数字推理绝招

合集下载

行测——数字推理秒杀技巧

行测——数字推理秒杀技巧

[数字推理]秒杀技巧一、实在没招,才用此招数字推理的秒杀技巧具有不确定性,因此使用数字推理秒杀技巧的时候,一定要在没有思路,没有时间的情况下才能使用。

二、数字推理秒杀技巧1.奇偶性数字推理的奇偶性秒杀技巧是根据数列当中奇数和偶数的排序来猜测答案的一种方法,主要有三种形式:(1)全奇型;(2)全偶型;(3)奇偶交错型。

(1)全奇型经典例题:7,13,25,49,( )A.80 B.90 C.92 D.97【答案】D【秒杀】数列中各项均是奇数,因此D项正确的可能性最高。

【标准】原数列:2×7-1=13,2×13-1=25,2×25-1=49,2×49-1=97。

(2)全偶型经典例题:(2003•山东)2,10,30,68,130,()A.169 B.222 C.181 D.231【答案】B【秒杀】数列中各项均是偶数,因此B项正确的可能性最高。

【标准】原数列:2=1^3+1,10=2^3+2,30=3^3+3,68=4^3+4,130=5^3+5,(222)=6^3+6。

(3)奇偶交错型经典例题:(2009•山东)3,10,29,66,127,()A.218 B.227 C.189 D.321【答案】A【秒杀】数列中各项奇数、偶数交替出现,因此A项正确的可能性最高。

【标准】原数列:3=1^3+2,10=2^3+2,29=3^3+2,66=4^3+2,127=5^3+2,(218)=6^3+2。

(4)局部奇偶型除以上三种形式外,还有两种情况值得我们注意。

即除第一项以外其他各项符合奇偶性。

经典例题:(2009•江西)0,3,9,21,(),93A.40 B.45 C.36 D.38【答案】B【秒杀】数列除第一项外,其他各项都是奇数,因此猜B的可能性最高。

【标准】原数列:2×0+3=3,2×3+3=9,2×9+3=21,2×21+3=45,2×45+3=93。

数字推理答题技巧(公开版)

数字推理答题技巧(公开版)

数字推理答题技巧施久亮解题突破五大要诀――抓住数列的阿喀琉斯之踵一、先加减,后乘除,根据数字大小变化的规律判断属于何种数列类型1、数字快速增减的2、数字平稳增减的3、数字高低起伏的4、数字非常接近的二、分析项数,确定关键项,注意项与项之间关系,注意数列的级数(确定是几项关联、几级数列或组合还是间隔)1、项数低于或等于5项的2、项数为6项的3、项数大于6项的4、项数超多的三、抓住关键项,分析敏感数字1、平方数、立方数及其相邻数2、0、1及其相邻数以及常见变化3、基本数列4、分数题注意通分后的变化,关注小分子分母项四、找准起步点1、特别注意1、2项之间的关系五、寻找薄弱环节,确定关键数字,一举突破1、数列的不和谐部分、与众不同部分2、敏感数字,如0或1及其附近数3、从选项中找突破口基本功练习一、心算练习二、数字基础三、熟练基本数列四、中央及浙江真题练习数字推理基础一、基本数列(加减乘除)1、加减法数列差的几种形式:等差(常数):3例1:2 5 8 11 14自然顺序数:1、2、3、4、5例1:2 3 5 8 12 17平方数或立方数例1:5 6 10 19 45 70加减法单项数列1、2、3、4、5加减法双项数列2 3 5 8 13 21 例1:56,79,129,202,325 ()例2:3,-1,5,1,()A.3B.7.C.25D.64加减法三项数列例1:1 2 4 7 13 24 ()例2:1 4 3 5 2 6 4 7 ()2、乘除法数列乘除法单项数列乘除法双项数列例1:3,4,12,48,()A 96B 36C 192D 5763、加减法和乘除法混合数列例1:16 17 36 111 448 ( )例2:5,( ),39,60,105.A.10B.14C.25D.30例3:-2 ,-1, 1, 5 () 29A.17B.15C.13D.11例4:172,84,40,18,()例5:-1,0,1,2,9,()A.11B.82C.729D.730例6:3, 7, 16, 107,()A.1707B.1704C.1086D.1072二、数列的组合和延伸一级数列二级数列三级数列间隔组合数列分段组合数列对称组合数列三、题目类型1、单项数列例1:27 16 5 ()1/7例2:1\7 1\26 1\63 1\124 ( )例3:-1,0,27,()。

数字推理八大解题方法

数字推理八大解题方法

数字推理八大解题方法逐差法:指原数列相邻两项逐级做差。

、逐商法是指原数列相邻两项逐级做商,进而推出数列规律的方法。

对于单调性明显,倍数关系明显或者增幅较大的数列,应当优先采用逐商法。

其中,单调性明显,即可以表现为通常意义上所指的单调性,也可以表现为正负交替出现,但是绝对值具有单调性。

使用逐商法之后,需要重点注意做商后得到的商值数列和余数数列的规律。

根据其表现形式的不同可以分为如下四种情况:商同、余同,商同、余不同,商不同、余同和商不同、余不同。

【核心矢口识】商同、余不同是指对原数列做商后得到的商信歡列为當数列,於救刃则呈现出一定的亲见障.其中,杀数数列可以是當见的基就敌列,也可以是基刊数列的变形.乩闾不同、冷同【核心知识】崗不同、金同罡指对原煎列徴裔后得到册發数数列淘常第勿裔值数列则呈现出一定的规律•其中裔值数列可収是常见的基础数列•也可以是基础数列的变形.【核心知识】丽同余雨是指賤列噓后輕胸商数列和余狀不是常敎列,各白呈现出某沖规律耳口商值数列和余数数列即可漩常见谑臟称也可以是基臓列的变啟【按I阑识】加和法是指对碟数列进匸求利从而得到数叨规律胶方丸对于(1}負關关系不胡呈;住倍葩关系不朋显;(3擞字差别幅度不犬的数列;应勃诜使用兀和扯-对于符细]和法奠用原則的数列,优;先对其进行匹项求和,两项求和后无日胆规萍时,再对其进行三互哀和阪全项求和.【核硼】两项求和,是指对原数列相緬项进行逐次求和,从而得到数列的规衛具中,得到的和值数列既可以是基鹼列,也可以是与殿列相关B®列.【檢谀识]三或乩是指対质数列馆邻三龜行逐玄沏9从而得到数列的规淳【核谀识】全项求和,是指依次对软列每-项之前的所有赃行求和,从而得到数列的规律.【核心知识】累枳法是指求取融列各项的乘积,进而得到数列规律的方法•对于(1庠调关系明显;(2賂数关系明显;(3蘇积倾向册数列;应该优先采用累积法•对干符合累积法使用觌的数列,优删船砸项求积,两项求躺元明魏律时,再对其进行三项求积以能项求积.【核悯识】两匝求积,是指逐谀求取原数列相邻两项的乘积,从而得到数列的规律•乘积后得到的数列既可以是基础数列,也可以是与原数列相关的数列.L三銅【骯赧】三顶求和是指徹桶藤则E邻三项娠祝从碉驗列帧箒【核朋识】全项求积,是指依次求顋数列每-项之前的所有项的乘积,从而得到数船规律.【松沁】拆分法是指将数列的甸项分解成两韶分或考多部分的乘积或加和的形轧根据分解后的各部分对应元養之间的规律来寻求数列关系的方法.具中,在公务员考翩字推理部分常黜讖拆分法和位数拆分法.【帥识】因数分解法,是指对霖列中的每一个元素都由因数分解将其分解为两琳通过分析分【核心知识】对于具有明显指数特征(基于数字敏感和数形敬感)或看幅度变化校快的数列,优先考解霜指数拆分法,将其化为多次方式aXb-+加如22 = 2X3*4)的形式,通过寻a、b、m、n 之间的关系进行求解•拆分时主要是绕多次方数的和、差、倍数的形式展的,通常数列中会有两个或多个指数特征非常明显怖数字,一般都是以这些数字为突破口的数字推理部分而言,在使用该方法时,主要从以下两个方面进行考虑.数列的各顼均与基础的多欢方敦比做近对于数列中各项均与基础的多次方数比较接近的题U,解题的关键是首先要确定出修m的变化规律•所谓基础凶多次方数,即可以化为扩形式的数字.【核心知识】位数拆分法,解思义,就是指将狮原数列每一项的数字分拆成若干纵通过拆分后各酬应数字之间的规律来寻求原数列规律的方法•对于多位数(位数不少于三位)酸出现’或馥列的幅度觌无明显规律的数列,可以考虑使用位数拆分法•拆分后,各软i应数字之间的关系一腿过加和或看倍姒系表则来.【核测】分组法,解思义,就是将原数列按照-定K)分组方式分为两部分或多盼,根据分组后各那分内部或各部分之间的关系来推求数列关系的一种方法。

行测数字推理题技巧

行测数字推理题技巧

行测数字推理题技巧
1.规律分析:首先看给出的数字序列是否存在其中一种规律,例如递增、递减、交替等。

通过观察规律,可以将下一个数字或者数字序列进行
推理。

2.数字运算:在数字推理题中,经常出现的是数字的运算关系。

可以
通过加减乘除等简单的运算符号,对给出的数字进行运算,从而得出新的
数字或者数字序列。

3.数字特征:观察给出的数字是否有一些特殊的特征,例如是否为质数、完全平方数、斐波那契数列等,可以通过这些特征进行逻辑推理。

4.数字拆分:有些数字推理题给出的数字较大,可以将其拆分成小的
数字,然后再进行运算或者找规律。

5.条件限制:有些数字推理题在给出的数字序列中存在一些限制条件,例如数字的位数、数字之间差距等。

可以通过这些限制条件进行推理。

6.平均数:在有些数字推理题中,给出的数字序列的平均数可能有特
殊的含义,通过计算平均数,可以得到下一个数字或者数字序列。

7.数字替换:有些数字推理题中,给出的数字序列中存在一些数字可
以进行替换,通过替换数字,可以发现其中一种规律。

4分钟搞定数字推理绝招

4分钟搞定数字推理绝招

绝招,4.5分钟搞定数字推理1)等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208,622,规律为a*3-2=b2)深一愕模型,各数之间的差有规律,如1、2、5、10、17。

它们之间的差为1、3、5、7,成等差数列。

这些规律还有差之间成等比之类。

B,各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。

3)看各数的大小组合规律,作出合理的分组。

如7,9,40,74,1526,5436,7和9,40和74,1526和5436这三组各自是大致处于同一大小级,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个组。

而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。

所以7*7-9=40 , 9*9-7=74 , 40*40-74=1526 , 74*74-40=5436,这就是规律。

4)如根据大小不能分组的,A,看首尾关系,如7,10,9,12,11,14,这组数7+14=10+11=9+12。

首尾关系经常被忽略,但又是很简单的规律。

B,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。

5)各数间相差较大,但又不相差大得离谱,就要考虑乘方,这就要看各位对数字敏感程度了。

如6、24、60、120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们的规律就是2^3-2=6、3^3-3=24、4^3-4=60、5^3-5=120、6^3-6=210。

这组数比较巧的是都是6的倍数,容易导入歧途。

6)看大小不能看出来的,就要看数的特征了。

如21、31、47、56、69、72,它们的十位数就是递增关系,如25、58、811、1114,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3,如论坛上fjjngs解答:256,269,286,302,(),2+5+6=132+6+9=172+8+6=163+0+2=5,∵256+13=269 269+17=286286+16=302 ∴下一个数为302+5=307。

数字推理技巧总结

数字推理技巧总结

数字推理技巧总结
数字推理是指通过对数字、数据的分析、比较、推断等方法,得出结论的过程。

在解决问题、做决策、研究数据等方面,数字推理技巧都能起到重要作用。

以下是数字推理技巧的总结:
1. 善于利用比较。

比较是数字推理中最基本的方法之一,通过比较不同数据之间的差异,可以得出结论。

例如,比较两个数据的大小、趋势、变化等。

2. 注意数字间的关系。

在数字推理中,数字间的关系往往比单个数字更重要。

例如,两个数字的差值、倍数、比率等,都能提供更多的信息。

3. 善于使用图表。

图表是数字推理中最常用的工具之一,通过图表能够更直观地展示数据之间的关系,从而更方便地分析和推理。

4. 注意数据的来源和质量。

数据的来源和质量对数字推理的结果有很大的影响,因此,在进行数字推理时,需要注意数据的来源是否可靠,数据是否完整、准确等。

5. 尽可能多地收集数据。

在数字推理中,数据的数量往往比质量更重要,因此,在分析数据时,应尽可能多地收集数据,从而得出更准确的结论。

6. 利用数字模型。

数字模型是数字推理中的一种重要工具,通过建立数字模型,可以更好地理解数据之间的关系,从而得出更准确的结论。

7. 综合分析。

数字推理往往涉及到多个数字、多个数据,因此,
在分析时,需要将这些数据综合起来分析,从而得出更全面、准确的结论。

以上是数字推理技巧的总结,希望对大家有所帮助。

行测数字推理秒杀口诀

行测数字推理秒杀口诀

行测数字推理秒杀口诀
题型一、和倍问题。

问题描述:已知两数之和及倍数关系,可快速得出这两数。

秒杀公式:大+小=和;大=倍×小,则:小=和÷(倍+1);大=倍×小=和-小。

题型二、差倍问题。

问题描述:已知两数之差及倍数关系,可快速得出这两数。

秒杀公式:大-小=差;大=倍×小,则:小=差÷(倍-1);大=倍×小=差+小。

题型三、和差问题。

问题描述:已知两数之和及两数之差,可快速得出这两数。

秒杀公式:大+小=和;大-小=差;则:大=(和+差)÷2;小=(和-差)÷2。

题型四、日期问题。

问题描述:若2017年7月10日星期三,则2018年8月10日星期几。

秒杀公式:平年:365=52×7+1 平过1;闰年:366=52×7+2 闰过2。

题型五、植树问题。

问题描述:在一个路段上植树,植树方式不同,棵数和段数的关系不同。

秒杀公式:①不封闭路段:两端植:棵数=段数+1;一端植:棵数=段数,②两端都不植:棵数=段数-1;③封闭路线:棵数=段数。

数字推理技巧总结

数字推理技巧总结

数字推理技巧总结
数字推理是一种基于数字和数学知识的推理方法,通过对数字的组合、转换和计算,得出一些结论或规律。

数字推理技巧是指在数字推理过程中可以使用的一些方法和策略,以下是一些数字推理技巧的总结:
1.观察数字的规律:在数字推理题目中,往往会出现一些数字的规律,例如数列的增长规律、数字的排列顺序等等,要仔细观察这些规律,并将其应用到题目中。

2.利用数据的对称性:在数字推理题目中,往往会出现一些对称的数字或图形,这时可以利用对称性来推导出一些结论。

3.进行逆向推理:有时候可以从题目给出的答案中逆推出一些关键的数字或规律,然后再根据这些数字或规律来推导出正确的答案。

4.应用数学公式:有些数字推理题目中会涉及到一些数学公式,例如平均数、标准差等等,要熟练掌握这些公式,并能够灵活应用。

5.运用逻辑思维:数字推理也涉及到逻辑思维,要善于运用逻辑思维来推导出正确的答案。

6.学会多种解题方法:在数字推理题目中,有时候会有多种解题方法,要学会多种解题方法,并根据实际情况选择合适的方法来解题。

以上是一些数字推理技巧的总结,希望对大家有所帮助。

- 1 -。

数字推理技巧总结

数字推理技巧总结

数字推理技巧总结
数字推理是一种常见的思考方法,同时也是非常实用的技巧。

以下是一些数字推理的技巧总结:
1. 观察数字之间的关系。

数字可以按照大小、倍数、时间、空间等不同的关系进行比较。

了解数字之间的关系对于进行数字推理很有帮助。

2. 进行变量替换。

将数字转化成不同的变量,有助于更好地理解数字之间的关系。

同时,也可以更直接地运用数字进行推理。

3. 使用辅助工具。

数字推理可以用图表、表格、图像等方式进行辅助。

这些辅助工具可以帮助我们更直观地观察数字之间的关系。

4. 利用数学公式和运算符。

数字推理往往需要进行加减乘除等运算,数学公式和运算符是进行数字推理的常见工具。

5. 细心观察条件。

数字推理往往需要根据条件进行推理解题,因此细心观察条件是十分重要的。

同时,也需要注意条件中的排除性关系等细节问题。

总之,数字推理是一种灵活运用数字的思考方法,需要我们不断练习。

通过观察数字之间的关系,进行变量替换,使用辅助工具,利用数学公式和运算符,以及细心观察条件,我们可以更快、更准确地进行数字推理解题。

行测考试数字推理快速秒杀三招

行测考试数字推理快速秒杀三招

数字推理,是数学运算的一部分,虽然2011年的国考和省考都没有考数字推理,但是在湖南的选调生考试、村官考试、两院考试以及一些事业单位的招考中还是会经常考到,那么如何在事业单位招考中快速突破数字推理,专家将结合部分真题给广大的考生朋友,介绍一下数字推理快速秒杀的技巧。

第一招:看趋势。

拿到题目以后,用2秒钟迅速判断数列中各项的趋势,例如:是越来越大,还是越来越小,还是有大有小。

通过判断走向,找出该题的突破口。

有规律找规律,没有规律做差。

【例1】(2011年湖南两院)7,9,12,17,24,( )A.27B.30C.31D.35【答案】D【解析】本题属于多级数列。

先看趋势,越来越大,规律不明显,两两做差,得到质数数列2,3,5,7,(11),所以选择D选项。

【例2】(2007应届生)14 ,6 ,2 ,0 ,( )A.-2B.-1C. 0D.1【答案】B【解析】本题属于多级数列。

题目中的一先看趋势,越来越小,也就是趋势是递减的,是一致的。

对于这类递减的数列,我们通常的做法是从相邻两项的差或做商入手,很明显,这道题目不能从做商入手(因为14/6不是整数),那么,我们就作差,相邻两项的差为8,4,2成等比数列,因此,0减去所求项应等于1,故所求项等于-1,所以选择B选项。

利用数列的趋势,可以迅速判断出应该采取的方法,所以,趋势就是旗帜,趋势就是解题的命脉。

第二招,看特殊数字。

比如质数、平方数、立方数等。

一些数字推理题目中出现的数距离这些特殊的数字非常近,因此当出现某个整数的平方或者立方周围的数字时,我们可以从这些特殊数字入手,进而找出原数列的规律。

【例3】(2011湖南选调)61,59,53,47,43,( ),37A.42B.41C.39D.38【答案】B【解析】本题属于质数数列。

递减的质数数列,所以选择B选项。

【例4】(2011湖南选调)0,9,26,65,124,( )A.186B.199C.215D.217【答案】D【解析】本题属于幂次修正数列。

行测指导:数字推理30种解题技巧

行测指导:数字推理30种解题技巧

行测指导:数字推理30 种解题技巧一、当一列数中出现几个整数,而只有一两个分数并且是几分之一的时候,这列数常常是负幂次数列。

【例】 1、4、3、1、1/5 、1/36 、()二、当一列数几乎都是分数时,它基本就是分式数列,我们要注意察看分式数列的分子、分母是向来递加、递减或许不变,并以此为依照找到打破口,经过“约分”、“反约分”实现分子、分母的各自成规律。

【例】 1/162/132/58/74()三、当一列数比较长、数字大小比较靠近、有时有两个括号时,常常是间隔数列或分组数列。

【例】 33、32、34、31、35、30、36、29、()四、在数字推理中,当题干和选项都是个位数,且大小改动不稳准时,常常是取尾数列。

取尾数列一般拥有相加取尾、相乘取尾两种形式。

【例】 6、7、3、0、3、3、6、9、5、()五、当一列数都是几十、几百或许几千的“清一色”整数,且大小改动不稳准时,常常是与数位有关的数列。

【例】 448、516、639、347、178、()六、幂次数列的实质特点是:底数和指数各自成规律,而后再加减修正系数。

关于幂次数列,考生要成立起足够的幂数敏感性,当数列中出现 6?、 12?、 14?、 21?、 25?、 34?、 51?、312?,就优先考虑 43、112(53)、 122、63、44、73、83、55。

【例】 0、9、26、65、124、()七、在递推数列中,当数列选项没有显然特点时,考生要注意察看题干数字间的倍数关系,常常是一项推一项的倍数递推。

【例】 118、60、32、20、()八、假如数列的题干和选项都是整数且数字颠簸不大时,不存在其余显然特点时,优先考虑做差多级数列,其次是倍数递推数列,常常是两项推一项的倍数递推。

【例】 0、6、24、60、120、()九、当题干和选项都是整数,且数字大小颠簸很大时,常常是两项推一项的乘法或许乘方的递推数列。

【例】 3、7、16、107、()十、当数列选项中有两个整数、两个小数时,答案常常是小数,且一般是经过乘除来实现的。

数字推理技巧总结

数字推理技巧总结

数字推理技巧总结数字推理技巧是一种通过观察数字之间的关系和规律来推断答案的方法。

在解决问题和推理推断过程中,数字推理技巧可以帮助我们更加准确地得出结论。

本文将从数字序列、数学运算、逻辑推理和概率统计等方面总结数字推理技巧。

一、数字序列推理数字序列是数字按一定顺序排列而形成的序列,通过观察数字序列中的规律可以推断出下一个数字或者找出隐藏的规律。

常见的数字序列包括等差数列、等比数列和斐波那契数列等。

1. 等差数列:等差数列是指相邻两个数之间差值相等的数列。

观察数字序列中相邻数字的差值,如果差值相等,则可以判断为等差数列。

根据已知数字序列的首项和公差,可以推算出下一个数字。

2. 等比数列:等比数列是指相邻两个数之间比值相等的数列。

观察数字序列中相邻数字的比值,如果比值相等,则可以判断为等比数列。

根据已知数字序列的首项和公比,可以推算出下一个数字。

3. 斐波那契数列:斐波那契数列是指每个数都是前两个数之和的数列。

观察数字序列中的数字之间的相加关系,如果每个数字都是前两个数字之和,则可以判断为斐波那契数列。

根据已知数字序列的前两个数字,可以推算出下一个数字。

二、数学运算推理数学运算是通过对数字进行加减乘除等运算,推导出结果的过程。

在数学运算推理中,常见的技巧包括逆运算、代入法和重复运算法等。

1. 逆运算:逆运算是指对已知的数学运算进行反向操作,从结果推算出原始的数字。

例如,已知两个数的和,可以通过减去其中一个数,得到另一个数。

2. 代入法:代入法是指将已知的数字代入到数学公式或方程中,通过计算得到结果。

例如,已知一个等式中的一部分数字,可以将这些数字代入到等式中,求解未知的数字。

3. 重复运算法:重复运算法是指通过多次进行相同的数学运算,逐步逼近目标结果。

例如,已知一个数字进行重复的加法运算,每次加上相同的数,直到达到目标结果。

三、逻辑推理逻辑推理是通过观察数字之间的逻辑关系,推断出隐藏的规律或者答案。

在逻辑推理中,常见的技巧包括排除法、归纳法和演绎法等。

数字推理十大题型秒杀技巧

数字推理十大题型秒杀技巧

数字推理十大题型秒杀技巧
1. 数字推理里的等差数列题型,那简直就是送分题呀!比如说1,3,5,7,这不是很明显的等差数列嘛,公差为2,下一个数不就是9 嘛!
2. 等比数列题型,哇塞,一旦发现规律就超简单的!像2,4,8,16,这倍数关系多明显呀,下一个肯定是 32 啦!
3. 平方数列题型,这可得瞪大眼睛找呀!像 1,4,9,16,不就是平方数嘛,下一个就是 25 咯!
4. 立方数列题型,这个有点难度哦,但找到了就很有成就感呀!比如1,8,27,64,那下一个就是 125 呀!
5. 组合数列题型,就像玩拼图一样有趣呢!比如奇数项和偶数项各有规律,找到就轻松解题啦!
6. 数字拆分题型,把数字拆开来分析,哎呀,真的很有意思!像34 可以拆成 3 和 4 嘛,然后再找规律。

7. 分数数列题型,这可不能被分数吓到呀!比如1/2,2/3,3/4,那下一个不就是 4/5 嘛!
8. 根式数列题型,虽然看着有点复杂,但找到了根号里的规律就迎刃而解啦!
9. 周期数列题型,就像循环播放的音乐一样有规律呀!比如1,2,
3,1,2,3,那下一个当然还是 1 啦!
10. 递推数列题型,一环扣一环的,多有意思呀!像前面两个数相加等于后面一个数,找到这个关系就好办啦!
我觉得呀,掌握了这些数字推理的秒杀技巧,就像是拥有了一把打开数字世界大门的钥匙,能让我们在数字的海洋里畅游无阻!。

破解数字推理题的12个实用小技巧

破解数字推理题的12个实用小技巧

(1)等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208,622,规律为a*3-2=b (2)深一点模式,各数之间的差有规律,如1、2、5、10、17。

它们之间的差为1、3、5、7,成等差数列。

这些规律还有差之间成等比之类。

B,各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。

(3)看各数的大小组合规律,做出合理的分组。

如7,9,40,74,1526,5436,7和9,40和74,1526和5436这三组各自是大致处于同一大小级,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个组。

而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。

所以7*7-9=40 , 9*9-7=74 , 40*40-74=1526 , 74*74-40=5436,这就是规律。

(4)如根据大小不能分组的,A,看首尾关系,如7,10,9,12,11,14,这组数; 7+14=10+11=9+12。

首尾关系经常被忽略,但又是很简单的规律。

B,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。

(5)各数间相差较大,但又不相差大得离谱,就要考虑乘方,这就要看各位对数字敏感程度了。

如6、24、60、120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服,它们的规律就是2^3-2=6、3^3-3=24、4^3-4=60、5^3-5=120、6^3-6=210。

这组数比较巧的是都是6的倍数,容易导入歧途。

(6)看大小不能看出来的,就要看数的特征了。

如21、31、47、56、69、72,它们的十位数就是递增关系,如25、58、811、1114 ,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3,如论坛上答:256,269,286,302,(),2+5+6=13 2+6+9=172+8+6=163+0+2=5,∵256+13=269 269+17=286286+16=302 ∴下一个数为302+5=307。

数字推理绝招

数字推理绝招

一、解题前的准备1.熟记各种数字的运算关系。

如各种数字的平方、立方以及它们的邻居,做到看到某个数字就有感觉。

这是迅速准确解好数字推理题材的前提。

常见的需记住的数字关系如下:(1)平方关系:2-4,3-9,4-16,5-25,6-36,7-49,8-64,9-81,10-100,11-121,12-14413-169,14-196,15-225,16-256,17-289,18-324,19-361,20-400(2)立方关系:2-8,3-27,4-64,5-125,6-216,7-343,8-512,9-729,10-1000(3)质数关系:2,3,5,7,11,13,17,19,23,29......(4)开方关系:4-2,9-3,16-4......以上四种,特别是前两种关系,每次考试必有。

所以,对这些平方立方后的数字,及这些数字的邻居(如,64,63,65等)要有足够的敏感。

当看到这些数字时,立刻就能想到平方立方的可能性。

熟悉这些数字,对解题有很大的帮助,有时候,一个数字就能提供你一个正确的解题思路。

如216 ,125,64()如果上述关系烂熟于胸,一眼就可看出答案但一般考试题不会如此弱智,实际可能会这样215,124,63,()或是217,124,65,()即是以它们的邻居(加减1),这也不难,一般这种题5秒内搞定。

2.熟练掌握各种简单运算,一般加减乘除大家都会,值得注意的是带根号的运算。

根号运算掌握简单规律则可,也不难。

3.对中等难度以下的题,建议大家练习使用心算,可以节省不少时间,在考试时有很大效果。

二、解题方法按数字之间的关系,可将数字推理题分为以下十种类型:1.和差关系。

又分为等差、移动求和或差两种。

(1)等差关系。

这种题属于比较简单的,不经练习也能在短时间内做出。

建议解这种题时,用口算。

12,20,30,42,()127,112,97,82,()3,4,7,12,(),28(2)移动求和或差。

数字推理口诀

数字推理口诀

数字推理口诀
整体观察分AB,线性趋势明走A,
增幅一般做加减,做差不会超三级,减幅同样此道理,典型数列熟记心。

增幅较大做乘除,做商同样不超三。

增幅很大想幂次,常用幂数要熟悉。

线性趋势弱走B,要找视觉冲击点,何为此点如何找,特殊数字勿放过。

列长项多6以上,考虑分组或隔项。

摇摆数列忽大小,基本思路是隔项,若要见到双括号,一定隔项成规律。

摇摆双括同时出,义无反顾找隔项。

整数分数混着搭,提示要做乘除法。

全是分数先约分,能划一时先划一,突破口在固定数,分子、母与项有关。

正负交叠要做商,肯定没错不夸张。

根数整数混搭时,先将整数化根数,号外数字移号里,此为一定是药方。

遇到根数加减式,平方差公式帮忙。

递推数列很难做,五则运算和乘方。

看到纯小数数列,整、小部分分开想。

似连续而不连贯,考虑质数或合数。

数字很大3位上,考虑微观是抓手。

数列如有公约数,约去公因是正法。

相邻项有公约数,因式分解可办好。

以上方法皆受挫,除3 除 5看余数。

如若还是想不出,蒙猜办法可帮忙。

选项整数小数混,小数多半是答案。

数项负数选项同,负数多半是选择。

另外直猜接近值,肯定八九不离十。

数字推理题技巧

数字推理题技巧

数字推理题技巧数字推理题在各种考试和智力竞赛中常见。

它们要求通过对一系列数字或符号的分析来推断规律,并根据这些规律来确定缺失的数字或者下一个数字。

虽然数字推理题看似简单,但其中蕴含着一定的技巧和思维方式。

本文将介绍一些常见的数字推理题技巧,帮助读者更好地解决这类问题。

数列规律分析在数字推理题中,常见的情况是给出一个数字序列,要求推断出规律并继续这个规律。

首先要分析数列中数字之间的关系,可能是加减乘除、平方平方根、递增递减等等。

观察数字之间的差值或者倍数关系,能够帮助快速找到规律。

奇偶性分析奇偶性在数字推理题中经常发挥重要作用。

注意观察数字序列中奇数和偶数的分布情况,有时候规律会与数字的奇偶性有关。

此外,还要注意特殊数字(如0、1)在奇偶性上的特点,它们常常会被用来构成规律。

数字组合分析有时数字推理题中会涉及到数字组合的情况,要求找出数字之间的组合规律。

这时可以尝试将数字分解成各个位的数字或者将多个数字合并成一个数字,通过观察这些组合是否有特定的规律来解题。

常见数学公式运用在数字推理题中,有时候会用到一些基本的数学公式或者性质。

比如等差数列、等比数列、平方数列等等。

熟练掌握这些数学知识,能够帮助快速解决数字推理问题。

注意数字序列的整体性有时候数字推理题中的数字序列可能会和其他数字序列或者图形有关联。

要留意整体的规律,不只是局限于当前的数字序列。

通过观察多个数字序列之间的共同点,能够更好地推断规律。

总结数字推理题虽然看似简单,但其实隐藏着许多技巧和思维方式。

通过掌握常见的规律分析方法、奇偶性分析、数字组合分析等技巧,能够帮助更好地解决数字推理问题。

在平时的学习和练习中多多总结经验,相信在应对各类数字推理题时会游刃有余。

数字推理题的解题方法

数字推理题的解题方法

数字推理题的解题方法数字推理题是一类需要根据一定的规律或模式来推断或填充数字的问题。

这类题目常见于智力测试、数学竞赛等场合。

解决数字推理题通常需要观察数字序列中的规律,并据此找到正确的解法。

以下是一些常见的数字推理题的解题方法:1. 找规律:仔细观察数字序列,寻找其中的规律或模式。

这可能涉及到数字之间的运算、递增规律、几何形状等。

2. 算术运算:检查数字序列中相邻数字之间是否存在某种算术运算关系,如加法、减法、乘法、除法等。

这些运算关系可以用于推测下一个数字或填充缺失的数字。

3. 几何形状:数字序列有时可能构成一些几何形状,如等差数列、等比数列、斐波那契数列等。

找到这些几何形状有助于推断下一个数字。

4. 奇偶性:观察数字的奇偶性,有时可以发现一些规律。

例如,每两个数字之和是偶数,或者奇数和偶数交替出现等。

5. 位数和数字之和:考虑数字的位数和各位数字之和。

有时规律可能与这些因素有关,例如数字之和是某个特定值,或者数字的位数遵循某种规律。

6. 填空法:如果有多个数字序列,可以尝试在其中的一个序列中找到规律,然后应用相同的规律到其他序列中。

7. 找出特殊模式:有时数字序列中可能存在一些特殊的模式,例如重复、对称、交替等,这些模式可以帮助你找到规律。

8. 试错法:如果找不到明显的规律,可以尝试一些常见的数学运算和规律,并检查是否满足给定的条件。

例子:给定数字序列:2, 4, 8, 16, __观察到每个数字是前一个数字的两倍,因此下一个数字应为16 的两倍,即 32。

这只是数字推理题的一种解法,具体的方法可能因题目而异。

在解决这类问题时,耐心观察、灵活思维和多角度思考都是很有帮助的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝招,4.5分钟搞定数字推理1)等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208,622,规律为a*3-2=b2)深一愕模型,各数之间的差有规律,如1、2、5、10、17。

它们之间的差为1、3、5、7,成等差数列。

这些规律还有差之间成等比之类。

B,各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。

3)看各数的大小组合规律,作出合理的分组。

如7,9,40,74,1526,5436,7和9,40和74,1526和5436这三组各自是大致处于同一大小级,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个组。

而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。

所以7*7-9=40 , 9*9-7=74 , 40*40-74=1526 , 74*74-40=5436,这就是规律。

4)如根据大小不能分组的,A,看首尾关系,如7,10,9,12,11,14,这组数7+14=10+11=9+12。

首尾关系经常被忽略,但又是很简单的规律。

B,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。

5)各数间相差较大,但又不相差大得离谱,就要考虑乘方,这就要看各位对数字敏感程度了。

如6、24、60、120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们的规律就是2^3-2=6、3^3-3=24、4^3-4=60、5^3-5=120、6^3-6=210。

这组数比较巧的是都是6的倍数,容易导入歧途。

6)看大小不能看出来的,就要看数的特征了。

如21、31、47、56、69、72,它们的十位数就是递增关系,如25、58、811、1114,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3,如论坛上fjjngs解答:256,269,286,302,(),2+5+6=132+6+9=172+8+6=163+0+2=5,∵256+13=269269+17=286286+16=302 ∴下一个数为302+5=307。

7)再复杂一点,如0、1、3、8、21、55,这组数的规律是b*3-a=c,即相邻3个数之间才能看出规律,这算最简单的一种,更复杂数列也用把前面介绍方法深化后来找出规律。

8)分数之间的规律,就是数字规律的进一步演化,分子一样,就从分母上找规律;或者第一个数的分母和第二个数的分子有衔接关系。

而且第一个数如果不是分数,往往要看成分数,如2就要看成2/1。

数字推理题经常不能在正常时间内完成,考试时也要抱着先易后难的态度(废话,嘿嘿)。

应用题个人觉得难度和小学奥数程度差不多(本人青年志愿者时曾在某小学辅导奥数),各位感觉自己有困难的网友可以看看这方面的书,还是有很多有趣、快捷的解题方法做参考。

国家公务员考试中数学计算题分值是最高的,一分一题,而且题量较大,所以很值得重视(国家公务员125题,满分100分,各题有分值差别,但如浙江省公务员一共120题,满分120分,没有分值的差别)补充:1)中间数等于两边数的乘积,这种规律往往出现在带分数的数列中,且容易忽略如1/2、1/6、1/3、2、6、3、1/22)数的平方或立方加减一个常数,常数往往是1,这种题要求对数的平方数和立方数比较熟悉如看到2、5、10、17,就应该想到是1、2、3、4的平方加1如看到0、7、26、63,就要想到是1、2、3、4的立方减1对平方数,个人觉得熟悉1~20就够了,对于立方数,熟悉1~10就够了,而且涉及到平方、立方的数列往往数的跨度比较大,而且间距递增,且递增速度较快3)A^2-B=C因为最近碰到论坛上朋友发这种类型的题比较多,所以单独列出来如数列5,10,15,85,140,7085如数列5, 6, 19, 17 , 344 , -55如数列5,15,10,215,-115这种数列后面经常会出现一个负数,所以看到前面都是正数,后面突然出现一个负数,就考虑这个规律看看4)奇偶数分开解题,有时候一个数列奇数项是一个规律,偶数项是另一个规律,互相成干扰项如数列1,8,9,64,25,216奇数位1、9、25 分别是1、3、5的平方偶数位8、64、216是2、4、6的立方先补充到这儿。

5) 后数是前面各数之各,这种数列的特征是从第三个数开始,呈2倍关系如数列:1、2、3、6、12、24由于后面的数呈2倍关系,所以容易造成误解!资料分析四大速算技巧提示:“差分法”是在比较两个分数大小时,用“直除法”或者“化同法”等其他速算方式难以解决时可以采取的一种速算方式。

适用形式:两个分数作比较时,若其中一个分数的分子与分母都比另外一个分数的分子与分母分别仅仅大一点,这时候使用“直除法”、“化同法”经常很难比较出大小关系,而使用“差分法”却可以很好地解决这样的问题。

基础定义:在满足“适用形式”的两个分数中,我们定义分子与分母都比较大的分数叫“大分数”,分子与分母都比较小的分数叫“小分数”,而这两个分数的分子、分母分别做差得到的新的分数我们定义为“差分数”。

例如:324/53.1与313/51.7比较大小,其中324/53.1就是“大分数”,313/51.7就是“小分数”,而324-313/53.1-51.7=11/1.4就是“差分数”。

“差分法”使用基本准则——“差分数”代替“大分数”与“小分数”作比较:1、若差分数比小分数大,则大分数比小分数大;2、若差分数比小分数小,则大分数比小分数小;3、若差分数与小分数相等,则大分数与小分数相等。

比如上文中就是“11/1.4代替324/53.1与313/51.7作比较”,因为11/1.4>313/51.7(可以通过“直除法”或者“化同法”简单得到),所以324/53.1>313/51.7。

特别注意:一、“差分法”本身是一种“精算法”而非“估算法”,得出来的大小关系是精确的关系而非粗略的关系;二、“差分法”与“化同法”经常联系在一起使用,“化同法紧接差分法”与“差分法紧接化同法”是资料分析速算当中经常遇到的两种情形。

三、“差分法”得到“差分数”与“小分数”做比较的时候,还经常需要用到“直除法”。

四、如果两个分数相隔非常近,我们甚至需要反复运用两次“差分法”,这种情况相对比较复杂,但如果运用熟练,同样可以大幅度简化计算。

【例1】比较7/4和9/5的大小【解析】运用“差分法”来比较这两个分数的大小关系:大分数小分数9/5 7/49-7/5-1=2/1(差分数)根据:差分数=2/1>7/4=小分数因此:大分数=9/5>7/4=小分数提示:使用“差分法”的时候,牢记将“差分数”写在“大分数”的一侧,因为它代替的是“大分数”,然后再跟“小分数”做比较。

【例2】比较32.3/101和32.6/103的大小【解析】运用“差分法”来比较这两个分数的大小关系:小分数大分数32.3/101 32.6/10332.6-32.3/103-101=0.3/2(差分数)根据:差分数=0.3/2=30/200<32.3/101=小分数(此处运用了“化同法”)因此:大分数=32.6/103<32.3/101=小分数[注释]本题比较差分数和小分数大小时,还可采用直除法,读者不妨自己试试。

提示(“差分法”原理):以例2为例,我们来阐述一下“差分法”到底是怎样一种原理,先看下图:上图显示了一个简单的过程:将Ⅱ号溶液倒入Ⅰ号溶液当中,变成Ⅲ号溶液。

其中Ⅰ号溶液的浓度为“小分数”,Ⅲ号溶液的浓度为“大分数”,而Ⅱ号溶液的浓度为“差分数”。

显然,要比较Ⅰ号溶液与Ⅲ号溶液的浓度哪个大,只需要知道这个倒入的过程是“稀释”还是“变浓”了,所以只需要比较Ⅱ号溶液与Ⅰ号溶液的浓度哪个大即可。

破译数字推理解题“密码”数字推理题虽然难度较大,但并非无规律可循,了解和掌握一定的方法和技巧,对解答数字推理问题大有帮助。

1.快速扫描已给出的几个数字,仔细观察和分析各数之间的关系,尤其是前三个数之间的关系,大胆提出假设,并迅速将这种假设延伸到下面的数,如果能得到验证,即说明找出规律,问题即迎刃而解;如果假设被否定,立即改变思考角度,提出另外一种假设,直到找出规律为止。

2.推导规律时,往往需要简单计算,为节省时间,要尽量多用心算,少用笔算或不用笔算。

3.空缺项在最后的,从前往后推导规律;空缺项在最前面的,则从后往前寻找规律;空缺项在中间的可以两边同时推导。

4.若自己一时难以找出规律,可用常见的规律来“对号入座”,加以验证。

常见的排列规律有:(1)奇偶数规律:各个数都是奇数(单数)或偶数(双数);(2)等差:相邻数之间的差值相等,整个数字序列依次递增或递减。

(3)等比:相邻数之间的比值相等,整个数字序列依次递增或递减;如:2 4 8 16 32 64()这是一个“公比”为2(即相邻数之间的比值为2)的等比数列,空缺项应为128。

(4)二级等差:相邻数之间的差或比构成了一个等差数列;如:4 2 2 3 6 15相邻数之间的比是一个等差数列,依次为:0.5、1、1.5、2、2.5。

(5)二级等比数列:相邻数之间的差或比构成一个等比数理;如:0 1 3 7 15 31 ( )相邻数之间的差是一个等比数列,依次为1、2、4、8、16,空缺项应为63。

(6)加法规律:前两个数之和等于第三个数;(7)减法规律:前两个数之差等于第三个数;如:5 3 2 1 1 0 1 ( )相邻数之差等于第三个数,空缺项应为-1。

(8)乘法(除法)规律:前两个数之乘积(或相除)等于第三个数;(9)完全平方数:数列中蕴含着一个完全平方数序列,或明显、或隐含;如:2 3 10 15 26 35 ( )1*1+1=2, 2*2-1=3,3*3+1=10,4*4-1=15......空缺项应为50。

(10)混合型规律:由以上基本规律组合而成,可以是二级、三级的基本规律,也可能是两个规律的数列交叉组合成一个数列。

如:1 2 6 15 31 ( )相邻数之间的差是完全平方序列,依次为1、4、9、16,空缺项应为31+25=56。

相关文档
最新文档