列一元一次方程解应用题专题复习

合集下载

一元一次方程应用题解法归纳汇总

一元一次方程应用题解法归纳汇总
练习8、已知:商店中某个玩具的进价为40元,标价为60元; 若按标价出售该玩具,则所得的利润及利润率分别是多少? 若顾客在及店主还价时,店主要保住15%的利润率,则店主出售这个玩具的售价底线是多少元? 若店主为吸引顾客,把这个玩具的标价提高10%后,再贴出打8.8折的告示,则这个玩具的实际售价是多少元? 若店主设法将进价降低10%,标价不变,而贴出打8.8折的告示,则出售这个玩具的利润及利润率分别是多少?
例3、为了把2013年沈阳全运会举办成一届绿色全运会,实验中学和潞河中学的同学积极参加绿化工程的劳动。两校共绿化了4415平方米的土地,潞河中学绿化的面积比实验中学绿化面积的2倍少13平方米,这两所中学分别绿化了多少面积?
例4、出租汽车4千米起价10元,行驶4千米以后,每千米收费1.2元(不足1千米按1千米计算)。张天和张智要到离学校15千米的博物馆为同学们联系参观事宜。为了尽快到达博物馆,他们想坐出租车,如果他们只有22元,则,他们乘出租车能直接到达博物馆吗?
解:设该市每户每月用水标准量为x立方米。 ∵1.2×9=10.8(元) 10.8<16.2 ∴张大爷家的用水量超出了标准用水量,即x<9 根据题意得 1.2x+(9-x)×3=16.2 解这个方程,得 x=6 答:该市每户每月的标准用水量是6立方米。
例2 :小丽的爸爸前年存了年利率为2.25%的二年期定储蓄,今年到期后,扣除利息的20%作为利息税,所得利息正好为小丽买了一只价值36元的计算器,问小丽爸爸前年存了多少元钱?
例3 5年定期储蓄的年利率为2.88%,若存入5年定期的本金是1000元,请计算存款到期时,应得的本利和是多少?
例4、王利到银行存入5年定期的储蓄若干元,到期后一共缴了72元的利息税,若这种储蓄的年利率为2.4%,求王利当初存入银行多少元?

人教版初一数学一元一次方程应用题复习整理

人教版初一数学一元一次方程应用题复习整理
一元一次方程复习 第 1 页 共 8 页
4 2
2
2 2
2
把一根半径为 2cm 的玻璃棒垂直插入水中后,问容器内的水将升高多少 cm?(圆柱的体积 =底面积×高)
分析: 容器的底面积×容器中水的原来高度+玻璃棒的截面积×(容器中水的高度+水增加的高度) =容器的底面积×(容器中水原来的高度+水增加的高度) . 解:设容器内的水将升高 x cm。 102 π•12+ 22 π(12+x)=102 π(12+x) 解得:x=0.5. 答:容器内的水将升高 0.5cm。 甲行距+乙行距=原相距 相向而行注 意出发时间、 地点
x x 3 3 2 3
解得:x=36 解法二 解:设静水时轮船速度为 x 千米/时 2(x+3)=3(x-3) 解得:x=15 则两码头之间的距离为 2(x+3)=2×(15+3)=36(千米) 2,一架飞机飞行在两个城市之间,风速为每小 时 24 千米,顺风飞行需要 2 小时 50 分钟,逆 风飞行需要 3 小时,求两城市间的距离。 解:设两地距离为 x 千米,则有方程:
一元一次方程应用题复习整理
题中涉及的数量关系 和差倍 分问题 等量关系 增长量=原有量×增长率 现在量=原有量+增长量 注意 事项 找出关键字, 如: “大, 小, 多, 少, 增加, 减少„„”
1,已知甲数是乙数的 3 倍多 12,甲乙两数的和是 60,求乙数. 解:设乙数为 x,那么甲数为3x+12 x+3x+12=60 解得:x=12 答:乙数是 12。 2,甲数是 20,先减少 10%,再增加 10%,现在的甲数是多少? 20×(1-10%)×(1+10%) =20×90%×110% =19.8; 答:现在的甲数是 19.8。 3,已知一个角的补角比这个角的余角的 3 倍大 10°,求这个角的度数。 解:设这个角为∠α 。 (180°﹣∠α )﹣3(90°﹣∠α )=10° 解得∠α =50° 则这个角的度数为 50°。 等积问 题 ①圆柱体的体积公式 V=底面积×高=S·h=π r2 h ②长方体的体积 V=长×宽×高=a b c 常见几何图形的面积、体积、周 长计算公式,依据形虽变,但体 积不变. 要分清半径、 直径等。

人教版一元一次方程复习题

人教版一元一次方程复习题

2.解方程: 278(x-4)-463(8-2x)-888(7x-28)=0。 解:原方程可化为 278(x-4)+463×2(x-4)-888×7(x-4)=0, (x-4)(278+463×2-888×7)=0, x-4=0,x=4.
大家有疑问的,可以询问和交流
可 以 互 相 讨 论下, 但要小 声点
根据题意,得:(x-10)+(x+10)+(x÷2)+(x×2)=270,解 得 x=60.
故甲实际做的零件个数为 x-10=50 个,乙实际做的零件 个数为 x+10=70 个,丙实际做的零件个数为 x÷2=30 个,丁 实际做的零件个数为 x×2=120 个.
答:略.
谢谢
8
专题二 数形结合思想的应用
例2:A、B两站间的距离为448km,一列慢车从A站出发, 每小时行驶60km,一列快车从B站出发,每小时行驶80km。
问:(1)两车同时出发,相向而行,出发后多少小时相遇? (2)两车相向而行,慢车先开28min,快车开出多少小时后 两车相遇?
(3)如果两车都从A站开向B站,要使两车同时到达,慢车 应先出发多少小时?
【规律总结】在分析应用题时,借助画示意图,或列表格 的方法能清晰地分析出题中各量之间的关系,及题中所隐含的 等量关系式。
拓展训练
3.A、B 两地间的距离为 360 km,甲车从 A 地出发开往 B 地,每小时行驶 72 km,乙车比甲车晚出发152小时,每小时行驶 48 km,两车相向而行,相遇后,各自仍按原速度、原方向继续 行驶,那么相遇以后两车相距 100 km 时,甲车从出发开始行驶 了多少小时?
解:设第一个矩形的长为 5x cm,它的宽为 4x cm,则第二 个矩形的长为 3x cm,宽为 2x cm,所以

列一元一次方程解应用题专项练习180题(有答案)

列一元一次方程解应用题专项练习180题(有答案)

列一元一次方程解应用题专项练习180题(有答案)(2)小彬和小明每天早晨坚持跑步,小彬每秒跑4米,小明每秒跑6米.如果小明站在百米跑道的起点处,小彬站在他前面10米处,两人同时同向起跑,几秒后小明能追上小彬?8.某工厂加强节能措施,2008年下半年与上半年相比,月平均用电量减少了0.5万度,全年用电39万度,问这个工厂2008年上半年每月平均用电多少万度?9.某周日小明在家门口搭乘出租车去参观博物馆,出租车的收费标准是:不超过3公里的付费7元;超过3公里后,每公里需加收一定费用,超出部分的公里数取整,即小数部分按1公里计算.小明乘出租车到距家6.2公里远的博物馆的车费为18.4元(其中含有1元的燃油附加税),问超过3公里的,每公里加收多少元?10.下边横排有12个方格,每个方格都有一个数字,已知任何相邻三个数字的和都是20,求x的值.11.某班举办了一次集邮展览,展出的邮票若平均每人3张则多24张,若平均每人4张则少26张,这个班级有多少名学生?一共展出了多少张邮票?12.某商场一种品牌的服装标价为每件1000元,为了参与市场竞争,商场按标价的8.5折(即标价的85%)再让利40元销售,结果每件服装仍可获利20%,这种服装每件的进价是多少元?13.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.(1)这个班有多少学生?(2)这批图书共有多少本?14.某同学打算骑自行车到野生动物园去参观,出发时心里盘算,如果以每小时8千米的速度骑行,那么中午12点才能到达;如果以每小时12千米的速度骑行,那么10点就能到达;但最好是不快不慢恰好在11点到达,那么,他行驶的速度是多少最好呢?15.一副羽毛球拍在进价的基础上提高40%后标价,再按标价的8折售出,仍然获利15元,那么羽毛球拍的进价是多少?16.2010年南非“世界杯”期间,中国球迷一行36人从酒店乘出租车到球场观看比赛.球迷领队安排车辆若干,若每辆坐4人,车不够,每辆坐5人,有的车未坐满.问领队安排的车有多少辆?17.某校三年共购买电脑160台,去年购买数量是前年的3倍,今年购买数量是前年的4倍,求这个学校前年购买了多少台电脑?18.某种出租汽车的车费是这样计算的:路程在4千米以内(含4千米)为10元4角;达到4千米以后,每增加1千米加1元6角;达到15千米后,每增加1千米加2元4角,不足1千米按四舍五入法计算.(1)乘座15千米该出租车应交费多少元?(2)某乘客乘座该种出租车交了95元2角,则这个乘客乘该出租车行驶的路程最多为多少千米?19.七年级(1)班数学兴趣小组的同学一起去租车秋游,预计租车费人均分摊1 8元,后来又有4名非兴趣小组同学要求加入,但租车费不变,结果每人可少摊3元,求七(1)班有多少名数学兴趣小组成员?20.某城市按以下规定收取每月的水费:用水量如果不超过6吨,按每吨1.2元收费;如果超过6吨,未超过的部分仍按每吨1.2元收取,而超过部分则按每吨2元收费.如果某用户5月份水费平均为每吨1.8元.问:(1)该用户5月份用去多少水?(2)该用户5月份应交水费多少元?21.甲、乙两人同时从A地出发去B地,甲骑自行车,速度是10km/h,乙步行,速度为6km/h.若甲出发后在路上遇到熟人交谈了半小时后,仍以原速度前往B地,结果甲、乙两人同时到达B地,问A、B两地的路程是多少?22.一件服装先按成本提高60%标价,再以9折出售,结果获利66元,这件服装的标价是多少元?23.某校七(1)班学生步行去参加课外劳技活动,速度为5千米/时,走了48分钟的时候,学校要将一个紧急通知传给班长,通讯员从学校出发,骑摩托车以35千米/时的速度按原路追上去,通讯员用多少时间可以追上七(1)班学生队伍?24.某车间有60名工人,生产甲、乙两种零件,每人每天平均能生产甲种零件10个或乙种零件25个,应分配多少人生产甲种零件,多少人生产乙种零件才能使每天生产的甲种零件和乙种零件刚好配套?(2个甲种零件和1个乙种零件配成一套)25.A、B两地相距15千米,甲汽车在前边以50千米/小时从A出发,乙汽车在后边以40千米/小时从B出发,两车同时出发同向而行(沿BA方向),问经过几小时,两车相距30千米?26.甲、乙两人同时从A地到B地去参加一个会议,甲每分钟走80米,他走到B地等了5分钟.会议才开始,乙每分钟走60米,等他到B地会议已经开始了3分钟,问A、B两地之间的距离有多远?27.甲、乙两根绳子,甲绳长56米,乙绳长25米,两根绳子剪去同样的长度后,甲绳所剩的长度是乙绳所剩长度的3倍还少1米,每根绳子剪去的长度是多少米?28.某工人每天早晨在同一时刻从家里骑车去工厂上班,如果以16千米/时的速度行驶,则可在上班时刻前15分钟到达工厂;如果以12千米/时的速度行驶,则在工厂上班时刻后15分钟到达工厂.(1)求这位工人的家到工厂的路程;(2)这位工人每天早晨在工厂上班时刻前多少小时从家里出发?29.一列列车通过隧道,从车头进隧道到车尾出隧道共用了1分30秒.已知列车的速度为1500米/分,列车的长为150米,那么隧道长为多少米?30.在学校的一次劳动中,在甲处劳动的有27人,在乙处劳动的有19人,后因劳动任务需要,需要另外调20人来支援,使在甲处的人数是在乙处人数的2倍,问应分别调往甲、乙两处各多少人?31.一项工程,甲队单独做20天完成,乙队单独做12天完成,现在由甲队先做4天,剩下的部分由甲队和乙队合作完成,则剩下的部分需要几天完成?32.某校准备到旅游公司租若干辆汽车组织初一学生外出春游,每辆汽车可坐45人,按原计划,就有11人没有座位;如果每辆车放上加座后多坐8人,那么可以少租一辆汽车.问原计划租几辆汽车初一学生共有多少人?33.列方程解应用题:某人从家里骑自行车到学校.若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?34.甲、乙两船在静水中的速度相同,都不超过每小时60千米.甲船从A港顺流而下,3小时到达B港,乙船从B港逆流而上,4小时到达C港,如果水流速度为每小时10千米,请你通过计算说明A港在C港的上游还是下游.35.从甲地到乙地的长途汽车原需行驶3.5个小时,开通高速公路后,路程缩短了30千米,而车速平均每小时增加了30千米,只需2个小时即可到达.求甲乙两地之间高速公路的路程.36.甲乙两地相距240千米,从甲站开出一列慢车,速度为每小时80千米,从乙站开出一列快车,速度为每小时120千米.(1)若两车同时开出,背向而行,经过多长时间两车相距540千米?(2)若两车同时开出,同向而行(快车在后),经过多长时间快车可追上慢车?(3)若两车同时开出,同向而行(慢车在后),经过多长时间两车相距300千米?37.电气机车和磁悬浮列车从相距298千米的两地同时出发相对而行,磁悬浮列车的速度比电气机车速度的5倍还快20千米/时,半小时后两车相遇.两车的速度各是多少?38.粗蜡烛和细蜡烛的长短一样,粗蜡烛可以点5小时,细蜡烛可以点4小时,如果同时点燃这两支蜡烛,过了一段时间后,剩余的粗蜡烛长度是细蜡烛长度的2倍,问这两支蜡烛已点燃了多少时间?39.一队学生从学校步行去博物馆,他们以5km/h的速度行进需要40分钟,他们出发24分钟后,一名教师骑自行车以15km/h的速度按原路追赶学生队伍,问这名教师能否在学生到达之前追上他们?40.民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的1.5%购买行李票.一名旅客带了45千克行李乘机,机票连同行李费共付1485元,求该旅客的机票票价.41.某城区居民用水实行阶梯收费、每户每月用水量如果未超过20吨,按每吨1.9元收费;如果超过20吨,未超过部分按每吨1.9元收费,超过部分按每吨2.8元收费,若该城市某户11月份水费平均每吨2.2元,求该户11月份用水多少吨?42.甲、乙两站相距360千米,一列慢车从甲站开出,每小时行50千米,一列快车从乙站开出,每小时行70千米,两车同时开出,相向而行,多长时间相遇?43.某商场因换季,将一品牌服装打折销售,每件服装如果按标价的六折出售将亏10元,而按标价的八折出售将赚70元,问:(1)每件服装的标价和成本分别是多少元?(2)为使销售该品牌服装每件获得20%的利润率,应按标价的几折出售?44.某班在绿化校园的活动中共植树130棵,有5位学生每人种树2棵,其余学生每人种树3棵,问这个班共有多少学生?45.郑州市某停车场的收费标准如下:大型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场停有大、小型汽车共50辆,这些车辆共缴纳了210元停车费,问其中大、小型汽车各缴纳了多少元停车费?46.某车间28名工人生产螺栓和螺母,每人每天平均生产螺栓1200个或螺母1800个,每天生产的螺栓和螺母按1:2配套,应各分配多少名工人生产螺栓和生产螺母?47.一项工作,如果由甲单独做,需7.5小时完成;如果由乙单独做.需要5小时完成.如果让甲、乙两人一起做1小时,再由乙单独完成剩余部分,还需多长时间完成?48.某车间20个工人生产螺钉和螺母,每人每天平均生产螺母800个或螺钉600个,一个螺钉要配2个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉呢?49.某地居民生活用电基本价格为0.5元/度,并规定了每月基本用电量,超过部分的电量每度电价比基本用电量的每度价格增加0.05元,某户8月份用电量为240度,应缴电费为122元,求每月的基本用电量.50.经测算,海拔高度每增加100米,气温下降0.6℃,已知高空中一气球所在的位置的温度是﹣4℃,此时地面温度是5℃,求该气球与地面的距离.51.有粗细两支蜡烛,粗蜡烛长是细蜡烛的三分之一,粗蜡烛点完用3个小时,细蜡烛点完用1小时.一次停电后同时点燃两支蜡烛,来电时发现两支蜡烛剩余部分刚好一样长,问停电的时间是多长?52.运动场的环形跑道一圈长400米,甲乙二人比赛跑步,甲每分钟跑300米,乙每分钟跑200米;两人同地同方向,同时出发,经过多少时间两人第一次相遇?53.根据我省“十二五”铁路规划,徐州至连云港的客运专线项目建成后,两地间列车的最短客运时间将由现在的2小时18分钟缩短为36分钟,速度每小时将提高260km,求提速后的列车速度.(精确到1km/h)54.一项工程,甲队单独施工15天完成,乙队单独9天完成,现在由甲、乙两队合作3天,剩下的由甲队单独完成,还需几天可以完成?55.为了减少库存,盘活资金,某商厦决定将某款玩具打5折销售,小莹爸爸用了300元买到的玩具比打折前花同样多的钱买到的玩具多3个,求每个玩具的原价是多少元?56.整理一批图书,由一人做要40小时完成.先安排一批人整理,2小时后其中两人因有其它任务离开,然后由余下的人又整理了4小时,完成了这项工作.假设每个人的工作效率相同,则先安排了多少人整理图书?57.一个长方形的场地,长是宽的2.5倍,现根据需要将长方形的场地进行扩建,若把它的长和宽各加长20m后,则此时它的长是宽的2倍,求扩建前长方形场地的长与宽.58.某中学要搬运一批图书,由甲班单独搬运需要9小时完成,由乙班单独搬运需要6小时完成.现在计划由甲班先单独搬运4小时,剩下的由乙班帮忙和甲班一起搬运,则甲、乙两班合作几小时后可完成任务?59.A、B两地相距50千米,一人从A地以每小时5千米的速度向B地行走,另一人从B地以每小时10千米的速度向A 地运动.若两人恰好在中点相遇,那么从B地运动的人比从A地运动的人慢多少小时出发呢?60.某厂要加工一批零件,若6人加工,每人每天生产10个,则需100天才能完成任务.现在为了赶进度,用20人加工,每人每天生产12个,需要多少天才能完成任务?61.学校部分师生到离校28千米的地方参观学习.开始一段路是步行,速度是4千米/小时,余下的路程乘汽车,汽车的速度是40千米/小时,全程共用了1小时.求步行和乘车各用了多少时间.62.某商店采购了一批节能灯,每盏灯20元,在运输过程中损坏了2盏,然后以每盏25元售完,共获利150元,问该商店共进了多少盏节能灯.63.某学校教学楼需装修,若甲工程队单独完成需8周,若乙工程队单独完成需12周,现在投标结果是由乙工程队先做7周后,再由甲、乙两队合作,求合作几周可以完成任务?64.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少1500度,全年用电12万度.这个工厂去年上半年每月平均用电多少度?65.早上8点钟,甲、乙、丙三人在一条笔直的公路上同时从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人的速度分别为每分钟120米、100米、90米.问经过多少分钟甲和乙、甲和丙的距离相等?66.某同学在A、B两家超市发现他看中的两款随身听的单价相同,两种不同颜色的书包的单价也相同.已知随身听和书包单价之和是452元,且随身听的单价是书包单价的4倍少8元.求该同学看中的随身听和书包的单价各是多少元?67.有一项工程,若由一人做需要20小时完成,现在先由若干人做2小时,然后增加2人再共同做4小时,完成了这项工程,假设这些人的工作效率相同,问开始时参与做这项工程的有多少人?68.小明的妈妈从商店给小明买回一条裤子,小明问妈妈:“这条裤子多少钱?”妈妈说:“按标价给我打七折,又让了我4元钱,是94元.”你知道这条裤子的标价吗?69.一轮船航行于两个码头之间,逆水需10小时,顺水需6小时.已知水流速度为3千米/时,求该船在静水中的速度和两码头间的距离.70.甲乙两书店共有数学练习册300本,某日甲店卖掉20本,乙店卖掉56本,此时甲乙两店剩余的数学练习册相等.求原先甲乙两店各有数学练习册多少本.71.某学校组织七年级学生去春游,计划租用若干辆车.若增加一辆车,每车正好坐40人,若减少一辆车,则每辆车坐50人,有一辆车还空着10人座位,问七年级共有多少名学生?72.某商店在某一时间内以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损40%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?73.一列火车匀速行驶,经过一条长720米的隧道需要30秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是6秒,求这列火车的速度和火车的长度.74.格子们是白族人民智慧的结晶,是剑川木雕的代表作品之一.一个格子们是由一块中板和两块腰板组构而成的.剑川县民族木雕厂有22名木雕工人在生产格子们,每人每月平均雕12块中板或20块腰板,为了使每个月的产品配套,应该分配多少名工人雕中板?多少名工人雕腰板?75.小明、小杰两人在400米的环形跑道上练习跑步,小明每分钟跑300米,小杰每分钟跑220米.小明、小杰两人同时同向出发,起跑时,小杰在小明前面100米处.(1)出发几分钟后,小明、小杰第一次相遇?(2)出发几分钟后,小明、小杰第二次相遇?(3)出发几分钟后,小明、小杰的路程第三次相差20米?76.要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工了4小时完成了任务.已知甲每小时比乙多加工2个零件,问甲、乙二人每小时各加工多少个零件?77.从甲站到乙站原需16小时.采用“和谐”号动车组提速后,列车行驶速度提高了176千米/时,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.78.某工作甲单独做需15小时完成,乙单独做需12小时完成,若甲先单独做1小时,之后乙再单独做4小时,剩下的工作由甲乙两人合作,请问再做几小时可完成全部工作的十分之七?79.现加工一批机器零件,甲单独完成需4天,乙单独完成需6天.现由乙先做1天,然后两人合做,完成后共得报酬600元.若按个人完成的工作量给付报酬,你应如何分配呢?80.某文件需要打印,小李独立做需要6小时完成,小王独立做需要8小时完成.如果他们俩共同做,需要多长时间?81.王先生计划骑车以每小时10千米的速度由A地到B地,这样便可在规定时间到达B地,但他因事将原计划的出发时间推迟了10分钟,便只好以每小时12千米的速度前进,结果比规定时间早5分钟到达B地,求A、B两地间的路程.82.七年级学生在会议室开会,每排坐12人,则有11人无处坐,每排坐14人,则余1人独坐1排,问有多少学生?座位有多少排?83.小明周六去昌平图书馆查阅资料,他家距昌平图书馆35千米.小明从家出发先步行20分钟到车站,紧接着坐上一辆公交车,公交车行驶40分钟后到达图书馆.已知公交车的平均速度是步行的平均速度的7倍,求公交车平均每小时行驶多少千米?84.A、B两地相距90千米.甲从A地骑自行车去B地.1小时后乙骑摩托车也从A地去B地.已知甲每小时行12千米.乙每小时行30千米.(1)乙出发后多少时间追上甲?(2)若乙到达B地后立即返回,则在返回路上与甲相遇时距乙出发多少时间?85.某文艺团体为希望工程组织了一场募捐义演,共售出1 000张票,筹得票款6 950元,已知成人票每张10元,学生票每张5元.(1)问成人票和学生票各售出多少张?(2)如果票价和售出的总票数不变,所得票款能为6932元吗?说明你的理由.(3)如果票价和售出的总票数不变,若想筹得票款8 000元,问至少要售出多少张成人票?86.在暖气管线中装有甲、乙两种水管共25根,总长为155米,甲种水管每根长5米,乙种水管每根长8米,请问甲、乙两种水管各有多少根?87.某铁路由于沿线多为山壑,需修建桥梁和隧道共300个,桥梁和隧道的长度约占这条铁路全长的五分之四,其中桥梁数量(座)又比隧道数量(条)多50%.这条铁路工程总投资约135亿元,平均每千米造价约4500万元.(1)求该铁路隧道数量.(2)若该铁路平均每条隧道长度大约是平均每座桥梁长度的6倍.求该铁路隧道的总长度.88.甲乙两人承包铺地砖任务,若甲单独做需20小时完成,乙单独做需要12小时完成.甲乙二人合做6小时后,乙有事离开,剩下的由甲单独完成.问甲还要几个小时才可完成任务?89.现有一个内直径为6厘米的圆柱形烧杯,里面有高2厘米的液体.将这些液体倒入一个内直径是2厘米的圆柱形量筒内,这个量筒内液体的液面高度是多少厘米?90.老师想为希望小学四年级(1)班的同学购买学习用品,了解到某商店每个书包的价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.每个书包和每本词典的价格各是多少元?91.一架飞机在两城市之间飞行,顺风需4小时20分,逆风需要4小时40分,已知风速是每小时30千米,求此飞机本身的飞行速度.92.为了从小培养学生的足球兴趣,给国家培养并输送少年足球人才.在县教体局的大力倡导和有力推进下,全县各个学校都组建了学校足球队.某校队在练球时发现,若每人领一个少6个球,若每二人领一个则余6个球.校足球队又添新队员5人,为了保证训练时一人一球,还需新购多少个足球?93.某文艺团体为“希望工程”募捐义演,成人票8元,学生票5元.如果本次义演共售出1 000张票,筹得票款为6 950元.求成人票和学生票各售出多少张?94.水果店有一种5千克一袋装的苹果,如果小明单独买一袋,那么所带的钱还差5元;如果小杰单独买一袋,那么所带的钱还差3元;如果两人所带的钱合在一起买一袋,那么就多余8元.试问苹果每千克多少元?95.某车间安排甲、乙两人共加工400个零件,甲与乙一起加工了4小时后,又由甲单独加工了6小时才完成任务,已知甲比乙每小时少加工2个零件,求甲、乙两人每小时各加工多少零件?96.一家商店将一件西装按成本价提高50%后标价,后因节日促销按标价的8折优惠出售,每件以960元卖出,则这件西装的成本价是多少元?97.列方程解应用题:一架飞机在两城之间飞行,风速为24千米/小时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的航速和两城之间的航程.98.某书店在促销活动中,推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.有一次,小明到该书店购书,到收银台付款时,他先买优惠卡再凭卡付款,结果节省了12元,求小明不凭卡购书的书价为多少元?99.一条地下管线,甲工程队单独铺设需12天,乙工程队单独铺设需要18天,若果现有甲工程队铺设2天后再由甲、乙两个工程队共同铺设,还需要多少天可以铺好这条管线?100.某种商品的进价为400元,标价为600元,打折出售的利润率为5%,那么,此商品是按几折销售的?101.某商场进了一批豆浆机,按进价的180%标价,春节期间,为了能吸引消费者,打7折销售,此时每台豆浆机仍可获利52元,请问每台豆浆机的进价是多少元?102.某文艺团体为“希望工程”募捐组织了一场义演,共售出1000张票,筹得票款6950元,已知成人票8元一人,学生票5元一人,问成人票与学生票各售出多少张?103.两船从长江同一港口同时出发反向而行,甲船顺水航行,乙船逆水航行,两船在静水中的速度都是50km/h,若2小时后甲船比乙船多行驶了80km,那么水流的速度是多少?104.足球循环赛中,A队胜B队,比分为3:1(即A队进3球,B队进1球);B队胜C队,比分为2:0,C队胜A队,比分为1:0;计算各队在这轮循环中的净胜球数.105.一艘船从甲码头到乙码头顺流行驶,用了3小时;从乙码头返回甲码头逆流行驶,用了4.5小时.已知船在静水中的平均速度为25千米/时,求水流的速度与两个码头之间的距离.106.小刚原计划骑自行车以12千米/小时的速度由A地到B 地,这样便可以在规定的时间到达,但他因事将原计划出发的时间推迟了20分钟,只好以每小时18千米的速度前进,结果比规定的时间早10分钟到达B地,求A、B两地间的距离.107.为迎接2008年奥运会召开,学校决定进一步绿化校园,在一片空地上有1000块砖需要搬开,团委组织了65名同学进行了清理活动,男同学每人板砖16块,女同学每人板砖8块,恰好搬完,问参加这次活动的男女同学各多少人?108.甲、乙两人想共同承包一项工程.甲单独做30天完成,乙单独做20天完成,合同规定15天完成.否则每超过一天罚款800元,甲、乙两人商量后签了合同.(1)正常情况下,甲、乙两人能否履行该合同?为什么?(2)现两人合做了这项工程的75%,因别处有急事,必须调走一人,问调走谁比较合适些?说说你的理由.。

一元一次方程应用题复习(提高)(含详细解析)

一元一次方程应用题复习(提高)(含详细解析)

一元一次方程应用题期末复习一.解答题(共10小题)1.七年级(2)班的一个综合实践活动小组去A、B两个超市调查去年和今年“五•一”期间的销售情况,下图是调查后小敏与其他两位同学进行交流的情景.根据他们的对话,求A、B两个超市“五•一”期间的销售额(只需列出方程即可).2.情景:试根据图中信息,解答下列问题:(1)购买6根跳绳需元,购买12根跳绳需元.(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.3.某地为了打造风光带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m,乙工程队每天整治16m.求甲、乙两个工程队分别整治了多长的河道.4.某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?5.为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如表:例如:一户居民七月份用电420度,则需缴电费420×0.85=357(元).某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各用电多少度?6.中国现行的个人所得税法自2011年9月1日起施行,其中规定个人所得税纳税办法如下:一.以个人每月工资收入额减去3500元后的余额作为其每月应纳税所得额;二.个人所得税纳税税率如下表所示:(1)若甲、乙两人的每月工资收入额分别为4000元和6000元,请分别求出甲、乙两人的每月应缴纳的个人所得税;(2)若丙每月缴纳的个人所得税为95元,则丙每月的工资收入额应为多少?7.用白铁皮做罐头盒,每张铁片可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?8.动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒)(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间;(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B 点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.9.某地的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润4000元,经精加工后销售,每吨利润7000元.当地一家公司现有这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果对蔬菜进行精加工,每天可加工6吨,但每天两种方式不能同时进行.受季节等条件的限制,必须用15天时间将这批蔬菜全部销售或加工完毕.为此,公司研制了三种方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能地对蔬菜进行精加工,没来得及加工的蔬菜,在市场上直接出售;方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并刚好15天完成.如果你是公司经理,你会选择哪一种方案,说说理由.10.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是【A,B】的好点.例如,如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A 的距离是2,到点B的距离是1,那么点C是【A,B】的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的好点,但点D是【B,A】的好点.知识运用:如图2,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.(1)数所表示的点是【M,N】的好点;(2)如图3,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的好点?。

一元一次方程应用题典型例题总复习课件

一元一次方程应用题典型例题总复习课件

建筑物投影
某建筑物高38m,周围站立了 4m高的护栏,当太阳高度角为 30度45分时,建筑物的影长为 多少?
1. 给高度同时乘以倍数, 得到护栏的高度和建筑 物的高度。
2. 列出等式,代入角度和 数据计算。
3. 解出未知数,求解影长。
邮寄包裹
一件80kg的物品,经过计算得 出运费为y元,请求出每公斤的 运费。
2 赛车比赛
两辆赛车在同一起点出发,以18km/h和22km/h的速度相向行驶,在8小时后相遇,求这 段道路的长度。
3 公交车班次
某小区有公交车往返市区,设一个班次的需要花费x分钟,其中上车时间为y分钟,下车 时间为z分钟,公交车班次频率为每现10分钟一班,求等待公交车的最长时间。
较复杂方程的应用
找出所有条件,列出方程式。
未知数。
4
检查答案
将求出的方程式代入到题目中检查答案。
典型例题分析
方程形式
将题目中的关系式转换为一元一 次方程。
解题步骤
按照应用题思路,逐步解题。
练习题集
练习更多的例题,熟悉求解步骤。
简单方程的应用
1 购物优惠
某商场举行了打折促销活动,设T恤原价为x元,优惠后售价为y元,若购买4件可获得八 折优惠,求每件T恤的折后价。
一元一次方程应用题典型 例题总复习课件
本课程将针对一元一次方程应用题,提供全面的复习与解析,助您学有所成!
概述:一元一次方程
1
定义
一元一次方程是一个一次有理式等于0的代数式。
2
组成
由未知数、系数与常数三元素组成,其中常数项可以为0。
3
形式
一元一次方程的标准形式是ax + b = 0,其中a、b是已知数,x是未知数。

2023-2024年人教版七年级上册数学期末专题复习:一元一次方程应用题

2023-2024年人教版七年级上册数学期末专题复习:一元一次方程应用题

2023-2024年人教版七年级上册数学期末专题复习:一元一次方程应用题1.某中学学生步行到郊外旅行.七(1)班学生组成前队,步行速度为4千米/时,七(2)班的学生组成后队,速度为6千米/时;前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米/时.(1)后队追上前队需要多长时间?(2)后队追上前队时间内,联络员骑车的路程是多少千米?2.某开发公司生产出若干件新产品,需要精加工后才能投放市场,现有甲、乙两个工厂每天分别能加工这种产品16件和24件,已知甲单独加工这批产品比乙单独加工这批产品要多用20天,又知若由甲厂单独做,公司需付甲厂每天加工费用80元;若由乙厂单独做,公司需付乙厂每天加工费用120元。

(1)求这批新产品共有多少件?(2)若公司董事会制定了如下方案:可以由每个工厂单独完成,也可以由两个工厂合作完成,但在加工过程中,公司需派一名工程师到工厂进行技术指导,并由公司为其提供每天10元的午餐补助,请你帮助公司选择一种既省时又省钱的加工方案,并通过计算说明理由.3.某中学将举行“歌唱祖国”主题歌咏比赛,七年级需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知每袋贴纸有50张,每袋小红旗有20面,贴纸和小红旗需整袋购买,两家文具店的标价相同,每袋贴纸价格比每袋小红旗价格少5元,且4袋贴纸与3袋小红旗价格相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果购买贴纸和小红旗共90袋,给每位演出学生分发国旗图案贴纸2张、小红旗1面,恰好全部分完,请问贴纸和小红旗各多少袋?某校七年级(1)和(2)班共105人去游玩,其中七(1)班40多人不足50人,经计算,如果两个班都以班为单位购票,则一共应付1401元.(1)两班各有多少人?(2)如果两班联合起来,作为一个团体购票,能省多少钱?7.某中学举行校运会,初一(1)班同学准备用卡纸制成乒乓球拍和小旗作道具.若一张卡纸可以做3个球拍或6面小旗,用21张卡纸,刚好能够让每位同学拿一个球拍和一面小旗.(1)应用多少张卡纸做球拍,多少张卡纸做小旗?(2)若每个人的工作效率都相同,一个人完成道具制作要6个小时,先安排2个人做半小时,再增加几个人做1小时可以刚好完成?8.一段道路,甲工程队单独铺设需10天完成,乙工程队单独铺设需15天完成.(1)若两队自始至终合作铺设, 天可以完成;(2)实际由甲工程队先单独铺设几天后,为了加快进度,余下的部分由甲乙两个工程队合作完成,共用8天铺设完成了这段道路.甲工程队先铺设了几天道路?9. “双十二”期间,某个体商户在网上购进某品牌A 、B 两款羽绒服来销售,若购进3件A 和4件B 需支付2400元,若购进1件A 和1件B 则需支付700元.(1)求A 、B 两款羽绒服在网上的售价分别是每件多少元?(2)若个体商户把网上购买的A 、B 两款羽绒服各10件,均按每件600元进行销售,销售一段时间后,把剩下的羽绒服按6折销售完,若总获利为3800元,求个体商户打折销售的羽绒服是多少件?10.下雪了,学校七年级准备为同学们定制一批冬帽,现有甲、乙两个工厂都想加工这 批冬帽,已知甲工厂每天能加工这种冬帽20件,乙工厂每天能加工这种冬帽30件,且单独加工这批冬帽甲厂比乙厂要多用16天.(1)求这批冬帽共有多少件?(2)为了尽快完成这批冬帽,若先由甲、乙两厂按原生产速度合作一段时间后,甲工厂停工了,由乙工厂单独完成剩余部分,为此乙工厂每天的生产速度也提高20%.已知乙工厂的全部工作时间是甲工厂工作时间的2倍还少2天,求乙工厂共加工多少天?11.一个长方形的周长为26cm ,这个长方形的长减少1cm ,宽增加2cm ,就可成为一个正方形.(1)设长方形的长为cm x ,请列出关于x 的方程.(2)说明8x =是(1)中所列方程的解,而10x =不是它的解.(3)设长方形的宽是cm y ,请列出关于y 的方程.(1)若小泮购买了25千克的柑橘,则他需要付多少元?(2)若小钱一次购买柑橘共付了200元,则小钱购买柑橘多少千克?(3)小王分两次共购买了柑橘90千克,第二次购买的数量要多于第一次购买的数量,共付出376元,请问小王第一次、第二次分别购买柑橘多少千克?14.某校开展劳动教育,在植树节当天组织植树活动,该校七年级共有120人参加活动,分成树苗保障组和种植组,种植组的人数是树苗保障组人数的2倍.(1)求树苗保障组的人数;(2)已知种植点有甲、乙两处,种植组在甲处有a人.①用含a的代数式表示种植组在乙处的人数;a ,树苗保障组人员在运送完树苗后全部去支援种植组,使在甲处种植的人数②若46是乙处种植人数的2倍,问应调往甲、乙两处各多少人?15.甲、乙两地相距72km ,一辆工程车和一辆洒水车上午6时同时从甲地出发,分别以1km/h v 、2km/h v 的速度匀速驶往乙地.工程车到达乙地后停留了2h ,沿原路以原速返回,中午12时到达甲地,此时洒水车也恰好到达乙地.(1)1v =______,2=v ______;(2)求出发多长时间后,两车相遇?(3)求出发多长时间后,两车相距30km ?(直接写出答案)______16.某同学进入初中后,家长为他买了一个电话手表.现从某电信运营商那里了解到,有两种电话卡,A 类卡收费标准如下:无月租,每通话1分钟交费0.6元;B 类卡收费标准如下:月租费15元,每通话1分钟交费0.3元.(1)若每月平均通话时间为100分钟,他应该选择哪类卡?(2)如果这位同学这个月预交话费120元,按A 、B 两类卡收费标准分别可以通话多长时间?(3)根据一个月的通话时间,你认为选择哪种卡更实惠?17.用80m 的篱笆围成一个长方形场地.(1)如果长比宽多6m ,求这个长方形的面积;(2)如果一边靠墙,墙长为32m ,长比宽多11m (长边与墙平行),这样设计是否可行?请说明理由.18.请列一元一次方程解决下面的问题:某超市计划购进甲、乙两种型号的钢笔共900支,这两种钢笔的进价、售价如下表:(1)如果进货款恰好为28500元,那么可以购进甲、乙两种型号的钢笔各多少支?(2)售完这批钢笔一共可以获利多少元钱?参考答案:1.(1)2小时(2)20千米2.(1)这批新产品共有960件.(2)甲、乙合作同时完成时,既省钱又省时间,理由见解析.3.(1)每袋国旗图案贴纸和每袋小红旗的价格各是15和20元(2)购买贴纸40袋,购买小红旗50袋4.(1)买卡合算,小张能节省400元(2)这台冰箱的进价是2480元5.(1)第一批购进文具盒40个,则第二批购进文具盒30个.(2)第二批文具盒中按标价售出的有7个.6.(1)七年级(1)班47人,(2)班58人(2)两个班联合起来,作为一个团体购票,可省351元7.(1)用14张卡纸做球拍,7张卡纸做小旗;(2)再增加3个人做1小时可以刚好完成8.(1)6(2)5天9.(1)A、B两款羽绒服在网上的售价分别是每件400元,300元(2)个体商户打折销售的羽绒服是5件10.(1)这批冬帽共有960件(2)乙工厂共加工22天(2)售完这批钢笔一共可以获利7500元钱。

一元一次方程解应用题-行程问题专项练习 含答案)

一元一次方程解应用题-行程问题专项练习 含答案)

一元一次方程解应用题-行程问题专项练习一、单选题1.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x 千米/分钟,则所列方程为( ).A .31 2.5 1.5x x -=⨯B .31 2.5 1.5x x +=⨯C .31150 1.5x x -=⨯D .1801150 1.5x x +=⨯ 2.小明每天早晨在8时前赶到离家1km 的学校上学.一天,小明以80m/min 的速度从家出发去学校,5min 后,小明爸爸发现小明的语文书落在家里,于是,立即以180m/min 的速度去追赶.则小明爸爸追上小明所用的时间为( )A .2 minB .3minC .4minD .5min3.一货轮往返于上、下游两个码头,逆流而上38个小时,顺流而下需用32个小时,若水流速度为8千米/时,则下列求两码头距离x 的方程正确的是( )A .883238x x -+= B .883238x x -=+ C .832382x x -= D .21323823238x x x ⎛⎫=+ ⎪+⎝⎭ 4.如图所示,甲、乙两动点分别从正方形ABCD 的顶点A ,C 同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2020次相遇在边( )上.A .AB B .BC C .CD D .DA5.A ,B 两地相距600km ,甲车以60km/h 的速度从A 地驶向B 地,当甲车行驶100km 后,乙车以100km/h 的速度沿着相同的道路从A 地驶向B 地.设乙车出发h x 后追上甲车,根据题意可列方程为( )A .60100100x x +=B .60100100x x -=C .60100600x x +=D .60100100600x x ++= 6.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安,几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问甲乙经过多少日相逢?设甲乙经过x 日相逢,可列 方程( )A .7512x x +=+B .2175x x ++=C .2175x x +-=D .275x x += 7.甲、乙两车分别从A 、B 两地同时出发,相向而行,若快车甲的速度为60/km h ,慢车乙的速度比快车甲慢4/km h ,A 、B 两地相距80km ,求两车从出发到相遇所行时间,如果设xh 后两车相遇,则根据题意列出方程为( )A .4608080x x -+=B .()480x x -=C .()6060480x x +-=D .()6060480x x +-= 8.我国古代著名著作《算学启蒙》中有这样一道题:“良马日行二百四十里,驽马日行一直五十里,驽马先行一十二日,问良马几何追及之.”题意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,则快马追上慢马需( )A .20天B .21天C .22天D .23天9.2020年12月30日,连云港市图书馆新馆正式开馆.小明同学从家步行去图书馆,他以5km/h 的速度行进24min 后,爸爸骑自行车以15km/h 的速度按原路追赶小明.设爸爸出发xh 后与小明会合,那么所列方程正确的是( )A .245()1560x x +=B .()52415x x +=C .()51524x x =+D .24515()60x x =+ 10.某中学学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4.5千米.一列火车以每小时120千米的速度迎面开来,测得从火车头与队首学生相遇,到车尾与队末学生相遇,共经过12秒.如果队伍长150米,那么火车长( )A .150 米B .215米C .265 米D .310米11.《九章算术》是一部与现代数学的主流思想完全吻合的中国数学经典著作,全书分为九章,在第七章“均衡”中有一题:“今有凫起南海,七日至北海;雁起北海,九日至南悔.今凫雁俱起,问何日相逢?”愈思是:今有野鸭从南海起飞.7天到北海;大雁从北海起飞,9天到南海.现野鸭大雁同时起飞,问经过多少天相逢.利用方程思想解决这一问题时,设经过x 天相遇,根据题意列出的方程是( )A .()971x -=B .()971x +=C .11179x ⎛⎫+= ⎪⎝⎭D .11179x ⎛⎫-= ⎪⎝⎭12.一天早上,小宇从家出发去上学.小宇在离家800米时,突然想起班级今天要进行建党100周年合唱彩排,表演的衣服忘了,于是小宇立即打电话通知妈妈送来,自己则一直保持原来的速度继续赶往学校,妈妈接到电话后,马上拿起衣服以180米/分的速度沿相同的路线追赶小宇,10分钟后追上了小宇,把衣服给小宇后又立即以原速原路返回,小宇拿到衣服后继续原速赶往学校(打接电话、拿取衣服等时间都忽略不计).当小宇妈妈回到家中时,恰好小宇也刚好到学校.则小宇家离学校的距离为()A.1800米B.2000米C.2800米D.3200米二、填空题13.一艘轮船在水中由A地开往B地,顺水航行用了4小时,由B地开往A地,逆水航行比顺水航行多用了1小时,已知此船在静水中速度是18千米/时,水流速度为___________千米/小时.14.一列长150米的火车,以每秒15米的速度通过长600米的桥洞,从列车进入桥洞口算起,这列火车完全通过桥洞所需时间是____秒.15.甲乙两车在南北方向的笔直公路上相距90千米,相向而行.甲出发30分钟后,乙再出发,甲的速度为60千米/时,乙的速度为40千米/时.则甲出发________小时后甲乙相距10千米.16.有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.若求此人第六天走的路程为多少里.设此人第六天走的路程为x里,依题意,可列方程为________.17.小明与小美家相距1.8千米.有一天,小明与小美同时从各自家里出发,向对方家走去,小明家的狗和小明一起出发,小狗先跑去和小美相遇,又立刻回头跑向小明,又立刻跑向小美……一直在小明与小美之间跑动.已知小明速度为50米/分,小美速度为40米/分,小明家的狗速度为150米分,则小明与小美相遇时,小狗一共跑了__________米.三、解答题18.列方程解应用题:甲、乙两人从相距60千米的两地同时出发,相向而行2小时后相遇,甲每小时比乙少走4千米,求甲、乙两人的速度.19.小明在国庆节期间和父母外出旅游,他们先从宾馆出发去景点A参观游览,在景点A停留1.5h 后,又去景点B,再停留0.5h后返回宾馆.去时的速度是5km/h,回来时的速度是4km/h,来回(包括停留时间在内)一共用去7h,如果回来时的路程比去时多2km,求去时的路程.20.甲、乙两人分别后,沿着铁轨反向而行.此时,一列火车匀速地向甲迎面驶来,列车在甲身旁开过,用了15s;然后在乙身旁开过,用了17s.已知两人的步行速度都是3.6km/h,这列火车有多长?21.如图,在数轴上,点A、点B所表示的数分别是a和b,点A在原点右边,点B在原点左边,它们相距24个单位长度,且点A到原点的距离比点B到原点的距离大8,点P从点A出发,以每秒3个单位的速度向数轴负方向运动,到达点B后,立即以相同的速度反向运动;点Q从点B出发,以每秒1个单位的速度向数轴负方向运动,两点同时出发,设运动时间为t秒.(1)a=,b=;(2)当点P、点Q所表示的数互为相反数时,求t的值;(3)当点P、点Q与原点的距离之和为22时,求t的值.22.问题一:如图①,甲,乙两人分别从相距30km的A,B两地同时出发,若甲的速度为40km/h,乙的速度为30km/h,设甲追到乙所花时间为xh,则可列方程为;问题二:如图②,若将线段AC弯曲后视作钟表的一部分,线段AB对应钟表上的弧AB(1小时的间隔),已知∠AOB=30°.(1)分针OC的速度为每分钟转动度;时针OD的速度为每分钟转动度;(2)若从1:00起计时,几分钟后分针与时针第一次重合?(3)在(2)的条件下,几分钟后分针与时针互相垂直(在1:00~2:00之间)?参考答案1.D解:3小时=180分钟由题意下山的速度为1.5x 千米/分钟,从而可得方程:1801150 1.5x x +=⨯ 故选:D .2.C解:设小明爸爸追上小明所用的时间为min x ,则小明走的路程为(80580)x m ⨯+,小明的爸爸走的路程为180xm ,由题意列式得:805+80180x x ⨯=,解得:4x =.即小明爸爸追上小明所用的时间为4分钟.故选:C3.B解:∵逆流而上38个小时,∴逆流时船本身的速度可以表示为38x 千米/时, ∵顺流而下需用32个小时,∴顺流时船本身的速度可以表示为32x 千米/时, ∵静水的速度是不变的,∴可列方程为883238x x -=+. 故选:B .4.A解:设正方形的边长为a ,甲的速度为v ,则乙的速度为4v ,第一次相遇时间为1t ,第二次相遇时间为2t ,第n 次相遇时间为n t ,甲第一次走的路程为S 1,第二次走的路程为S 2,第n 次走的路程为S n , 1142vt vt a +=, 125a t v=,1125a S v t ==, 2244vt vt a +=, 245a t v=,2245a S v t ==,3344vt vt a +=,345a t v =,3345a S v t ==, … 45n a t v=,45n n a S v t ==, ()12422445555n n a a a a S S S S -=+⋯+=++⋯=, 当2020n =时,()4280781615,655n a a S a -===, 4403.9S a ÷=圈,0.94 3.6a a ⨯=,第2020次相遇在AB 上.故选:A .5.A解:设乙车出发h x 后追上甲车,等量关系为甲车h x 行驶的路程100km +=乙车h x 行驶的路程,据此列方程为60100100x x +=.故选:A.6.B解:根据题意设甲乙经过x 日相逢,则甲、乙分别所走路程占总路程的5x 和27x +,可列方程2175x x ++=. 故选B .7.C解:根据题意可知甲的速度为60/km h ,乙的速度是()604/km h -,相遇后甲行驶的路程+乙行驶的路程=80km ,∴可列方程为()6060480x x +-=.故选:C .8.A解:设快马x 天可以追上慢马,由题意,得240x ﹣150x =150×12,解得:x =20.答:快马20天可以追上慢马.故选:A .9.A解:设爸爸出发xh 后与小明会合,则此时小明出发了2460x ⎛⎫+ ⎪⎝⎭h , 依据题意得:2451560x x ⎛⎫+= ⎪⎝⎭, 故选:A .10.C解:12秒=1300小时,150米=0.15千米, 设火车长x 千米,根据题意得:1300×(4.5+120)=x +0.15, 解得:x =0.265,0.265千米=265米.答:火车长265米.故选:C .11.C解:设野鸭与大雁从南海和北海同时起飞,经过x 天相遇, 根据题意得:11179x ⎛⎫+= ⎪⎝⎭. 故选:C .12.C解:设小宇的速度为x 米/分,根据题意得:1018010800x =⨯-,解得:10x =,则小宇家离学校的距离为10180102800x +⨯=(米),故选:C .13.2解:设水流速度是x 千米/时,依题意有4(x +18)=(4+1)×(18−x ), 解得x =2.答:水流速度是2千米/时.14.50解:设这列火车完全通过桥洞所需时间为x 秒,根据题意得:15x =600+150,解得:x =50.答:这列火车完全通过隧道所需时间是50秒.故答案为:50.15.1或1.2或1解:设甲出发x 小时后甲乙相距10千米, 当甲乙相遇前:306040()901060x x +-=-, 解得x =1;当甲乙相遇后:306040()901060x x +-=+, 解得x =1.2,故答案为:1或1.2.16.2481632378+++++=x x x x x x解:设此人第六天走的路程为x 里,则前五天走的路程分别为2x ,4x ,8x ,16x ,32x 里,依题意得:2481632378+++++=x x x x x x ;故答案是:2481632378+++++=x x x x x x .17.3000解:设经过x 分钟两人相遇,依题意,得:(50+40)x =1800,解得:x =20,所以小狗跑的距离为150×20=3000(米)故答案为:3000.18.甲的速度为13千米每小时,乙的速度为17千米每小时解:设乙的速度为x 千米每小时,则甲的速度为(4)x -千米每小时,根据题意得, 22(4)60x x +-=解得17x =,则甲的速度为17413-=千米每小时 答:甲的速度为13千米每小时,乙的速度为17千米每小时. 19.10km解:设去时的路程为km x ,则回来时的路程就是(2)km x +,去时路上所用的时间为h 5x ,回来时路上所用的时间为2h 4x +.根据题意,得2 1.50.5754x x ++++=. 解得10x =. 因此,去时走的路程是10km .20.255m解:3.6km/h =1m/s .设这列火车的速度为x m/s ,则火车的长为15x +1×15=(15x +15)m , 根据题意得:17x ﹣17×1=15x +15×1, 解得:x =16,∴15(x +1)=255,答:这列火车长255m .21.(1)16,﹣8;(2)t 的值是2;(3)t 的值是1或7.5或11.5或9. 解:(1)∵点A 在原点右边,点B 在原点左边,它们相距24个单位长度,且点A 到原点的距离比点B 到原点的距离大8,0,0a b ∴>< ∴24,8a b a b -=-=∴a =(24+8)÷2=16,b =﹣(24﹣8)÷2=﹣8;故答案为:16,﹣8.(2)①当0≤t ≤8时,点P 表示的数是16﹣3t ,点Q 表示的数是﹣8﹣t , 所以(16﹣3t )+(﹣8﹣t )=0,解得t =2; ②当8<t <16时,点P 表示的数是﹣8+(3t ﹣24)=3t ﹣32,点Q 表示的数是﹣8﹣t , 所以(3t ﹣32)+(﹣8﹣t )=0,解得t =20(舍去); 所以当点P 、点Q 所表示的数互为相反数时,t 的值是2; (3)①当0≤t ≤8时,OP =|16﹣3t |,OQ =8+t , 所以|16﹣3t |+8+t =22,解得t =1或7.5;②当8<t<16时,OP=|3t﹣32|,OQ=8+t,所以|3t﹣32|+8+t=22,解得t=11.5或9;综上,当点P、点Q与原点的距离之和为22时,t的值是1或7.5或11.5或9.22.问题一:(40-30)x=30;问题二:(1)6,0.5;(2)从1:00起计时,6011分钟后分针与时针第一次重合;(3)24011或60011分钟后分针与时针互相垂直(在1:00~2:00之间).解:问题一:依题意有(40-30)x=30;故答案为:(40-30)x=30;问题二:(1)分针OC的速度为每分钟转动6度;时针OD的速度为每分钟转动0.5度;故答案为:6,0.5;(2)设从1:00起计时,y分钟后分针与时针第一次重合,依题意有(6-0.5)y=30,解得y=6011.故从1:00起计时,6011分钟后分针与时针第一次重合;(3)设在(2)的条件下,z分钟后分针与时针互相垂直(在1:00~2:00之间),依题意有(6-0.5)z=90+30或(6-0.5)z=270+30,解得z=24011或z=60011,故在(2)的条件下,24011或60011分钟后分针与时针互相垂直(在1:00~2:00之间).11。

一元一次方程应用题复习提纲

一元一次方程应用题复习提纲

一元一次方程应用题复习提纲一.运用方程解决实际问题的一般过程是:1.审题:分析题意,找出题中的数量及其关系;2. 设元:选择一个适当的未知数用字母表示;3.列方程:根据等量关系列出方程;4. 解方程:求出未知数的值;5.答注:列方程的关键是:找出等量关系和设出适当的未知数二..列方程应注意3个问题:1. 方程两边单位要一致: 2. 方程两边量要一致; 3. 方程两边数量要相等三.应用题的基本类型和每个类型所用到的基本数量关系:(1)行程问题:路程=速度×时间。

相遇问题:甲、乙相向而行,则:甲走的路程+乙走的路程=总路程。

追及问题:①甲、乙同时不同地,则:追者走的路程=前者走的路程+两地间的距离。

②甲、乙同地不同时,则:追者走的路程=前者走的路程环形跑道题:①甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。

②甲、乙两人在环形跑道上同时同地反向出发:两人相遇时的总路程为环形跑道一圈的长度。

飞行问题、航行问题,基本等量关系:顺流路程=逆流路程①顺流速度=船速+水速②逆流速度=船速-水速练习:例1:两辆汽车同时从相距600千米的两地相对开出,甲车每小时行200千米,乙车每小时行100千米。

两车什么时候相遇?例2:一拖拉机准要去拉货,每小时走30千米,出发2小时后,家中有事派一辆小轿车50千米/小时的速度去追拖拉机,问小轿车用多少时间可以追上拖拉机?例3:甲乙两人在400米长的环形跑道上跑步,甲速度是240米/分钟,乙速度是200米/分钟,两人同时同地出发,(1)若同向跑,几分钟后相遇?(2)若背向跑,几分钟后相遇?例4:一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时。

已知水流的速度是3千米/时,求船在静水中的平均速度。

(2)工程问题:工程类应用题中的工作量并不是具体数量,因而常常把工作总量看作整体1,其中,公式:工作效率=工作总量÷工作时间,工作量=工作效率×工作时间=人均工效×工时×人数,工作效率=工作量工作时间等量关系:几人合作完成某项工作:每个人的工作量之和=总工作量。

一元一次方程应用题专题练习

一元一次方程应用题专题练习

一元一次方程应用题专题练习这种方程是最简单的方程之一,但在各种实际问题中却有广泛的应用,包括代数问题,几何问题,经济问题等等。

下面我们将通过一些具体的例子来讨论一元一次方程的应用。

例题2:商店举行特价促销活动,商品原价为x元,降价后的价格为x-30元,如果顾客购买该商品后只需支付60元,则原价是多少?解析:设原价为x元,则降价后的价格为x-30元。

根据题意,购买该商品支付的金额为60元,即x-30=60。

解这个方程可以得出x的值,即商品的原价。

例题3:一条长方形花坛的长是x米,宽是x/3米,花坛的面积是6平方米,这条花坛的周长是多少米?解析:设花坛的长为x米,则宽为x/3米。

花坛的面积是6平方米,即长乘宽等于6平方米,即x*(x/3)=6、解这个方程可以得出x的值,即长方形花坛的长和宽。

根据长方形的周长公式C=2*(长+宽),可以得到长方形花坛的周长。

通过以上例题可以看出,一元一次方程可以用来解决各种实际问题。

几何问题中可以应用一元一次方程来求解长度,面积,周长等问题;代数问题中可以应用一元一次方程来求解未知数的值;经济问题中可以应用一元一次方程来求解价格,成本,收入等问题。

在解决实际问题时,我们通常需要先列方程,然后解方程,最后验证结果。

列方程是根据问题中所给的条件,用字母表示未知数,建立数学模型。

解方程是根据所列方程求解未知数的值。

验证结果是将求解得到的值代入原方程中验证是否符合问题的条件。

在解一元一次方程的过程中,常用的解法有逆运算法、消元法、方程图法等。

根据问题的实际情况,选择不同的解法来解决问题。

总结:一元一次方程是一种简单而常用的方程形式,广泛应用于各个领域的实际问题中。

通过实例可以看出,运用一元一次方程可以解决各种数学问题,提高数学解题的能力和思维能力。

在解决实际问题时,应该注意建立数学模型,合理选择解法,并进行结果的验证,以确保解答正确。

一元一次方程应用题归类汇集(含答案)

一元一次方程应用题归类汇集(含答案)

一元一次方程应用题归类汇集(含答案)自行车的速度是每小时18km。

当自行车追上行人时,自行车已经行了6km。

求这条公路的长度。

解:设这条公路的长度为x千米,则等量关系为自行车行的路程=行人行的路程+6km列出方程是:x18=3.6x+6解方程可得:x=4因此,这条公路的长度为4千米。

骑自行车的速度为每小时10.8km,通过行人的时间是22秒,通过骑自行车的人的时间是26秒。

现在需要求出行人的速度和火车的车长。

解:行人的速度为:1米/秒,骑自行车的人的速度为:3米/秒。

设火车的速度为x米/秒,则26×(x-3)=22×(x-1),解得x=4.因此,火车的速度为4米/秒。

接下来,设火车的车长为x米,则 x=22×4+26×3÷2=88米。

因此,火车的车长为88米。

一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。

汽车速度是60千米/时,步行的速度是5千米/时,XXX比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。

出发地到目的地的距离是60千米。

求XXX在出发后经过多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)。

解:设XXX在出发后经过x小时与回头接他们的汽车相遇,则5x+60(x-1)=60×2,解得x=6.因此,XXX在出发后经过6小时与回头接他们的汽车相遇。

某人计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间到达B地,但他因事将原计划的时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地。

求A、B两地间的距离。

解:设由A地到B地规定的时间是x小时,则 12x=15×(x-1/3),解得x=4/3.因此,由A地到B地的距离为12×4/3=16千米。

一列火车匀速行驶,经过一条长300m的隧道需要20s的时间。

隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s。

一元一次方程专题复习:定义+解方程+应用题

一元一次方程专题复习:定义+解方程+应用题

七年级期末复习专题--一元一次方程【考点一:一元一次方程概念及方程的解】1.下列各式中:①310x -=②325+=③321x +>④931x y -=⑤223z z -=⑥211-=⑦15x x+=是方程的有 ,其中 是一元一次方程.2.已知方程(1)30m m x ++=是关于x 的一元一次方程,则m 的值是 .3.若方程112(1)0b a x --=是关于x 的一元一次方程,则a b 、应满足的条件是 .4. 已知关于的方程的解是,则的值是__________.5.m 为何值时,关于x 的方程4231x m x -=-的解是23x x m =-的解的2倍.6. 若方程351x -=与方程2102a x--=有相同的解,则a 的值等于 .7.若关于x 的方程:(3)(2)10354k x k x x +--=-与方程1252(1)3xx --+=的解相同,求k 的值.x 432x m -=x m =m8.已知关于x 的方程2(3)60m m x m -++=①与5(3)nx x n -=-②的解相同,其中方程①是一元一次方程,求代数式200822(1)()m x m n xn ++-+的值.9.已知3x =是方程(1)3[(1)]234x m x -++=的解,n 满足关系式21n m +=,求m n +的值.10.已知m 满足的条件为:代数式5123m m --的值与代数式72m-的值的和等于5;ba n a b=+,试求mn 的值.【考点二:一元一次方程解法】 11.解下列方程①37421x x -+=+ ②()432040x x --+=③51263x xx+--=-④2(1)5(1)136x x++=-⑤34721212x x+--=⑥111(51)(91)(1)683x x x+=+--⑦22439137335459x x x x+---++=⑧111233{[()]}234324x x x x----=+⑨0.10.2130.020.5x x-+-=⑩2(23)0.0334.59.50.010.03y y---=-12.解下列方程①357x -= ②2332x x -+= ③43mx x n +=-【考点三:应用题】13.郑州市某停车场的收费标准如下:大型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆,现在停车场停有大、小型汽车共50辆,这些车共缴纳了210元停车费,问其中大、小型汽车各缴纳了多少元停车费?15.“十·一”期间,某商场搞促销活动,一顾客购买甲、乙两种商品,分别抽到七折和九折,共付款386元,比原来少付出114元,问这两种商品的原销售价分别是多少?16.为庆祝“六一”儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校的人数多于乙校的人数,且甲校的人数不足90人)准备统一购买服装参加演出;下面是某服装厂给出的演出服装的价格表购买服装的套数1套至45套46套至90套91套以上每套服装的价格60元50元40元(1)如果两所学校分别单独购买服装一共应付5000元,甲、乙两所学校各有多少学生准备参加演出?(2)如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出,请你为两所学校设计一种最省钱的购买服装方案.17.某学校组织学生春游,如果租用若干辆45座的客车,则有15个人没有座位,如果租用同数量的60座的客车,则多出1辆,其余车恰好坐满,已知租用45座的客车日租金为每辆车250元,60座的客车日租金为300元,问租用哪种客车更合算,租几辆车?18.某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母.为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?19.某厂生产一批西装,每2米布可以裁上衣3件,或裁裤子4条,现有花布240米,为了使上衣和裤子配套,裁上衣和裤子应该各用花布多少米?20.某市按下列规定收取每月的煤气费:用煤气如果不超过60 立方米,按每立方米0.8元收费;如果超过60 立方米,超过部分按每立方米1.2元收费.小方这个月交煤气费60元,问:小方这个月用了多少煤气?21.为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见价目表.例如:若某户居民月份用水,则应收水费:元.根据自己的理解,试解答如下问题:(1) 若该用户月份用水,则应收水费______元;(2) 若该户居民3月份交水费10元,则3月份用水______立方米;若该户居民3月份交水费20元,则3月份用水______立方米; 若该户居民3月份交水费52元,则3月份用水______立方米;(3) 若该用户4月份水费平均为每立方米2.5元,那么该用户月份应交水费多少元?若该用户4月份水费平均为每立方米3元,那么该用户4月份应交水费多少元呢?138m 264(86)20⨯+⨯-=2312.5m 2价目表每月水用量 单价 不超出6m 3的部分2元/m 3超出6m 3不超出10m 3的部分 4元/m 3 超出10m 3的部分 8元/m 3注:水费按月结算.22.某市规定;每户每月用水量在规定吨数以下的收费标准相同;规定吨数以上的超过部分收费标准相同,以下是小明家根据表格中提供的信息,回答以下问题:⑴求出规定吨数和两种收费标准;⑵若小明家5月份用水20吨,则应缴多少元?⑶若小明家6月份缴水费29元,则6月份用水多少吨?23.小王每天去体育场晨练,都见到一位田径队的叔叔也在锻炼,两人沿400米跑道跑步,每次总是小王跑2圈的时间,叔叔可以跑3圈。

一元一次方程知识点复习

一元一次方程知识点复习

数学学科辅导讲义关于一元一次方程所涉及的各种问题的公式列一元一次方程解应用题的一般步骤(1)审题: 弄清题意. (2)找出等量关系: 找出能够表示本题含义的相等关系. (3)设出未知数, 列出方程: 设出未知数后, 表示出有关的含字母的式子, 然后利用已找出的等量关系列出方程. (4)解方程: 解所列的方程, 求出未知数的值. (5)检验, 写答案: 检验所求出的未知数的值是否是方程的解, 是否符合实际, 检验后写出答案.2.和差倍分问题增长量=原有量×增长率现在量=原有量+增长量3.等积变形问题常见几何图形的面积、体积、周长计算公式, 依据形虽变, 但体积不变.①圆柱体的体积公式V=底面积×高=S•h②长方体的体积V=长×宽×高=abc4. 数字问题一般可设个位数字为a, 十位数字为b, 百位数字为c.十位数可表示为10b+a, 百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程.5. 市场经济问题(1)商品利润=商品售价-商品成本价(2)商品利润率=×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售, 就是按原标价的百分之几十出售, 如商品打8折出售, 即按原标价的80%出售.6. 行程问题: 路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题: 快行距+慢行距=原距(2)追及问题: 快行距-慢行距=原距(3)航行问题: 顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变, 水流速和船速(静不速)不变的特点考虑相等关系.7. 工程问题: 工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=18. 储蓄问题利润=本金×利润率利息=本金×利率×期数一、等积变形问题常见几何图形的面积、体积、周长计算公式, 依据形虽变, 但体积不变.①圆柱体的体积公式 V=底面积×高=S·h= r2h②长方体的体积 V=长×宽×高=abc1. 把一段铁丝围成长方形, 发现长比宽多2cm;围成正方形时, 边长刚好为4cm. 求所围成的长方形的长和宽各是多少?2. 用一个底面半径为40mm, 高为120mm的圆柱形玻璃杯向一个底面半径为100mm 的大圆柱形玻璃杯中倒水, 倒了满满10杯水后, 大玻璃杯的液面离杯口还有10mm, 大玻璃杯的高度是多少?3. 一个长方形养鸡场的长边靠墙, 墙长14米, 其他三边用竹篱笆围成. 现有长为35米的竹篱笆, 小王打算用它围成一个鸡场, 其中长比宽多5米;小赵也打算用它围成一个鸡场, 其中长比宽多2米. 你认为谁的设计符合实际?按照他的设计, 鸡场的面积是多少?4. 将一个装满水的内部长、宽、高分别为300毫米, 300毫米和80•毫米的长方体铁盒中的水, 倒入一个内径为200毫米的圆柱形水桶中, 正好倒满, 求圆柱形水桶的高(精确到0.1毫米, ≈3.14).5. 在一个底面直径为5cm, 高为18cm的圆柱形瓶内装满水, 再将瓶内的水倒入一个底面直径是6cm、高是10cm的圆柱形玻璃杯中, 能否完全装下?若装不下, 那么瓶内水还剩多高?若未能装满, 求杯内水面离杯口的距离.二、打折销售问题×100% (1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售, 就是按原标价的百分之几十出售, 如打8折出售, 即按原标价的80%出售.1.随着计算机技术的迅猛发展, 电脑价格大幅度下降, 某品牌电脑今年每台售出价格为4200元, 比去年降低了30%, 问去年该品牌电脑每台售出价为多少元?2.东方商场把进价为1890元的某商品按标价的8折出售, 仍获利10%, 则该商品的标价为多少?3.某种商品的进价是1000元, 售价为1500元, 由于销售情况不好, 商店决定降价出售, 但又要保证利润不低于5%, 那么商店最多降多少元出售此商品。

一元一次方程应用题复习

一元一次方程应用题复习

日 一 二 三 四 五

7 14 21 28
1 8 15 22 29
2 9 16 23 30
3 10 17 24
4 11 18 25
5 12 19 26
6
13
20
27
例2 如下图,将一张正方形纸片,剪成四个 大小形状一样的小正方形,然后 将其中的一个小正方形再按同样的方法剪成四 个小正方形,再将其中的一个 小正方形剪成四个小正方形,如此循环进行下 去; (1)填表:
——复习课

1 1 1 解方程:1 4 x 6 x 3 1 2 3 4
5x 1 1 x 5x 1 2 1 2 3 6
3 0.4 40% x 0.5 x 50%
x 2 x 1 4 3 0. 2 0.5
一.行程问题 基本关系: 速度×时间=路程(图示法)
例:一列长为150m的火车,以每秒15m的速 度通过600m的隧道,从火车进入隧道口算 起,这列火车完全通过隧道所需时间是 50 _____ 秒.
2)增长率应用题
例1 某工厂食堂第三季度一共节煤7400斤,其中八 月份比七月份多节约20%,九月份比八月份多 节约25%,问该厂食堂九月份节约煤多少公斤?
注:同时同向出发: 快车走的路程-环行跑道周长=慢车走的路程(第一次相遇 ) 同时反向出发: 甲走的路程+乙走的路程=环行周长(第一次相遇)
练习2、甲乙两人从同一村庄步行去县城,甲比乙 早1小时出发,而晚1小时到达,甲每小时走4千米 ,乙每小时走6千米,求村庄到县城的距离?
某服饰有限公司准备加工一披演出服。在加工60套后, 采用了新技术,使每天的工作效率从原来每天加工20套 变为原来的2倍,结果共用9天完成任务。求该公司加工 的这披演出服共多少套?

(完整版)一元一次方程应用题专题

(完整版)一元一次方程应用题专题

(完整版)一元一次方程应用题专题
引言
一元一次方程是数学中最基本的方程之一。

在实际生活和工作中,我们经常遇到各种与一元一次方程有关的问题,例如物品购买、速度计算等。

本文将探讨一些实际应用中的一元一次方程题目。

应用题一:物品购买
假设你去商场购买了一批物品,其中某些物品的单价为x元,
数量为n个。

你花了y元购买了这些物品,现在你想知道每个物品
的单价和数量是多少。

解题思路:
设物品的单价为x元,数量为n个。

根据题目中的条件可列出
方程:
nx = y
我们可以通过解这个方程来求解x和n的值。

应用题二:速度计算
假设小明骑自行车以v1 km/h的速度从A地到B地,骑摩托车以v2 km/h的速度从B地到C地。

已知A地到B地的距离为d1公里,B地到C地的距离为d2公里。

现在我们想知道小明从A地到C地的总时间。

解题思路:
设从A地到B地的时间为t1小时,从B地到C地的时间为t2小时。

根据题目中的条件可列出方程:
t1 = d1/v1
t2 = d2/v2
我们可以通过解这两个方程来求解t1和t2的值,从而得到小明从A地到C地的总时间。

结论
通过以上两个应用题的解答,我们可以看到一元一次方程在实际生活中的应用范围非常广泛。

掌握一元一次方程的解题方法,可以帮助我们解决各种实际问题,提高解决问题的能力。

参考文献
[1] 清华大学附属中学数学组, 高中数学第三卷-一元一次方程. 北京: 清华大学出版社, 2009: 1-20.。

初一数学一元一次方程应用题复习练习及答案

初一数学一元一次方程应用题复习练习及答案

初一数学一元一次方程应用题复习练习及答案列方程(组)解应用题的方法及步骤:(1)审题:要明确已知什么,未知什么及其相互关系,并用x表示题中的一个合理未知数。

(2)根据题意找出能够表示应用题全部含义的一个相等关系.(关键一步)(3)根据相等关系,正确列出方程,即所列的方程应满足等号两边的量要相等;方程两边的代数式的单位要相同。

(4)解方程:求出未知数的值.(5)检验后明确地、完整地写出答案。

检验应是:检验所求出的解既能使方程成立,又能使应用题有意义。

2。

应用题的类型和每个类型所用到的基本数量关系:(1)等积类应用题的基本关系式:变形前的体积(容积)=变形后的体积(容积)。

(2)调配类应用题的特点是:调配前的数量关系,调配后又有一种新的数量关系.(3)利息类应用题的基本关系式:本金×利率=利息,本金+利息=本息。

(4)商品利润率问题:商品的利润率,商品利润=商品售价-商品进价.(5)工程类应用题中的工作量并不是具体数量,因而常常把工作总量看作整体1,其中,工作效率=工作总量÷工作时间。

(6)行程类应用题基本关系:路程=速度×时间。

相遇问题:甲、乙相向而行,则:甲走的路程+乙走的路程=总路程。

追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离。

环形跑道题:①甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。

②甲、乙两人在环形跑道上同时同地反向出发:两人相遇时的总路程为环形跑道一圈的长度。

飞行问题、基本等量关系:①顺风速度=无风速度+风速②逆风速度=无风速度-风速航行问题,基本等量关系:①顺水速度=静水速度+水速②逆水速度=静水速度-水速(7)比例类应用题:若甲、乙的比为2:3,可设甲为2x,乙为3x。

(8)数字类应用题基本关系:若一个三位数,百位数字为a,十位数字为b,个位数字为c,则这三位数为: 。

1学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有18人.如果要使在甲处植树的人数是乙处植树人数的2倍,需要从乙队调多少人到甲队?2变题学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍多2人,应调往甲、乙两处各多少人?分析设应调往甲处x人,题目中涉及的有关数量及其关系可以用下表表示:3某中学组织同学们春游,如果每辆车座45人,有15人没座位,如果每辆车座60人,那么空出一辆车,其余车刚好座满,问有几辆车,有多少同学?4某车间一共有59个工人,已知每个工人平均每天可以加工甲种零件15个,或乙种零件12个,或丙种零件8个,问如何安排每天的生产,才能使每天的产品配套?(3个甲种零件,2个乙种零件,1个丙种零件为一套)5 一张方桌由一张桌面和四根桌腿做成,已知一立方米木料可做桌面50个或桌腿300根,现在5立方米木料,恰好能做桌子多少张?6某班有50名学生,在一次数学考试中,女生的及格率为80%,男生的及格率为75%,全班的及格率为78%,问这个班的男女生各有多少人?7一份试卷共有25道题,每道题都给出了4个答案,其中只有一个正确答案,每道题选对得4分,不选或错选倒扣1分,如果一个学生得90分,那么他做对了多少道题.8有人问毕达哥拉斯,他的学校中有多少学生,他回答说:“一半学生学数学,四分之一学音乐,七分之一正休息,还剩3个女学生。

七年级数学一元一次方程应用题复习题及答案

七年级数学一元一次方程应用题复习题及答案

以下是十道七年级数学一元一次方程应用题复习题及试题及答案:1.小明用100元买了一些苹果,每个苹果10元,剩下的钱他用来买香蕉,每个香蕉5元,小明一共买了多少个香蕉?方程:10x+5y=100解:x表示苹果的个数,y表示香蕉的个数2.一辆计程车每公里收费2元,小明乘坐计程车行驶了20公里,一共支付了多少元?方程:2x=20解:x表示行驶的公里数3.一份图书的原价是x元,打折后打8折,售价是35元,求原价x是多少?方程:0.8x=35解:x表示原价4.一桶水共有x升,每天使用3升,经过7天后还剩下15升,求原来桶里有多少升水?方程:x-3(7)=15解:x表示原来的水量5.一支笔的原价是x元,现在打折促销,售价是8元,打折了多少折?方程:8=0.8x解:x表示原价6.小华一次性买了x只铅笔,每只铅笔3元,共花了9元,求小华一共买了多少只铅笔?方程:3x=9解:x表示铅笔的个数7.一份试卷满分为x分,小明得了80分,他的得分率是多少?方程:80/x=y%解:x表示试卷满分,y表示得分率8.一份作业共有x页,小华每天完成3页,经过5天后还剩下10页,求原来作业有多少页?方程:x-3(5)=10解:x表示原来作业的页数9.小明每天花30分钟上网,一共上了x天,总共花了180分钟,求x的值。

方程:30x=180解:x表示上网的天数10.一根木棍的长度是x厘米,从中间折断后,两段木棍的长度之比是2:3,求原来木棍的长度。

方程:x=(2/3)(x)解:x表示原来木棍的长度答案:1.小明一共买了12个香蕉。

2.小明一共支付了40元。

3.原价x是43.75元。

4.原来桶里有36升水。

5.打折了10折。

6.小华一共买了3只铅笔。

7.小明的得分率是80%。

8.原来作业有25页。

9.x的值是6天。

10.原来木棍的长度是60厘米。

七年级列一元一次方程解应用题分类专题

七年级列一元一次方程解应用题分类专题

一元一次方程的应用1、行程问题【例1】某人从家里骑自行车到学校。

若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?【变式探究】某人计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间到达B地,但他因事将原计划的时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地,求A、B两地间的距离。

【例2】与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。

行人的速度是每小时3.6km,骑自行车的人的速度是每小时10.8km。

如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。

⑴行人的速度为每秒多少米?⑵这列火车的车长是多少米?【变式探究】一列火车匀速行驶,经过一条长300m的隧道需要20s的时间。

隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s,根据以上数据,你能否求出火车的长度?火车的长度是多少?若不能,请说明理由。

【例3】一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。

【变式探究1】一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间的距离。

【变式探究2】小明在静水中划船的速度为10千米/时,今往返于某条河,逆水用了9小时,顺水用了6小时,求该河的水流速度。

2、工程问题【例4】某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.【变式探究】某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?3、调配问题【例5】某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?【变式探究1】机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?【变式探究2】某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件.4、财务问题【例6】甲乙两件衣服的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价,在实际销售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲乙两件服装成本各是多少元?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

列一元一次方程解应用题的几种常见题型及其特点列一元一次方程解应用题是七年级数学教学中的一大重点,而列一元一次方程解应用题又是学生从小学升入中学后第一次接触到用代数的方法处理应用题。

因此,认真学好这一知识,对于今后学习整个中学阶段的列方程(组)解应用题大有帮助。

因此将列一元一次方程解应用题的几种常见题型及其特点归纳下来,如下:(1)和、差、倍、分问题。

此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。

审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别。

类似于:甲乙两数之和56,甲比乙多3(乙是甲的1/3),求甲乙各多少?这样的问题就是和倍问题。

问题的特点是,已知两个量之间存在合倍差关系,可以求这两个量的多少。

基本方法是:以和倍差中的一种关系设未知数并表示其他量,选用余下的关系列出方程。

(2)等积变形问题。

此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。

(3)调配问题。

从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。

(4)行程问题。

要掌握行程中的基本关系:路程=速度×时间。

相遇问题(相向而行),这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。

追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。

环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。

航行问题:速度关系是:①顺水速度=静水中速度+水流速度;②逆水速度=静水中速度-水流速度。

飞行问题、基本等量关系:①顺风速度=无风速度+风速②逆风速度=无风速度-风速行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点。

(5)工程问题。

其基本数量关系:工作总量=工作效率×工作时间;合做的效率=各单独做的效率的和。

当工作总量未给出具体数量时,常设总工作量为“1”,分析时可采用列表或画图来帮助理解题意。

(6)溶液配制问题。

其基本数量关系是:溶质=溶液×浓度(浓度溶质溶液,溶液溶质浓度==),溶液=溶质+溶剂。

这类问题常根据配制前后的溶质质量或溶剂质量找等量关系,分析时可采用列表的方法来帮助理解题意。

(7)利润率问题。

其数量关系是:商品的利润率=商品利润商品进价,商品利润=商品售价-商品进价。

注意打几折销售就是按原价的十分之几出售。

(8)银行储蓄问题。

其数量关系是:利息=本金×利率×存期;本息=本金+利息,利息税=利息×利息税率。

注意利率有日利率、月利率和年利率,年利率=月利率×12=日利率×365。

(9)数字问题。

要正确区分“数”与“数字”两个概念,这类问题通常采用间接设法,常见的解题思路分析是抓住数字间或新数、原数之间的关系寻找等量关系。

列方程的前提还必须正确地表示多位数的代数式,一个多位数是各位上数字与该位计数单位的积之和。

若一个三位数,百位数字为a ,十位数字为b ,个位数字为c ,则这三位数为:10010a b c ++。

(10)年龄问题其基本数量关系: 大小两个年龄差不会变。

这类问题主要寻找的等量关系是:抓住年龄增长,一年一岁,人人平等。

(11)比例类应用题:若甲、乙的比为2:3,可设甲为2x ,乙为3x 。

( 12 ) 鸡兔同笼类。

例如:一笼内有鸡和兔,共有头70个,有腿280条,问有鸡和兔各多少?某地发行了甲乙两种彩票共100万张,甲每张2元,乙每张3元,发行金额160万,求甲乙各多少张?这类问题特点是:两处总量都和包含的个体有关系。

因此两处总量就是两个等量关系,可以设其中一个个体为X ,利用等量关系列方程。

( 13 ) 探寻规律类 这类方程的特点是,从给出的材料中找出规律,并利用这一规律找出解决问题的相等关系,列出方程。

例如:数字排列规律。

2、4、6、8…。

-1、2、-3、4、-5…。

还有日历中的规律、年龄的规律、数字表示规律等。

列一元一次方程方程解应用题一、和、差、倍、分问题。

1、一个机床厂今年第一季度生产机床180台,比去年同期的二倍多36台,去年一季度产量多少台?2、某通信公司今年员工人均收入比去年提高20%,且今年人均收入比去年的1.5倍少了1200元,求去年人均收入?3.“希望工程”委员会将2000元奖金发给全校25名三好学生,其中市级三好学生每人得奖金200元,校级三好学生每人得奖金50元,问全校市级三好学生、校级三好学生各有多少人?4. 一群老人去赶集,集上买了一堆梨,一人1个多一个,一人2个少2个,几位老人几个梨?5. 某学校组织10名优秀学生春游,预计费用若干元,后来又来了2名同学,原来的费用不变,这样每人可以少摊3元,则原来每人需要付费多少元?6. 本市中学生足球赛中,某队共参加了8场比赛,保持不败的记录,积18分.记分规则是:胜一场得3分,平一场得1分,负一场得0分。

你知道这个胜了几场?又平了几场吗?二、等积变形问题。

1. 已知圆柱的底面直径是60毫米,高为100毫米,圆锥的底面直径是120毫米,且圆柱的体积比圆锥的体积多一半,求圆锥的高是多少?2. 要锻造一个直径为8cm,高为4cm的圆柱形毛坯,至少应截取直径为4cm的圆钢多少cm。

三、调配问题。

1 . 学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有18人.如果要使在甲处植树的人数是乙处植树人数的2倍,需要从乙队调多少人到甲队?2 . 学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍多3人,应调往甲、乙两处各多少人?3 .5位教师和一群学生一起去公园,教师按全票的票价是每人7元,学生只收半价.如果买门票共花费206.50元,那么学生有多少人?4. 甲队人数是乙队人数的2倍,从甲队调12人到乙队,这时甲队人数比乙队人数的一半多3人,求甲队原来的人数。

5 .某中学组织同学们春游,如果每辆车座45人,有15人没座位,如果每辆车座60人,那么空出一辆车,其余车刚好座满,问有几辆车,有多少同学?6. 七年级三班学生参加义务劳动,原来每组8人,后来根据需要重新编组,每组14人,这样比原来减少3组。

问这个班共有学生多少人?四、行程问题。

1 . 一队学生去学校外进行军事训练,他们以每小时5千米的速度行进,走了18分钟,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以每小时14千米的速度按原路追上去,通讯员需要多少时间可以追上学生队伍?2.某桥长1000米,一列火车从桥上通过,测得火车从开始上桥到过完桥共用60秒。

而整列火车完全在桥上的时间是40秒,求火车的速度和长度3 .甲,乙二人在400米的环形跑道上跑步,已知甲的速度比乙快,如果二人在同一地方出发,同向跑,则3分20秒,相遇一次,若反向跑,则40秒相遇,求甲跑步的速度每秒跑多少米?4.从甲地到乙地,公共汽车原需行驶7个小时,开通高速公路后,车速平均每时增加了20千米,只需5个小时即可到达,求甲、乙两地的路程.5 .一队学生去校外进行训练,他们以5千米/时的速度行进,走了18分的时候,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员需多少时间可以追上学生队伍?6 .在高速公路上,一辆长5m,速度为110km/h的轿车准备超越一辆长为15m,速度为100km/h的大车,轿车能超过大车吗?若能,用多长时间?7. 甲、乙两地相距240千米,从甲站开出来一列慢车,速度为每小时80千米;从乙站开出一列快车,速度为每小时120千米。

问:如果两车同向开出,同向而行(快车在后),那么经过多长时间快车可以追上慢车?8.某学生每天清晨在同一时刻从家里骑车去学校上课,若以每小时16千米的速度行驶,就可以在上课前15分钟到达学校,若以每小时9.6千米的速度行驶,则就要迟到15分钟。

问:(1)他家到学校的距离?(2)他每天早晨在学校上课前多少小时从家里出发?五、工程问题。

1 .一项工程,甲、单独做需20天完成,乙单独做需30天完成,如果先由甲单独做8天,再由乙单独做3天,剩下的由甲,乙两人合作还需要几天完成?2. .一项工程,甲独做需12天完成,乙独做24天完成,丙独做需6天完成,现在甲与丙合作2天,丙因事离去,由甲乙合作,甲乙还需几天才能完成这项工程?3. 一部稿件,甲打字员单独打20天可以完成,甲、乙两打字员合打,12天可以完成,现由两人合打7天后,余下部分由乙打,还需多少天完成?4. 一项工程,甲单独完成需要9天,乙单独完成需12天,丙单独完成要15天,若甲、丙先做3天后,甲因故离开,由乙接替甲的工作,问还需多少天能完成这项工程的?5. 一件工作,甲单独做6小时完成,乙单独做12小时完成,丙单独做18小时完成,若先由甲、乙合做3小时,然后由乙丙合做,问共需几小时完成?1 .有浓度为98%的硫酸溶液8千克,加入浓度为20%的硫酸溶液多少千克,可配制成浓度为60%的硫酸溶液。

2 把含酒精60%的溶液9000克,变为含酒精40%的溶液则需加水量是多少?3.. 某中学的实验室需含碘20%的碘酒,现有含碘25%的碘酒350克,应加纯酒精多少克?七、利润率问题1. 某人在广州以每件15元的价格购进某种商品10件,后来又从深圳以每件12.5元的价格购进同种商品40件。

如果商店销售这些商品时要获得12%的利润,那么这种商品每件的销售价应该是多少元?2. 一家商店将某种型号的彩电先按原价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投诉后,执法部门按已得非法收入的10倍处以每台2700元的罚款。

求每台彩电的价格。

3. 商店对某种商品进行调价,按标价的8折出售,此时商品的利润率是10%,此商品进价是1600元,求商品的标价是多少元?4. 某种商品进货后,零售价定为每件900元,为了适应市场竞争,商店按零售价的九折降价,并让利40元销售,仍可获利10%(相对于进价),问这种商品的进价为多少元?5 .某商场将彩电先按原售价提高30%,然后再在广告中写上“大酬宾、八折优惠”,结果每台彩电比原售价多赚了112元,求每台彩电的原价应是多少元?6、某商店有两个进价不同的计算器都卖了64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店盈还是亏?八、银行储蓄问题。

1. 某企业申请了甲、乙两种不同用途的货款20万元,甲种存款的年利率为5.5%,乙种存款的年利率为4.5%,该企业一年可获得利息9500元,求甲、乙两种货款的钱数?2 .某储蓄所去年储户存款为4600万元,今年与去年相比,定期存款增加20%,而活期存款减少25%,但总存款增加15%,问今年定期,活期存款各是多少?3. .小丽的爸爸前年存了年利率为2.25%的二年期定储蓄,今年到期后,扣除利息的20%作为利息税,所得利息正好为小丽买了一只价值36元的计算器,问小丽爸爸前年存了多少元钱?4. 某人买了2000元的融资券,一种是一年期年利率为9%,另一种为两年期年利率为12%,分别在一年和两年到期时取出,共得利息450元,问两种融资券各买多少?5 .爸爸为小明存了一个3年期的教育储蓄(3年期的年利率为2.7﹪),3年后能取5405元,那么刚开始他存入了多少元?1 . 三个连续整数的和为72,则这三个数分别是多少?2 有两个两位数,其十位数字均是个位数字的一半,第二个数的十位数字比第一个数的十位数字小1,第一个数加上第二个数后仍为两位数,且和恰为原来第一数十位与个位上数字交换后所得数,求第一个两位数。

相关文档
最新文档