小学六年级数学知识点负数
人教版小学数学六年级第一章负数知识点及配套练习
人教版小学数学六年级第一章负数知识点及配套练习一、负数的定义负数是数学中用来表示小于零的数。
在十进制数中,凡是比0小的数,都是负数。
在数学表示中,负数是在普通温度计上表示零以下的温度,或在数轴上表示0右边的数。
如-1、-2、-3 等。
二、负数的表示方法1.整数表示法:在整数前面加上“-”号来表示负数。
例如:-5,-300等。
2.小数表示法:在数字后面加上“-”号来表示负数。
例如:-0.5,-3.14等。
3.分数表示法:在分数前面加上“-”号来表示负数。
例如:-1/2,-3/4等。
三、负数的大小比较负数的大小比较与正数相反,即负数越小,数值越大。
例如,-3<-2<-1<0<1<2<3。
四、负数的加减法负数的加法:两个负数相加,结果为负数,并且绝对值相加。
例如,(-2)+(-3)=-5。
负数的减法:一个负数减去另一个负数,结果为负数,并且绝对值相减。
例如,(-5)-(-3)=-2。
五、负数的在数轴上的表示在数轴上,负数位于零的左侧,并且距离零的距离越远,数值越小。
六、负数的实际应用负数在实际生活中有很多应用,例如温度、海拔高度、财务等方面。
七、配套练习(一)、填空题(1-20题)**1. 温度由-2°C上升到7°C,上升了_______ °C。
2. 如果气温下降4°C,记作-4°C,那么气温上升5°C记作_______ °C。
3. 在数轴上,点A表示-3,若将点A向右平移2个单位到点B,则点B表示的数是_______。
4. 如果电梯上升了3层记为+3,那么下降2层记为_______。
5. 数轴上点A表示的数是-5,若将点A向右平移3个单位到点B,则点B表示的数是_______。
6. 下列各数中,最接近0的负数是_______。
7. -8的绝对值是_______。
8. 某地某天早晨的气温是26°C,中午上升了5°C,夜间又下降了12°C,则该地夜间的气温是_______ °C。
六年级下册数学第一单元《负数》知识点归纳
六年级下册数学第一单元《负数》知识点归纳第一单元《负数》知识点一、正、负数的意义1、正数:像+1、+2、3、300、+2/7、+6.3、+26% 这样的数都是正数。
2、负数:像-1、-2、-300、-3/5、-0.68、-5%这样的数都是负数。
3、正数和负数可以用来表示两个相反意义的量。
例如:零上温度和零下温度、向东行和向西行、上车人数与下车人数、收入与支出、增加与减少等,都是互为相反意义的两个量,其中一个用正数表示,另一个就用负数表示。
4、0既不是正数,也不是负数。
它是正数与负数的分界点。
注意:除0外,整数、小数、分数、百分数都有正数和负数两种形式。
二、正、负数的读写1、正、负数的读法:“+”读作正,“-”读作负;按照从左往右的顺序读数,先读“正”或“负”,再读符号后面的数字。
读正数时,若数字前面有“+”号,读数时一定要读出“正”字,若数字前面的正号省略不写,则读数时也不读。
2、正、负数的写法:先在数的左侧写上“+”或“-”,再写数字。
写正数时,数左侧的“+”可以省略不写。
例如:+87.25读作:正八十七点二五;-20%读作:负百分之二十。
例如:正三十二写作:+32,也可写作32。
负四十八写作:-48。
三、用直线上的点表示正、负数1、正数、0、负数都可以用直线的上点表示出来。
直线上的每一个点都与一个数相对应,任何一个数都可以用直线上的点来表示。
例如:2、用直线上的点表示数时,要先确定好0的位置,并用箭头表示出正数的方向。
3、用有正数和负数的直线可以表示距离和相反的方向。
4、在直线上的点,位置越往左,表示的数就越小;位置越往右,表示的数就越大。
所有的负数都比0小,所有的正数都比0大,正数都比负数大。
提示:在数学中,可以用一条直线上的点表示数,这条直线就叫做数轴。
提示:最小的正整数是1,最大的负整数是-1,没有最大的正整数,也没有最小的负整数。
例如:-3℃和-18℃,温度越低就越冷,也说明那个数就越小。
数学六年级上册知识点负数
数学六年级上册知识点负数在数学的学习中,我们常常遇到正数和负数的概念。
数轴上的正数表示右方向,以0为起点,而负数则表示左方向。
在本篇文章中,我们将讨论数学六年级上册的负数相关的知识点。
一、负数的基本概念及表示方法负数是一种表示亏欠、欠债或者方向相反的数。
它们通常用负号“-”来表示,例如-3,-5等。
正数和负数之间的关系可以用数轴来表示,数轴上0点表示正数和负数的分界点,右侧为正数,左侧为负数。
二、负数的加减法1. 负数之间的加减法:当两个负数相加或相减时,我们只需要按照正数的加减法规则进行计算,然后在结果前面添加负号即可。
例如:(-3) + (-4) = -7,(-7) - (-2) = -5。
2. 正数与负数的加减法:要计算正数与负数的加减法,我们需要将其转化为同号的数进行运算。
具体来说,加法时,正数加上负数可以看成是正数减去负数;减法时,正数减去负数可以看成是正数加上负数。
例如:3 + (-5) = 3 -5 = -2,4 - (-2) = 4 + 2 = 6。
三、负数的乘法与除法1. 负数之间的乘法:两个负数相乘的结果为正数。
例如:(-2) ×(-3) = 6,(-4) × (-2) = 8。
2. 正数与负数的乘法:正数与负数相乘的结果为负数。
例如:4 × (-3) = -12,5 × (-2) = -10。
3. 负数的除法:两个负数相除的结果为正数,而正数与负数相除的结果为负数。
例如:(-12) ÷ (-4) = 3,18 ÷ (-3) = -6。
四、负数的应用在日常生活中,负数有着广泛的应用,例如:1. 计算欠债或亏损:如果我们在银行中欠债100元,我们可以用表达式-100来表示。
2. 温度计:温度可以是正数、零或负数,正数表示高温,负数表示低温。
例如,当温度为-10℃时,表示相对较冷的温度。
3. 海拔高度:海拔高度可以是正数或负数,正数表示地势高于海平面,负数则相反。
小学六年级数学重点知识正数与负数的加减运算技巧
小学六年级数学重点知识正数与负数的加减运算技巧小学六年级数学重点知识:正数与负数的加减运算技巧在小学六年级数学学习中,正数与负数的加减运算是一个重要的概念。
理解并掌握正数与负数的加减运算技巧,对于进一步学习数学和解决实际问题都具有重要的意义。
本文将介绍小学六年级学生应该掌握的正数与负数的加减运算技巧。
一、正数与负数的概念在数轴上,我们可以将数分为正数和负数。
正数用“+”表示,负数用“-”表示。
例如,2表示正数,-2表示负数。
二、正数与负数的加法1. 同号相加当两个数的符号相同时,我们只需要将它们的绝对值相加,再保持符号不变即可。
例如,3 + 4 = 7,-5 + (-7) = -12.2. 不同号相加当两个数的符号不同时,我们需要比较它们的大小,并将大数减去小数的绝对值,再保持和原符号相同。
例如,5 + (-3) = 2,-7 + 4 = -3.三、正数与负数的减法减法是加法的逆运算,所以减法的规则与加法类似。
1. 化为加法我们可以将减法问题转化为加法问题,将减数取负后与被减数相加,即可得到减法的答案。
例如,6 - 3可以转化为6 + (-3)来计算。
2. 加法运算按照正数与负数的加法规则进行运算。
例如,6 - 3可以转化为6 + (-3),结果为3。
四、应用实例下面通过一些实际问题的例子来练习正数与负数的加减运算技巧。
实例一:小明有5元钱,他又借了3元钱。
问他现在有多少钱?解答:小明有5元钱,再借了3元钱,这是一个正数和正数相加的情况。
将5 + 3 = 8,所以小明现在有8元钱。
实例二:小红的体重是50千克,她减肥成功后瘦了5千克。
问她现在的体重是多少?解答:小红的体重是50千克,减肥成功后瘦了5千克,这是一个正数和负数相减的情况。
将50 - 5 = 45,所以小红现在的体重是45千克。
实例三:小华的存款是100元,他购物花了80元。
问他剩下多少钱?解答:小华的存款是100元,购物花了80元,这是一个正数和负数相减的情况。
小学六年级知识点 负数
小学六年级知识点负数负数是数学中的一个重要概念,它在我们生活和学习中都有广泛的应用。
在小学六年级,学生将开始接触和学习负数的概念和运算。
本文将介绍小学六年级学生应该掌握的负数知识点。
一、什么是负数负数是表示比零小的数。
负数在数轴上位于零的左侧,用“-”符号表示。
例如,-1、-2、-3等都是负数。
负数在实际生活中有诸多应用,比如表示欠债、温度低于零度等。
二、负数的相反数负数的相反数是指与其数值绝对值相等但符号相反的数。
例如,-3的相反数是3,3的相反数是-3。
相反数之和等于零,即一个数与其相反数相加等于零。
三、整数的比较当比较两个整数时,我们可以通过计算它们的差值来判断大小。
例如,比较-4和-2的大小,我们可以计算-4-(-2),得到结果-2,由此可知-4小于-2。
四、负数的加减法运算1. 负数的加法运算当计算两个负数的相加时,我们可以先忽略符号,将绝对值相加,最后再加上符号。
例如,-3+(-4),先计算3+4,得到7,然后再加上负号,最后结果为-7。
2. 负数的减法运算负数的减法运算可以转化为加法运算。
例如,计算-4-(-2),可以转化为-4+2,再按照负数的加法运算规则进行计算,即忽略符号,将绝对值相加,再加上符号,最后结果为-2。
五、负数的乘除法运算1. 负数的乘法运算当计算两个负数的乘法时,我们将绝对值相乘,然后给结果加上负号。
例如,-3 × -4,先计算3 × 4,得到12,然后给结果加上负号,最后结果为-12。
2. 负数的除法运算当计算一个正数除以一个负数时,我们将绝对值相除,然后给结果加上负号。
例如,8 ÷ -2,先计算8 ÷ 2,得到4,然后给结果加上负号,最后结果为-4。
六、负数的应用负数在生活和学习中有广泛的应用,以下是一些例子:1. 温度计负数常用于表示温度低于零度的情况。
例如,-3℃表示气温为零下3摄氏度。
2. 银行账户银行账户的借记方向使用负数表示,用来表示欠款或取款的金额。
小学六年级数学(下册)知识点归纳
小学六年级数学(下册)知识点归纳知识点归纳总结1.负数:负数是数学术语,指小于0的实数,如−3。
任何正数前加上负号都等于负数。
在数轴线上,负数都在0的左侧,所有的负数都比自然数小。
负数用负号“-”标记,如−2,−5.33,−45,−0.6等。
2.正数:大于0的数叫正数(不包括0)若一个数大于零(>0),则称它是一个正数。
正数的前面可以加上正号“+”来表示。
正数有无数个,其中分正整数,正分数和正无理数。
3.正数的几何意义:数轴上0右边的数叫做正数4.数轴:规定了原点,正方向和单位长度的直线叫数轴。
所有的实数都可以用数轴上的点来表示。
也可以用数轴来比较两个实数的大小。
5.数轴的三要素:原点、单位长度、正方向。
6.圆柱:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体即AG矩形的一条边为轴,旋转360°所得的几何体就是圆柱。
其中AG叫做圆柱的轴,AG的长度叫做圆柱的高,所有平行于AG的线段叫做圆柱的母线,DA和D'G旋转形成的两个圆叫做圆柱的底面,DD'旋转形成的曲面叫做圆柱的侧面。
7.圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。
设一个圆柱底面半径为r,高为h,则体积V:V=πr2h ;如S为底面积,高为h,体积为V:V=Sh8.圆柱的侧面积:圆柱的侧面积=底面的周长*高,S侧=Ch (注:c为πd)圆柱的两个圆面叫做底面(又分上底和下底);圆柱有一个曲面,叫做侧面;两个底面之间的距离叫做高(高有无数条)。
特征:圆柱的底面都是圆,并且大小一样。
9.圆锥解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。
10.圆锥立体几何定义:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。
该直角边叫圆锥的轴。
11.圆锥的体积:一个圆锥所占空间的大小,叫做这个圆锥的体积。
一个圆锥的体积等于与它等底等高的圆柱的体积的1/3。
六年级正负数知识点
六年级正负数知识点一、正负数的概念和表示方法正负数是数学中的基本概念,用于表示相反的方向或大小。
在六年级的数学学习中,我们需要了解正负数的概念和表示方法。
1. 正数:表示较大的数,一般用“+”号表示,如+5、+10等。
2. 负数:表示较小的数,一般用“-”号表示,如-3、-8等。
3. 零:既不是正数也不是负数,用“0”表示。
二、正负数的比较和大小关系正负数之间可以进行比较和判断大小,我们可以根据下面的规则进行计算:1. 正数之间的比较:大的正数值较大,小的正数值较小。
例如,+6比+2大,+8比+5大。
2. 负数之间的比较:值较大的负数较小,值较小的负数较大。
例如,-3比-7大,-5比-2大。
3. 正数和负数之间的比较:正数大于负数,负数小于正数。
例如,+4比-2大,-6比+3小。
三、正负数的加减运算正负数之间的加减运算需要注意以下规则:1. 同号相加:正正相加,负负相加。
例如,+3 + 5 = +8,-4 + (-6) = -10。
2. 异号相加:先计算绝对值,较大绝对值的符号和结果的符号保持一致。
例如,+5 + (-3) = +2,-7 + (+9) = +2。
3. 正数和负数相减:相当于加上被减数的相反数。
例如,+8 - (-3) 相当于 +8 + (+3),结果为 +11。
四、正负数的乘除运算正负数之间的乘除运算也有一些特殊的规则:1. 同号相乘:结果为正数。
例如,+4 × +2 = +8,-3 × (-3) = +9。
2. 异号相乘:结果为负数。
例如,+5 × (-2) = -10,-6 × (+3) = -18。
3. 正数和负数相除:结果的符号由被除数和除数的符号决定。
例如,+12 ÷ (-4) = -3,-15 ÷ (+5) = -3。
五、正负数的运算规律除了加减乘除运算,正负数还有一些运算规律需要了解:1. 正数与零相乘等于零。
数学六年级负数知识点总结
数学六年级负数知识点总结一、负数的概念与表示1. 负数的定义:数轴上原点左侧的数叫做负数,用“-”表示。
2. 负数的表示:负数表示为“-a”,其中a为正整数。
二、负数的大小比较1. 同号相减,取绝对值较大的数的符号。
2. 异号相加,绝对值大的数的符号为结果的符号。
3. 负数的大小比较规则:绝对值大的数为大,同号相同绝对值大的数为大。
三、负数的加法1. 同号相加:绝对值相加,取相同的符号。
2. 异号相加:绝对值相减,取绝对值大的数的符号。
四、负数的减法1. 减去一个负数,相当于加上这个数的相反数,即变号后加。
2. 减去一个正数,相当于加上这个数的相反数,即求相反数后加。
五、负数与整数的乘法1. 负数与整数相乘:异号相乘,结果为负。
2. 负数相乘的性质:偶数个负数相乘为正数,奇数个负数相乘为负数。
六、负数与整数的除法1. 负数与整数相除:异号相除,结果为负。
2. 负数除以正数:求相反数后相除。
七、负数的应用1. 负数的概念在生活中的应用:表示欠债、温度下降、海拔下降等。
2. 负数与正数的概念在坐标系中的表示和应用。
八、负数的运算规律1. 符号相同的数加减,绝对值相加减,不改变符号。
2. 符号不同的数加减,绝对值相减,绝对值大的数的符号为结果的符号。
九、负数绝对值的性质1. 负数的绝对值是这个负数去掉负号后的数。
2. 负数的绝对值的性质:非负数的绝对值是它本身,负数的绝对值是它的相反数。
总结数学六年级的负数知识点主要涵盖负数的概念与表示、负数的大小比较、负数的加法、减法、乘法和除法、负数的应用、负数的运算规律和负数绝对值的性质等内容。
在学习负数的过程中,要注意理解负数的概念及表示方法,掌握负数的加减乘除运算规律,培养解题的能力和应用负数的实际操作技巧。
同时要注意加强训练,不断巩固知识,掌握解题方法,提高解题能力,为学习更高级的数学知识打下坚实的基础。
小学六年级数学下册:负数知识点
小学六年级数学下册:负数知识点负数知识点一、负数的定义以前所学的所有数(0除外)都是正数,正数前面的“+”可以省略不写。
负数的定义是在正数前面加上“-”。
负数前面必定有“-”,如果前面不是“-”(可能没有符号或者是“+”)都是正数(0除外)。
0既不属于正数,也不属于负数,它是正数和负数的分界。
二、负数的作用负数是在人为规定正方向的前提下出现的。
常用来表示和正数意义相反的量。
在选择用正数还是负数表示时,首先看是否规定了正方向。
一般含有褒义的量用正数表示,含有贬义的量则用负数表示。
例如,零上5℃用+5℃表示,零下5℃用-5℃表示。
收入2000元用+2000元表示,支出500元用-500元表示。
三、常见负数的意义地图上的负数:中国地形图上,可以看到我国有一座世界最高峰—珠穆朗玛峰,图上标着8848,在西北部有一吐鲁番盆地,地图上标着-155米。
8848米表示海拔高度,-155米表示海拔低于海平面。
收入与支出:收入2600元,教育支出-300元,娱乐支出-500元。
电梯间的负数:-3层表示在地面以下第3层。
以学校为起点,往东走为正,往西走为负,XXX从学校走了+50m,又走了-100m,这时XXX离学校的距离是50-100=-50m。
食品包装上常注明:“净重500±5g,”表示食品的标准质量是500g,实际每袋最多不多于505g,最少不少于495g。
四、负数的读法和写法读法:在所读数的前面加上“负”。
写法:在所写数的前面加上“-”。
五、认识数轴数轴的要素包括正方向(箭头表示)、原点(0刻度)、单位长度(刻度)。
正方向根据题意要求确定,一般以向上或向右为正方向。
原点根据表示数字的分布情况来确定,如果需要表示的正负数差不多相等时原点在数轴中间;如果正数比负数多得多原点偏左;如果负数比正数多得多原点偏右。
单位长度由所要表示多的大小来决定刻度之间距离的大小,如果数字偏大刻度距离可以适当小一些,如果数字偏小刻度距离可以适当大一些。
六年级下数学负数知识点
一、负数的基本概念1.负数的定义:是比零还小的数,表示一种相反的方向或者比零更小的数值。
2.负数的表示方法:用负号“-”加上正数,如-3,-5/8等。
二、负数的比较1.负数的绝对值:负数去掉符号后的值。
2.负数的比较:对于负数来说,绝对值越大,数值越小;绝对值相同的负数,数值越远离零,越小。
三、负数的加减法运算1.负数的加法:将两个负数的绝对值相加,结果再加上负号。
2.负数的减法:将负数转化为加法运算,即加上相反数。
四、负数的乘法和除法1.乘法原理:两个负数相乘,结果为正数;一个负数和一个正数相乘,结果为负数。
2.除法原理:两个负数相除,结果为正数;一个负数和一个正数相除,结果为负数。
五、负数的运算顺序1.加减乘除的顺序:按照先乘除后加减的原则进行计算。
2.括号的运算:按照括号内的运算顺序进行计算。
六、负数在实际生活中的应用1.温度计的摄氏度:负数表示低于零度的温度,如-10℃表示零度以下十度。
2.海拔的正负表示:海平面为零,以上为正数,以下为负数。
3.欠债与存款:欠债为负数,存款为正数。
七、负数的关系与运用1.数轴上的负数:负数在数轴上的位置是左侧,绝对值越大,位置越左。
2.数轴上的相反数:负数和它的相反数在数轴上关于零对称。
3.负数的运用:在解决实际问题中,负数可以用来表示欠债、差额、亏损等。
八、负数的整理与综合应用1.整理负数的顺序:按照从小到大的顺序排列负数。
2.复杂运算的应用:在解决复杂问题时,需要同时运用负数的加减乘除和运算顺序等知识。
通过以上的知识点介绍,相信你已经对负数有了更深入的了解。
在学习负数时,要注意掌握其基本概念、运算规则以及运用方法。
希望你能够在数学学习中更好地运用负数知识,为解决实际问题提供更准确的答案。
六年级人教版下册数学知识点总结归纳
六年级人教版下册数学知识点总结归纳第一单元负数1、负数:任何正数前加上负号就是一个负数。
在数轴线上,负数都在0的左侧,所有的负数都比自然数小。
负数用负号“-”标记,如-2,-5.33,-45,-0.6等。
2、正数:大于0的数叫正数(不包括0),数轴上0右边的数叫做正数若一个数大于零(>0),则称它是一个正数。
正数的前面可以加上正号“+”来表示。
正数有无数个,其中有正整数,正分数和正小数。
3、0既不是正数,也不是负数,它是正、负数的分界数。
正数都大于0,负数都小于0,正数大于一切负数。
应用举例:16℃读作十六摄氏度,表示零上16℃;-16℃读作负十六摄氏度,表示零下16℃.如果2000表示存入2000元,那么-500表示支出了500元。
向东走3m记作+3,向西4m记作-4。
4、在直线上表示数:(1)正数、0和负数可以用直线上的点表示出来。
直线上的每一个点都与一个数相对应,任何一个数都可以用直线上的点来表示。
(2)用有正数和负数的直线可以表示距离和相反的方向。
题型:1、将以下数字按要求分类1.25、、-7、3、3.011……、-5、0、、-0.03正数负数自然数非正数2、写数下列数相对的负数形式0.33……、3、如果﹢20%表示增加20%,那么﹣20%表示什么?4、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是摄氏度。
5、在数轴上表示下列个数1.75--450-3.2第二单元百分数(二)1、折扣:几折就是十分之几,也就是百分之几十例如:八五折表示现价是原价的85%原价×折扣=现价现价÷折扣=原价现价÷原价=折扣2、成数:表示一个数是另一个数的十分之几或百分之几十,通称“几成”例如:二成就是(十分之二),改写成百分数是20%。
3、税率:应纳税额=各种收入×税率各种收入=应纳税额÷税率4、利率:存入银行的钱叫做本金。
取款时银行多支付的钱叫做利息。
数学六年级下册《负数》知识点
数学六年级下册《负数》知识点数学是一门精密而又有趣的学科,通过学习数学,我们可以锻炼我们的逻辑思维能力和解决问题的能力。
在六年级下册的数学课程中,负数是一个重要的知识点。
接下来,我将为大家详细介绍负数的概念、表示方法和运算规则。
一、负数的概念负数是数学中的一个重要概念,它代表着小于零的数。
在实际生活中,我们经常会遇到表示亏损、借贷或者欠债的情况。
这些情况之所以被称为负数,是因为它们在数轴上表示的位置在零的左边。
与负数相对应的是正数,它们在数轴上的位置在零的右边,代表着大于零的数。
二、负数的表示方法为了方便表示负数,数学家们引入了负号(-),将负数与正数进行区别。
当我们要表示一个负数时,可以在数之前加上负号。
例如,-3代表着小于零的三个单位。
同样地,我们也可以使用括号来表示负数,如(-3)。
三、负数的运算规则1. 负数的加法当我们计算两个负数之间的加法时,我们只需要将它们的数值相加,并在最终结果前加上负号。
例如,-2 +(-3)= -5。
2. 负数与正数的加法当我们计算一个负数与一个正数之间的加法时,我们需要将它们的绝对值相减,并使用绝对值较大的符号作为结果的符号。
例如,-5 + 3 = -2。
3. 负数的减法负数的减法可以转化为加法来计算。
例如,-5 - 3 可以改写为 -5 +(-3),然后按照负数的加法规则进行计算。
4. 负数的乘法两个负数相乘的结果为正数。
例如,-2 × -3 = 6。
而一个负数与一个正数相乘的结果为负数。
例如,-2 × 3 = -6。
5. 负数的除法两个负数相除的结果为正数。
例如,-6 ÷ -3 = 2。
一个负数与一个正数相除的结果为负数。
例如,-6 ÷ 3 = -2。
负数在我们的日常生活中有着广泛的应用。
例如,在气温的表示中,负数表示低于零摄氏度的温度;在财务报表中,负数用来表示亏损的情况;在地理中,负数被用来表示海平面以下的高度等等。
人教版六年级数学下册 负数 知识点 填空
《负数》知识点归纳知识点一、负数的概念1、负数的意义:引入负数是为了表示与正数()的量。
2、在正数前面添上“-”号,这个数就是()。
这里的“-”不能读“减”,而应该读()。
读作:()。
3、负数的读法:先读“负”,再读数。
例如-5读作:();-56知识点二、负数的性质1、正数和负数都有()个。
2、正数比0(),负数比0()。
3、0既不是(),也不是()。
4、负数大小的比较方法:先不看“-”号,把两个负数当作正数来看。
哪一个正数小,那么该负数反而()。
例:比较-3和-8的大小。
因为3<8,所以-3()-8。
知识点三、数轴1、用一条直线上的点表示数,那么这条直线叫做()。
它满足以下要求:(1)该直线上任取一个点用来表示0,这个点叫做()。
(2)规定一个方向为正方向,则它的反方向叫做负方向。
通常规定从原点向()的方向为正方向。
(3)选取适当的长度为单位长度。
从原点向正方向每隔一个单位长度就取一个点,并写上它所代表的数,负方向也如此。
温馨提示:一些特殊的数轴会以其它的方向为正方向,例如把温度计看成是一条数轴,则它的上方就是正方向。
但如果没有特殊说明,一般默认数轴从原点向()的方向为数正方向。
另外,单位长度不一定取1,也可以取其它数,但数轴上两个数之间的距离必须()。
2、数轴三要素:()、()、()。
3、在数轴上,正数都在原点的(),负数都在原点的()。
4、从原点向左,数越来越();从原点向右,数越来越()。
数轴上右边的数总比左边的数()。
5、用数轴比较大小的方法:若干个数排列在数轴上,最左边的数最(),从它向右,数依次增大,最右边的数最()。
例题:用数轴比较-2.5、13、-123、0、-14、的大小。
大小关系:-2.5<-123<-14<0<13。
六年级下册数学负数课程讲解
六年级下册数学负数课程讲解一、负数的引入。
1. 生活实例。
- 在日常生活中,我们经常会遇到具有相反意义的量。
例如,温度的零上和零下,海拔高度的高于海平面和低于海平面,收入和支出,盈利和亏损等。
- 比如某天的气温是零上5℃,我们可以用+5℃表示;而如果是零下5℃,就需要用一种新的数来表示,这就是负数,我们可以记作 - 5℃。
- 再如,小明家这个月收入3000元,可以表示为+3000元;如果他家这个月支出1500元,就可以表示为 - 1500元。
2. 数轴表示。
- 我们可以在数轴上来理解正数和负数。
数轴是一条规定了原点、正方向和单位长度的直线。
- 原点表示0,原点右边的数是正数,原点左边的数是负数。
例如,在数轴上表示+3和 - 3,+3在原点右边3个单位长度处, - 3在原点左边3个单位长度处。
二、负数的读写法。
1. 读法。
- 负数的读法是先读“负”字,再读数字。
例如 - 8读作“负八”, - 2.5读作“负二点五”。
2. 写法。
- 在数字前面加上“ - ”号就表示负数。
例如,要写出负六,就写作 - 6。
三、负数的大小比较。
1. 借助数轴比较。
- 在数轴上,右边的数总比左边的数大。
例如, - 3和 - 5, - 3在 - 5的右边,所以 - 3> - 5。
- 正数都大于0,负数都小于0,正数大于负数。
例如,5>0, - 2<0,5> - 2。
2. 直接比较数字大小(不借助数轴)- 对于两个负数比较大小,绝对值大的反而小。
例如,比较 - 4和 - 7,先求出它们的绝对值, - 4 = 4, - 7 = 7,因为7>4,所以 - 4> - 7。
小学六年级数学必须掌握的知识点正数负数与零的加减运算
小学六年级数学必须掌握的知识点正数负数与零的加减运算小学六年级数学必须掌握的知识点:正数、负数与零的加减运算在小学六年级的数学学习中,正数、负数与零的加减运算是非常重要的基础知识。
掌握这些知识点对于学生后续的数学学习和问题解决能力的培养具有重要意义。
本文将详细介绍小学六年级数学中正数、负数与零的概念、运算规则以及相关例题,帮助学生全面理解并掌握这些知识点。
1. 正数、负数与零的概念数轴:正数、负数和零可以使用数轴来表示。
数轴是以零为中心,向右延伸的正半轴表示正数,向左延伸的负半轴表示负数。
2. 正数、负数与零的比较(1)任何一个正数都大于零,即正数 > 0。
(2)任何一个负数都小于零,即负数 < 0。
(3)零既不是正数也不是负数,即0 ≠ 正数且0 ≠ 负数。
(4)对于两个正数或两个负数,大小的比较遵循绝对值越大,数值越大的原则。
3. 正数、负数与零的加法(1)正数与正数相加,结果仍然是正数。
(2)负数与负数相加,结果仍然是负数。
(3)正数与负数相加,结果的符号取决于两个数的大小关系,绝对值取较大的数,运算结果的符号与较大数的符号相同。
(4)任何数与零相加,结果仍然是原来的数。
4. 正数、负数与零的减法(1)正数与正数相减,结果的符号取决于两个数的大小关系,绝对值取两个数相减的差值,运算结果的符号与较大数的符号相同。
(2)负数与负数相减,结果的符号取决于两个数的大小关系,绝对值取两个数相减的差值,运算结果的符号与较大数的符号相反。
(3)正数与负数相减,可以转化为正数与正数的加法运算。
(4)任何数减去零,结果仍然是原来的数。
5. 相关例题例题1:计算下列各题的结果:(1)13 + 5 =(2)-8 + (-2) =(3)-15 + 7 =(4)10 + (-12) =(5)6 - 3 =(6)-9 - (-5) =(7)-4 - 6 =(8)3 - (-8) =解答:(1)13 + 5 = 18(2)-8 + (-2) = -10(3)-15 + 7 = -8(4)10 + (-12) = -2(5)6 - 3 = 3(6)-9 - (-5) = -4(7)-4 - 6 = -10(8)3 - (-8) = 11通过以上例题的计算,可以帮助学生更好地理解正数、负数与零的加减运算规则,并能熟练运用这些规则解决各种数学问题。
数学六年级负数知识点总结
数学六年级负数知识点总结在学习数学的过程中,我们经常会遇到负数这个概念。
对于数学六年级的学生来说,负数是一个相对抽象和复杂的概念。
因此,在这篇文章中,我将为大家总结数学六年级负数的知识点,帮助大家更好地理解和掌握负数的概念。
一、什么是负数负数是表示比零小的数,它在数轴上位于零的左侧。
在数学中,我们用符号“-”表示负数。
例如,-2、-5、-10等都属于负数。
负数可以表示欠债、温度等与一些负向概念相关的事物。
二、负数的表示方法1. 整数表示法可以用一个负号“-”加上一个正整数来表示负数。
例如,-3表示比3小的数。
2. 数轴表示法可以利用数轴来表示负数。
在数轴上,零位于中心位置,正数在零的右侧,负数在零的左侧。
负数的值越小,其在数轴上的位置越左。
三、负数的加减法1. 负数的加法要计算两个负数的和,只需要忽略负号,将正数相加,结果前加上负号。
例如,(-3)+(-5)=-(3+5)=-8。
2. 负数的减法要计算一个负数与一个正数的差,可以将减法转化为加法,即取负数的相反数与正数相加。
例如,(-8)-5=(-8)+(-5)=-13。
四、负数的乘法和除法1. 负数的乘法两个负数相乘的结果是一个正数。
例如,(-2)×(-3)=6。
2. 负数的除法两个负数相除的结果也是一个正数。
例如,(-6)÷(-2)=3。
五、负数在实际问题中的应用负数在实际生活和问题中有着广泛的应用。
例如,温度的正负表示冷热程度,银行账户中的存款和欠款,海拔的上升和下降等等。
掌握和理解负数的概念,有助于我们更好地理解和解决这些实际问题。
六、负数的绝对值负数的绝对值是指一个数的非负值。
例如,|-5|=5。
负数的绝对值是该负数去掉负号所得到的正数。
七、负数的比较1. 负数比较大小比较两个负数的大小时,我们需要先比较它们的绝对值,绝对值大的数更小。
例如,-4比-2小。
2. 正数和负数的比较正数比任何负数都大。
八、总结通过本文的总结,我们了解到负数是数学中的重要概念之一。
人教版六年级下册数学认识负数(课件)
须读),而负数前面的“负”必须读。写正数时,正数前
面可以写“+” ,但可以省略“+” ,而负数前面的“-”
必须写。
01 课后练习第3题。
02 作业课件中的相关练习。
负数的写法:先写
“-”再写数,
“-”不能省略。
负百分之五十写作 - 50%
做一做
- 3 ℃与 - 18 ℃ 哪个温度低?(教材P4“做
一做”第1题)
- 18 ℃低
-3 ℃
-18 ℃
“-”后面的数越大,温度越低。
读出下列各数,并指出哪些是正数,哪些是负数。
-7
负七
2.5
+
二点五
正五分之四
0
零
负五点二
都是成对儿的,
意思相反的……
下面是中央气象台2012年1月21日下午发布的六个城市的
气温预报(2012年1月21日20时—2012年1月22日20时)。
观察上图,你发现了什么?
你知道0 ℃表示什么意思吗?
-4 ~ 0 ℃
-6 ~ 6 ℃
- 6 ℃和6 ℃又分别表示什么意思?
要知道这些数各表示什么意思,就要先认
识温度。
(1)在物理学中,把在标准大气
压下冰水混合物的温度定为0 ℃;
0 ℃表示淡水开始结冰的温度。
(2)比0 ℃低的温度叫零下温度,
比0 ℃高的温度叫零上温度。
“℃”是温度的计
量单位,读作摄
氏度。
0 ℃是零上温度
和零下温度的
分界点。
比 0 ℃ 高的温度叫
零上温度。
零
上
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学2019年六年级数学知识点负数
本文介绍了小学2019年六年级数学知识点负数,希望能够对正在学习的小朋友有所帮助!
1、在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。
2、初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。
3、能借助数轴初步学会比较正数、0和负数之间的大小。
4、像-16、-500、-3/8、-0.4这样的数叫做负数。
-3/8读作负八分之三。
16,200,3/8,6.3这样的数叫做正数。
正数前面可以加+号,也可以省去+号。
+6.3读作正六点三。
0既不是正数,也不是负数。
5、16℃读作十六摄氏度,表示零上16℃;-16℃读作负十六摄氏度,表示零下16℃
6、如果2019表示存入2019元,那么-500表示支出了500元。
向东走3m记作+3,向西4m记作-4。
家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。
我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。
我和家长共同配合,一道训练,幼儿的阅读能力提高很快。
单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。
让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真
情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。
这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。
7、在数轴上,从左到右的顺序就是数从小到大的顺序。
0是正数和负数的分界点,所有的负数都在0的左边,也就是负数都比0小,而正数都比0大,负数都比正数小。
负号后面的数越大,这个数就越小。
如:-8-6。
单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。
让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。
这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。
由查字典数学网带给大家的小学2019年六年级数学知识点负数就到这里了,愿您在学习上能更上一层楼。