4、选修4-4第二讲_参数方程(曲线的参数方程)
人教版高中数学选修4-4课件:2.1曲线的参数方程 第二课时.2
林老师网络编辑整理
29
【解析】(1)选D.xy=1,x取非零实数,而A,B,C中的x的
范围不符合要求.
(2)①把y=sinθ代入方程,得到 于是x2=4(1-sin2θ)=4cos2θ,
x2 sin2 1, 4
林老师网络编辑整理
30
即x=±2|cosθ|,由于θ具有任意性,sinθ与cosθ的
t
2,(t为参数)化为普通方程为________.
【解析】消去y参 2数t 方程 x 中t2,的参数t,
得到普通方程为y2=4x. y 2t
答案:y2=4x
林老师网络编辑整理
7
【知识探究】 探究点 参数方程和普通方程的互化 1.同一曲线的参数方程是否唯一? 提示:求曲线的参数方程,关键是灵活确定参数,由于参 数不同,同一曲线的参数方程也会有差异,但是一定要 注意等价性.
(θ为参数)
x 2cos,
y 1 2பைடு நூலகம்in
林老师网络编辑整理
5
【解析】选D.圆x2+(y+1)2=2的圆心坐标为C(0,-1),半
径为
2
,所以它的参数方程为 x
2cos,
(θ为参
数).
y 1 2sin,
林老师网络编辑整理
6
2.参数方程
x
(为参数) .
(1)3x+4y=3cosθ+4sinθ+4=4+5sin(θ+φ),
其中 tan 且34φ, 的终边过点(4,3).
因为-5≤5sin(θ+φ)≤5,所以-1≤4+5sin(θ+φ)≤9,
所以3x+4y的最大值为9,最小值为-1.
2014-2015学年高中数学(人教版选修4-4)配套课件第二讲 2.2 2.2.2 双曲线的参数方程
1.已知动点 M 和定点 A(5,0),B(-5,0).
x2 y2 - =1 (1)若||MA|-|MB||=8,则 M 的轨迹方程是__________________ ; 16 9 x 2 y2 - =1(x<0) (2)若|MA|-|MB|=8,则 M 的轨迹方程是____________________ ; 16 2 9 2 栏 x y 目 - =1(x>0) (3)若|MB|-|MA|=8,则 M 的轨迹方程是____________________ . 链 16 9
2 2
x=2sec α, ∴参数方程为 (α 为参数). y=2tan α
变式 训练
x= 3tan θ, 1.已知双曲线的参数方程为 (θ 为参数), y=sec θ
则它的两条渐近线所成的锐角是________.
栏 目 链 接
答案:60°
题型2
第二讲 参数方程
2.2 圆锥曲线的参数方程
2.2.2 双曲线的参数方程
栏 目 链 接
1.理解双曲线参数方程的概念。
2.能选取适当的参数,求简单曲线的参数方程。
3.掌握参数方程化为普通方程的 几种基本方法。
栏 栏 目 目 链 链 接 接
4.利用双曲线的参数方程求确定最值和轨迹问题。
栏 目 链 接
栏 目 链 接
变式 训练
2.已知定点 A(0,4)和双曲线 x2-4y2=16 上的动点 B, 点 P 分有向线段 AB 的比为 1∶3,则利用双曲线的参数方 程可求得点 P 的轨迹普通方程是_______________.
栏 目 链 接
答案:x2-4(y-3)2=1
x2 y2 - =1 的参数方程为________. 16 9
人教A版数学【选修4-4】ppt课件:2-2第二讲-参数方程
【解】
如图所示:
由动点C在该椭圆上运动,故可设C的坐标为(6cosθ,3sinθ), 点G的坐标为(x,y),由题意可知A(6,0),B(0,3),由三角形重心坐 标公式可知:
x=6+0+6cosθ=2+2cosθ, 3 0+3+3sinθ y= =1+sinθ. 3 x-22 由此,消去参数θ,得到所求的普通方程为 4 +(y-1)2= 1.
x-1=cosθ, 3 【解】 (1)由题意可设 y+2 =sinθ, 5
x=1+ 3cosθ, y=-2+ 5sinθ
即
(θ为参数)为所求.
2 2 x y (2)x2-y2=4变形为: 4 - 4 =1.
x=2secα, ∴参数方程为 y=2tanα
2 x = 2 pt , 2 2.抛物线y =2px(p>0)的参数方程为 y=2pt
y 1 由于 x = t ,因此参数t的几何意义是抛物线上除顶点外的点与 抛物线的顶点连线的斜率的倒数. 3.几个结论 x2 y2 (1)焦点在y轴上的椭圆的标准方程为 b2 + a2 =1(a>b>0),其参 数方程是 [0,2π).
x2 y2 a2+b2=1
x=acosφ, y=bsinφ
x2 y2 a2-b2=1
x=asecφ, y=btanφ
点的坐标
(rcosθ, rsinθ)
(acosφ,bsinφ)
(asecφ,btanφ)
这三种曲线的参数方程都是参数的三角形式.其中圆的参数θ 表示旋转角,而椭圆、双曲线的参数φ表示离心角,几何意义是不 同的,它们的参数方程主要应用价值在于: (1)通过参数(角)简明地表示曲线上任一点的坐标; (2)将解析几何中的计算问题转化为三角问题,从而运用三角 函数性质及变换公式帮助求解最值、参数的取值范围等问题.
人教版高中数学选修4-4课件:第二讲二第2课时双曲线的参数方程和抛物线的参数方程
x=sec θ,
解:把双曲线方程化为参数方程
(θ 为参
y=tan θ
数),
林老师网络编辑整理
18
设双曲线上点 Q(sec θ,tan θ),则
|PQ|2=sec2θ+(tan θ-2)2=
(tan2θ+1)+(tan2θ-4tan θ+4)=
2tan2θ-4tan θ+5=2(tan θ-1)2+3,
林老师网络编辑整理
5
2.抛物线的参数方程
如图,抛物线 y2=2px(p>0)的参数方程为
x=2pt2,
____y_=__2_p_t ____t为参数,t=tan1
α.
林老师网络编辑整理
6
温馨提示 t=sin1 α(α 是以射线 OM 为终边的角),即 参数 t 表示抛物线上除顶点之外的任意一点与原点连线的 斜率的倒数.
第二讲 参数方程
林老师网络编辑整理
1
二、圆锥曲线的参数方程 第 2 课时 双曲线的参数方程和
抛物线的参数方程
林老师网络编辑整理
2
[学习目标] 1.了解抛物线和双曲线的参数方程,了 解抛物线参数方程中参数的几何意义(重点). 2.利用抛 物线和双曲线的参数方程处理问题(重点、难点).
林老师网络编辑整理
当 tan θ-1=0,即 θ=π4时,
|PQ|2 取最小值 3,此时有|PQ|= 3.
即 P、Q 两点间的最小距离为 3.
林老师网络编辑整理
19
[迁移探究] (变换条件)已知圆 O1:x2+(y-2)2=1 上一点 P 与双曲线 x2-y2=1 上一点 Q,求 P,Q 两点间 距离的最小值.
解:设 Q(sec θ,tan θ), 由题意知|O1P|+|PQ|≥|O1Q|. |O1Q|2=sec2θ+(tan θ-2)2=
第十二章 坐标系与参数方程[选修4-4]第二节 参数方程
距离是________.
解析:直线方程可化为 x-y+1=0,圆的方程可化为(x -1)2+y2=1.由点到直线的距离公式可得,圆心 C(1,0)到 |2| 直线 l 的距离为 2 2= 2. 1 +-1
答案: 2
x=1+3t, 5.(2012· 湖南十二校联考)若直线的参数方程为 y=2- 3t
解析:由 y=t-1,得 t=y+1,代入 x=3t+2,得 x =3y+5, 即 x-3y-5=0.
答案:x-3y-5=0
x=5cos θ, 2.(教材习题改编)曲线 y=3sin θ
(θ 为参数)的左焦点
的坐标是________.
x2 y2 解析:化为普通方程为 + =1,故左焦点为(-4,0). 25 9
x=2t+2a, y=-t
(t 为参数),曲线
x=2cos θ, C2: y=2+2sin θ
(θ 为
参数).若曲线 C1,C2 有公共点,则实数 a 的取值范围 是________.
解析:将曲线 C1,C2 的参数方程化为普通方程, 得 C1:x+2y-2a=0,C2:x2+(y-2)2=4. 因为曲线 C1 与 C2 有公共点, |4-2a| 所以圆心到直线的距离 ≤2, 5 解得 2- 5≤a≤2+ 5.
[自主解答] =16.
由圆C的参数方程可得其标准方程为x2+y2
π 因为直线l过点P(2,2),倾斜角α= ,所以直线l的参数 3 π x=2+tcos3, 方程为 y=2+tsinπ, 3 1 x=2+2t, 即 y=2+ 3t 2
(t为参数).
1 x=2+2t, 把直线l的参数方程 y=2+ 3t 2
去参数;
(2)利用三角恒等式消去参数; (3)根据参数方程本身的结构特征,选用一些灵活的方 法从整体上消去参数. 2.将参数方程化为普通方程时,要注意防止变量x和y
人教版高数选修4-4第2讲:参数方程(学生版)
参数方程____________________________________________________________________________________________________________________________________________________________________1.了解直线参数方程,曲线参数方程的条件及参数的意义2.会选择适当的参数写出曲线的参数方程3.掌握参数方程化为普通方程几种基本方法4.了解圆锥曲线的参数方程及参数的意义5.利用圆锥曲线的参数方程来确定最值,解决有关点的轨迹问题一.参数方程的定义1.一般地,在平面直角坐标系中,如果曲线C上任一点P的坐标x和y都可以表示为某个变量t的函数:()()x f ty g t=⎧⎨=⎩;反过来,对于t的每个允许值,由函数式()()x f ty g t=⎧⎨=⎩所确定的点P(x,y)都在曲线C上,那么方程()()x f ty g t=⎧⎨=⎩叫作曲线C的参数方程,变量t是参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程,参数方程可以转化为普通方程.2.关于参数的说明.参数方程中参数可以有物理意义、几何意义,也可以没有明显意义.3.曲线的参数方程可通过消去参数而得到普通方程;若知道变数x、y中的一个与参数t的关系,可把它代入普通方程,求另一变数与参数t的关系,则所得的()()x f ty g t=⎧⎨=⎩,就是参数方程.二.圆的参数方程点P 的横坐标x 、纵坐标y 都是t 的函数:cos sin x r ty r t=⎧⎨=⎩(t 为参数).我们把这个方程叫作以圆心为原点,半径为r 的圆的参数方程. 圆的圆心为O 1(a ,b),半径为r 的圆的参数方程为:cos sin x a r ty b r t =+⎧⎨=+⎩(t 为参数).三.椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为cos sin x a y b θθ=⎧⎨=⎩(θ为参数).规定θ的范围为θ∈[0,2π).这是中心在原点O 、焦点在x 轴上的椭圆参数方程.四.双曲线x 2a 2-y 2b 2=1的参数方程为tan x asec y b ϕϕ=⎧⎨=⎩(φ为参数).规定φ的范围为φ∈[0,2π),且φ≠π2,φ≠3π2.这是中心在原点,焦点在x 轴上的双曲线参数方程.五.曲线C 的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数,t ∈R)其中p 为正的常数.这是焦点在x 轴正半轴上的抛物线参数方程.六.直线的参数方程1.过定点M 0(x 0,y 0)、倾斜角为α的直线l 的参数方程为00cos sin x x t y y t αα=+⎧⎨=+⎩(t 为参数),这一形式称为直线参数方程的标准形式,直线上的动点M 到定点M 0的距离等于参数t 的绝对值.当t >0时,M 0M →的方向向上;当t <0时,M 0M →的方向向下;当点M 与点M 0重合时,t =0.2.若直线的参数方程为一般形式为:⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数), 可把它化为标准形式:00cos sin t x t x y y αα=+⎧⎨='+'⎩(t′为参数).其中α是直线的倾斜角,tan α=ba ,此时参数t′才有如前所说的几何意义.类型一.参数方程与普通方程的互化例1:指出参数方程3cos 3sin x y θθ=⎧⎨=⎩⎝ ⎛⎭⎪⎫θ为参数,0<θ<π2表示什么曲线练习1:指出参数方程315cos 215sin x y θθ=+⎧⎨=+⎩(θ为参数,0≤θ<2π).表示什么曲线例2:设直线l 1的参数方程为1,13x t y t=+⎧⎨=+⎩(t 为参数),直线l 2的方程为y =3x +4,则l 1与l 2间的距离为______.练习2:若直线112,:2x t y l kt =-⎧⎨=+⎩(t 为参数)与直线l 2:,12x s y s =⎧⎨=-⎩(s 为参数)垂直,则k =______.类型二.曲线参数方程例3:已知点P (x , y )在曲线2cos ,sin x y θθ=-+⎧⎨=⎩(θ为参数)上,则yx 的取值范围为______.练习1:已知点A (1,0),P 是曲线2cos ,1cos 2x y θθ=⎧⎨=+⎩(θ∈R )上任一点,设P 到直线l :y =12-的距离为d ,则|PA|+d 的最小值是______.例4:已知θ为参数,则点(3,2)到方程cos sin x y θθ=⎧⎨=⎩,的距离的最小值是______.练习1:已知圆C 的参数方程为cos 1,sin x y θθ=+⎧⎨=⎩(θ为参数),则点P (4,4)与圆C 上的点的最远距离是______.例5:已知双曲线方程为x 2-y 2=1,M 为双曲线上任意一点,点M 到两条渐近线的距离分别为d 1和d 2,求证:d 1与d 2的乘积是常数.练习1:将参数方程⎩⎪⎨⎪⎧x =a 2⎝ ⎛⎭⎪⎫t +1t ,y =b 2⎝ ⎛⎭⎪⎫t -1t (t 为参数,a >0,b >0)化为普通方程.类型三.直线参数方程例6:曲线C 1:1cos ,sin ,x y θθ=+⎧⎨=⎩(θ为参数)上的点到曲线C 2:1,2112x t y t⎧=-⎪⎪⎨⎪=-⎪⎩(t 为参数)上的点的最短距离为______.练习1:直线⎩⎪⎨⎪⎧x =2+3t ,y =-1+t (t 为参数)上对应t =0,t =1两点间的距离是( )A .1 B.10 C .10 D .2 2类型四.曲线参数方程的应用例7:在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数).(1)已知在极坐标(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为⎝⎛⎭⎪⎫4,π2,判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.练习1:已知曲线C 的方程为⎩⎪⎨⎪⎧x =12(e t +e -t)cos θ,y =12(e t-e-t)sin θ.当t 是非零常数,θ为参数时,C 是什么曲线?当θ为不等于k π2(k ∈Z)的常数,t 为参数时,C 是什么曲线?两曲线有何共同特征?类型五.极坐标与参数方程的综合应用例8:(2015·广东卷Ⅱ,数学文14)在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 1的极坐标方程为ρ(cos θ+sin θ)=-2,曲线C 2的参数方程为⎩⎨⎧x =t2y =22t(t 为参数),则C 1与C 2交点的直角坐标为________. 练习1:求圆3cos ρθ=被直线22,14x t y t =+⎧⎨=+⎩(t 是参数)截得的弦长.1.将参数方程⎩⎪⎨⎪⎧x =2+sin 2θ,y =sin 2θ(θ为参数)化为普通方程是( ) A .y =x -2 B .y =x +2C .y =x -2(2≤x≤3)D .y =x +2(0≤y≤1)2.椭圆42cos 15sin x y θθ=+⎧⎨=+⎩(θ为参数)的焦距为( )A.21B .221C.29D .2293.参数方程⎩⎪⎨⎪⎧x =e t-e -t,y =e t +e -t(t 为参数)表示的曲线是( ) A .双曲线 B .双曲线的下支 C .双曲线的上支D .圆4.双曲线23tan sec x y θθ=+⎧⎨=⎩,(θφ为参数)的渐近线方程为5.(2015·惠州市高三第二次调研考试)在直角坐标系xOy 中,直线l的参数方程为⎩⎪⎨⎪⎧x =t ,y =4+t (t为参数).以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=42sin ⎝⎛⎭⎪⎫θ+π4,则直线l 和曲线C 的公共点有________个.6.若直线3x +4y +m =0与圆1cos ,2sin x y θθ=+⎧⎨=-+⎩(θ为参数),没有公共点,则实数m 的取值范围是______.7.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A ,B 两点,则|AB|=________. 8.已知直线l :34120x y +-=与圆C :12cos ,22sin x y θθ=-+⎧⎨=+⎩(θ为参数),试判断它们的公共点的个数.9.求直线2,,x t y =+⎧⎪⎨=⎪⎩(t 为参数)被双曲线x 2-y 2=1截得的弦长_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.当参数θ变化时,动点P (2cos θ,3sin θ)所确定的曲线必过( ) A .点(2,3)B .点(2,0)C .点(1,3)D .点⎝⎛⎭⎪⎫0,π22.双曲线6sec x y αα⎧=⎪⎨=⎪⎩(α为参数)的两焦点坐标是( )A .(0,-43),(0,43)B .(-43,0),(43,0)C .(0,-3),(0,3)D .(-3,0),(3,0)3.参数方程⎩⎪⎨⎪⎧x =sin α2+cos α2,y =2+sin α(α为参数)的普通方程为( )A .y 2-x 2=1B .x 2-y 2=1C .y 2-x 2=1(|x |≤2)D .x 2-y 2=1(|x |≤2)4.参数方程⎩⎪⎨⎪⎧x =cos 2θ,y =sin 2θ(θ为参数)表示的曲线是( )A .直线B .圆C .线段D .射线5.设O 是椭圆3cos 2sin x y αα=⎧⎨=⎩(α为参数)的中心,P 是椭圆上对应于α=π6的点,那么直线OP的斜率为( )A.33B. 3C.332D.2396.将参数方程12cos 2sin x y θθ=+⎧⎨=⎩(θ为参数)化为普通方程是____________.7.点P(x ,y)在椭圆4x 2+y 2=4上,则x +y 的最大值为______,最小值为________.8.在平面直角坐标系中,已知直线l 与曲线C 的参数方程分别为l :⎩⎪⎨⎪⎧x =1+s ,y =1-s (s 为参数)和C :⎩⎪⎨⎪⎧x =t +2,y =t 2(t 为参数),若l 与C 相交于A 、B 两点,则|AB|=________. 能力提升9.点(2,33)对应曲线4cos 6sin x y θθ=⎧⎨=⎩(θ为参数)中参数θ的值为( )A .k π+π6(k∈Z)B .k π+π3(k∈Z)C .2k π+π6(k∈Z)D .2k π+π3(k∈Z)10.椭圆x 29+y24=1的点到直线x +2y -4=0的距离的最小值为( )A.55B. 5C.655D .011.(2015·湛江市高三(上)调考)直线⎩⎪⎨⎪⎧x =2-12t ,y =-1+12t(t 为参数)被圆x 2+y 2=4截得的弦长为________.12.在平面直角坐标系xOy中,若l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :3cos 2sin x y θθ=⎧⎨=⎩(θ为参数)的右顶点,则常数a 的值为________.13.(2015·惠州市高三第一次调研考试)已知在平面直角坐标系xOy 中圆C 的参数方程为:3cos 13sin x y θθ⎧=⎪⎨=+⎪⎩(θ为参数),以Ox 为极轴建立极坐标系,直线极坐标方程为:ρcos ⎝ ⎛⎭⎪⎫θ+π6=0,则圆C 截直线所得弦长为________.14.(2014·辽宁卷)将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(1)写出C的参数方程;(2)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.课程顾问签字: 教学主管签字:。
选修4-4 第2讲 参数方程
例1
(1)求直线xy= =2-+1t-,t
(t
为参数)与曲线xy= =33csions
α, α
(α 为
参数)的交点个数.
[解] 将xy= =- 2+1-t,t 消去参数 t 得直线 x+y-1=0;
将xy= =33csions
α, α
消去参数 α,得圆 x2+y2=9.
又圆心(0,0)到直线 x+y-1=0 的距离 d= 22<3. 因此直线与圆相交,故直线与曲线有 2 个交点.
[解] (1)消去参数 t 得 l1 的普通方程 l1:y=k(x-2);消去参数 m 得 l2 的普通方程 l2:y=1k(x+2).
y=kx-2 设 P(x,y),由题设得y=1kx+2 ,
消去 k 得 x2-y2=4(y≠0). 所以 C 的普通方程为 x2-y2=4(y≠0).
(2)C 的极坐标方程为 ρ2(cos2θ-sin2θ) =4(0<θ<2π,θ≠π). 联立ρρ2ccoossθ2θ+-sisninθ2θ-=42,=0 得 cos θ-sin θ=2(cos θ+sin θ). 故 tan θ=-13,从而 cos2θ=190,sin2θ=110. 代入 ρ2(cos2θ-sin2θ)=4 得 ρ2=5,所以交点 M 的极径为 5.
(t 为参数)
圆
x2+y2=r2
x=rcos θ, y=rsin θ
(θ 为参数)
椭圆
ax22+by22=1(a>b>0)
x=acos φ, y=bsin φ
(φ 为参数)
抛物线 y2=2px(p>0)
x=2pt2, y=2pt
(t 为参数)
[知识感悟] 1.在参数方程与普通方程的互化中,必须使 x,y 的取值范围保 持一致.否则不等价. 2.直线的参数方程中,参数 t 的系数的平方和为 1 时,t 才有几 何意义且其几何意义为:|t|是直线上任一点 M(x,y)到 M0(x0,y0)的距 离,即|M0M|=|t|.
人教版高中数学选修4-4课件:第二讲一第2课时圆的参数方程
3.参数方程x=11-+tt22,(t 为参数),化为普通方程为 y=1+2tt2
() A.x2+(y-1)2=1
B.(x-1)2+y2=1
C.(x-1)2+(y-1)2=1 D.x2+y2=1
1-t2 1-x 解析:x=1+t2,1+x=t2
代入
y=1+2tt2,
|1-(-2)+m|
则
2
=2,解得 m=-3±2 2.
类型 2 利用圆的参数方程求轨迹
[典例 2] 如图,圆 O 的半径为 2,P 是圆上的动点, Q(6,0)是 x 轴上的定点,M 是 PQ 的中点.当点 P 绕点 O 作匀速圆周运动时,求点 M 的轨迹的参数方程.
解:设点 M 的坐标为(x,y),∠POQ=θ,取 θ 为参
(2)圆(x-x0)2+(y-y0)2=r2 的参数方程为 ___xy_==__yx_00++__rr_sc_ion_s_θθ_,__(_θ_为__参__数__)_.__
温馨提示 圆的参数方程不唯一,选取的参数不同,
相应的参数方程也不同.
[思考尝试·夯基]
1.思考判断(正确的打“√”,错误的打“×”).
(1)求圆 C 的普通方程及直线 l 的直角坐标方程; (2)设圆心 C 到直线 l 的距离等于 2,求 m 的值.
解:(1)消去参数 t,得到圆的标准方程为(x-1)2+(y
+2)2=9. 由 2ρsin(θ-π4)=m,得 ρsin θ-ρcos θ-m=0. 所以直线 l 的直角坐标方程为 x-y+m=0. (2)依题意,圆心 C 到直线 l 的距离等于 2,
2.利用圆的参数方程容易解决一些与圆有关的最值 和取值范围问题.
求最值问题时,利用圆的参数方程来将问题合理地转 化,常用的方法是建立代数与三角函数的联系,利用三角 函数的值域求解,解决此类问题还要注意数形结合思想的 应用.
高中数学人教版选修4-4 第二讲 2.3曲线的参数方程(椭圆的参数方程)
【板书设计】课题:曲线的参数方程(椭圆的参数方程)
基础测试1.2.3.
巩固练习1.2.
课堂
小结
本节课学习了以下内容:利用圆锥曲线的参数方程来确定最值
【布置作业】教材46页2,3题
教学反思
亮点:
不足及改进措施:
备课组长:
教务处(教学部):
课题:曲线的参数方程(双曲线,抛物线的参数方程)
教学
目标
知识与技能:利用圆锥曲线的参数方程来确定最值,解决有关点的轨迹问题。
过程与方法:引导学生独立思考并回答问题。
情感与价值观:通过启发学生回顾已学过的知识点,培养学生回顾复习能力。
授1课时
【课 题】课题:曲线的参数方程(椭圆的参数方程)
【授课时间】2021年 月 日 班级:高三()班
【教学目标】利用圆锥曲线的参数方程来确定最值,解决有关点的轨迹问题。
【教学重点】利用圆锥曲线的参数方程来确定最值。
【教学难点】利用圆锥曲线的参数方程来确定最值。
【课 型】新授课
【教学用具】班班通
【教学方法】讲解结合法
【教学过程】
初次备课
二次备课
二、预习检测:
化下列曲线的参数方程为普通方程,并指出它是什么曲线。
(1) (t是参数)
(2) ( 是参数)
(3) (t是参数)
三、新课引入
通过参数 简明地表示曲线上任一点坐标将解析几何中以计算问题化为三角问题,从而运用三角性质及变换公式帮助求解诸如最值,参数取值范围等问题。
四、新课讲授:
例1.求椭圆的内接矩形面积的最大值。
(组织学生复习的基础上独立完成此题)
例2.AB为过椭圆 中心的弦, , 为焦点,求△ABF1面积的最大值。
2.2圆锥曲线的参数方程课件-高二A版数学(文)人教选修4-4
所以, 矩形ABCD最大面积为160
D BA
2
AF
1
1
C
OF
B2
B
1
A XX
2
y
(为参数)
10sin
(3)
x2 9
y2 25
1
(4)
x2 64
y2 100
1
二、双曲线的参数方程
双曲线的参数方程
设M (x, y)
y
a
B'
A
•M
在OAA'中,x
| OA' | | OA | b b • sec,
cos cos
b
o B A' x
在OBB '中,y | BB ' || OB | • tan b • tan.
都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为 2,π3. (1)求点A,B,C,D的直角坐标;
例2 已知A,B分别是椭圆 3x62 +y92 =1的右顶点和上顶点,动点 C在该椭圆上运动,求△ABC的重心G的轨迹方程.
解 由题意知A(6,0),B(0,3).由于动点C在椭圆上运动, 故可设动点C的坐标为(6cos θ,3sin θ),点G的坐标设为(x,y),
抛物线的参数方程
y
M(x,y)
抛物线y2 =2px(p>0)的参数方程为:
x=2pt2 ,
y
2pt.
(t为参数,t
R)
o
Hx
其中参数t=
1
tan
(
0),当
=0时,t=0.
几何意义为:抛物线上除顶点外的任意一点与原点连线的斜率的倒数。
高考复习配套讲义:选修4-4 第2讲 参数方程
第2讲 参数方程[最新考纲]1.了解参数方程,了解参数的意义.2.能选择适当的参数写出直线、圆和椭圆的参数方程.3.掌握直线的参数方程及参数的几何意义,能用直线的参数方程解决简单的相关问题.知 识 梳 理1.曲线的参数方程在平面直角坐标系xOy 中,如果曲线上任意一点的坐标x ,y 都是某个变量t 的函数⎩⎨⎧x =f (t ),y =g (t ).并且对于t 的每一个允许值上式所确定的点M (x ,y )都在这条曲线上,则称上式为该曲线的参数方程,其中变量t 称为参数. 2.一些常见曲线的参数方程(1)过点P 0(x 0,y 0),且倾斜角为α的直线的参数方程为⎩⎨⎧x =x 0+t cos αy =y 0+t sin α(t 为参数).(2)圆的方程(x -a )2+(y -b )2=r 2的参数方程为⎩⎨⎧x =a +r cos θy =b +r sin θ(θ为参数).(3)椭圆方程x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎨⎧x =a cos θy =b sin θ(θ为参数).(4)抛物线方程y 2=2px (p >0)的参数方程为⎩⎨⎧x =2pt 2y =2pt (t 为参数).诊 断 自 测1.极坐标方程ρ=cos θ和参数方程⎩⎨⎧x =-1-t ,y =2+t (t 为参数)所表示的图形分别是________.①直线、直线;②直线、圆;③圆、圆;④圆、直线.解析 ∵ρcos θ=x ,∴cos θ=x ρ代入到ρ=cos θ,得ρ=xρ,∴ρ2=x ,∴x 2+y 2=x 表示圆.又∵⎩⎪⎨⎪⎧x =-1-t ,y =2+t ,相加得x +y =1,表示直线.答案 ④2.若直线⎩⎨⎧x =1-2t ,y =2+3t (t 为实数)与直线4x +ky =1垂直,则常数k =________.解析 参数方程⎩⎪⎨⎪⎧x =1-2t ,y =2+3t ,所表示的直线方程为3x +2y =7,由此直线与直线4x +ky =1垂直可得-32×⎝ ⎛⎭⎪⎫-4k =-1,解得k =-6.答案 -63.(2012·北京卷)直线⎩⎨⎧ x =2+t ,y =-1-t (t 为参数)与曲线⎩⎨⎧x =3cos α,y =3sin α(α为参数)的交点个数为________.解析 直线方程可化为x +y -1=0,曲线方程可化为x 2+y 2=9,圆心(0,0)到直线x +y -1=0的距离d =12=22<3.∴直线与圆相交有两个交点. 答案 24.已知直线l :⎩⎨⎧x =1-2t ,y =2+2t (t 为参数)上到点A (1,2)的距离为42的点的坐标为________.解析 设点Q (x ,y )为直线上的点, 则|QA |=(1-1+2t )2+(2-2-2t )2=(2t )2+(-2t )2=42,解之得,t =±22,所以Q (-3,6)或Q (5,-2). 答案 (-3,6)和(5,-2)5.(2013·广东卷)已知曲线C 的极坐标方程为ρ=2cos θ,以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为________.解析 由ρ=2cos θ知,ρ2=2ρcos θ 所以x 2+y 2=2x ,即(x -1)2+y 2=1, 故其参数方程为⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(θ为参数).答案 ⎩⎨⎧x =1+cos θ,y =sin θ(θ为参数)考点一 参数方程与普通方程的互化【例1】 把下列参数方程化为普通方程,并说明它们各表示什么曲线;(1)⎩⎪⎨⎪⎧x =1+12t ,y =2+32t(t 为参数);(2)⎩⎨⎧x =1+t 2,y =2+t(t 为参数); (3)⎩⎪⎨⎪⎧x =t +1t ,y =1t -t(t 为参数).解 (1)由x =1+12t 得t =2x -2. ∴y =2+32(2x -2).∴3x -y +2-3=0,此方程表示直线. (2)由y =2+t 得t =y -2,∴x =1+(y -2)2. 即(y -2)2=x -1,此方程表示抛物线. (3)⎩⎪⎨⎪⎧x =t +1t y =1t -t①②∴①2-②2得x 2-y 2=4,此方程表示双曲线.规律方法 参数方程化为普通方程:化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法,不要忘了参数的范围.【训练1】 将下列参数方程化为普通方程. (1)⎩⎨⎧x =1-sin 2θ,y =sin θ+cos θ(θ为参数); (2)⎩⎪⎨⎪⎧x =12(e t +e -t),y =12(e t-e-t)(t 为参数).解 (1)由(sin θ+cos θ)2=1+sin 2θ=2-(1-sin 2θ), 得y 2=2-x .又x =1-sin 2θ∈[0,2], 得所求的普通方程为y 2=2-x ,x ∈[0,2]. (2)由参数方程得e t =x +y ,e -t =x -y , ∴(x +y )(x -y )=1,即x 2-y 2=1.考点二 直线与圆参数方程的应用【例2】 在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t(t 为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B ,若点P 的坐标为(3,5),求|P A |+|PB |. 解 (1)由ρ=25sin θ,得ρ2=25ρsin θ. ∴x 2+y 2=25y ,即x 2+(y -5)2=5. (2)将l 的参数方程代入圆C 的直角坐标方程. 得⎝⎛⎭⎪⎫3-22t 2+⎝ ⎛⎭⎪⎫22t 2=5,即t 2-32t +4=0.由于Δ=(32)2-4×4=2>0,故可设t 1,t 2是上述方程的两实根,所以⎩⎨⎧t 1+t 2=32,t 1·t 2=4.又直线l 过点P (3,5),故由上式及t 的几何意义得|P A |+|PB |=|t 1|+|t 2|=t 1+t 2=3 2.规律方法 (1)过定点P 0(x 0,y 0),倾斜角为α的直线参数方程的标准形式为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数),t 的几何意义是直线上的点P 到点P 0(x 0,y 0)的数量,即t =|PP 0|时为距离.使用该式时直线上任意两点P 1、P 2对应的参数分别为t 1、t 2,则|P 1P 2|=|t 1-t 2|,P 1P 2的中点对应的参数为12(t 1+t 2).(2)对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数),当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.【训练2】 已知直线l 的参数方程为⎩⎨⎧x =1+t ,y =4-2t (参数t ∈R ),圆C 的参数方程为⎩⎨⎧x =2cos θ+2,y =2sin θ(参数θ∈[0,2π]),求直线l 被圆C 所截得的弦长.解 由⎩⎨⎧ x =1+t ,y =4-2t消参数后得普通方程为2x +y -6=0,由⎩⎨⎧x =2cos θ+2,y =2sin θ消参数后得普通方程为(x -2)2+y 2=4,显然圆心坐标为(2,0),半径为2.由于圆心到直线2x +y -6=0的距离为d =|2×2+0-6|22+1=255,所以所求弦长为222-⎝⎛⎭⎪⎫2552=855. 考点三 极坐标、参数方程的综合应用【例3】 已知P 为半圆C :⎩⎨⎧x =cos θ,y =sin θ(θ为参数,0≤θ≤π)上的点,点A 的坐标为(1,0),O 为坐标原点,点M 在射线OP 上,线段OM 与C 的弧AP 的长度均为π3.(1)以O 为极点,x 轴的正半轴为极轴建立极坐标系,求点M 的极坐标; (2)求直线AM 的参数方程.解 (1)由已知,点M 的极角为π3,且点M 的极径等于π3,故点M 的极坐标为⎝ ⎛⎭⎪⎫π3,π3.(2)点M 的直角坐标为⎝ ⎛⎭⎪⎫π6,3π6,A (1,0). 故直线AM 的参数方程为⎩⎪⎨⎪⎧x =1+⎝ ⎛⎭⎪⎫π6-1t ,y =3π6t(t 为参数).规律方法 涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.【训练3】 (2013·福建卷)在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知点A 的极坐标为(2,π4),直线l 的极坐标方程为ρcos(θ-π4)=a ,且点A 在直线l 上. (1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎨⎧x =1+cos α,y =sin α(α为参数),试判断直线l 与圆C 的位置关系.解 (1)由点A (2,π4)在直线ρcos(θ-π4)=a 上,可得a = 2. 所以直线l 的方程可化为ρcos θ+ρsin θ=2, 从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1,所以圆C 的圆心为(1,0),半径r =1, 因为圆心C 到直线l 的距离d =12=22<1, 所以直线l 与圆C 相交.转化思想在解题中的应用【典例】 已知圆锥曲线⎩⎨⎧x =2cos θy =3sin θ(θ是参数)和定点A (0, 3),F 1、F 2是圆锥曲线的左、右焦点.(1)求经过点F 1且垂直于直线AF 2的直线l 的参数方程;(2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求直线AF 2的极坐标方程.[审题视点] (1)先将圆锥曲线参数方程化为普通方程,求出F 1的坐标,然后求出直线的倾斜角度数,再利用公式就能写出直线l 的参数方程.(2)直线AF 2是已知确定的直线,利用求极坐标方程的一般方法求解.解 (1)圆锥曲线⎩⎪⎨⎪⎧x =2cos θy =3sin θ化为普通方程x 24+y 23=1,所以F 1(-1,0),F 2(1,0),则直线AF 2的斜率k =-3,于是经过点F 1且垂直于直线AF 2的直线l 的斜率k ′=33,直线l 的倾斜角是30°,所以直线l 的参数方程是⎩⎪⎨⎪⎧x =-1+t cos 30°y =t sin 30°(t 为参数),即⎩⎪⎨⎪⎧x =32t -1,y =12t(t 为参数).(2)直线AF 2的斜率k =-3,倾斜角是120°,设P (ρ,θ)是直线AF 2上任一点,则ρsin 60°=1sin (120°-θ),ρsin(120°-θ)=sin 60°,则ρsin θ+3ρcos θ= 3.[反思感悟] (1)本题考查了极坐标方程和参数方程的求法及应用.重点考查了转化与化归能力.(2)当用极坐标或参数方程研究问题不很熟练时,可以转化成我们比较熟悉的普通方程求解.(3)本题易错点是计算不准确,极坐标方程求解错误.【自主体验】已知直线l 的参数方程为⎩⎨⎧ x =4-2t y =t -2(t 为参数),P 是椭圆x 24+y 2=1上任意一点,求点P 到直线l 的距离的最大值.解 将直线l 的参数方程⎩⎨⎧x =4-2ty =t -2(t 为参数)转化为普通方程为x +2y =0,因为P 为椭圆x 24+y 2=1上任意一点, 故可设P (2cos θ,sin θ),其中θ∈R . 因此点P 到直线l 的距离d =|2cos θ+2sin θ|12+22=22⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫θ+π45. 所以当θ=k π+π4,k ∈Z 时, d 取得最大值2105.一、填空题1.(2014·芜湖模拟)直线⎩⎨⎧x =-2-2t ,y =3+2t(t 为参数)上与点A (-2,3)的距离等于2的点的坐标是________.解析 由题意知(-2t )2+(2t )2=(2)2,所以t 2=12,t =±22,代入⎩⎪⎨⎪⎧x =-2-2t ,y =3+2t(t 为参数),得所求点的坐标为(-3,4)或(-1,2). 答案 (-3,4)或(-1,2)2.(2014·海淀模拟)若直线l :y =kx 与曲线C :⎩⎨⎧x =2+cos θ,y =sin θ(参数θ∈R )有唯一的公共点,则实数k =________.解析 曲线C 化为普通方程为(x -2)2+y 2=1,圆心坐标为(2,0),半径r =1.由已知l 与圆相切,则r =|2k |1+k 2=1⇒k =±33.答案 ±333.已知椭圆的参数方程⎩⎨⎧x =2cos t y =4sin t (t 为参数),点M 在椭圆上,对应参数t =π3,点O 为原点,则直线OM 的斜率为________.解析 当t =π3时,x =1,y =23,则M (1,23),∴直线OM 的斜率k =2 3. 答案 2 34.(2013·湖南卷)在平面直角坐标系xOy 中,若l :⎩⎨⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎨⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为________. 解析 ∵x =t ,且y =t -a , 消去t ,得直线l 的方程y =x -a , 又x =3cos φ且y =2sin φ,消去φ, 得椭圆方程x 29+y 24=1,右顶点为(3,0),依题意0=3-a , ∴a =3. 答案 35.直线3x +4y -7=0截曲线⎩⎨⎧x =cos α,y =1+sin α(α为参数)的弦长为________.解析 曲线可化为x 2+(y -1)2=1,圆心(0,1)到直线的距离d =|0+4-7|9+16=35,则弦长l =2r 2-d 2=85.答案 856.已知直线l 1:⎩⎨⎧ x =1-2t ,y =2+kt (t 为参数),l 2:⎩⎨⎧x =s ,y =1-2s (s 为参数),若l 1∥l 2,则k =________;若l 1⊥l 2,则k =________.解析 将l 1、l 2的方程化为直角坐标方程得l 1:kx +2y -4-k =0,l 2:2x +y -1=0,由l 1∥l 2,得k 2=21≠4+k1⇒k =4,由l 1⊥l 2,得2k +2=0⇒k =-1. 答案 4 -17.(2012·广东卷)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧ x =t ,y =t (t 为参数)和⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),则曲线C 1与C 2的交点坐标为________.解析 曲线C 1的普通方程为y 2=x (y ≥0), 曲线C 2的普通方程为x 2+y 2=2.由⎩⎪⎨⎪⎧y 2=x (y ≥0),x 2+y 2=2,解得⎩⎪⎨⎪⎧ x =1,y =1,即交点坐标为(1,1). 答案 (1,1)8.直角坐标系xOy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,设点A ,B 分别在曲线C 1:⎩⎨⎧ x =3+cos θ,y =sin θ(θ为参数)和曲线C 2:ρ=1上,则|AB |的最小值为________.解析 消掉参数θ,得到关于x 、y 的一般方程C 1:(x -3)2+y 2=1,表示以(3,0)为圆心,以1为半径的圆;C 2:x 2+y 2=1,表示的是以原点为圆心的单位圆,|AB |的最小值为3-1-1=1.答案 19.(2012·湖南卷)在极坐标系中,曲线C 1:ρ(2cos θ+sin θ)=1与曲线C 2:ρ=a (a >0)的一个交点在极轴上,则a =______.解析 ρ(2cos θ+sin θ)=1,即2ρcos θ+ρsin θ=1对应的普通方程为2x +y -1=0,ρ=a (a >0)对应的普通方程为x 2+y 2=a 2.在2x +y -1=0中,令y =0,得x =22.将⎝ ⎛⎭⎪⎫22,0代入x 2+y 2=a 2得a =22. 答案 22二、解答题10.(2013·新课标全国Ⅰ卷)已知曲线C 1的参数方程为⎩⎨⎧ x =4+5cos t ,y =5+5sin t(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).解 (1)将⎩⎨⎧x =4+5cos t ,y =5+5sin t 消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0.将⎩⎨⎧ x =ρcos θ,y =ρsin θ代入x 2+y 2-8x -10y +16=0得ρ2-8ρcos θ-10ρsin θ+16=0. 所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.(2)C 2的普通方程为x 2+y 2-2y =0.由⎩⎨⎧x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0, 解得⎩⎨⎧ x =1,y =1或⎩⎨⎧ x =0,y =2.所以C 1与C 2交点的极坐标分别为⎝ ⎛⎭⎪⎫2,π4,⎝ ⎛⎭⎪⎫2,π2. 11.(2013·新课标全国Ⅱ卷)已知动点P 、Q 都在曲线C :⎩⎨⎧ x =2cos t ,y =2sin t(t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点.(1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 解 (1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α),因此M (cos α+cos 2α,sin α+sin 2α).M 的轨迹的参数方程为⎩⎨⎧ x =cos α+cos 2α,y =sin α+sin 2α,(α为参数,0<α<2π). (2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π).当α=π时,d =0,故M 的轨迹通过坐标原点.12.(2012·新课标全国卷)已知曲线C 1的参数方程是⎩⎨⎧x =2cos φ,y =3sin φ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2,正方形ABCD 的顶点都在C 2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为⎝ ⎛⎭⎪⎫2,π3. (1)求点A ,B ,C ,D 的直角坐标;(2)设P 为C 1上任意一点,求|P A |2+|PB |2+|PC |2+|PD |2的取值范围.解 (1)由已知可得A ⎝ ⎛⎭⎪⎫2cos π3,2sin π3, B ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+π2,2sin ⎝ ⎛⎭⎪⎫π3+π2, C ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+π,2sin ⎝ ⎛⎭⎪⎫π3+π, D ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+3π2,2sin ⎝ ⎛⎭⎪⎫π3+3π2, 即A (1,3),B (-3,1),C (-1,-3),D (3,-1).(2)设P (2cos φ,3sin φ),令S =|P A |2+|PB |2+|PC |2+|PD |2,则S =16cos 2φ+36sin 2φ+16=32+20sin 2φ.因为0≤sin 2φ≤1,所以S 的取值范围是[32,52].。
人教A版数学【选修4-4】ppt课件:第二讲《参数方程》小结
本讲小结
知识结构
知识要点
方法技巧
本讲主要介绍了参数方程的概念,以及常用曲线的参数方程和 它们的应用. 1.曲线参数方程的定义 一般地,在给定的坐标系中,如果曲线上任意一点的坐标x,y 都是某个变量t的函数
x=ft, y=gt.
(1)
并且对于t的每一个允许值,由方程(1)所确定的点M(x,y) 都在这条曲线上,那么方程(1)就叫作这条曲线的参数方程, 联系x,y之间关系的变数叫作参变数,简称参数.参数方程的 参数可以有物理意义,几何意义,也可以没有明显的意义.
(t为参数).
代入圆的方程x2+y2=7,得 3 2 1 2 (-4+ t) +( t) =7,化简得 2 2 t2-4 3t+9=0.
(1)设点A,B所对应的参数分别为t1和t2,由韦达定理,得t1+ t2=4 3,t1· t2=9. ∴|AB|=|t1-t2| = t1+t22-4t1t2 = 4 32-4×9=2 3. (2)设过P0作圆的切线为P0T. 由切割线定理及参数t的几何意义得 |P0T|2=|P0A|· |P0B|=|t1t2|=9. ∴切线长|P0T|=3.
在互化后某个变量的范围扩大了(或缩小了),则必须注明,将 扩大(或缩小)的部分去掉(或补上).由于选取参数不同,同一 曲线的参数方程也不一样.因此,一般曲线的参数方程不唯 一.另外,不是所有的参数方程都能用初等方法化为普通方程 的. 化参数方程为普通方程,常用的方法有:代入法、三角恒 等式消参数法、代数恒等式消参数法等.
(φ 为参数).
【答案】
x=2cosφ+φsinφ, y=2sinφ-φcosφ
(φ为参数)
x=2φ-sinφ, y=21-cosφ
2.1曲线的参数方程 第二课时 课件(人教A版选修4-4)
1.直线y=ax+b通过第一、二、四象限,则圆
x a rcos , y b rsin (θ为参数)的圆心位于(
B)
A.第一象限 C.第三象限 A.(-1+cos θ,sin θ) C.(-1+2cos θ,2sin θ)
B.第二象限 D.第四象限 B.(1+sin θ,cos θ) D.(1+2cos θ,2sin θ)
上的动点,∠AOQ的平分线交AQ于点M.当点Q在圆C上运动
时,求点M的轨迹方程.
解析:设点 O 到 AQ 的距离为 d,则 1 1 |AM|· d= |OA|· |OM|· sin ∠AOM, 2 2 1 1 |QM|· d= |OQ|· |OM|· sin ∠QOM. 2 2 |AM| |OA| 2 → 2 → 又∵∠AOM=∠QOM,∴ = = .∴AM= AQ. |QM| |OQ| 1 3 ∵点 Q 是圆 x2+y2=1 上的点, ∴设点 Q 的坐标为(cos θ, sin θ),M(x,y),得 2 (x-2,y-0)= (cos θ-2,sin θ-0), 3 2 2 2 即 x- = cos θ,y= sin θ. 3 3 3 2 4 2 2 两式平方相加,得x-3 +y = , 9 2 4 2 2 ∴点 M 的轨迹方程为x-3 +y = . 9
∵cos2t+sin2t=1,∴(x-1)2+(y+2)2=4. 由于 0≤t≤π,∴0≤sin t≤1,从而 0≤y+2≤2, 即-2≤y≤0. ∴所求的曲线的参数方程为 (x-1)2+(y+2)2=4(-2≤y≤0). 这是一个半圆,其圆心为(1,-2),半径为 2.
圆的直径AB上有两点C,D,且|AB|=10,|AC|
把它化为普通方程,并判断该曲线表示什么图形. 分析:把曲线的参数方程化为普通方程,就是将参数方 程中的参变量消去,常用的消参法有代入法、加减消元法、 乘除消元法、三角消元法,但要注意消去参数时变量范围的 一致性.
高中数学人教A版选修4-4课件:2.1曲线的参数方程
2
所以 sin θ +
4
,所以 θ+ ∈
4
∈
2
,1
2
3
,
4 4
4
Hale Waihona Puke ..,即 2sin θ +
故 x+y 的最大值是 2,最小值是 1.
4
∈ 1, 2 .
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
关系比较明显,容易列出方程.
首 页
1
2
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
3
思考 2 求曲线参数方程的步骤是什么?
提示:第一步,画出轨迹草图,设 M(x,y)是轨迹上任意一点的坐标.画图
时要注意根据几何条件选择点的位置,以利于发现变量之间的关系.
C.相切
D.相离
解析:圆的普通方程为 x2+y2=4,圆心(0,0)到直线 xcos φ+ysin φ-2=0 的距离
2
1
d= =2.因为圆的半径为 2,所以直线与圆相切.
答案:C
首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
1
x = 1 + 2θ,
3.将参数方程
HONGDIAN NANDIAN
1
2
1.与普通方程 xy=1 表示相同曲线的参数方程(t 为参数)是(
高考总数学(文)一轮总复习课件:选修4-4 第二节 参数方程
2.(2013·广西四校联考)极坐标方程ρ=cos x=-1-t,
θ和参数方程 y=2+3t (t为参数)所表示的图 形分别是________.
【解析】 ∵ρ=cos θ,∴ρ2=ρcos θ, ∴x2+y2=x,即x2-x+y2=0表示圆, ∵xy==2-+13-t,t,消t后,得3x+y+1=0,表示直线.
线段OP的中点,由代入法求曲线C2的参数方程;
(2)由于点A、B在射线θ=
π 3
上,分别求点A、B的
极径,进而确定|AB|的大小.
【尝试解答】 (1)由 O→P =2 O→M 知,点M是线段 OP的中点.
设点P(x,y),则M(x2,y2), ∵点M在曲线C1:xy==22+cos2sαin ,α,上,
方程判断曲线类型.
【尝试解答】
由xy==ba++ttcsions
θ, θ. ②
①
(1)当t为非零常数时,
原方程组为xy--tt ba==csions
θ, θ. ④
③
③2+④2得(x-t2 a)2+(y-t2 b)2=1,
即(x-a)2+(y-b)2=t2,它表示一个圆.
(2)当t=0时,表示点(a,b).
【思路点拨】 将直线的参数方程化为普通方程,根据 点到直线的距离公式得到关于θ的函数,转化为求函数的最 值.
π 【尝试解答】 当t= 2 时,P(-4,4);且Q(8cos θ,3sin θ),
故M(-2+4cos θ,2+32sin θ).
C3为直线x-2y-7=0,
M到C3的距离d=
5 5 |4cos
3.直线、圆、椭圆的参数方程
轨迹 直线
圆 椭圆
普通方程 y-y0=tan α(x-
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x 2, 2
练习、将下列参数方程化为普通方程:
x 2 3 cos (1) y 3 sin
(1) (x-2)2+y2=9
x sin (2) y cos2
x=t+1/t
(3)
y=t2+1/t2
(2) y=1- 2x2(- 1≤x≤1) 步骤:(1)消参; (2)求定义域。 (3) x2- y=2(x≥2或x≤- 2)
A(2,7); B(1/3, 2/3) 3
C(1/2, 1/2)
D(1,0)
x 1 2t 已知曲线C的参数方程是 y at 2 (t为参数,a R)点M(5,4)
该曲线上. (1)求常数a; (2)求曲线C的普通方程
(1)由题意可知: 1+2t=5,at2=4;a=1,t=2;
x=100t=1000,
t=10,
y=gt2/2=10×102/2=500m.
练习
x 1 t 2 与x轴的交点坐标是( B ) 1、曲线 y 4t 3(t为参数)
A(1,4); B (25/16, 0)
C(1, -3)
D(±25/16, 0)
x sin (为参数)所表示的曲线上一点的坐标是( D ) 2、方程 y cos
( x 3)2 ( y 4)2 4
上的一点,求 PA PB 的最大值和最小值以及对应P点的 坐标.
x 3 2 cos y 4 2 sin
2 2
2
2
PA PB
(4 2 cos )2 (4 2 sin )2 (2 2 cos )2 (4 2 sin )2
练习: 曲线y=x2的一种参数方程是(
2 x t A、 4 y t
).
x t D、 2 y t
x sin t B、 2 y sin t
x t C、 y t
解: 在y=x2中,x∈R,
y≥0,
在A、B、C中,x, y的范围都发生了变化, 因而与 y=x2不等价; 而在D中, x, y范围与y=x2中x, y的范围相同, 代入y=x2后满足该方程,
其中参数θ的几何意义是OM0绕点O逆时针旋转到 OM的位置时,OM0转过的角度 y 圆心为O1 (a, b) , 半径为r 的圆的参数方程 x a r cos (为参数) y b r sin
b
v O
P r y x
a
x
一般地,同一条曲线,可以选取不同的变数为参数, 另外,要注明参数及参数的取值范围。
例2 求参数方程
x | cos sin |, 2 2 (0 2 ) y 1 (1 sin ) 2
表示( B ) (A)双曲线的一支, 这支过点(1, 1/2); (B)抛物线的一部分, 这部分过(1, 1/2); (C)双曲线的一支, 这支过点(–1, 1/2); (D)抛物线的一部分, 这部分过(–1, 1/2).
曲线的参数方程和普通方程是曲线方程的不同形式. 把参数方程化为普通方程: 一般地, 可以通过消去参数而从参数方程得到普通 方程; 在参数方程与普通方程的互化中,必须使x,y的取 值范围保持一致,否则,互化就是不等价的.
例1、把下列参数方程化为普通方程,并说明它们 各表示什么曲线?
x= sin cos x= t 1 (1) (t为参数) (2) ( 为参数). y 1 sin 2 y 1 2 t
上的点是 ( B )
D (1, 3)
参数方程求法: (1)建立直角坐标系, 设曲线上任一点P坐标为; (2)选取适当的参数; (3)根据已知条件和图形的几何性质, 物理意义, 建 立点P坐标与参数的函数式; (4)证明这个参数方程就是所由于的曲线的方程 .
圆的参数方程
圆心为原点半径为r 的圆的参数方程. x r cos ( 为参数 ) y r sin
5、由方程x y 4tx 2ty 5t 4 0( t为
2 2 2
参数)所表示的一族圆的圆心 轨迹是 D
A 一个定点 B 一个椭圆 C 一条抛物线 D 一条直线
x sin 2 5下列在曲线 y cos sin (为参数) 3 1 1 ( , 2) ( , ) C (2, 3) A 2 B 4 2
解: (1)由 x t 1 1
得 t x 1 代入 y 1 2 t
得到 y 2 x 3( x 1) 这是以(1,1)为端点的一条射线;
( 2) x si n cos 2 si n (
4
)
所以x
2, 2
把 x sin cos平方后减去y 1 sin2
例1 如图,圆O的半径为2,P是圆上的动点,Q(6,0) 是x轴上的定点,M是PQ的中点,当点P绕O作匀速圆周 运动时,求点M的轨迹的参数方程。 y P 解:设点M的坐标是(x, y), M xOP Q o x 则点P的坐标是(2cosθ,2sinθ). 由中点坐标公式可得
2 cos 6 2sin x 3 cos , y sin 2 2
60 8(3 cos 4 sin )
60 40sin( )
参数方程和普通方程的互化
x 3 cos , 在例1中,由参数方程 y sin . ( 为参数)
直接判断点M的轨迹是什么并不方便,
把它化为我们熟悉的普通方程,有 cosθ=x-3, sinθ=y; 于是(x-3)2+y2=1, 轨迹是什么就很清楚了
x 3t 已知曲线C的参数方程是 y 2 t 2 1 (为参数)
这个方程无解,所以点M2不在曲线C上.
解得t=2, a=9 所以,a=9.
练习:一架救援飞机以100m/s的速度作水平直线 飞行.在离灾区指定目标1000m时投放救援物资(不计空 气阻力,重力加速 g=10m/s)问此时飞机的飞行高度约是 多少?(精确到1m)
普通方程化为参数方程:
普通方程化为参数方程需要引入参数:
如:直线 l 的普通方程是 2x-y+2=0,可以化为参数方程: x t (t为参数) y 2t 2
一般地, 如果知道变量x, y中的一个与参数t的关系,例 如x=f(t),把它代入普通方程,求出另一个变量与参数t的 关系y=g(t),那么:
x f (t ) y g( t )
就是曲线的参数方程。 在参数方程与普通方程的互化中,必须使x, y的取 值范围保持一致
x2 y2 1 的参数方程: 例3 求椭圆 9 4
(1)设 x 3cos , 为参数;
(2)设 y 2t , t 为参数.
为什么两个参数方程合起来才是椭圆的参数方程?
例1:
(1)判断点M1(0,1),M2(5,4)与曲线C的位置关系; (2)已知点M3(6,a)在曲线C上,求a的值。 解:(1)把点M1的坐标(0,1)代入方程组,解得t=0,所 以M1在曲线上.
5 3t 把点M2的坐标(5,4)代入方程组,得到 4 2t 2 1
6 3t (2)因为点M3(6,a)在曲线C上,所以a 2t 2 1
x 1 ( 2 )t 2
代入第二个方程得: y=(x-1)2/4
4 动点M作等速直线运动, 它在x轴和y轴方向的速 度分别为5和12 , 运动开始时位于点P(1,2), 求点M的轨迹 参数方程.
解:设动点M (x,y) 运动时间为t,依题意,得
x 1 5t y 2 12t
从而D是曲线y=x2的一种参数方程.
在参数方程与普通方程的互化中,必须使x,y 的取值范围保持一致。否则,互化就是不等价的.
所以S 3x y 3(1 2cos ) (2 2sin ) 5 6cos 2sin 5 2 10 cos( ) 1 (tan ) 3
Smax 5 2 10, Smin 5 2 10
例3 已知A(―1,0)、B(1,0),P为圆
因此,点M的轨迹的参数方程是
x 3 cos , ( 为参数) y sin .
例2 已知x、y满足( x 1)2 ( y 2)2 4 ,求 S 3 x y 的最大值和最小值.
x 1 2cos , ( 为参数) 解:由已知圆的参数方程为 y 2 2sin .
第二讲:参平面直角坐标系中,如果曲线上任意一 点的坐标 x,y 都是某个变数 t 的函数
x f (t ), y g (t ).
并且对于 t 的每一个允许值,由方程组所确定的点 M(x, y) 都在这条曲线上, 那么方程组就叫做这条曲线的参数方程,联系变数 x, y 的变数 t 叫做参变数,简称参数。 相对于参数方程而言,直接给出点的坐标间关系的 方程叫做普通方程。 参数是联系变数x, y的桥梁,可以是一个有物理意义 或几何意义的变数,也可以是没有明显实际意义的变数。