Bayes分类器设计
bayes 分类器设置实验总结

bayes 分类器设置实验总结Bayes 分类器设置实验总结在机器学习领域中,分类算法是一个常见的任务之一。
Bayes 分类器是一种基于概率统计的分类算法,它基于贝叶斯定理对样本进行分类。
在本次实验中,我们将对Bayes 分类器的设置进行实验,并总结实验结果。
一、实验目的Bayes 分类器是一种简单但有效的分类算法,通过实验设置我们的目的是验证Bayes 分类器在不同参数下的分类效果,并探索如何对其进行优化。
我们希望通过实验的设计和分析,能够决定最佳的参数设置,并对Bayes 分类器的性能有更深入的了解。
二、数据集选择在进行实验之前,我们需要选择一个合适的数据集作为实验对象。
数据集应具备以下特点:1. 包含有标签的样本数据:由于Bayes 分类器是一种监督学习算法,我们需要有样本的标签信息来进行分类。
2. 具备多类别分类的情况:我们希望能够测试Bayes 分类器在多类别分类问题上的表现,以便更全面地评估其性能。
三、实验设置1. 数据预处理:根据所选数据集的特点,我们需要对数据进行适当的预处理。
可能的预处理步骤包括特征选择、特征缩放、处理缺失值等。
2. 分类器参数设置:Bayes 分类器的性能会受到不同参数的影响,我们希望通过实验找到最佳的参数设置。
例如,在朴素贝叶斯分类器中,我们可以选择不同的先验概率分布,或者使用不同的平滑技术来处理零概率问题。
3. 评价指标选择:为了评估分类器的性能,我们需要选择合适的评价指标。
常见的评价指标包括准确率、召回率、精确率和F1 分数等。
四、实验结果在实验完成后,我们将根据所选的评价指标对实验结果进行分析和总结。
我们可以比较不同参数设置下的分类器性能,并选择最佳的参数设置。
此外,我们还可以考虑其他因素对分类器性能的影响,如数据预处理方法和样本量等。
五、实验总结在本次实验中,我们通过对Bayes 分类器的设置进行实验,得到了一些有价值的结果和经验。
根据实验结果,我们可以总结以下几点:1. 参数设置的重要性:Bayes 分类器的性能受到参数设置的影响。
Bayes分类器算法

⇒ x ∈ωi
2、具体步骤如下 A).算出各类别特征值的均值 B).求出特征值的协方差矩阵 C).将第二步所得矩阵代入判别函数 g1(x)、g2(x) D).将待测试样本集数据依次代入 g1(x)- g2(x),若 g1(x)- g2(x)>0,则判断其为第一类,反
之为第二类。 3、流程图
确定特征及先验概率
体重: clear all; load FEMALE.txt; load MALE.txt; fid=fopen('test2.txt','r'); test1=fscanf(fid,'%f %f %c',[3,inf]); test=test1';
fclose(fid); Fmean = mean(FEMALE); Mmean = mean(MALE); Fvar = std(FEMALE); Mvar = std(MALE); preM = 0.9; preF = 0.1; error=0; Nerror=0; figure; for i=1:300
Nerror = Nerror +1; end; else plot(test(i,1),test(i,2),'k*'); if (test(i,3)=='F')
Nerror = Nerror +1; end end hold on; end; title('身高体重不相关最小风险的 Bayes 决策'); ylabel('身高(cm)'),zlabel('体重(kg)'); error = Nerror/300*100; sprintf('%s %d %s %0.2f%s','分类错误个数:',Nerror,'分类错误率为:',error,'%')
Bayes分类器原理分析以及实现

Bayes分类器原理分析以及实现编程环境:python 3.7jupyter notebook⽂章说明:这⾥只是贝叶斯分类器的原理进⾏分析以及实现,重点关注其中的数学原理和逻辑步骤,在测试等阶段直接调⽤了python机器学习的库。
基本步骤:输⼊类数,特征数,待分样本数输⼊训练样本数和训练样本集计算先验概率计算各类条件概率密度计算各类的后验概率若按最⼩错误率原则分类,则根据后验概率判定若按最⼩风险原则分类,则计算各样本属于各类时的风险并判定# 导⼊基本库import pandas as pdimport numpy as npimport mathimport matplotlib.pyplot as plt%matplotlib inline%config InlineBackend.figure_format = 'png'数据预处理colume_names = ['','gender','height','weight','size']df= pd.read_excel('data/gender.xlsx',index_col=0,names=colume_names)df.head(5)gender height weight size1⼥163.062.036.02⼥158.042.036.03男168.067.042.04男180.067.041.05男180.075.046.0df.shape(571, 4)这⾥可以看到数据有4个维度,分别为性别、⾝⾼、体重、鞋码,共有571条记录。
下⾯做⼀些简单的处理:# 性别数据转换df.replace('男',1,inplace=True)df.replace('⼥',2,inplace=True)df.head(5)gender height weight size12163.062.036.022158.042.036.031168.067.042.041180.067.041.0gender height weight size 51180.075.046.0# 男⽣⼥⽣数据分开male_df = df.loc[df['gender']==1]female_df = df.loc[df['gender']==2]female_df.head(5)gender height weight size 12163.062.036.022158.042.036.092160.045.036.0102163.048.037.0112161.045.036.01、单个特征——⾝⾼为了更加深⼊得理解贝叶斯分类器原理,我们从简单的⼀维特征开始。
贝叶斯分类器

贝叶斯分类器 本⽂主要介绍⼀个常见的分类框架--贝叶斯分类器。
这篇⽂章分为三个部分:1. 贝叶斯决策论;2. 朴素贝叶斯分类器; 3. 半朴素贝叶斯分类器 贝叶斯决策论 在介绍贝叶斯决策论之前,先介绍两个概念:先验概率(prior probability)和后验概率(posterior probability)。
直观上来讲,先验概率是指在事件未发⽣时,估计该事件发⽣的概率。
⽐如投掷⼀枚匀质硬币,“字”朝上的概率。
后验概率是指基于某个发⽣的条件事件,估计某个事件的概率,它是⼀个条件概率。
⽐如⼀个盒⼦⾥⾯有5个球,两个红球,三个⽩球,求在取出⼀个红球后,再取出⽩球的概率。
在wiki上,先验概率的定义为:A prior probability is a marginal probability, interpreted as a description of what is known about a variable in the absence of some evidence。
后验概率的定义为:The posterior probability is the conditional probability of the variable taking the evidence into account. The probability is computed from the prior and the likelihood function via Baye's theorem. 现在以分类任务为例。
⾸先假设有N种可能的类别标签,即y={c1, c2, ..., cN}, λij 表⽰将⼀个真实标记为cj的样本误分类为ci时产⽣的损失。
后验概率p(ci|x)表⽰将样本x分类给ci是的概率。
那么将样本x分类成ci产⽣的条件风险(conditional risk)为: 其中,P(cj|x) 表⽰样本x分类成cj类的概率,λij 表⽰将真实cj类误分类为ci类的损失。
机器学习实验2-贝叶斯分类器设计

一、实验意义及目的1、掌握贝叶斯判别定理2、能利用matlab编程实现贝叶斯分类器设计3、熟悉基于matlab的算法处理函数,并能够利用算法解决简单问题二、算法原理贝叶斯定理是关于随机事件A和B的条件概率(或边缘概率)的一则定理。
其中P(A|B)是在B发生的情况下A发生的可能性公式为:贝叶斯法则:当分析样本大到接近总体数时,样本中事件发生的概率将接近于总体中事件发生的概率。
内容:(1)两类w服从正态分布,设计基于最小错误率的贝叶斯分类器,对数据进行分类。
(2)使用matlab进行Bayes判别的相关函数,实现上述要求。
(3)针对(1)中的数据,自由给出损失表,并对数据实现基于最小风险的贝叶斯分类。
三、实验内容(1)尝两类w服从正态分布,设计基于最小错误率的贝叶斯分类器,对数据进行分类。
代码清单:clc;clear all;meas=[0 0;2 0;2 2;0 2;4 4;6 4;6 6;4 6];%8x2矩阵这里一行一行2个特征[N n]=size(meas);species={'one';'one';'one';'one';'two';'two';'two';'two'};%这里也对应一行一行的sta=tabulate(species)[c k]=size(sta);priorp=zeros(c,1);for i=1:cpriorp(i)=cell2mat(sta(i,k))/100;%计算概率end%cell2mat(sta(:,2:3)) 提取数组中的数据本来sta数组中数据为矩阵不能直接用%估算类条件概率参数cpmean=zeros(c,n);cpcov=zeros(n,n,c);for i=1:ccpmean(i,:)=mean(meas(strmatch(char(sta(i,1)),species,'exact'),:));%exact精确查找cpmean放的每一类的均值点几类就几行cpcov(:,:,i)=cov(meas(strmatch(char(sta(i,1)),species,'exact'),:))*(N*priorp(i)-1)/(N*priorp(i));end%求(3 1)的后验概率x=[3 1];postp=zeros(c,1);for i=1:cpostp(i)=priorp(i)*exp(-(x-cpmean(i,:))*inv(cpcov(:,:,i))*(x-cpmean(i,:))'/2)/((2*pi)^(n/2)*det(cpcov(:,:,i)));endif postp(1)>postp(2)disp('第一类');elsedisp('第二类');end运行结果:(2)使用matlab进行Bayes判别的相关函数,实现上述要求。
实验课程-091042-模式识别

模式识别实验教学大纲(实验课程)◆课程编号:091042◆课程英文名称:Pattern Recognition◆课程类型:☐通识通修☐通识通选☐学科必修☐学科选修☐跨学科选修☐专业核心 专业选修(学术研究)☐专业选修(就业创业)◆适用年级专业(学科类):计算机科学与技术、网络工程、软件工程四年级◆先修课程:高等数学、线性代数、概率与数理统计、程序设计语言◆总学分:1◆总学时:32一、课程简介与教学目标《模式识别实验》是配合计算机科学与技术、网络工程和软件工程专业课程《模式识别》开设的实验课程。
要求学生在理解模式识别理论及方法的基础上,应具有设计、实现、分析和维护模式识别等方面的能力。
通过本实验课程的训练,使学生熟练掌握模式识别的基本原理和方法,加深对各方法涉及的基础知识的认识,强化编程技能,培养创新能力。
二、教学方式与方法教学方式:学生动手实验为主,辅以适当的提问、小组讨论及实验点评等。
教学方法:探讨式教学、启发式教学、实验教学相结合;尝试包括实验设计、研究设计、答辩、总结等环节的教学。
三、教学重点与难点(一)教学重点理解模式识别系统的基本原理,掌握模式识别中Bayes分类器、Parzen窗估计与K N近邻估计、最近邻方法和C均值聚类算法等,学会使用相应工具进行模式识别方法的设计与实现,从而进一步理解模式识别课程中所讲授的理论知识。
(二)教学难点H-K算法、基于K-L变换的实现。
四、学时分配计划五、教材与教学参考书(一)教材1.《模式识别(第2版)》,边肇祺,张学工等,清华大学出版社,2000。
(二)教学参考书1.《模式识别导论》,齐敏、李大健、郝重阳,清华大学出版社,2009;2.《模式识别原理》,孙亮,北京工业大学出版社,2009;3.《模式识别(第3版)》,张学工,清华大学出版社,2010;4.《模式识别(英文版·第3版)(经典原版书库)》,(希腊)西奥多里迪斯等著,机械工业出版社,2006。
7-Bayes分类器-第七章

最小风险Bayes决策规则:
若R(αk x) = min R(αi x), 则x ∈ωk
i =1, 2,...,M
例:已知正常细胞先验 概率为P (ω1 ) = 0.9, 异常为P (ω 2 ) = 0.1, 从类条件概率密度分布 曲线上查的P ( x ω i ) = 0.2, P ( x ω i ) = 0.4,
1 3 X11 = (1+1+ 0 −1−1) = 0, X12 = 5 5
X 1 = X 11 , X 12
(
)
T
X 2 = X 21 , X 22
(
)
3 T = (0, ) 5 T 7 = (0,− )T . 4
∑
C 11 = C 21
C 12 ( 协方差矩阵计算方法) C 22
R2 R1
P ( x ω1 ) P ( ω1 ) P ( x ω 2 ) P ( ω 2 )
R1
R2
由此:错误率为为图中两个划线部分之和。BAYES公式表明每个 由此:错误率为为图中两个划线部分之和。 公式表明每个 最大,实际上使X错判的可能性达到最小 错判的可能性达到最小。 样本所属类别都使P(ω1 x) 最大,实际上使 错判的可能性达到最小。
最小风险Bayes分类器 最小风险Bayes分类器 Bayes
假定要判断某人是正常(ω1)还是肺病患者(ω2),于是在判 断中可能出现以下情况:
第一类,判对(正常→正常) λ11 ; 第二类,判错(正常→肺病) λ21 ; 第三类,判对(肺病→肺病) λ22; 第四类,判错(肺病→正常) λ12 。 ( → )
−1
1 T exp− ( x − µ ) ∑ −1 (x − µ ) 2
第3章 Bayes决策理论

第3章 Bayes决策理论
“概率论”有关概念复习
Bayes公式:设实验E的样本空间为S,A为E的事件,
第3章 Bayes决策理论
B1,B2,…,Bn为S的一个划分,且P(A)>0,P(Bi)>0,
(i=1,2,…,n),则:
P( Bi | A) P( A | Bi ) P( Bi )
n
P( A | B
返回本章首页
第3章 Bayes决策理论
平均错误概率
P(e)
P (e x ) p ( x ) d x
从式可知,如果对每次观察到的特征值 x , P(e x) 是 尽可能小的话,则上式的积分必定是尽可能小的。这就 证实了最小错误率的Bayes决策法则。下面从理论上给 予证明。以两类模式为例。
解法1:
利用Bayes公式
第3章 Bayes决策理论
p ( x 10 | 1 ) P(1 ) P(1 | x 10) p ( x 10) p ( x 10 | 1 ) P(1 ) p ( x 10 | 1 ) P(1 ) p( x 10 | 2 ) P(2 ) 0.05 1/ 3 0.048 0.05 1/ 3 0.50 2 / 3
解法2:
写成似然比形式
第3章 Bayes决策理论
p ( x 10 | 1 ) 0.05 l12 (x 10) 0.1 p ( x 10 | 2 ) 0.50 P (2 ) 2 / 3 判决阀值12 2 P (1 ) 1/ 3 l12 (x 10) 12 , x 2 , 即是鲑鱼。
若 P(i x) P( j x) , j i ,则判
若 P(i x) 若 若
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二 Bayes 分类器设计一、实验目的通过实验,加深对统计判决与概率密度估计基本思想、方法的认识,了解影响Bayes 分类器性能的因素,掌握基于Bayes 决策理论的随机模式分类的原理和方法。
二、实验内容设计Bayes 决策理论的随机模式分类器。
假定某个局部区域细胞识别中正常(a 1)和非正常(a 2)两类先验概率分别为 正常状态:P (a 1)=0.9; 异常状态:P (a 2)=0.1。
三、方法手段Bayes 分类器的基本思想是依据类的概率、概密,按照某种准则使分类结果从统计上讲是最佳的。
换言之,根据类的概率、概密将模式空间划分成若干个子空间,在此基础上形成模式分类的判决规则。
准则函数不同,所导出的判决规则就不同,分类结果也不同。
使用哪种准则或方法应根据具体问题来确定。
四、Bayes 算法 1.实验原理多元正太分布的概率密度函数由下式定义112211()exp ()()2(2)T d p X X X μμπ-⎧⎫=--∑-⎨⎬⎩⎭∑ 由最小错误概率判决规则,可得采用如下的函数作为判别函数()(|)(),1,2,,i i i g x p X P i N ωω==这里,()i P ω为类别i ω发生的先验概率,(|)i p X ω为类别i ω的类条件概率密度函数,而N 为类别数。
设类别i ω,i=1,2,……,N 的类条件概率密度函数(|)i p X ω,i=1,2,……,N 服从正态分布,即有(|)i p X ω~(,)i i N μ∑,那么上式就可以写为1122()1()exp ()(),1,2,,2(2)T i i d P g X X X i N ωμμπ-⎧⎫=--∑-=⎨⎬⎩⎭∑由于对数函数为单调变化的函数,用上式右端取对数后得到的新的判别函数替代原来的判别函数()i g X 不会改变相应分类器的性能。
因此,可取111()()()ln ()ln ln(2)222T i i i i i i dg X X X P μμωπ-=--∑-+-∑-显然,上式中的第二项与样本所属类别无关,将其从判别函数中消去,不会改变分类结果。
这样,判别函数()i g X 可简化为以下形式111()()()ln ()ln 22T i i i i i i g X X X P μμω-=--∑-+-∑2.实验步骤1、求出两类样本的均值11,2iX iX i N ωμ∈==∑2、求每一类样本的协方差矩阵11()(),1,21i ii N w w i jklj j lk k l i s x x j k N μμ==--=-∑式中,l 代表样本在类中的序号,其中lj x 代表i w 类的第l 个样本,第j 个特征值;iw j μ代表i w 类的i N 个样品第j 个特征的平均值lk x 代表i w 类的第l 个样品,第k 个特征值;iw k μ代表i w 类的i N 个样品第k 个特征的平均值。
i w 类的协方差矩阵为11122122i iii i ⎛⎫∑∑∑= ⎪∑∑⎝⎭ 3、计算出每一类的协方差矩阵的逆矩阵1i -∑以及协方差矩阵的行列式i ∑ 4、求出每一类的先验概率()/1,2i i P N Ni ω≈=5、将各个数值代入判别函数111()()()ln ()ln 22T i i i i i i g X X X P μμω-=--∑-+-∑判别边界为12()()0g X g X -=五、Bayes 分类器实验结果已知(图1)数据a=[0.3760 0.0240 0.2440 -0.1740 0.0460 -0.3940 0.3760 0.7720 0.2660 0.5080 -0.4380 -0.0640 0.8160 0.5960 0.1120 0.3540 0.8380 -0.7680 0.4200 -0.7900];其满足正态分布(图2)。
1. 最小错误率贝叶斯决策图1 样本数据图2 样本的类条件概率根据最小错误率准侧,计算其后验条件概率(图3),通过程序运行出结果细胞分类结果为:1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0,其中,0为判成正常细胞,1为判成异常细胞。
图3 后验条件概率2. 最小风险贝叶斯决策根据最小风险判别准侧,其损失函数赋值为r=[0 1000 0;200 0 0],则计算其条件风险概率(图4)通过程序运行出结果细胞分类结果为:1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1,其中,0为判成正常细胞,1为判成异常细胞。
图4 条件风险概率3.两类分类器结果不同原因分析由最小错误率的贝叶斯判决和基于最小风险的贝叶斯判决得出图形中的分类结果可以看出,样本0.0240,0.2440等在前者中被分为“正常细胞”,在后者被分为“异常细胞”,分类结果不同。
因为在给予最小风险贝叶斯判决中,影响决策结果的因素多了损失r这一项,所以当结合最小风险贝叶斯决策表进行计算时,‘损失’起了主导作用,导致出现两者结果的不一致。
六、Bayes分类器程序代码function y=my_bayes(n,a)%%%%%%%%%%%%%最小错误率贝叶斯决策% 构造实验数据a=[0.3760 0.0240 0.2440 -0.1740 0.0460 -0.3940 0.3760 0.7720 0.2660 0.5080 -0.4380 -0.0640 0.8160 0.5960 0.1120 0.3540 0.8380 -0.7680 0.4200 -0.7900];n=20; % 样本数a=(round(100*rand(n,1))/100)*2.2-0.9;% 样本数为n,特征数为1,数据在-0.9与1.3之间figureplot(1:n,a,'rx')xlabel('样本数');ylabel('生化化验值');title('样本数据:生化化验值');pause;% 先验概率P=[0.9 0.1];% 作类条件概率密度曲线p(x|wi)x=-0.9:0.01:1.3;px(1,:)=(1/(sqrt(2*pi)*0.3))*exp(-0.5*(x/0.3).^2);px(2,:)=(1/(sqrt(2*pi)*0.1))*exp(-0.5*((x-1)/0.1).^2);figure;plot(x,px(1,:),'b',x,px(2,:),'r--');xlabel('生化化验值');ylabel('概率密度');title('类条件概率密度曲线')axis tight;pause;% 作后验概率曲线for i=1:2pwx(i,:)=px(i,:)*P(i)./(px(1,:)*P(1)+px(2,:)*P(2));endfigure;plot(x,pwx(1,:),'b',x,pwx(2,:),'r--');xlabel('生化化验值');ylabel('后验概率');title('后验概率曲线')axis tight;pause;% 计算给定生化化验值的类条件概率密度曲线for j=1:ns=a(j);PXW1=spline(x,px(1,:),s);PXW2=spline(x,px(2,:),s);PXW=[PXW1,PXW2];disp('样本')s%计算后验概率,判断输出for i=1:2Pwx(i)=PXW(i)*P(i)/(PXW(1)*P(1)+PXW(2)*P(2)); enddisp('后验概率 P(wi|x)=')Pwxplot(x,pwx(1,:),'b',x,pwx(2,:),'r--');xlabel('生化化验值');ylabel('后验概率');title('后验概率曲线')hold onplot(s,Pwx(1),'or',s,Pwx(2),'ob');axis tight;hold offif Pwx(1)>Pwx(2)w(j,1)=s;disp('正常人')elsew(j,2)=s;disp('感染病人')endpause;enddisp('========================================')disp('正常人感染病人')w%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%最小风险贝叶斯n=20; % 样本数figureplot(1:n,a,'rx')xlabel('样本数');ylabel('生化化验值');title('样本数据:生化化验值');pause;% 先验概率P=[0.9 0.1];% 作类条件概率密度曲线p(x|wi)x=-0.9:0.01:1.3;px(1,:)=(1/(sqrt(2*pi)*0.3))*exp(-0.5*(x/0.3).^2);px(2,:)=(1/(sqrt(2*pi)*0.1))*exp(-0.5*((x-1)/0.1).^2); figure;plot(x,px(1,:),'b',x,px(2,:),'r--');xlabel('生化化验值');ylabel('概率密度');title('类条件概率密度曲线')axis tight;pause;% 作后验概率曲线for i=1:2pwx(i,:)=px(i,:)*P(i)./(px(1,:)*P(1)+px(2,:)*P(2)); endfigure;plot(x,pwx(1,:),'b',x,pwx(2,:),'r--');xlabel('生化化验值');ylabel('后验概率');title('后验概率曲线')axis tight;pause;% 损失函数r=[0 1000 0;200 0 0];%作条件风险曲线for i=1:2R(i,:)=r(i,1)*pwx(1,:)+r(i,2)*pwx(2,:);endfigure;plot(x,R(1,:),'b',x,R(2,:),'r--');xlabel('生化化验值');ylabel('条件风险');title('条件风险曲线')axis tight;pause;% 计算给定生化化验值的条件风险for j=1:ns=a(j);PXW1=spline(x,px(1,:),s);PXW2=spline(x,px(2,:),s);PXW=[PXW1,PXW2];disp('样本')s%计算后验概率for i=1:2Pwx(i)=PXW(i)*P(i)/(PXW(1)*P(1)+PXW(2)*P(2)); end%计算条件风险,判断输出for i=1:2Rx(i,:)=r(i,1)*Pwx(1)+r(i,2)*Pwx(2);%%%%%enddisp('条件风险 R(ai|x)=')Rxplot(x,R(1,:),'b',x,R(2,:),'r--');xlabel('生化化验值');ylabel('条件风险');title('条件风险曲线')hold onplot(s,Rx(1),'or',s,Rx(2),'ob');axis tight;hold offif Rx(1)>Rx(2)w(j,1)=s;disp('正常人')elsew(j,2)=s;disp('感染病人')endpause;enddisp('========================================')disp('正常人感染病人')W。