常见曲线的参数方程
第十二章 坐标系与参数方程[选修4-4]第二节 参数方程
距离是________.
解析:直线方程可化为 x-y+1=0,圆的方程可化为(x -1)2+y2=1.由点到直线的距离公式可得,圆心 C(1,0)到 |2| 直线 l 的距离为 2 2= 2. 1 +-1
答案: 2
x=1+3t, 5.(2012· 湖南十二校联考)若直线的参数方程为 y=2- 3t
解析:由 y=t-1,得 t=y+1,代入 x=3t+2,得 x =3y+5, 即 x-3y-5=0.
答案:x-3y-5=0
x=5cos θ, 2.(教材习题改编)曲线 y=3sin θ
(θ 为参数)的左焦点
的坐标是________.
x2 y2 解析:化为普通方程为 + =1,故左焦点为(-4,0). 25 9
x=2t+2a, y=-t
(t 为参数),曲线
x=2cos θ, C2: y=2+2sin θ
(θ 为
参数).若曲线 C1,C2 有公共点,则实数 a 的取值范围 是________.
解析:将曲线 C1,C2 的参数方程化为普通方程, 得 C1:x+2y-2a=0,C2:x2+(y-2)2=4. 因为曲线 C1 与 C2 有公共点, |4-2a| 所以圆心到直线的距离 ≤2, 5 解得 2- 5≤a≤2+ 5.
[自主解答] =16.
由圆C的参数方程可得其标准方程为x2+y2
π 因为直线l过点P(2,2),倾斜角α= ,所以直线l的参数 3 π x=2+tcos3, 方程为 y=2+tsinπ, 3 1 x=2+2t, 即 y=2+ 3t 2
(t为参数).
1 x=2+2t, 把直线l的参数方程 y=2+ 3t 2
去参数;
(2)利用三角恒等式消去参数; (3)根据参数方程本身的结构特征,选用一些灵活的方 法从整体上消去参数. 2.将参数方程化为普通方程时,要注意防止变量x和y
常见曲线的参数方程
2.2 常见曲线的参数方程 第一节 圆锥曲线的参数方程一椭圆的参数方程1、中心在坐标原点,焦点在x 轴上,标准方程是22221(0)x y a b a b+=>>的椭圆的参数方程为cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数)同样,中心在坐标原点,焦点在y 轴上,标准方程是22221(0)y x a b a b+=>>的椭圆的参数方程为cos (sin x b y a ϕϕϕ=⎧⎨=⎩为参数)2、椭圆参数方程的推导如图,以原点O 为圆心,,()a b a b o >>为半径分别作两个同心圆,设A 为大圆上的任一点,连接OA ,与小圆交于点B ,过点,A B 分别作x 轴,y 轴的垂线,两垂线交于点M 。
设以Ox 为始边,OA 为终边的角为ϕ,点M 的坐标是(,)x y 。
那么点A 的横坐标为x ,点B 的纵坐标为y 。
由于点,A B 都在角ϕ的终边上,由三角函数的定义有cos cos ,sin sin x OA a y OB b ϕϕϕϕ==== 3当半径OA 绕点O 旋转一周时,就得到了点M 的轨迹,它的参数方程是cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数)这是中心在原点O ,焦点在x 轴上的椭圆的参数方程。
3、椭圆的参数方程中参数ϕ的意义 圆的参数方程cos (sin x r y r θθθ=⎧⎨=⎩为参数)中的参数θ是动点(,)M x y 的旋转角,但在椭圆的参数方程cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数)中的参数ϕ不是动点(,)M x y 的旋转角,它是动点(,)M x y 所对应的圆的半径OA (或OB )的旋转角,称为点M 的离心角,不是OM 的旋转角,通常规定[)0,2ϕπ∈ 4、椭圆参数方程与普通方程的互化可以借助同角三角函数的平方关系将普通方程和参数方程互化。
①由椭圆的参数方程cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数,0)a b >>,易得cos ,sin x ya b ϕϕ==,可以利用平方关系将参数方程中的参数ϕ化去得到普通方程22221(0)x y a b a b+=>>②在椭圆的普通方程22221(0)x y a b a b +=>>中,令cos ,sin x ya bϕϕ==,从而将普通方程化为参数方程cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数,0)a b >>注:①椭圆中参数的取值范围:由普通方程可知椭圆的范围是:,a x a b y b -≤≤-≤≤,结合三角函数的有界性可知参数[)0,2ϕπ∈②对于不同的参数,椭圆的参数方程也有不同的呈现形式。
常见曲线的参数方程
双曲线参数方程
04
双曲线标准形式及性质
标准形式
$frac{x^2}{a^2} - frac{y^2}{b^2} = 1$ ($a, b > 0$)
性质
双曲线有两个焦点,位于x轴上,距离原点的距离为$c$,其中$c^2 = a^2 + b^2$。双曲线上的任意一点到两 焦点的距离之差为定值$2a$。
椭圆性质
椭圆有两个焦点,任意一点到两焦点 的距离之和等于长轴的长度;椭圆关 于中心对称,也关于两焦点所在的直 线对称。
椭圆参数方程推导
参数方程形式
$x = acostheta, y = bsintheta$,其中$theta$为参数,表 示与$x$轴的夹角。
推导过程
由椭圆的标准形式,设$x = acostheta$,代入椭圆方程可得 $y = pm bsqrt{1 - frac{x^2}{a^2}} = pm bsqrt{1 cos^2theta} = pm bsintheta$。由于椭圆关于$x$轴对称, 故取正号,得到椭圆的参数方程。
常见曲线的参数方程
汇报人:XX
contents
目录
• 曲线基本概念与分类 • 直线与圆参数方程 • 椭圆参数方程 • 双曲线参数方程 • 抛物线参数方程 • 空间曲线参数方程简介
曲线基本概念与分
01
类
曲线定义及性质
曲线定义
曲线是动点运动时,其位置随时 间连续变化所形成的轨迹。
曲线性质
曲线具有连续性、光滑性、可微 性等性质,这些性质决定了曲线 的形态和特性。
参数方程定义
参数方程是一种通过引入参数来表示 变量间关系的方程形式。在参数方程 中,曲线的坐标被表示为参数的函数 。
常见曲线的参数方程PPT课件
2a
x
.
6
y
o
Mt a
A
C
x
x AC OMsint y OCOMcost
a(t sint)
a(1cost)
这就是旋轮线的参数方程。
7
2. 旋轮线也叫摆线(单摆)
将旋轮线的一拱一分为二,并倒置成挡板
8
.
9
10
两个旋轮线形状的挡板, 使摆动周期与摆幅完全无关。 在17世纪,旋轮线即以此性质出名,所以旋轮线又称摆线。
a
o
a
xHale Waihona Puke 16y.a
o
来看动点的慢动作
a
x
17
y
a
o 来看动点的慢动作
a
x
2a
.
18
参数方程
y
r = a (1+cosθ) r
o
P
x
2a
.
19
y
5.星形线(圆内旋轮线)
一圆沿另一圆
内缘无滑动地
滚动,动圆圆
周上任一点
所画出的曲线。
–a
o
a 4
ax
20
y
.
–a
o
来看动点的慢动作
ax
21
y
–a
o
问答
问题提问与解答
HERE COMES THE QUESTION AND ANSWER SESSION 45
添加
添加
添加 标题
标题
标题
添加
标题
此处结束语
点击此处添加段落文本 . 您的内容打在这里,或通过 复制您的文本后在此框中选择粘贴并选择只保留文字
46
高等数学特殊参数曲线
高等数学特殊参数曲线1、特殊参数曲线的定义特殊参数曲线是指由参数方程表示的曲线,其中参数的取值范围或取值特点与曲线的性质密切相关。
特殊参数曲线常见的类型有直线、抛物线、椭圆、双曲线等。
2、直线的参数方程直线的参数方程一般表示为:x = a + mty = b + nt其中a、b为直线上的一点坐标,m、n为方向向量,t为参数。
通过给定的参数方程,可以确定直线上的所有点。
3、抛物线的参数方程抛物线的参数方程一般表示为:x = a + bty = c + dt + et^2其中a、b、c、d、e为常数,t为参数。
抛物线的参数方程可以描述抛物线的形状、开口方向等特征。
4、椭圆的参数方程椭圆的参数方程一般表示为:x = a + rcos(t)y = b + rsin(t)其中a、b为椭圆中心的坐标,r为椭圆的半长轴、半短轴的比值,t为参数。
通过给定的参数方程,可以确定椭圆上的所有点。
5、双曲线的参数方程双曲线的参数方程一般表示为:x = a + rsec(t)y = b + rtan(t)其中a、b为双曲线中心的坐标,r为双曲线的半长轴、半短轴的比值,t为参数。
双曲线的参数方程可以描述双曲线的形状、开口方向等特征。
特殊参数曲线是描述曲线形状的一种方式。
通过给定的参数方程,可以准确地确定曲线上的各个点。
不同类型的曲线有不同的参数方程,每个参数曲线都有其独特的性质。
掌握特殊参数曲线的参数方程是研究曲线性质和解题的重要基础。
在数学学习中,我们需要通过参数方程的形式,深入理解曲线的性质,运用相关知识解决实际问题。
13.2 参数方程
1 (2)若把曲线 C1 上各点的横坐标压缩为原来的 倍,纵坐 2
3 标压缩为原来的 倍得到曲线 C2,设点 P 是曲线 C2 上的一 2
个动点,求它到直线 l 的距离的最小值. 思维导引:(1)先把直线和圆的参数方程化为普通方程,然 后利用直线被圆所截弦长公式求解;(2)先根据伸缩变换 写出曲线 C2 的参数方程,从而写出点 P 的坐标,然后根据点 到直线的距离公式求出目标函数,最后求最值.
考点二 参数方程及其应用
【例 2】 (2013 内蒙古包头市模拟)已知直线
1 x 1 t, x cos , 2 l: (t 为参数),曲线 C1: y sin y 3t 2
(θ 为参数). (1)设 l 与 C1 相交于 A、B 两点,求|AB|;
3 d 取得最小值,最小值为 (- 2 +2)= 4
反思归纳
一般地 ,如果题目中涉及圆、椭圆
上的动点或求最值范围问题时可考虑用参数方 程,设曲线上点的坐标,将问题转化为三角恒等 变换问题解决,使解题过程简单明了.
即时突破 2 已知点 P(x,y)是圆 x +y =2y 上的动点 .
(1)求 2x+y 的取值范围; (2)若 x+y+a ≥0 恒成立,求实数 a 的范围.
π ρ cos =t,若两曲线有公共点,则 t 的取值范 3
围是 .
解析:将曲线 C1 的参数方程化为普通方程得 (x-2)2+y2=4, 即曲线 C1 是以(2,0)为圆心,2 为半径的圆, 将曲线 C2 的极坐标方程化成直角坐标方程得 x- 3 y-2t=0.
∵两曲线有公共点, ∴圆心(2,0)到直线 x- 3 y-2t=0 的距离
参数方程的简单应用
5 .参数方程与普通方程的互化。
6 .参数方程的应用。
1.曲线的参数方程的概念
在取定的坐标系中,如果曲线上任意一 点的坐标 x, y 都是某个变数 t 的函数
x f (t ), y (t ),
(1)
并且对于t 的每一个允许值,由方程组 (1) 确定的点M( x, y ),都在这条曲线上, 那么方程组 (1) 就叫做这条曲线的参数 方程。
B
O
y
A
O D
x
C
x 2 例4: 已知点P(x,y)是椭圆 y 1 4 上一点,求 2x+y 的最值
解:设P(2cosθ,sinθ), 则 2x+y= 4cosθ+sinθ
4 1 17 ( cos sin ) 17 17值为: 17,最小值为: 17
课堂小结
利用椭圆的参数方程来表示椭圆 上点的坐标,使其只含有一个变量, 在求最值的问题中比较简便. 对于一些求轨迹方程的问题,借 助参数联系曲线上点的横纵坐标的关 系,建立曲线的参数方程,消去参数, 得到普通方程.
5.参数方程与普通方程的互化
(1)参数方程 普通方程
消去参数
普通方程; 参数方程.
设适当的参数
(2)参数方程化为普通方程的方法: ①代入法:从x=f(t)中解出t用x表示,代人到 y=g(x)中,就得到普通方程。 ②公式法:利用三角公式或代数公式消去参数, 就得到普通方程.
常用的三角公式有:sin2x+cos2x=1; Sec2x-tg2x=1; csc2x-ctg2x=1;
2
2
2
b (1)当 0 b c 时,有 0 2 1 c 2 b 当 sin 2 时, |PB|2取得最大值 c 2 2 a 2 a 为 ( ) ,即|PB|取得最大值为 . c c 2 b (2)当 0 c b 时,有 2 1 c 当sinθ=-1 时, |PB|取得最大值为2b.
常见曲线的参数方程总结
x
a
曲线,是一条极其迷人的曲线,在生活中应用广泛。
1. 旋轮线
一圆沿直线无滑动地滚动,圆上任一点所画出的
x
来看动点的慢动作
2a
2a
0
y
x
a
x = a (t – sint) y = a (1– cost)
t 的几何意义如图示
t
a
当 t 从 0 2,x从 0 2a
即曲线走了一拱
a
.
参数方程
o
a
C
A
x
y
这就是旋轮线的参数方程。
将旋轮线的一拱一分为二,并倒置成挡板
2. 旋轮线也叫摆线(单摆)
两个旋轮线形状的挡板, 使摆动周期与摆幅完全无关。 在17世纪,旋轮线即以此性质出名,所以旋轮线又称摆线。
B
A
答案是:当这曲线是一条翻转的旋轮线。
最速降线问题: 质点在重力作用下沿曲线从固定点A滑到固定点B, 当曲线是什么形状时所需要的时间最短?
4.
0
x
y
x+y+a = 0
曲线关于 y= x 对称
曲线有渐近线 x+y+a=0
.
0
x
y
P
r
.
.
.
.
.
.
.
.
.
.
曲线在极点自己相交,与此对应的角度为 =
.
.
.
.
.
距离之积为a2的点的轨迹
直角系方程
8.双纽线
0
x
y
.
所围面积
.
.
.
由对称性
.
例1 求双纽线
曲线参数方程
曲线参数方程
曲线参数方程是数学中的一种表示曲线的方法,它是由参数方程得到的。
参数方程是指将一条曲线的x和y坐标都表示为一个值t的函数,这个t值称为参数。
曲线参数方程可以用于描述各种复杂的图形,它常用于物理、工程和计算机图形学等领域。
曲线参数方程的一般形式是:
x=f(t)
y=g(t)
其中,函数f(t)和g(t)都是关于参数t的函数。
通过不同的参数值t,我们可以得到曲线上的不同点坐标(x,y)。
例如,对于一个圆形,它的参数方程可以表示为:
x=r*cos(t)
y=r*sin(t)
其中,r为圆的半径,参数t在0~2π之间取值,表示圆上的点的位置。
类似地,对于其他的曲线形状,可以通过不同的f(t)和g(t)函数来表示。
使用曲线参数方程可以使得我们更加方便地进行坐标运算和图像变换。
同时,在一些数学问题中,例如求曲线长度、曲线与坐标轴围成面积等,使用参数方程可以更加方便地进行计算。
需要注意的是,在使用曲线参数方程时,我们需要根据实际问题确定参数t的取值范围,以确保我们得到的曲线上的点都是符合要求的。
总之,曲线参数方程是一种非常有用的数学工具,它为我们的数学和工程问题提供了方便、快捷的解决方案。
无论是从理论上还是实际应用中来看,曲线参数方程都是一种非常值得探究和研究的数学工具。
曲线与曲面的参数方程
曲线与曲面的参数方程曲线与曲面是数学中非常重要的概念,我们在生活中也可以发现许多物体的形状都可以用曲线与曲面来描述。
这篇文章将介绍曲线与曲面的参数方程,为大家解答这个问题。
一、曲线的参数方程曲线是指在平面或空间中的一条连续的线,因为曲线有弯曲和曲度的特性,所以需要用一种方法来描述它的特性。
参数方程就是一种常用的描述曲线特性的方法。
曲线的参数方程可以用一组参数来表示曲线上的每个点的位置,通常可以表示为:$$\begin{cases}x=f(t) \\ y=g(t)\end{cases}$$这就是二维平面曲线的参数方程,其中 $t$ 是参数,$f(t)$ 和$g(t)$ 是随参数 $t$ 的变化而改变的函数。
例如,坐标系上的圆可以用以下参数方程来表示:$$\begin{cases}x=r\cos t \\ y=r\sin t \end{cases}$$其中 $r$ 是圆的半径,$t$ 的取值范围是 $0\leq t<2\pi $。
当$t=0$ 时,表示圆的起点,当 $t=2\pi$ 时,表示圆的终点。
因为$t$ 是参数,所以可以用不同的参数方程来描述同一个曲线,例如:$$\begin{cases}x=r\cos \omega t \\ y=r\sin \omega t \end{cases}$$其中 $\omega$ 是常数,这也是描述圆的参数方程,只不过经过了缩放,并且运动速度变快了。
同样,空间中的曲线也可以用参数方程来表示,通常可以表示为:$$\begin{cases}x=f(t) \\ y=g(t) \\ z=h(t) \end{cases}$$这就是三维空间中曲线的参数方程,其中 $t$ 是参数,$f(t)$、$g(t)$ 和 $h(t)$ 是随参数 $t$ 的变化而改变的函数。
例如,直线的参数方程可以表示为:$$\begin{cases}x=x_0+at \\ y=y_0+bt \\ z=z_0+ct \end{cases}$$其中 $(x_0,y_0,z_0)$ 是直线上的一个点,$(a,b,c)$ 是直线的方向向量。
高中数学 2.4 一些常见曲线的参数方程
2.4一些常见曲线的参数方程课时过关·能力提升1已知一个圆的参数方程为≤θ≤2π),则圆的摆线方程中参数t对应的点与点之间的距离为AC-,可知圆的半径为3,则它的摆线的参数方程为--把t代入参数方程中可得-即-故|AB|---2如图,ABCD是边长为1的正方形,曲线AEFGH…叫做“正方形的渐开线” 其中的圆心依次按循环它们依次相连接则曲线的长是A.3πB.4πC.5πD.6π,可知是半径为1的圆的周长的长度为继续旋转可得是半径为2的圆的周长的长度为是半径为3的圆的周长的长度为是半径为4的圆的周长的长度为2π.所以曲线AEFGH的长是5π.3我们知道关于直线y=x对称的两个函数互为反函数,则圆的摆线--关于直线对称的曲线的参数方程为--4已知一个圆的摆线方程是--则该圆的面积为渐开线方程为π-5给出直径为6的圆,分别写出对应的渐开线的参数方程和摆线的参数方程.,一条半径所在的直线为x轴,建立平面直角坐标系.因为圆的直径为6,所以半径为3,所以圆的渐开线的参数方程是-以圆周上的某一定点为原点,以过该定点的切线为x轴,建立平面直角坐标系,则摆线的参数方程为--6有一标准的渐开线齿轮,齿轮的齿廓线的基圆直径为22 mm,求齿廓线所在的渐开线的参数方程..22 mm,所以基圆的半径为11 mm,因此齿廓线所在的渐开线的参数方程为7已知圆C的参数方程是-≤α≤2π),直线l的普通方程是x-y-(1)如果把圆心平移到原点O,请问平移后圆和直线有什么位置关系?(2)写出平移后圆的渐开线方程.圆C平移后圆心为O(0,0),它到直线x-y-的距离为d恰好等于圆的半径,所以直线和圆是相切的.(2)由圆的半径是6,可得渐开线方程是-★8已知一个参数方程是如果把当成参数它表示的图形是直线设斜率存在如果把当成参数它表示半径为的圆(1)请写出直线和圆的普通方程;(2)如果把圆心平移到(0,a),求出圆对应的摆线的参数方程.如果把a看成参数,可得直线的普通方程为:y-2=tan α(x-2),即y=x tan α-2tan α+2,如果把α看成参数,当a>0时,它表示半径为a的圆,其普通方程为(x-2)2+(y-2)2=a2.(2)因为圆的圆心在(0,a),圆的半径为a,所以对应的摆线的参数方程为--★9如图,若点Q在半径AP上(或在半径AP的延长线上),当车轮滚动时,点Q的轨迹称为变幅摆线,取|AQ|或请推出的轨迹的参数方程Q(x,y),P(x0,y0),若A(rθ,r),则当|AQ|时,有代入--得点Q的轨迹的参数方程为--当|AQ|时,有代入--得点Q的轨迹方程为--。
各种曲线PROE的参数方程
45.梅花线(圆角五星)
方程:theta = t*360 r=10+(3*sin(theta*2.5))^2
9.双弧外摆线 方程: l=2.5
b=2.5 x=3*b*cos(t*360)+l*cos(3*t*360) Y=3*b*sin(t*360)+l*sin(3*t*360)
10.星形线 方程:a=5
x=a*(cos(t*360))^3 y=a*(sin(t*360))^3 11.心脏线
方程:a=10 r=a*(1+cos(theta))
theta=t*360 12.圆内螺旋线 方程:theta=t*360
r=10+10*sin(6*theta) z=2*sin(6*theta)
13.正弦线 方程:x=50*t y=10*sin(t*360) z=0
14.太阳线 (发光的太阳,见 73) 15.费马曲线(有点像螺纹线) 数学方程:r*r = a*a*theta
方程:a = 10 b = 20
theta = t*360*3 x = a*cos(theta) y = b*sin(theta)
z=t*12 49.空间螺旋梅花线 方程:theta = t*360*4 r=10+(3*sin(theta*2.5))^2
z = t*16 50 鼓形线 方程:r=5+3.3*sin(t*180)+t theta=t*360*10
方程:r = 5 theta = t*1800 z =(cos(theta-90))+24*t 21.三叶线 方程:a=1
曲线的参数方程
曲线的参数方程曲线的参数方程是数学中一种描述曲线形状的方法,通过给定参数的取值范围,我们可以得到曲线上的每一个点。
本文将详细介绍曲线的参数方程及其应用。
一、什么是曲线的参数方程曲线的参数方程是将曲线上的每个点的坐标表示为参数的函数形式。
以二维曲线为例,通常用参数 t 表示,曲线上的点的坐标可以表示为(x(t), y(t))。
其中,x(t) 和 y(t) 分别是参数 t 的函数。
通过给定参数 t 的取值范围,我们可以得到曲线上的所有点。
参数方程有许多种形式,常见的有直角坐标形式、极坐标形式和常数值形式等。
根据具体应用需求和曲线形状特点选择合适的参数方程形式。
二、直角坐标形式的参数方程直角坐标形式的参数方程将曲线上的点的坐标表示为直角坐标系中的 x 和 y 坐标分量的函数。
举个例子,我们考虑平面直线的参数方程。
假设直线通过点(x1, y1) 和 (x2, y2),则直线上坐标为 (x, y) 的点可以表示为:x(t) = x1 + (x2 - x1) * ty(t) = y1 + (y2 - y1) * t其中 t 的取值范围为 [0, 1],表示直线上的比例位置。
三、极坐标形式的参数方程极坐标形式的参数方程将曲线上的点的坐标表示为极坐标系中的极径和极角的函数。
以一个圆为例,其极坐标形式的参数方程为:r(t) = Rθ(t) = t * 2π其中 R 是圆的半径,t 的取值范围为 [0, 1]。
四、常见曲线的参数方程1. 直线:直线的参数方程可以使用直角坐标形式,通过给定两个端点的坐标实现参数化表达。
2. 圆:圆的参数方程可以使用极坐标形式,通过给定圆心和半径实现参数化表达。
3. 抛物线:抛物线的参数方程可以使用直角坐标形式,通过给定焦点、准线和离心率实现参数化表达。
4. 椭圆:椭圆的参数方程可以使用极坐标形式或直角坐标形式,通过给定焦点、离心率和长短轴实现参数化表达。
5. 双曲线:双曲线的参数方程可以使用极坐标形式或直角坐标形式,通过给定焦点、离心率和长短轴实现参数化表达。
参数方程
17 参数方程知识梳理1.曲线的参数方程在平面直角坐标系xOy 中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t ).并且对于t 的每一个允许值,由上述方程组所确定的点M (x ,y )都在这条曲线上,则该方程叫做这条曲线的参数方程,其中变数t 称为参数.2.一些常见曲线的参数方程(1)过点P 0(x 0,y 0),且倾斜角为α的直线的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数).(2)圆的方程(x -a )2+(y -b )2=r 2的参数方程为⎩⎪⎨⎪⎧x =a +r cos θy =b +r sin θ(θ为参数). (3)椭圆方程x 2a 2+y 2b2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos θy =b sin θ(θ为参数). (4)抛物线方程y 2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2y =2pt(t 为参数). 要点整合1.极坐标方程与参数方程互化时,以普通方程(直角坐标方程)为联系达到相互转化. 2.在利用参数方程求解具体问题时,注意参数的几何意义和范围. 3.数形结合思想是求有关参数方程的最值问题的高效方法.题型一.参数方程化为普通方程(或极坐标方程)例1.已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).[解] (1)将⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0.将⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ,代入x 2+y 2-8x -10y +16=0,得ρ2-8ρcos θ-10ρsin θ+16=0. 所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的普通方程为x 2+y 2-2y =0.由⎩⎪⎨⎪⎧x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0, 解得⎩⎪⎨⎪⎧x =1,y =1或⎩⎪⎨⎪⎧x =0,y =2. 所以C 1与C 2交点的极坐标分别为⎝⎛⎭⎫2,π4,⎝⎛⎭⎫2,π2.消去参数的三种方法(1)利用解方程的技巧求出参数的表达式,然后代入消去参数; (2)利用三角恒等式消去参数;(3)根据参数方程本身的结构特征,选用一些灵活的方法从整体上消去参数.变式:在直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos φ,y =sin φ(φ为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求圆C 的极坐标方程;(2)直线l 的极坐标方程是2ρsin ⎝⎛⎭⎫θ+π3=33,射线OM :θ=π3与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长.解:(1)圆C 的普通方程为(x -1)2+y 2=1, 又x =ρcos θ,y =ρsin θ,所以圆C 的极坐标方程为ρ=2cos θ.(2)设P (ρ1,θ1),则由⎩⎪⎨⎪⎧ρ1=2cos θ1,θ1=π3,得ρ1=1,θ1=π3,设Q (ρ2,θ2),则由⎩⎨⎧2ρ2sin ⎝⎛⎭⎫θ2+π3=33,θ2=π3,得ρ2=3,θ2=π3,由于θ1=θ2,所以|PQ |=|ρ1-ρ2|=2.题型二.直线的参数方程中参数几何意义的应用例2.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :ρsin 2θ=2a cos θ(a >0),过点P (-2,-4)的直线l :⎩⎨⎧x =-2+22t y =-4+22t(t 为参数)与曲线C 相交于M ,N 两点.(1)求曲线C 的直角坐标方程和直线l 的普通方程; (2)若|PM |,|MN |,|PN |成等比数列,求实数a 的值.[解] (1)把⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ代入ρsin 2θ=2a cos θ,得y 2=2ax (a >0),由⎩⎨⎧x =-2+22ty =-4+22t (t 为参数),消去t 得x -y -2=0,∴曲线C 的直角坐标方程和直线l的普通方程分别是y 2=2ax (a >0),x -y -2=0.(2)将⎩⎨⎧x =-2+22t y =-4+22t(t 为参数)代入y 2=2ax ,整理得t 2-22(4+a )t +8(4+a )=0. 设t 1,t 2是该方程的两根,则t 1+t 2=22(4+a ),t 1·t 2=8(4+a ), ∵|MN |2=|PM |·|PN |,∴(t 1-t 2)2=(t 1+t 2)2-4t 1·t 2=t 1·t 2, ∴8(4+a )2-4×8(4+a )=8(4+a ), ∴a =1.根据直线的参数方程的标准式中t 的几何意义,有如下常用结论:过定点M 0的直线与圆锥曲线相交,交点为M 1,M 2,所对应的参数分别为t 1,t 2. ①弦长|M 1M 2|=|t 1-t 2|=(t 1+t 2)2-4t 1t 2; ②弦M 1M 2的中点⇔t 1+t 2=0; ③|M 0M 1||M 0M 2|=|t 1t 2|; ④1|M 0M 1|+1|M 0M 2|=|t 1|+|t 2||t 1t 2|. 其中:|t 1|+|t 2|=(|t 1|+|t 2|)2 =(t 1+t 2)2-2t 1t 2+2|t 1t 2|.变式:已知直线l :⎩⎨⎧x =5+32t ,y =3+12t (t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos θ.(1)将曲线C 的极坐标方程化为直角坐标方程;(2)设点M 的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求|MA |·|MB |的值与|AB |.解:(1)ρ=2cos θ等价于ρ2=2ρcos θ.①将ρ2=x 2+y 2,ρcos θ=x 代入①即得曲线C 的直角坐标方程为x 2+y 2-2x =0.②(2)将⎩⎨⎧x =5+32t ,y =3+12t代入②,得t 2+53t +18=0,设这个方程的两个实根分别为t 1,t 2,则t 1+t 2=-53,t 1t 2=18.所以|MA |·|MB |=|t 1t 2|=18, |AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2 =(-53)2-4×18=3, 所以|MA |·|MB |=18,|AB |= 3.题型三.极坐标方程与参数方程的综合应用例3.(2016·高考全国卷丙)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos αy =sin α(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎫θ+π4=2 2.(1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时点P 的直角坐标. [解] (1)C 1的普通方程为x 23+y 2=1,C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为()3cos α,sin α.因为C 2是直线,所以|PQ |的最小值即为P 到C 2的距离d (α)的最小值,d (α)=||3cos α+sin α-42=2⎪⎪⎪⎪sin ⎝⎛⎭⎫α+π3-2.当且仅当α=2k π+π6(k ∈Z )时,d (α)取得最小值,最小值为2,此时点P 的直角坐标为⎝⎛⎭⎫32,12.求参数方程中最值问题的三个策略(1)曲线方程上的点用参数方程表示;直线用普通方程表示;利用相关距离公式将目标转化为求以参数为变量的函数的最值;(2)当曲线是圆时,数形结合更快捷方便;(3)利用直线参数方程中参数的几何意义时,需特别注意方向性.变式: 以直角坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.点M 的极坐标为(5,θ),且tan θ=12,θ∈⎝⎛⎭⎫0,π2,椭圆C :x 216+y 24=1.(1)求点M 的直角坐标与曲线C 的参数方程;(2)过点M 的直线l 与椭圆C 交于A 、B 两点,且M 为线段AB 的中点,P 是C 上的一个动点,求△P AB 面积的最大值.解:(1)由tan θ=12,θ∈⎝⎛⎭⎫0,π2得cos θ=255,sin θ=55,又ρ=5,∴x =ρcos θ=2,y =ρsin θ=1,∴点M 的直角坐标为(2,1).将a =4,b =2代入⎩⎪⎨⎪⎧x =a cos βy =b sin β可得椭圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos βy =2sin β(β为参数). (2)设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 2116+y 214=1x 2216+y 224=1,相减得(x 1+x 2)(x 1-x 2)16+(y 1+y 2)(y 1-y 2)4=0.∵M (2,1)为AB 中点,∴x 1+x 2=4,y 1+y 2=2,代入上式可得y 1-y 2x 1-x 2=-12,即直线l 的斜率k =-12.∴直线l 的普通方程为y =-12x +2.由⎩⎨⎧y =-12x +2x 216+y 24=1,解得A (0,2),B (4,0),∴|AB |=25, 过椭圆C 上的动点P 作直线l 1∥l ,则当l 1与椭圆C 相切时可求点P 到直线l 的最大值. 设l 1的方程为:y =-12x +m ,代入x 216+y 24=1整理得2x 2-4mx +4m 2-16=0,由Δ=16m 2-8(4m 2-16)=0,解得m =±2 2.显然当m =-22,P (-22,-2)时,点P 到直线l 距离最大为d =4(2+1)5,从而(S △P AB )最大=12|AB |·d =12×25×4(2+1)5=4(2+1).【真题演练】1.在直角坐标系x O y 中,曲线C 的参数方程为⎩⎨⎧==θθsin cos 3y x (θ为参数),直线l 的参数方程为⎩⎨⎧-=+=ty ta x 14(t 为参数). (1)若a =-1,求C 与l 的交点坐标; (2)若C 上的点到l 距离的最大值为17,求a .解:(1)曲线C 的参数方程为⎩⎨⎧==θθsin cos 3y x (θ为参数),化为标准方程是:1922=+y x ; a =-1时,直线l 的参数方程化为一般方程是:x +4y -3=0;联立方程⎪⎩⎪⎨⎧=-+=+0341922y x y x , 解得⎩⎨⎧==03y x 或⎪⎪⎩⎪⎪⎨⎧=-=25242521y x ,所以椭圆C 和直线l 的交点为(3,0)和)2524,2521(-.(2)l 的参数方程⎩⎨⎧-=+=ty ta x 14(t 为参数)化为一般方程是:x +4y -a -4=0,椭圆C 上的任一点P 可以表示成P (3cos θ,sin θ),θ∈[0,2π), 所以点P 到直线l 的距离d 为: d =17=17,φ满足tan φ=43, 又d 的最大值d max =17,所以|5sin (θ+φ)-a -4|的最大值为17, 得:5-a -4=17或-5-a -4=-17, 即a =-16或a =8.2.在直角坐标系x O y 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM|•|OP|=16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为),(32π,点B 在曲线C 2上,求△OAB 面积的最大值答案:解:(1)曲线C 1的直角坐标方程为:x =4, 设P (x ,y ),M (4,y 0),则x 4=y y 0,∴y 0=4yx ,∵|OM||OP|=16,∴ x 2+y 2 02=16, 即(x 2+y 2)(1+y 2x )=16,∴x 4+2x 2y 2+y 4=16x 2,即(x 2+y 2)2=16x 2,两边开方得:x 2+y 2=4x ,整理得:(x -2)2+y 2=4(x ≠0),∴点P 的轨迹C 2的直角坐标方程:(x -2)2+y 2=4(x ≠0).(2)点A 的直角坐标为A (1, ,显然点A 在曲线C 2上,|OA|=2, ∴曲线C 2的圆心(2,0)到弦OA 的距离d = 4−1= 3, ∴△AOB 的最大面积S=12|OA|•(2+ 3)=2+ 3.3.在直角坐标系x O y 中,直线l 1的参数方程为⎩⎨⎧=+=kty tx 2,(t 为参数),直线l 2的参数方程为⎪⎩⎪⎨⎧=+-=k m y m x 2,(m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:02)sin (cos =-+θθρ,M 为l 3与C 的交点,求M 的极径.答案:解:(1)∵直线l 1的参数方程为 y =kt x =2+t,(t 为参数), ∴消掉参数t 得:直线l 1的普通方程为:y =k (x -2)①; 又直线l 2的参数方程为 y =m kx =−2+m,(m 为参数),同理可得,直线l 2的普通方程为:x =-2+ky ②;联立①②,消去k 得:x 2-y 2=4,即C 的普通方程为x 2-y 2=4; (2)∵l 3的极坐标方程为ρ(cos θ+sin θ)- 2=0, ∴其普通方程为:x +y - ,联立 x 2−y 2=4x +y = 2得: y =− 22x =3 2,∴ρ2=x 2+y 2=184+24=5.∴l 3与C 的交点M 的极径为ρ= 5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
0
x
曲线关于 y= x 对称
曲线有渐近线 x+y+a=0
.
8.双纽线
FF 2a , 到F与F 距离之积为a2的点的轨迹 ( a 2 )
2 r 2 a 2 2ra cos 2 r 2 a 2 2ra cos
( ) 2 (r 2 a 2 ) 2 4r 2 a 2 cos2 a 4
a
.
0
r
.
例2 求曲线 r cosθ 及 r cosθ 分别所围成的图形的公 共 部分的面积 由 3cos =1+cos
y r =3cos
得交点的坐标 S= 2
θ
π 3 0
1 (1 cosθ ) 2 dθ 2
o
π 3
S
x
2 3
π 2 π 3
9 cos2 θ dθ 2
即
r 2a cos 2
2 2
cos 2 0
y
3 5 7 (0, ) ( , ) ( . ,2 )
4 4 4 4
直角系方程
( x 2 y 2 ) 2 2a 2 ( x 2 y 2 )
P
F ( a ,0)
0
r
F (a,0)
2a
.
x
. .
a
x
.
x
来看动点的慢动作
参数方程 x = a (t – sint) y = a (1– cost)
y
t 的几何意义如图示
当 t 从 0 2,x从 0 2a 即曲线走了一拱
2a
a
0
t
a
a
2a
x
.
y
o
M t
A C
a
x
x AC OM sin t a( t sin t )
A
B
答案是:当这曲线是一条翻转的旋轮线。
生活中见过这条曲线吗?
A
B
A
B
A
B
滑板的轨道就是这条曲线
.
y
4. 心形线(圆外旋轮线)
一圆沿另一圆外缘无滑
动地滚动,动圆圆周上
任一点所画出的曲线。
o
a a
x
y
.
o
a
a
x
来看动点的慢动作
y
o
a
a
x 2a
.
来看动点的慢动作
参数方程 r = a (1+cosθ)
S=2
[
π 4
π 6 0
1 2 sin2 θ dθ 2
π θ 6
θ
π 4 π 6
1 cos2 θ dθ 2
]
0
1
x
.
例4 圆ρ 1被心形线 ρ 1 cosθ 分割为两部分,求这两 部分
的面积。
y
S=
=1+cos
( cos θ ) dθ
当 t 由 ,
动点由 (0,0) (0,0) 依逆时针方向画出叶形 线.
1. 曲线关于 y= x 对称 2. 曲线有渐进线 x+y+a = 0 3. 令 y = t x, 得参数式
3at x 3 t 1 2 3 at y t3 1
(- t , t -1)
y OC OM cos t a(1 cos t )
这就是旋轮线的参数方程。
2. 旋轮线也叫摆线(单摆)
将旋轮线的一拱一分为二,并倒置成挡板
.
两个旋轮线形状的挡板, 使摆动周期与摆幅完全无关。
在17世纪,旋轮线即以此性质出名,所以旋轮线又称摆线。
3. 旋轮线是最速降线
最速降线问题: 质点在重力作用下沿曲线从固定点A滑到固定点B, 当曲线是什么形状时所需要的时间最短?
常见曲线的参数方程
主 目 录(1–10 )
1 2 3 4 5 6 7 8 9 10 旋轮线 旋轮线也叫摆线 旋轮线是最速降线 心形线 星形线 圆的渐伸线 笛卡儿叶形线 双纽线 阿基米德螺线 双曲螺线
1. 旋轮线
一圆沿直线无滑动地滚动,圆上任一点所画出的
曲线,是一条极其迷人的曲线,在生活中应用广泛。
s2
s
o
s1
1
s s
x
s s
. . . . . .
a2 例5. 求由双纽线 ( x y ) a ( x y ) 所围而且在圆周 x y 2 内部的面积。 θ k 令 r = 0, 双纽线化成极坐标 r a cosθ a θ k 令r , 由对称性 y 2 π π a 1 2 π 4 S=4 + π a cos2θ dθ θ 4 12 2 2 6 π θ 6 ( )a
0
a
a
x
. . . . .
0
r
.
阿基米德螺线 r =a
当 从 0 –
0
r
.
10
θ
双曲螺线 r
a
这里 从 0 +
lim r 0
极点是曲线的渐近点 y rsin a si n lim y a
θ 0
a
.
y a是曲线的渐近线
0
r
. .
双曲螺线
r
a
当 从 0 –
.
0 2
6. 圆的渐伸线 一直线沿圆周滚转(无滑动) 直线上一个定点的轨迹 参数方程为
x a(cost t sint ) y a(sint t cos t )
a x y
0
再看一遍
y
.
0
a
x
y
0
a
.
x
y
0
a
.xຫໍສະໝຸດ x a(cost t sint ) 参数方程为 y a(sint t cos t )
y
M (x,y)
a
0
t
t a
.
x
试由这些关系推出曲线的方程
7.狄卡儿叶形线
分析
x 3 y 3 3axy 0 (a 0)
当 t , ( x, y ) (0,0)
当 t 0, 也有 ( x, y) (0,0)
故在原点,曲线自身相交. 4. 当 t 由 , 动点由(0,0) (,-) 当 t 由 , 动点由( ,) (0,0)
.
.
. . . . .
3 5 7 , , 曲线在极点自己相交,与此对应的角度为 = , 4 4 4 4
例1 求双纽线 r 2 2a 2 cos 2 所围面积
由对称性
S
r ( )d a cosd 2a 2 y
y
P r
x
o
2a
.
y
5.星形线(圆内旋轮线)
一圆沿另一圆 内缘无滑动地 滚动,动圆圆
周上任一点
所画出的曲线。 –a
a 4
o
a x
y
.
–a
o
a x
来看动点的慢动作
y
–a
o
a x
来看动点的慢动作
.
y
直角坐标方程为:
x y a
2 3
2 3
2 3
P
.
.
–a
o
a x
极坐标方程为
x a cos3 3 y a si n
=1+cos
.
. . . .
令 cos2 = 0, θ k
例3.求曲线 r sinθ 及 r 2 cos θ 分别所围成的图形的公 共 部分的面积 θ θ , 联立后得交点坐标 y
由 sin > 0, θ
0
4
2a
x
. . . .
9.
阿基米德螺线 r =a
曲线可以看作这种点的轨迹: 从极点射出半射线
动点在射线上作等速运动
同时此射线又绕极点作等速转动
0
r
0
r
.
0
r
.
请问:动点的轨迹什么样?
再看一遍
0
r
.
0
r
.
阿基米德螺线 r =a
0
r
.
阿基米德螺线
r =a 这里 从 0 +
每两个螺形卷间沿射线的距离是定数