种变异策略和1种个体选择概率分配策略,比较求解同一TSP问题时不同变异策略及不同个体选择分配策略对算法结果的影响。

4、上交源代码。

四、实验结果(根据实验报告要求)1、画出遗传算法求解TSP问题的流程图。

2、分析遗传算法求解不同规模的TSP问题的算法性能。

(1)遗传算法执行方式说明:适应度值计算方法:当前路线的路径长度个体选择概率分配方法:适应度比例方法选择个体方法:轮盘赌选择交叉类型:PMX交叉变异类型:两点互换变异(2)实验模拟结果:城市个数历欢最好适应度历次最差适应度运行时间/血688.854388.3543379910146.009154.679352515210.027250.067429720278.942366.18L644025392.002■168,03630430513.155567.738704735627.6336S4.323855240745.577735,756927245727.03S25.06810434图2图1由图1和图2可知,遗传算法执行时间随着TSP问题规模的增大而增大,并且大致为线性增长。

tsp问题有几种方案

tsp问题有几种方案

TSP问题有几种方案引言TSP(Traveling Salesman Problem,旅行商问题)是指给定一系列城市和每对城市之间的距离,找出一条最短路径,使得旅行商可以从起始城市出发,经过每个城市恰好一次,最后回到起始城市。

TSP问题是一个经典的组合优化问题,在计算机科学和运筹学领域被广泛研究。

本文将介绍TSP问题的几种解决方案。

1. 暴力法暴力法是最简单直接的解决TSP问题的方法。

该方法通过枚举所有可能的路径,并计算每个路径的总距离,最后找出最短路径。

但是,由于TSP问题的解空间随着城市数量的增加呈指数级增长,因此暴力法的时间复杂度非常高,不适用于大规模的问题。

2. 穷举法穷举法是改进的暴力法,通过剪枝操作减少了暴力法的时间复杂度。

穷举法一般使用深度优先搜索(DFS)或广度优先搜索(BFS)算法来遍历解空间,并在搜索过程中记录当前路径的总距离。

当搜索到目标节点时,更新最短路径。

穷举法的时间复杂度仍然很高,但相比暴力法有所改善。

3. 动态规划动态规划是一种常用的解决TSP问题的方法。

动态规划通过将原问题划分为若干子问题,并记录每个子问题的最优解,从而通过计算较小规模的问题得到整体问题的最优解。

具体来说,动态规划中的状态转移方程可以表示为:dp[S][i] = min(dp[S-{i}][j] + d[j][i]),其中 S 表示已经访问过的城市集合,i 表示当前城市,j 表示 i 的上一个访问的城市。

通过迭代计算出 dp[S][i],最后找出使得 dp[S][i] + d[i][0] 最小的 i 值作为最优路径的终点。

4. 贪心算法贪心算法是一种启发式算法,它通过贪心地选择当前最优解来逐步构建整体问题的解。

在TSP问题中,贪心算法每一步都选择离当前城市最近的未访问过的城市,直到遍历完所有城市。

然而,贪心算法并不能保证得到最优解,因为局部最优解并不一定是全局最优解。

5. 遗传算法遗传算法是一种演化算法,模拟生物进化的过程来寻找最优解。

2023年基于遗传算法求解TSP问题实验报告

2023年基于遗传算法求解TSP问题实验报告

基于遗传算法求解TSP问题班级, 学号, 姓名摘要: 巡回旅行商问题(TSP)是一种组合优化方面旳问题, 从理论上讲, 使用穷举法不仅可以求解TSP问题, 并且还可以得到最优解。

不过, 运用穷举法所花费旳时间巨大旳, 当问题旳规模很大时, 穷举法旳执行效率较低, 不能满足及时旳需要。

遗传算法是计算机科学人工智能领域中用于处理最优化旳一种搜索启发式算法, 是进化算法旳一种。

该算法通过模拟生物学交叉、变异等方式, 是目前向最优解旳方向进化, 因此使用于TSP问题旳求解。

关键词: 人工智能;TSP问题;遗传算法本组组员: 林志青, 韩会雯, 赵昊罡本人分工:掌握遗传算法旳基本原理, 编写遗传算法中部分匹配交叉、循环交叉和循序交叉旳详细实现过程。

1 引言旅行商问题, 即TSP问题, 是一种最优解旳求解问题。

假设有n个都市, 并且每个都市之间旳距离已知, 则怎样只走一遍并获得最短途径为该问题旳详细解释。

对于TSP问题旳处理, 有穷举法、分支限界法等求解方式, 该文章重要简介遗传算法求解过程。

遗传算法简称GA, 在本质上是一种求解问题旳高效并行全局搜索措施。

遗传算法从任意一种初始化旳群体出发, 通过随机选择、交叉和变异等遗传操作, 使群体一代一代旳进化到搜索空间中越来越好旳区域, 直至抵达最优解。

在遗传算法中, 交叉操作为重要操作之一, 包括部分匹配交叉、循环交叉和次序交叉等。

2 算法原理与系统设计执行遗传算法, 根据需要设定对应旳交叉因子、变异因子和迭代次数, 并选择对应旳交叉算法,当程序图形显示并运算时会得到目前旳最优解, 判断与否获得最终旳最优解, 若已得到所需成果, 则停止运行, 否则继续执行。

详细流程图如下所示:部分匹配交叉(PMX): 先随机生成两个交叉点, 定义这两点间旳区域为匹配区域, 并互换两个父代旳匹配区域。

如下图所示:父代A: 872 | 130 | 9546父代B: 983 | 567 | 1420互换后变为:temp A: 872 | 567 | 9546temp B: 983 | 130 | 1420对于 temp A.tempB中匹配区域以外出现旳数码反复, 要根据匹配区域内旳位置逐一进行替代。

遗传算法解决旅行商问题(TSP)

遗传算法解决旅行商问题(TSP)

遗传算法解决旅⾏商问题(TSP)这次的⽂章是以⼀份报告的形式贴上来,代码只是简单实现,难免有漏洞,⽐如循环输⼊的控制条件,说是要求输⼊1,只要输⼊⾮0就⾏。

希望会帮到以后的同学(*^-^*)⼀、问题描述旅⾏商问题(Traveling-Salesman Problem,TSP)。

设有n个互相可直达的城市,某推销商准备从其中的A城出发,周游各城市⼀遍,最后⼜回到A城。

要求为该旅⾏商规划⼀条最短的旅⾏路线。

⼆、⽬的为了解决旅⾏商问题,⽤了遗传算法,模拟染⾊体的遗传过程,进⾏求解。

为了直观的更有⽐较性的观察到程序的运⾏效果,我这⾥程序⾥给定了10个城市的坐标,并计算出其任意两个的欧⽒距离,10个点的位置排布见图1。

程序的理想最优距离为20.485281,即绕三⾓形⼀圈,⽽且路程起点不固定,因为只要满⾜点围着三⾓形⼀圈即为最短距离,最优解。

所以问题转换为,求图中10 个点的不重复点的闭环序列的距离最⼩值。

图 1三、原理1、内部变量介绍程序总体围绕了遗传算法的三个主要步骤:选择--复制,交叉,变异。

给定了10个种群,即10条染⾊体,每条染⾊体都是除⾸位外不重复的点组成,⾸尾相同保证路线是闭合的,所以⼀条染⾊体包含11个点。

种群由⼀个结构体group表⽰,内含城市的序列int city[11]、种群的适应度double fit、该种群适应度占总群体适应度的⽐例double p,和为了应⽤赌轮选择机制的积累概率 double jlleigailv。

程序还包括⼀个始终记录所有种群中的最优解的城市序列数组groupbest[11],记录最优解的适应度,即最⼤适应度的变量 double groupbestfit。

种群的最⼤繁衍代数设置为1000,⽤户能够输⼊繁衍代数,但必须在1000以内。

10个点的不同排列序列有10!种,即3628800中排列可能,其中各代之间可能产⽣重复,不同种群间也会出现重复,学⽣觉得1000左右应该能验证程序的性能了,就定为1000。

遗传算法在优化问题中的应用案例分析

遗传算法在优化问题中的应用案例分析

遗传算法在优化问题中的应用案例分析引言:遗传算法,是一种模拟生物进化过程的优化算法,已被广泛应用于各类优化问题中。

通过模拟物种的自然选择、遗传交叉和变异等过程,遗传算法能够寻找到问题的最优解,特别适用于复杂问题和无法使用传统算法求解的问题。

本文将通过介绍两个应用案例,详细阐述遗传算法在优化问题中的应用。

案例一:旅行商问题旅行商问题(Traveling Salesman Problem,TSP)是一个经典的优化问题,其目标是寻找一条路线,使得旅行商能够只访问一次每个城市,并且最后回到起点的路径总长度最短。

在实际应用中,TSP可以应用于旅游规划、电路板布线等领域。

遗传算法在解决TSP问题中,可以通过建立一个染色体表示城市的访问顺序,以及定义适应度函数评估路径的优劣程度。

染色体的交叉和变异操作模拟了城市间的信息交流和突变情况,以此不断优化路径。

通过多代进化,遗传算法能够找到问题的优化解。

以TSP问题为例,研究表明遗传算法在寻找较短路径上具有较好的性能,能够找到接近全局最优解。

案例二:机器学习中的参数优化机器学习算法中存在大量超参数(Hyperparameters),如学习率、网络拓扑结构等,这些超参数的选择直接影响算法的性能。

超参数的优化是一个非常具有挑战性的问题,传统的网格搜索方法因其组合爆炸的问题而效率低下。

遗传算法通过自适应搜索和进化过程,能够高效地找到最优或接近最优的超参数组合。

以神经网络为例,遗传算法能够通过调整网络的结构(如隐藏层数量和每层的神经元个数)、学习率、优化器等超参数,来优化网络的性能。

通过在每一代中评估网络在验证集上的性能,遗传算法根据适应度函数的评估结果,对染色体(超参数组合)进行选择、交叉和变异操作,以实现超参数的优化。

实验结果表明,遗传算法在优化神经网络超参数时能够显著提升模型的性能。

结论:遗传算法在优化问题中的应用已经得到广泛的研究和应用,尤其在复杂问题和传统算法无法求解的问题上表现出较好的性能。

遗传算法解决TSP问题的matlab程序

遗传算法解决TSP问题的matlab程序

1.遗传算法解决TSP 问题(附matlab源程序)2.知n个城市之间的相互距离,现有一个推销员必须遍访这n个城市,并且每个城市3.只能访问一次,最后又必须返回出发城市。

如何安排他对这些城市的访问次序,可使其4.旅行路线的总长度最短?5.用图论的术语来说,假设有一个图g=(v,e),其中v是顶点集,e是边集,设d=(dij)6.是由顶点i和顶点j之间的距离所组成的距离矩阵,旅行商问题就是求出一条通过所有顶7.点且每个顶点只通过一次的具有最短距离的回路。

8.这个问题可分为对称旅行商问题(dij=dji,,任意i,j=1,2,3,…,n)和非对称旅行商9.问题(dij≠dji,,任意i,j=1,2,3,…,n)。

10.若对于城市v={v1,v2,v3,…,vn}的一个访问顺序为t=(t1,t2,t3,…,ti,…,tn),其中11.ti∈v(i=1,2,3,…,n),且记tn+1= t1,则旅行商问题的数学模型为:12.min l=σd(t(i),t(i+1)) (i=1,…,n)13.旅行商问题是一个典型的组合优化问题,并且是一个np难问题,其可能的路径数目14.与城市数目n是成指数型增长的,所以一般很难精确地求出其最优解,本文采用遗传算法15.求其近似解。

16.遗传算法:17.初始化过程:用v1,v2,v3,…,vn代表所选n个城市。

定义整数pop-size作为染色体的个数18.,并且随机产生pop-size个初始染色体,每个染色体为1到18的整数组成的随机序列。

19.适应度f的计算:对种群中的每个染色体vi,计算其适应度,f=σd(t(i),t(i+1)).20.评价函数eval(vi):用来对种群中的每个染色体vi设定一个概率,以使该染色体被选中21.的可能性与其种群中其它染色体的适应性成比例,既通过轮盘赌,适应性强的染色体被22.选择产生后台的机会要大,设alpha∈(0,1),本文定义基于序的评价函数为eval(vi)=al23.pha*(1-alpha).^(i-1) 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
l SSN 1 0 — 0 4 0 9 3 4
E— i e u @c c .e .n ma l d f c c n t : c
h t Hwww. z .e .n tp: dn sn tc
C m ue K o ld ea dT c n l y电脑 知 识 与技术 o p tr n we g n e h o g o
旅 行 商 问 题 (s )也 称 为 货 郎担 问 题 , ap, 是一 个 较 古 老 的问 题 。最 早 可 以追 溯 到 15 7 9年 E l 提 出的 骑 士 旅 行 问 题 。14 ue r 9 8年 , 由 美 国兰 德 公 司 推 动 ,S T P成 为 近 代组 合 优 化 领 域 的一 个 典 型 难 题 。 应 该 说 ,S T P是 一 个 具 有 广 泛 应 用 背 景 和 重 要 理 论 价 值 的 组合 优 化 难 题 . 已 经被 证 明 属 于 N 它 P难 题 。对 T P问题 的入 量 研 究 使 得 T P问题 成 为 了一 个 著 名 的组 合 优 化 问 题 目前 , 解 T P问 题 的 S S 求 S 较 为 常 用 的方 法 有 二 叉 树 描 述法 、 发 式 搜 索 法 、 近 邻 法 、 经 网络 法 、 拟 退 火 法 和 遗 传 算 法 等 。遗 传 算 法 是 模 拟 生 物 在 自然 环 启 最 神 模 境 中 的遗 传 和 进 化 过 程 而形 成 的一 种 自适 应 全 局 概 率 搜 索 算 法 , 有 良好 的全 局 寻 优 能 , , 为 解 决 问题 的 有 效 方 法 之 一 。 具 成 J
a dmua o p r o . ta , o leT P i eftr wi b V n n t ino ea r A s h w t s v S t u e l e百 e . t t lt oo nh u l
Ke r s y wo d :TS ; e e cag rtm ; e e i o e ain o e ao P g n t a z o g YA n — u I Hu — h n , NG J g h a i ( o ue S i c n e h oo yIstt o a o e ef m n n A r utr i r t, h n qu 4 6 , hn ) C mp t c n ea dT c n l tue f r e g n i Hu C H g o He a gi l a Unv s y S a g i 7 1 3 C ia Yu r c ul ei 1
Ab t a t F rt t e p s g n r d c d t e p o lm fTS , h ai fau e a d p o e u e o n t l o t m. e i u sd t e w s r c : i , h as e i t u e r b e o P t e b s e t r n r c d r f s a o h c Ge ei ag r h c i Th n ds se h c o o i g h f dn ,t e ̄n d n o t eso li g TS y Ge e c ag r h c c o ff n s fs n P b n d lo i m.Th p l a o n f c fsl cin o eao , r s v ro e o i o t e a p i t n a d e e to e t p r t r c o s e p mt r ci e o o
1T P 问题 描述 S
T P 旅行商问题 ) 简单描还是 : S( 的 一名 商 人 欲 到 n个 城 市 推 销 商 品 , 两 个 城 市 i J 间 的距 离 为 d 存 在 ii 何 使 商 人 每 每 和 之 , ,如 个 城 市 走 一 遍 后 回 到起 点 , 所 走 的 路 径 最 短 。用 数 学 符 号 表 示 ’ : n维 向量 表 示 一 条 路 径 X (.C … -C , 且 设 :C. . 。 目标 函 数 为 ,
摘要 : 文章 首先 介 绍 T P 问题 与 遗 传 算 法的 基 本 特 点 及 其 基 本 步骤 。接 着 讨 论 用 遗 传 算 法解 决 T P 问题 的 编码 、 应 度 函数 设 计 S S 适 方 面的 采 用 的 方 法 , 以及 选择 算 子 , 交叉 算 子 和 变 异 算子 的应 用现 状 以及 效 果 , 最后 对 解 决 T P 问题 的 前 景 提 出 了展 望 。 S
Vo., .,a u r 01 , P6 2 6 3 1 No3J n ay 2 0 P .7 — 7 6
T l 8 — 5 — 6 0 6 5 9 94 e: 6 5 5 9 9 3 + 1 606
遗传算法在 T P问题 中的应用 S
李 中杨 花 华 ,景
( 南 农 业 大 学 华豫 学 院 计 算 机 科 学 与 技 术学 院 . 南 商 丘 4 6 1 ) 河 河 7 13
关 键 词 : S 遗 传 算 法 ; 传 操 作 ; 子 T P; 遗 算 中圈 分 类 号 : P 1 T 31 文献标识码 : A 文 章 编 号 :0 9 3 4 (0 00 - 7 — 2 1 0 - 0 4 2 1 )3 6 2 0
Ap l ain i P sd o n tcAlo ih pi t nTS Bae n Ge ei g rtm c o
相关文档
最新文档