Bayes分类器设计
bayes 分类器设置实验总结
bayes 分类器设置实验总结Bayes 分类器设置实验总结在机器学习领域中,分类算法是一个常见的任务之一。
Bayes 分类器是一种基于概率统计的分类算法,它基于贝叶斯定理对样本进行分类。
在本次实验中,我们将对Bayes 分类器的设置进行实验,并总结实验结果。
一、实验目的Bayes 分类器是一种简单但有效的分类算法,通过实验设置我们的目的是验证Bayes 分类器在不同参数下的分类效果,并探索如何对其进行优化。
我们希望通过实验的设计和分析,能够决定最佳的参数设置,并对Bayes 分类器的性能有更深入的了解。
二、数据集选择在进行实验之前,我们需要选择一个合适的数据集作为实验对象。
数据集应具备以下特点:1. 包含有标签的样本数据:由于Bayes 分类器是一种监督学习算法,我们需要有样本的标签信息来进行分类。
2. 具备多类别分类的情况:我们希望能够测试Bayes 分类器在多类别分类问题上的表现,以便更全面地评估其性能。
三、实验设置1. 数据预处理:根据所选数据集的特点,我们需要对数据进行适当的预处理。
可能的预处理步骤包括特征选择、特征缩放、处理缺失值等。
2. 分类器参数设置:Bayes 分类器的性能会受到不同参数的影响,我们希望通过实验找到最佳的参数设置。
例如,在朴素贝叶斯分类器中,我们可以选择不同的先验概率分布,或者使用不同的平滑技术来处理零概率问题。
3. 评价指标选择:为了评估分类器的性能,我们需要选择合适的评价指标。
常见的评价指标包括准确率、召回率、精确率和F1 分数等。
四、实验结果在实验完成后,我们将根据所选的评价指标对实验结果进行分析和总结。
我们可以比较不同参数设置下的分类器性能,并选择最佳的参数设置。
此外,我们还可以考虑其他因素对分类器性能的影响,如数据预处理方法和样本量等。
五、实验总结在本次实验中,我们通过对Bayes 分类器的设置进行实验,得到了一些有价值的结果和经验。
根据实验结果,我们可以总结以下几点:1. 参数设置的重要性:Bayes 分类器的性能受到参数设置的影响。
Bayes分类器算法
⇒ x ∈ωi
2、具体步骤如下 A).算出各类别特征值的均值 B).求出特征值的协方差矩阵 C).将第二步所得矩阵代入判别函数 g1(x)、g2(x) D).将待测试样本集数据依次代入 g1(x)- g2(x),若 g1(x)- g2(x)>0,则判断其为第一类,反
之为第二类。 3、流程图
确定特征及先验概率
体重: clear all; load FEMALE.txt; load MALE.txt; fid=fopen('test2.txt','r'); test1=fscanf(fid,'%f %f %c',[3,inf]); test=test1';
fclose(fid); Fmean = mean(FEMALE); Mmean = mean(MALE); Fvar = std(FEMALE); Mvar = std(MALE); preM = 0.9; preF = 0.1; error=0; Nerror=0; figure; for i=1:300
Nerror = Nerror +1; end; else plot(test(i,1),test(i,2),'k*'); if (test(i,3)=='F')
Nerror = Nerror +1; end end hold on; end; title('身高体重不相关最小风险的 Bayes 决策'); ylabel('身高(cm)'),zlabel('体重(kg)'); error = Nerror/300*100; sprintf('%s %d %s %0.2f%s','分类错误个数:',Nerror,'分类错误率为:',error,'%')
Bayes分类器原理分析以及实现
Bayes分类器原理分析以及实现编程环境:python 3.7jupyter notebook⽂章说明:这⾥只是贝叶斯分类器的原理进⾏分析以及实现,重点关注其中的数学原理和逻辑步骤,在测试等阶段直接调⽤了python机器学习的库。
基本步骤:输⼊类数,特征数,待分样本数输⼊训练样本数和训练样本集计算先验概率计算各类条件概率密度计算各类的后验概率若按最⼩错误率原则分类,则根据后验概率判定若按最⼩风险原则分类,则计算各样本属于各类时的风险并判定# 导⼊基本库import pandas as pdimport numpy as npimport mathimport matplotlib.pyplot as plt%matplotlib inline%config InlineBackend.figure_format = 'png'数据预处理colume_names = ['','gender','height','weight','size']df= pd.read_excel('data/gender.xlsx',index_col=0,names=colume_names)df.head(5)gender height weight size1⼥163.062.036.02⼥158.042.036.03男168.067.042.04男180.067.041.05男180.075.046.0df.shape(571, 4)这⾥可以看到数据有4个维度,分别为性别、⾝⾼、体重、鞋码,共有571条记录。
下⾯做⼀些简单的处理:# 性别数据转换df.replace('男',1,inplace=True)df.replace('⼥',2,inplace=True)df.head(5)gender height weight size12163.062.036.022158.042.036.031168.067.042.041180.067.041.0gender height weight size 51180.075.046.0# 男⽣⼥⽣数据分开male_df = df.loc[df['gender']==1]female_df = df.loc[df['gender']==2]female_df.head(5)gender height weight size 12163.062.036.022158.042.036.092160.045.036.0102163.048.037.0112161.045.036.01、单个特征——⾝⾼为了更加深⼊得理解贝叶斯分类器原理,我们从简单的⼀维特征开始。
贝叶斯分类器
贝叶斯分类器 本⽂主要介绍⼀个常见的分类框架--贝叶斯分类器。
这篇⽂章分为三个部分:1. 贝叶斯决策论;2. 朴素贝叶斯分类器; 3. 半朴素贝叶斯分类器 贝叶斯决策论 在介绍贝叶斯决策论之前,先介绍两个概念:先验概率(prior probability)和后验概率(posterior probability)。
直观上来讲,先验概率是指在事件未发⽣时,估计该事件发⽣的概率。
⽐如投掷⼀枚匀质硬币,“字”朝上的概率。
后验概率是指基于某个发⽣的条件事件,估计某个事件的概率,它是⼀个条件概率。
⽐如⼀个盒⼦⾥⾯有5个球,两个红球,三个⽩球,求在取出⼀个红球后,再取出⽩球的概率。
在wiki上,先验概率的定义为:A prior probability is a marginal probability, interpreted as a description of what is known about a variable in the absence of some evidence。
后验概率的定义为:The posterior probability is the conditional probability of the variable taking the evidence into account. The probability is computed from the prior and the likelihood function via Baye's theorem. 现在以分类任务为例。
⾸先假设有N种可能的类别标签,即y={c1, c2, ..., cN}, λij 表⽰将⼀个真实标记为cj的样本误分类为ci时产⽣的损失。
后验概率p(ci|x)表⽰将样本x分类给ci是的概率。
那么将样本x分类成ci产⽣的条件风险(conditional risk)为: 其中,P(cj|x) 表⽰样本x分类成cj类的概率,λij 表⽰将真实cj类误分类为ci类的损失。
机器学习实验2-贝叶斯分类器设计
一、实验意义及目的1、掌握贝叶斯判别定理2、能利用matlab编程实现贝叶斯分类器设计3、熟悉基于matlab的算法处理函数,并能够利用算法解决简单问题二、算法原理贝叶斯定理是关于随机事件A和B的条件概率(或边缘概率)的一则定理。
其中P(A|B)是在B发生的情况下A发生的可能性公式为:贝叶斯法则:当分析样本大到接近总体数时,样本中事件发生的概率将接近于总体中事件发生的概率。
内容:(1)两类w服从正态分布,设计基于最小错误率的贝叶斯分类器,对数据进行分类。
(2)使用matlab进行Bayes判别的相关函数,实现上述要求。
(3)针对(1)中的数据,自由给出损失表,并对数据实现基于最小风险的贝叶斯分类。
三、实验内容(1)尝两类w服从正态分布,设计基于最小错误率的贝叶斯分类器,对数据进行分类。
代码清单:clc;clear all;meas=[0 0;2 0;2 2;0 2;4 4;6 4;6 6;4 6];%8x2矩阵这里一行一行2个特征[N n]=size(meas);species={'one';'one';'one';'one';'two';'two';'two';'two'};%这里也对应一行一行的sta=tabulate(species)[c k]=size(sta);priorp=zeros(c,1);for i=1:cpriorp(i)=cell2mat(sta(i,k))/100;%计算概率end%cell2mat(sta(:,2:3)) 提取数组中的数据本来sta数组中数据为矩阵不能直接用%估算类条件概率参数cpmean=zeros(c,n);cpcov=zeros(n,n,c);for i=1:ccpmean(i,:)=mean(meas(strmatch(char(sta(i,1)),species,'exact'),:));%exact精确查找cpmean放的每一类的均值点几类就几行cpcov(:,:,i)=cov(meas(strmatch(char(sta(i,1)),species,'exact'),:))*(N*priorp(i)-1)/(N*priorp(i));end%求(3 1)的后验概率x=[3 1];postp=zeros(c,1);for i=1:cpostp(i)=priorp(i)*exp(-(x-cpmean(i,:))*inv(cpcov(:,:,i))*(x-cpmean(i,:))'/2)/((2*pi)^(n/2)*det(cpcov(:,:,i)));endif postp(1)>postp(2)disp('第一类');elsedisp('第二类');end运行结果:(2)使用matlab进行Bayes判别的相关函数,实现上述要求。
实验课程-091042-模式识别
模式识别实验教学大纲(实验课程)◆课程编号:091042◆课程英文名称:Pattern Recognition◆课程类型:☐通识通修☐通识通选☐学科必修☐学科选修☐跨学科选修☐专业核心 专业选修(学术研究)☐专业选修(就业创业)◆适用年级专业(学科类):计算机科学与技术、网络工程、软件工程四年级◆先修课程:高等数学、线性代数、概率与数理统计、程序设计语言◆总学分:1◆总学时:32一、课程简介与教学目标《模式识别实验》是配合计算机科学与技术、网络工程和软件工程专业课程《模式识别》开设的实验课程。
要求学生在理解模式识别理论及方法的基础上,应具有设计、实现、分析和维护模式识别等方面的能力。
通过本实验课程的训练,使学生熟练掌握模式识别的基本原理和方法,加深对各方法涉及的基础知识的认识,强化编程技能,培养创新能力。
二、教学方式与方法教学方式:学生动手实验为主,辅以适当的提问、小组讨论及实验点评等。
教学方法:探讨式教学、启发式教学、实验教学相结合;尝试包括实验设计、研究设计、答辩、总结等环节的教学。
三、教学重点与难点(一)教学重点理解模式识别系统的基本原理,掌握模式识别中Bayes分类器、Parzen窗估计与K N近邻估计、最近邻方法和C均值聚类算法等,学会使用相应工具进行模式识别方法的设计与实现,从而进一步理解模式识别课程中所讲授的理论知识。
(二)教学难点H-K算法、基于K-L变换的实现。
四、学时分配计划五、教材与教学参考书(一)教材1.《模式识别(第2版)》,边肇祺,张学工等,清华大学出版社,2000。
(二)教学参考书1.《模式识别导论》,齐敏、李大健、郝重阳,清华大学出版社,2009;2.《模式识别原理》,孙亮,北京工业大学出版社,2009;3.《模式识别(第3版)》,张学工,清华大学出版社,2010;4.《模式识别(英文版·第3版)(经典原版书库)》,(希腊)西奥多里迪斯等著,机械工业出版社,2006。
7-Bayes分类器-第七章
最小风险Bayes决策规则:
若R(αk x) = min R(αi x), 则x ∈ωk
i =1, 2,...,M
例:已知正常细胞先验 概率为P (ω1 ) = 0.9, 异常为P (ω 2 ) = 0.1, 从类条件概率密度分布 曲线上查的P ( x ω i ) = 0.2, P ( x ω i ) = 0.4,
1 3 X11 = (1+1+ 0 −1−1) = 0, X12 = 5 5
X 1 = X 11 , X 12
(
)
T
X 2 = X 21 , X 22
(
)
3 T = (0, ) 5 T 7 = (0,− )T . 4
∑
C 11 = C 21
C 12 ( 协方差矩阵计算方法) C 22
R2 R1
P ( x ω1 ) P ( ω1 ) P ( x ω 2 ) P ( ω 2 )
R1
R2
由此:错误率为为图中两个划线部分之和。BAYES公式表明每个 由此:错误率为为图中两个划线部分之和。 公式表明每个 最大,实际上使X错判的可能性达到最小 错判的可能性达到最小。 样本所属类别都使P(ω1 x) 最大,实际上使 错判的可能性达到最小。
最小风险Bayes分类器 最小风险Bayes分类器 Bayes
假定要判断某人是正常(ω1)还是肺病患者(ω2),于是在判 断中可能出现以下情况:
第一类,判对(正常→正常) λ11 ; 第二类,判错(正常→肺病) λ21 ; 第三类,判对(肺病→肺病) λ22; 第四类,判错(肺病→正常) λ12 。 ( → )
−1
1 T exp− ( x − µ ) ∑ −1 (x − µ ) 2
第3章 Bayes决策理论
第3章 Bayes决策理论
“概率论”有关概念复习
Bayes公式:设实验E的样本空间为S,A为E的事件,
第3章 Bayes决策理论
B1,B2,…,Bn为S的一个划分,且P(A)>0,P(Bi)>0,
(i=1,2,…,n),则:
P( Bi | A) P( A | Bi ) P( Bi )
n
P( A | B
返回本章首页
第3章 Bayes决策理论
平均错误概率
P(e)
P (e x ) p ( x ) d x
从式可知,如果对每次观察到的特征值 x , P(e x) 是 尽可能小的话,则上式的积分必定是尽可能小的。这就 证实了最小错误率的Bayes决策法则。下面从理论上给 予证明。以两类模式为例。
解法1:
利用Bayes公式
第3章 Bayes决策理论
p ( x 10 | 1 ) P(1 ) P(1 | x 10) p ( x 10) p ( x 10 | 1 ) P(1 ) p ( x 10 | 1 ) P(1 ) p( x 10 | 2 ) P(2 ) 0.05 1/ 3 0.048 0.05 1/ 3 0.50 2 / 3
解法2:
写成似然比形式
第3章 Bayes决策理论
p ( x 10 | 1 ) 0.05 l12 (x 10) 0.1 p ( x 10 | 2 ) 0.50 P (2 ) 2 / 3 判决阀值12 2 P (1 ) 1/ 3 l12 (x 10) 12 , x 2 , 即是鲑鱼。
若 P(i x) P( j x) , j i ,则判
若 P(i x) 若 若
贝叶斯分类器(3)朴素贝叶斯分类器
贝叶斯分类器(3)朴素贝叶斯分类器根据,我们对贝叶斯分类器所要解决的问题、问题的求解⽅法做了概述,将贝叶斯分类问题转化成了求解P(x|c)的问题,在上⼀篇中,我们分析了第⼀个求解⽅法:极⼤似然估计。
在本篇中,我们来介绍⼀个更加简单的P(x|c)求解⽅法,并在此基础上讲讲常⽤的⼀个贝叶斯分类器的实现:朴素贝叶斯分类器(Naive Bayes classifier)。
1 朴素贝叶斯分类原理1.1 分类问题回顾我们的⽬标是通过对样本的学习来得到⼀个分类器,以此来对未知数据进⾏分类,即求后验概率P(c|x)。
在中,我们描述了贝叶斯分类器是以⽣成式模型的思路来处理这个问题的,如下⾯的公式所⽰,贝叶斯分类器通过求得联合概率P(x,c)来计算P(c|x),并将联合概率P(x,c)转化成了计算类先验概率P(c)、类条件概率P(x|c)、证据因⼦P(x)。
h∗(x)=\argmax c∈Y P(c|x)=\argmax c∈Y P(x,c)P(x)=\argmaxc∈YP(c)∗P(x|c)P(x)其中的难点是类条件概率P(x|c)的计算,因为样本x本⾝就是其所有属性的联合概率,各种属性随意组合,变幻莫测,要计算其中某⼀种组合出现的概率真的是太难了,⽽朴素贝叶斯的出现就是为了解决这个问题的。
要想计算联合概率P(a,b),我们肯定是希望事件a与事件b是相互独⽴的,可以简单粗暴的P(a,b)=P(a)P(b),多想对着流星许下⼼愿:让世界上复杂的联合概率都变成简单的连乘!1.2 朴素贝叶斯朴素贝叶斯实现了我们的梦想!朴素贝叶斯中的朴素就是对多属性的联合分布做了⼀个⼤胆的假设,即x的n个维度之间相互独⽴:P([x1,x2,...,x n]|c)=P(x1|c)P(x2|c)...P(x1|c)朴素贝叶斯通过这⼀假设⼤⼤简化了P(x|c)的计算,当然,使⽤这个假设是有代价的,⼀般情况下,⼤量样本的特征之间独⽴这个条件是弱成⽴的,毕竟哲学上说联系是普遍的,所以我们使⽤朴素贝叶斯会降低⼀些准确性;如果实际问题中的事件的各个属性⾮常不独⽴的话,甚⾄是⽆法使⽤朴素贝叶斯的。
模式识别实验报告 实验一 BAYES分类器设计
P (i X )
P ( X i ) P (i )
P( X ) P( )
j 1 i i
c
j=1,…,x
(2)利用计算出的后验概率及决策表,按下面的公式计算出采取 ai ,i=1,…,a 的条件风 险
R (a i X ) (a i , j ) P ( j X ) ,i=1,2,…,a
1.2 1 0.8 0.6 0.4 0.2 0 -0.2 -5 正常细胞 异常细胞 后验概率分布曲线
后验概率
-4
-3
-2
-1 0 1 细胞的观察值
2
3
4
5
图 1 基于最小错误率的贝叶斯判决
最小风险贝叶斯决策 风险判决曲线如图 2 所示,其中带*的绿色曲线代表异常细胞的条件风险曲线;另一条
光滑的蓝色曲线为判为正常细胞的条件风险曲线。 根据贝叶斯最小风险判决准则, 判决结果 见曲线下方,其中“上三角”代表判决为正常细胞, “圆圈“代表异常细胞。 各细胞分类结果: 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 0 1 其中,0 为判成正常细胞,1 为判成异常细胞
实验一 Bayes 分类器设计
【实验目的】
对模式识别有一个初步的理解, 能够根据自己的设计对贝叶斯决策理论算法有一个深刻 地认识,理解二类分类器的设计原理。
【实验原理】
最小风险贝叶斯决策可按下列步骤进行: (1)在已知 P (i ) , P ( X i ) ,i=1,…,c 及给出待识别的 X 的情况下,根据贝叶斯公 式计算出后验概率:
4 0
请重新设计程序, 完成基于最小风险的贝叶斯分类器, 画出相应的条件风险的分布曲线和分 类结果,并比较两个结果。
基于贝叶斯决策理论的分类器(1)
测量从待分类向量x到每一类均值向量的欧氏距
离,把x分到距离最近的类,
mi是从训
练样本集中得到的。也称最小距离分类器。
若把每个均值向量mi看作一个典型的样本(模板)
,则这种分类方法也称为模板匹配技术。
② P(wi)≠P(wj)
欧氏距离的平方必须用方差s2规范化后减去 lnP(wi)再用于分类。因此,如果待分类的向量x
①最小错误概率情况下阈值x0 (取对数运算)
②最小风险情况下阈值x0
• 如果这两类不是等概率,
P(w1)< P(w2),阈值左移
也就是说扩大最大可能 类的区域。可能性大的 类可产生更小的误差。
阈值左移
⑶拒绝决策 • 在某些情况下拒绝决策比错误判别风险要小。 • 样本x在各种判别条件下的平均风险
• 当i=c+1时,如果R(ac+1|x)< R(ai|x), i=1,2,···,c则 对x作出拒绝判别。
4. 最小风险的Bayes决策 ⑴把分类错误引起的“损失”加入到决策中去。
决策论中: 采取的决策称为动作,用ai表示;
每个动作带来的损失,用l表示。
归纳数学符号:
• 一般用决策表或损失矩阵表示上述三者关系。 决策表表示各种状态下的决策损失,如下表:
• 由于引入了“损失”的概念 (即在错判时造成的损 失),不能只根据后验概率来决策,必须考虑所 采取的决策是否使损失最小。
c×(c-1)项组成,计算量大。
• 用平均正确分类率P(c)计算只有c 项:
例1:细胞识别
已知:正常类P(w1)=0.9; 异常类P(w2)=0.1
待识别细胞 x, 从类条件概率密度曲线上查得
p(x|w1)=0.2; p(x|w2)=0.4
第3章 朴素贝叶斯分类器
pre=[]#存储预测结果 count_good=count_bad=0 for index in range(len(dataTrain)):
color=dataTrain[index,0] sound = dataTrain[index, 2] lines = dataTrain[index, 3] #统计在好瓜和坏瓜的情况下不同特征的概率 c_good,c_bad=featureFrequency(color,'c',dataTrain,y) p_c_good,p_c_bad=feaConProbability(c_good,c_bad,dataTrain,y) print('颜色概率', p_c_good, p_c_bad)
3.1贝叶斯定理相关概念
一个单变量正态分布密度函数为: 其正态分布的概率密度函数如图所示。
与μ越近的值,其概率越大,反之,其概率值越小。σ描述数据分布的离散程度,σ越 大,数据分布越分散,曲线越扁平;σ越小,数据分布越集中,曲线越瘦高。
3.1贝叶斯决策理论基础
对于多变量的正态分布,假设特征向量是服从均值向量为 态分布,其中,类条件概率密度函数为:
perch_Variance_Light=np.var(perch_train[:,1]) print('鲈鱼长度均值:',perch_Mean_Length) print('鲈鱼亮度均值:',perch_Mean_Light) print('鲈鱼长度方差:',perch_Variance_Length) print('鲈鱼亮度方差:',perch_Variance_Light) print('鲈鱼长度均值:',perch_Mean_Length) print('鲈鱼亮度均值:',perch_Mean_Light) print('鲈鱼长度方差:',perch_Variance_Length) print('鲈鱼亮度方差:',perch_Variance_Light)
Bayes分类器设计
Bayes分类器设计实验⼆ Bayes 分类器设计⼀、实验⽬的通过实验,加深对统计判决与概率密度估计基本思想、⽅法的认识,了解影响Bayes 分类器性能的因素,掌握基于Bayes 决策理论的随机模式分类的原理与⽅法。
⼆、实验内容设计Bayes 决策理论的随机模式分类器。
假定某个局部区域细胞识别中正常(a 1)与⾮正常(a 2)两类先验概率分别为正常状态:P(a 1)=0、9; 异常状态:P(a 2)=0、1。
三、⽅法⼿段Bayes 分类器的基本思想就是依据类的概率、概密,按照某种准则使分类结果从统计上讲就是最佳的。
换⾔之,根据类的概率、概密将模式空间划分成若⼲个⼦空间,在此基础上形成模式分类的判决规则。
准则函数不同,所导出的判决规则就不同,分类结果也不同。
使⽤哪种准则或⽅法应根据具体问题来确定。
四、Bayes 算法1、实验原理多元正太分布的概率密度函数由下式定义112211()exp ()()2(2)T dp X X X µµπ-??=--∑-∑ 由最⼩错误概率判决规则,可得采⽤如下的函数作为判别函数()(|)(),1,2,,i i i g x p X P i N ωω==L这⾥,()i P ω为类别i ω发⽣的先验概率,(|)i p X ω为类别i ω的类条件概率密度函数,⽽N 为类别数。
设类别i ω,i=1,2,……,N 的类条件概率密度函数(|)i p X ω,i=1,2,……,N 服从正态分布,即有(|)i p X ω~(,)i i N µ∑,那么上式就可以写为1122()1()exp ()(),1,2,,2(2)T i i dP g X X X i N ωµµπ-??=--∑-=∑L由于对数函数为单调变化的函数,⽤上式右端取对数后得到的新的判别函数替代原来的判别函数()i g X 不会改变相应分类器的性能。
因此,可取111()()()ln ()ln ln(2)222T i i i i i i d g X X X P µµωπ-=--∑-+-∑- 显然,上式中的第⼆项与样本所属类别⽆关,将其从判别函数中消去,不会改变分类结果。
贝叶斯分类器设计原理与实现
贝叶斯分类器设计原理与实现贝叶斯分类器是一种基于贝叶斯定理的机器学习算法,常被用于文本分类、垃圾邮件过滤等任务。
本文将介绍贝叶斯分类器的设计原理和实现。
一、贝叶斯分类器的原理贝叶斯分类器基于贝叶斯定理,该定理描述了在已知一些先验条件下,如何通过新的观测数据来更新我们对于某个事件发生概率的判断。
在分类任务中,我们希望通过已知的特征,预测出一个样本属于某一类别的概率。
在贝叶斯分类器中,我们通过计算后验概率来决定样本的分类。
后验概率是指在已知某个条件下,事件发生的概率。
根据贝叶斯定理,后验概率可以通过先验概率和条件概率来计算。
先验概率是指在没有任何其他信息的情况下,事件发生的概率;条件概率是指在已知其他相关信息的情况下,事件发生的概率。
贝叶斯分类器根据特征的条件独立性假设,将样本的特征表示为一个向量。
通过训练数据,我们可以计算出每个特征在不同类别中的条件概率。
当有一个新的样本需要分类时,我们可以根据贝叶斯定理和特征的条件独立性假设,计算出该样本属于每个类别的后验概率,从而实现分类。
二、贝叶斯分类器的实现贝叶斯分类器的实现主要包括训练和预测两个步骤。
1. 训练过程训练过程中,我们需要从已知的训练数据中学习每个特征在不同类别下的条件概率。
首先,我们需要统计每个类别出现的频率,即先验概率。
然后,对于每个特征,我们需要统计它在每个类别下的频率,并计算出条件概率。
可以使用频率计数或者平滑方法来估计这些概率。
2. 预测过程预测过程中,我们根据已训练好的模型,计算出待分类样本属于每个类别的后验概率,并选择具有最大后验概率的类别作为最终的分类结果。
为了避免概率下溢问题,通常会将概率取对数,并使用对数概率进行计算。
三、贝叶斯分类器的应用贝叶斯分类器在自然语言处理领域有广泛的应用,尤其是文本分类和垃圾邮件过滤。
在文本分类任务中,贝叶斯分类器可以通过学习已有的标记文本,自动将新的文本分类到相应的类别中。
在垃圾邮件过滤任务中,贝叶斯分类器可以通过学习已有的垃圾邮件和正常邮件,自动判断新的邮件是否为垃圾邮件。
基于改进贝叶斯分类器的设计与优化
基于改进贝叶斯分类器的设计与优化一、引言贝叶斯分类器是一种常用的分类算法,其基于贝叶斯定理进行分类预测。
然而,传统的贝叶斯分类器存在一些缺陷,例如对特征之间的依赖性处理不够准确,以及对噪声和异常数据较为敏感。
为了解决这些问题,本文提出了一种改进贝叶斯分类器的设计与优化方法。
二、改进贝叶斯分类器的算法设计1. 特征选择为了提高分类器的准确性,我们首先采用特征选择技术,选择对分类任务具有重要意义的特征。
常用的特征选择方法包括信息增益、卡方检验和相关系数等。
在本文中,我们选择了XXXX方法作为特征选择的算法,并根据数据集的特点和需求进行相应的调整和优化。
2. 特征权重计算传统贝叶斯分类器假设各个特征之间是独立的,并没有考虑到特征之间的相互影响。
为了更准确地描述特征之间的依赖关系,我们引入了特征权重计算的步骤。
通过计算各个特征对于分类任务的重要性,我们可以为每个特征分配一个权重,并在后续分类过程中更好地利用这些信息。
3. 异常值处理传统的贝叶斯分类器对于噪声和异常数据较为敏感,容易受到其影响而导致错误的分类结果。
为了提高分类器的鲁棒性,我们采用了异常值处理的方法。
具体而言,我们使用了XXXX方法来识别和处理异常值,以减少其对分类结果的影响,提高分类器的稳定性。
三、改进贝叶斯分类器的优化策略1. 参数调优贝叶斯分类器中存在一些参数需要进行调优,以获得最佳的分类效果。
常用的参数调优方法包括网格搜索和交叉验证等。
我们可以通过这些方法来寻找最合适的参数组合,以提高分类器的性能。
2. 数据预处理在应用贝叶斯分类器之前,对原始数据进行预处理可以帮助提高分类器的效果。
常用的数据预处理方法包括数据标准化、缺失值处理和数据平衡等。
我们可以根据具体的数据情况选择适当的预处理方法,并在分类器训练之前对数据进行相应的处理。
3. 模型集成模型集成是一种有效的分类器优化策略,它通过结合多个基分类器的预测结果来提高分类器的准确性和鲁棒性。
Fisher准则线性分类器设计
一 、基于F i s h e r 准则线性分类器设计1、 实验内容:已知有两类数据1ω和2ω二者的概率已知1)(ωp =0.6,2)(ωp =0.4。
1ω中数据点的坐标对应一一如下:数据:x =0.2331 1.5207 0.6499 0.7757 1.0524 1.1974 0.2908 0.2518 0.6682 0.5622 0.9023 0.1333 -0.5431 0.9407 -0.2126 0.0507 -0.0810 0.7315 0.3345 1.0650 -0.0247 0.1043 0.3122 0.6655 0.5838 1.1653 1.2653 0.8137 -0.3399 0.5152 0.7226 -0.2015 0.4070 -0.1717 -1.0573 -0.2099 y =2.3385 2.1946 1.6730 1.6365 1.7844 2.0155 2.0681 2.1213 2.4797 1.5118 1.9692 1.8340 1.8704 2.2948 1.7714 2.3939 1.5648 1.9329 2.2027 2.4568 1.7523 1.6991 2.4883 1.7259 2.0466 2.0226 2.3757 1.7987 2.0828 2.0798 1.9449 2.3801 2.2373 2.1614 1.9235 2.2604 z =0.5338 0.8514 1.0831 0.4164 1.1176 0.5536 0.6071 0.4439 0.4928 0.5901 1.0927 1.0756 1.0072 0.4272 0.4353 0.9869 0.4841 1.09921.02990.71271.01240.45760.85441.12750.77050.41291.00850.76760.84180.87840.97510.78400.41581.03150.75330.9548数据点的对应的三维坐标为2x2 =1.40101.23012.08141.16551.37401.18291.76321.97392.41522.58902.84721.95391.25001.28641.26142.00712.18311.79091.33221.14661.70871.59202.93531.46642.93131.83491.83402.50962.71982.31482.03532.60301.23272.14651.56732.9414 y2 =1.02980.96110.91541.49010.82000.93991.14051.06780.80501.28891.46011.43340.70911.29421.37440.93871.22661.18330.87980.55920.51500.99830.91200.71261.28331.10291.26800.71401.24461.33921.18080.55031.47081.14350.76791.1288 z2 =0.62101.36560.54980.67080.89321.43420.95080.73240.57841.49431.09150.76441.21591.30491.14080.93980.61970.66031.39281.40840.69090.84000.53811.37290.77310.73191.34390.81420.95860.73790.75480.73930.67390.86511.36991.1458数据的样本点分布如下图:1)请把数据作为样本,根据Fisher选择投影方向W的原则,使原样本向量在该方向上的投影能兼顾类间分布尽可能分开,类内样本投影尽可能密集的要求,求出评价投影方向W的函数,并在图形表示出来。
贝叶斯分类器及其优化策略研究论文素材
贝叶斯分类器及其优化策略研究论文素材1. 引言贝叶斯分类器是一种基于贝叶斯定理的分类算法,已被广泛应用于机器学习和数据挖掘领域。
本文旨在探讨贝叶斯分类器的原理和常见的优化策略。
2. 贝叶斯分类器原理贝叶斯分类器基于概率模型进行分类,通过计算后验概率来判断样本属于不同类别的概率大小。
其基本公式为:P(C|X) = P(X|C) * P(C) / P(X)其中,P(C|X)表示给定样本X时类别C的后验概率,P(X|C)表示样本X在类别C下的条件概率,P(C)表示类别C的先验概率,P(X)表示样本X的边缘概率。
3. 贝叶斯分类器的优化策略3.1 特征选择特征选择是贝叶斯分类器优化的重要一环,通过选择具有更强分类能力的特征来提升分类器性能。
常用的特征选择方法有信息增益、卡方检验、互信息等。
3.2 特征转换特征转换是将原始特征转换为高维特征或低维特征,以提高分类器的性能。
常见的特征转换方法有主成分分析(PCA)、线性判别分析(LDA)等。
3.3 参数估计贝叶斯分类器需要估计概率参数,通常使用最大似然估计或贝叶斯估计方法。
最大似然估计通过最大化训练样本的似然函数来估计参数,贝叶斯估计则引入先验概率来调整参数估计过程。
3.4 模型选择贝叶斯分类器的模型选择是指选择合适的概率模型来表示条件概率分布。
常见的贝叶斯分类器模型有朴素贝叶斯分类器、高斯朴素贝叶斯分类器、多项式朴素贝叶斯分类器等。
4. 贝叶斯分类器的应用贝叶斯分类器广泛应用于文本分类、垃圾邮件过滤、情感分析等领域。
其优点包括模型简单、计算效率高以及对噪声数据具有较好的鲁棒性。
5. 实验与分析通过对不同数据集的实验,比较了不同优化策略对贝叶斯分类器性能的影响。
实验结果表明,特征选择和参数估计是提高贝叶斯分类器性能的关键因素。
6. 结论本文综述了贝叶斯分类器原理及其常见的优化策略,并通过实验验证了这些优化策略对分类器性能的影响。
贝叶斯分类器在实际应用中具有较好的性能表现,但仍存在一些挑战,如处理大规模数据和处理高维数据等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二 Bayes 分类器设计一、实验目的通过实验,加深对统计判决与概率密度估计基本思想、方法的认识,了解影响Bayes 分类器性能的因素,掌握基于Bayes 决策理论的随机模式分类的原理和方法。
二、实验内容设计Bayes 决策理论的随机模式分类器。
假定某个局部区域细胞识别中正常(a 1)和非正常(a 2)两类先验概率分别为 正常状态:P (a 1)=0.9; 异常状态:P (a 2)=0.1。
三、方法手段Bayes 分类器的基本思想是依据类的概率、概密,按照某种准则使分类结果从统计上讲是最佳的。
换言之,根据类的概率、概密将模式空间划分成若干个子空间,在此基础上形成模式分类的判决规则。
准则函数不同,所导出的判决规则就不同,分类结果也不同。
使用哪种准则或方法应根据具体问题来确定。
四、Bayes 算法 1.实验原理多元正太分布的概率密度函数由下式定义112211()exp ()()2(2)T d p X X X μμπ-⎧⎫=--∑-⎨⎬⎩⎭∑ 由最小错误概率判决规则,可得采用如下的函数作为判别函数()(|)(),1,2,,i i i g x p X P i N ωω==这里,()i P ω为类别i ω发生的先验概率,(|)i p X ω为类别i ω的类条件概率密度函数,而N 为类别数。
设类别i ω,i=1,2,……,N 的类条件概率密度函数(|)i p X ω,i=1,2,……,N 服从正态分布,即有(|)i p X ω~(,)i i N μ∑,那么上式就可以写为1122()1()exp ()(),1,2,,2(2)T i i d P g X X X i N ωμμπ-⎧⎫=--∑-=⎨⎬⎩⎭∑由于对数函数为单调变化的函数,用上式右端取对数后得到的新的判别函数替代原来的判别函数()i g X 不会改变相应分类器的性能。
因此,可取111()()()ln ()ln ln(2)222T i i i i i i dg X X X P μμωπ-=--∑-+-∑-显然,上式中的第二项与样本所属类别无关,将其从判别函数中消去,不会改变分类结果。
这样,判别函数()i g X 可简化为以下形式111()()()ln ()ln 22T i i i i i i g X X X P μμω-=--∑-+-∑2.实验步骤1、求出两类样本的均值11,2iX iX i N ωμ∈==∑2、求每一类样本的协方差矩阵11()(),1,21i ii N w w i jklj j lk k l i s x x j k N μμ==--=-∑式中,l 代表样本在类中的序号,其中lj x 代表i w 类的第l 个样本,第j 个特征值;iw j μ代表i w 类的i N 个样品第j 个特征的平均值lk x 代表i w 类的第l 个样品,第k 个特征值;iw k μ代表i w 类的i N 个样品第k 个特征的平均值。
i w 类的协方差矩阵为11122122i iii i ⎛⎫∑∑∑= ⎪∑∑⎝⎭ 3、计算出每一类的协方差矩阵的逆矩阵1i -∑以及协方差矩阵的行列式i ∑ 4、求出每一类的先验概率()/1,2i i P N Ni ω≈=5、将各个数值代入判别函数111()()()ln ()ln 22T i i i i i i g X X X P μμω-=--∑-+-∑判别边界为12()()0g X g X -=五、Bayes 分类器实验结果已知(图1)数据a=[0.3760 0.0240 0.2440 -0.1740 0.0460 -0.3940 0.3760 0.7720 0.2660 0.5080 -0.4380 -0.0640 0.8160 0.5960 0.1120 0.3540 0.8380 -0.7680 0.4200 -0.7900];其满足正态分布(图2)。
1. 最小错误率贝叶斯决策图1 样本数据图2 样本的类条件概率根据最小错误率准侧,计算其后验条件概率(图3),通过程序运行出结果细胞分类结果为:1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0,其中,0为判成正常细胞,1为判成异常细胞。
图3 后验条件概率2. 最小风险贝叶斯决策根据最小风险判别准侧,其损失函数赋值为r=[0 1000 0;200 0 0],则计算其条件风险概率(图4)通过程序运行出结果细胞分类结果为:1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1,其中,0为判成正常细胞,1为判成异常细胞。
图4 条件风险概率3.两类分类器结果不同原因分析由最小错误率的贝叶斯判决和基于最小风险的贝叶斯判决得出图形中的分类结果可以看出,样本0.0240,0.2440等在前者中被分为“正常细胞”,在后者被分为“异常细胞”,分类结果不同。
因为在给予最小风险贝叶斯判决中,影响决策结果的因素多了损失r这一项,所以当结合最小风险贝叶斯决策表进行计算时,‘损失’起了主导作用,导致出现两者结果的不一致。
六、Bayes分类器程序代码function y=my_bayes(n,a)%%%%%%%%%%%%%最小错误率贝叶斯决策% 构造实验数据a=[0.3760 0.0240 0.2440 -0.1740 0.0460 -0.3940 0.3760 0.7720 0.2660 0.5080 -0.4380 -0.0640 0.8160 0.5960 0.1120 0.3540 0.8380 -0.7680 0.4200 -0.7900];n=20; % 样本数a=(round(100*rand(n,1))/100)*2.2-0.9;% 样本数为n,特征数为1,数据在-0.9与1.3之间figureplot(1:n,a,'rx')xlabel('样本数');ylabel('生化化验值');title('样本数据:生化化验值');pause;% 先验概率P=[0.9 0.1];% 作类条件概率密度曲线p(x|wi)x=-0.9:0.01:1.3;px(1,:)=(1/(sqrt(2*pi)*0.3))*exp(-0.5*(x/0.3).^2);px(2,:)=(1/(sqrt(2*pi)*0.1))*exp(-0.5*((x-1)/0.1).^2);figure;plot(x,px(1,:),'b',x,px(2,:),'r--');xlabel('生化化验值');ylabel('概率密度');title('类条件概率密度曲线')axis tight;pause;% 作后验概率曲线for i=1:2pwx(i,:)=px(i,:)*P(i)./(px(1,:)*P(1)+px(2,:)*P(2));endfigure;plot(x,pwx(1,:),'b',x,pwx(2,:),'r--');xlabel('生化化验值');ylabel('后验概率');title('后验概率曲线')axis tight;pause;% 计算给定生化化验值的类条件概率密度曲线for j=1:ns=a(j);PXW1=spline(x,px(1,:),s);PXW2=spline(x,px(2,:),s);PXW=[PXW1,PXW2];disp('样本')s%计算后验概率,判断输出for i=1:2Pwx(i)=PXW(i)*P(i)/(PXW(1)*P(1)+PXW(2)*P(2)); enddisp('后验概率 P(wi|x)=')Pwxplot(x,pwx(1,:),'b',x,pwx(2,:),'r--');xlabel('生化化验值');ylabel('后验概率');title('后验概率曲线')hold onplot(s,Pwx(1),'or',s,Pwx(2),'ob');axis tight;hold offif Pwx(1)>Pwx(2)w(j,1)=s;disp('正常人')elsew(j,2)=s;disp('感染病人')endpause;enddisp('========================================')disp('正常人感染病人')w%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%最小风险贝叶斯n=20; % 样本数figureplot(1:n,a,'rx')xlabel('样本数');ylabel('生化化验值');title('样本数据:生化化验值');pause;% 先验概率P=[0.9 0.1];% 作类条件概率密度曲线p(x|wi)x=-0.9:0.01:1.3;px(1,:)=(1/(sqrt(2*pi)*0.3))*exp(-0.5*(x/0.3).^2);px(2,:)=(1/(sqrt(2*pi)*0.1))*exp(-0.5*((x-1)/0.1).^2); figure;plot(x,px(1,:),'b',x,px(2,:),'r--');xlabel('生化化验值');ylabel('概率密度');title('类条件概率密度曲线')axis tight;pause;% 作后验概率曲线for i=1:2pwx(i,:)=px(i,:)*P(i)./(px(1,:)*P(1)+px(2,:)*P(2)); endfigure;plot(x,pwx(1,:),'b',x,pwx(2,:),'r--');xlabel('生化化验值');ylabel('后验概率');title('后验概率曲线')axis tight;pause;% 损失函数r=[0 1000 0;200 0 0];%作条件风险曲线for i=1:2R(i,:)=r(i,1)*pwx(1,:)+r(i,2)*pwx(2,:);endfigure;plot(x,R(1,:),'b',x,R(2,:),'r--');xlabel('生化化验值');ylabel('条件风险');title('条件风险曲线')axis tight;pause;% 计算给定生化化验值的条件风险for j=1:ns=a(j);PXW1=spline(x,px(1,:),s);PXW2=spline(x,px(2,:),s);PXW=[PXW1,PXW2];disp('样本')s%计算后验概率for i=1:2Pwx(i)=PXW(i)*P(i)/(PXW(1)*P(1)+PXW(2)*P(2)); end%计算条件风险,判断输出for i=1:2Rx(i,:)=r(i,1)*Pwx(1)+r(i,2)*Pwx(2);%%%%%enddisp('条件风险 R(ai|x)=')Rxplot(x,R(1,:),'b',x,R(2,:),'r--');xlabel('生化化验值');ylabel('条件风险');title('条件风险曲线')hold onplot(s,Rx(1),'or',s,Rx(2),'ob');axis tight;hold offif Rx(1)>Rx(2)w(j,1)=s;disp('正常人')elsew(j,2)=s;disp('感染病人')endpause;enddisp('========================================')disp('正常人感染病人')W。