列一元一次方程解应用题专题复习

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

列一元一次方程解应用题的几种常见题型及其特点列一元一次方程解应用题是七年级数学教学中的一大重点,而列一元一次方程解应用题又是学生从小学升入中学后第一次接触到用代数的方法处理应用题。因此,认真学好这一知识,对于今后学习整个中学阶段的列方程(组)解应用题大有帮助。因此将列一元一次方程解应用题的几种常见题型及其特点归纳下来,如下:(1)和、差、倍、分问题。此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别。类似于:甲乙两数之和56,甲比乙多3(乙是甲的1/3),求甲乙各多少?这样的问题就是和倍问题。问题的特点是,已知两个量之间存在合倍差关系,可以求这两个量的多少。基本方法是:以和倍差中的一种关系设未知数并表示其他量,选用余下的关系列出方程。

(2)等积变形问题。此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。

(3)调配问题。从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。

(4)行程问题。要掌握行程中的基本关系:路程=速度×时间。

相遇问题(相向而行),这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。

追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。

环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。

航行问题:速度关系是:①顺水速度=静水中速度+水流速度;②逆水速度=静水中速度-水流速度。

飞行问题、基本等量关系:①顺风速度=无风速度+风速②逆风速度=无风速度-风速

行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点。

(5)工程问题。其基本数量关系:工作总量=工作效率×工作时间;合做的效率=各单独做的效率的和。当工作总量未给出具体数量时,常设总工作量为“1”,分析时可采用列表或画图来帮助理解题意。

(6)溶液配制问题。其基本数量关系是:溶质=溶液×浓度(浓度

溶质

溶液

,溶液

溶质

浓度

==),溶液=溶质

+溶剂。

这类问题常根据配制前后的溶质质量或溶剂质量找等量关系,分析时可采用列表的方法来帮助理解题意。

(7)利润率问题。 其数量关系是:商品的利润率=

商品利润商品进价,商品利润=商品售价-商品进价。注意

打几折销售就是按原价的十分之几出售。 (8)银行储蓄问题。 其数量关系是:利息=本金×利率×存期;本息=本金+利息,利息税=利息×利息税率。注意利率有日利率、月利率和年利率,年利率=月利率×12=日利率×365。

(9)数字问题。 要正确区分“数”与“数字”两个概念,这类问题通常采用间接设法,常见的解题思路分析是抓住数字间或新数、原数之间的关系寻找等量关系。列方程的前提还必须正确地表示多位数的代数式,一个多位数是各位上数字与该位计数单位的积之和。若一个三位数,百位数字为a ,十位数字为b ,个位数字为c ,则这三位数为:10010a b c ++。

(10)年龄问题其基本数量关系: 大小两个年龄差不会变。 这类问题主要寻找的等量关系是:抓住年龄增长,一年一岁,人人平等。

(11)比例类应用题:若甲、乙的比为2:3,可设甲为2x ,乙为3x 。

( 12 ) 鸡兔同笼类。例如:一笼内有鸡和兔,共有头70个,有腿280条,问有鸡和兔各多少?某地发行了甲乙两种彩票共100万张,甲每张2元,乙每张3元,发行金额160万,求甲乙各多少张?这类问题特点是:两处总量都和包含的个体有关系。因此两处总量就是两个等量关系,可以设其中一个个体为X ,利用等量关系列方程。

( 13 ) 探寻规律类 这类方程的特点是,从给出的材料中找出规律,并利用这一规律找出解决问题的相

等关系,列出方程。例如:数字排列规律。2、4、6、8…。-1、2、-3、4、-5…。还有日历中的规律、年龄的规律、数字表示规律等。

列一元一次方程方程解应用题

一、和、差、倍、分问题。

1、一个机床厂今年第一季度生产机床180台,比去年同期的二倍多36台,去年一季度产量多少台?

2、某通信公司今年员工人均收入比去年提高20%,且今年人均收入比去年的1.5倍少了1200元,求去年人均

收入?

3.“希望工程”委员会将2000元奖金发给全校25名三好学生,其中市级三好学生每人得奖金200元,校级三好学生每人得奖金50元,问全校市级三好学生、校级三好学生各有多少人?

4. 一群老人去赶集,集上买了一堆梨,一人1个多一个,一人2个少2个,几位老人几个梨?

5. 某学校组织10名优秀学生春游,预计费用若干元,后来又来了2名同学,原来的费用不变,这样每人可以少摊3元,则原来每人需要付费多少元?

6. 本市中学生足球赛中,某队共参加了8场比赛,保持不败的记录,积18分.记分规则是:胜一场得3分,平一场得1分,负一场得0分。你知道这个胜了几场?又平了几场吗?

二、等积变形问题。

1. 已知圆柱的底面直径是60毫米,高为100毫米,圆锥的底面直径是120毫米,且圆柱的体积比圆锥的体积多一半,求圆锥的高是多少?

2. 要锻造一个直径为8cm,高为4cm的圆柱形毛坯,至少应截取直径为4cm的圆钢多少cm。

三、调配问题。

1 . 学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有18人.如果要使在甲处植树的人数是乙处植树人数的2倍,需要从乙队调多少人到甲队?

2 . 学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍多3人,应调往甲、乙两处各多少人?

相关文档
最新文档