SOR迭代(算法分析和数值算例)
数值分析6-用SOR方法求解线性方程组
程序 clear;clc; A=[4,3,0;3,4,-1;0,-1,4]; b=[24,30,-24]'; N=length(b); %解向量的维数 fprintf('库函数计算结果:'); x=inv(A)*b %库函数计算结果 x=[1;1;1];%迭代初始值 %-----(A=D-E-F)-----D=diag(diag(A)); E=-tril(A,-1);%下三角 F=-triu(A,1);%上三角 w=1.5; %松弛因子,一般 0<w<2 B=inv(D-w*E)*[(1-w)*D+w*F];g=w*inv(D-w*E)*b; eps=1e-8;%相邻解的距离小于该数时,结束迭代 %--------开始迭代------for k=1:100 %最大迭代次数为 100 fprintf('第%d 次迭代:',k); y=B*x+g; if abs(x-y)<eps break; end x=y end x
程序结果
当比较松弛因Biblioteka 取 1.0 时当比较松弛因子取 1.25 时
当比较松弛因子取 1.5 时
作业七:编写用 SOR 方法求解线性方程组 Ax=B 的标准程序,并求下 列方程组的解, 并比较松弛因子取 1.0、 1.25、 1.5 时所需迭代的次数。 可取初始向量 X(0) =(1,1,1)’;迭代终止条件||x(k+1)-x(k)||<=10e-8
4 30 ������1 24 3 4 − 1 x2 = 30 0 − 14 x3 −24
sor迭代法手算例题
sor迭代法手算例题SOR迭代法是求解线性方程组的一种经典方式,其基本思想是通过不断迭代来逼近方程组的解。
这种方法在大规模问题上具有很好的效率,因此得到了广泛的应用。
本文将介绍SOR迭代法的基本原理,并以一个手算例题来展示其具体步骤和计算结果。
一、SOR迭代法的基本原理在介绍SOR迭代法的原理之前,我们先来看一下迭代法本身的思想。
假设有一个线性方程组:$$Ax=b$$其中,A是一个$n\times n$的系数矩阵,b是一个$n\times 1$的常数向量,x是一个$n\times 1$的未知向量。
迭代法的基本思想是将方程组表示为:$$x^{(k+1)}=Tx^{(k)}+C$$其中,$x^{(k)}$表示第k次迭代的近似解,$T$是一个$n\times n$的矩阵,$C$是一个$n\times 1$的常数向量。
迭代法的步骤是从一个初始点$x^{(0)}$开始,不断应用上述公式来寻找更好的解$x^{(k+1)}$。
当接近真解时,迭代的过程会不断收敛,即$x^{(k+1)}$会不断逼近真解$x$。
那么,如何确定矩阵$T$和向量$C$呢?最简单的方法是将方程组表示为:$$x^{(k+1)}=(I-\omega A)x^{(k)}+\omega b$$其中,I是$n\times n$的单位矩阵,$\omega$是一个常数,称作松弛因子。
当$\omega=1$时,这就是最基本的迭代法——雅克比迭代法。
但是,雅克比迭代法的收敛速度比较慢,因此需要调整$\omega$的值,从而得到更好的迭代效果。
SOR迭代法就是一种改良的迭代方法,其基本思想是通过加速松弛因子的变化来改善雅克比迭代法的效率。
具体来说,SOR迭代法的公式为:$$x_i^{(k+1)}=(1-\omega)x_i^{(k)}+\frac{\omega}{a_{ii}}\left(b_i-\sum_{j<i}a_{ij}x_j^{(k+1)}-\sum_{j>i}a_{ij}x_j^{(k)}\right)$$其中,$i=1,2,\cdots,n$。
(完整版)6.4超松弛迭代法
0.75 x2( ( k 1)
6 0.25x3(k
)
7.5
x (k 1) 3
0.25x2(k1)
6
②取ω=1.25 ,即SOR迭代法:
xx21((kk11))
0.25x1(k) 0.9375x2(k) 7.5 0.9375x1(k1) 0.25x2(k) 0.3125x3(k)
-5.0183105
3.1333027
4.0402646
-5.0966863
4
3.0549316
3.9542236
-5.0114410
2.9570512
4.0074838
-4.9734897
5
3.0343323
3.9713898
-5.0071526
3.0037211
4.0029250
-5.0057135
6
3.0214577
3.9821186
-5.0044703
2.9963276
4.0009262
-4.9982822
7 3.0134110
3.9888241
-5.0027940
3.0000498
4.0002586
-5.0003486
迭代法若要精确到七位小数, Gauss-Seidel迭代法需要34次迭代; 而用SOR迭代法(ω=1.25),只需要14次迭代。
因子ω。
返回引用
opt
(1
2
1 [(BJ )]2 )
(4)
这时,有ρ(Bopt
)=
ω
opt
-
1。
SOR法分类与现状
通常,
(1)当ω>1 时,称为超松弛算法; (2)当ω<1 时,称为亚松弛算法。
SOR迭代(算法分析和数值算例)
SOR 迭代基本思想Gauss-Seidel 迭代(1)1()(1)()()k k x D L U xD L +--=-+-的结果作为中间值,记为(1)k x+ 。
SOR 方法是将(1)k x+ 与上次计算的结果()k x 做加权平均作为最后结果。
迭代格式为:1(1)(1)()()111[](1),1,2i nk k k k ii ij jij j ij j i iix b a x a x x i na ωω-++==+=--+-=∑∑或者1(1)()(1)()11[],1,2i nk k k k iii ij jij j j j iiix x b a x a x i na ω-++===+--=∑∑算法: 1.0,,,A b x t e ω输入迭代初值松弛参数,为迭代次数初始值为0,为记录误差2. 当1,2in= 时,11:[]ni i i i j j j iix x b a x a ω==+-∑,结果仍然存储在ix 中。
迭代次数:1t t =+ 3.计算误差*e x x=-(真解已知)4.如果6510e -<⨯,则已达到精确度要求,否则继续第2步数值结果041010141,4,001430A b x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=--== ⎪ ⎪ ⎪⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭迭代初值,用Gauss 消去法求的其真解为*12112x ⎛⎫⎪ ⎪=⎪ ⎪- ⎪⎝⎭依次取1,1.03,1.1ω=,数值结果见下表总结从实验结果可以看出,当取松弛参数为1.03时只需五步就能达到所需精度。
附录(M文件)function [t,x]=successiive_over_Rellaxatiion(A,b,x0,w,rx)n=length(A);x=x0; %% x0为迭代初值e=norm(rx-x0,inf); %% rx为真解,e为误差t=0; %% t为迭代次数while e>5*10^(-6)for i=1:ntemp=0;for j=1:ntemp=temp+A(i,j)*x(j,1);endx(i,1)=x(i,1)+w*(b(i,1)-temp)/A(i,i);ende=norm(rx-x,inf);t=t+1;xend。
sor方法
sor方法
SOR方法是一种迭代数值解法,主要被用于求解线性系统Ax=b,其中A是系数矩阵,b是右端向量。
SOR方法的全称为"Successive Over-Relaxation Method",意为迭代超松弛法。
在使用SOR方法求解线性方程组时,首先需要将系数矩阵A分解为L、D和U 三个部分,其中L是A的严格下三角矩阵,D是A的对角线矩阵,U是A的严格上三角矩阵。
同时,SOR方法还需要一个松弛因子w。
SOR方法的迭代公式为:
x(k+1) = (1-w)x(k) + w(D-wL)^(-1)(b-Ux(k))
其中x(k)表示第k次迭代求得的解向量,x(k+1)表示x(k)的下一次迭代,^(−1)表示逆矩阵。
可以发现,SOR方法是基于Gauss-Seidel方法的改进,它在每一次迭代中添加了一个松弛因子w,从而使得解向量的迭代更快、更稳定。
在实际应用中,我们需要选择一个合适的松弛因子w,以使得SOR方法能够收敛并且收敛速度较快。
一般来说,选择一个小于1的w能够保证SOR方法的收敛性,而选择一个大于1的w能够加快SOR方法的收敛速度。
需要注意的是,SOR方法只能够求解特定条件下的线性方程组,如系数矩阵为对称正定矩阵、对角占优矩阵等。
当系数矩阵不满足这些条件时,SOR方法可能出现发散的情况。
总的来说,SOR方法是一种简单而有效的数值解法,被广泛应用于工程计算等领域。
在使用时,需要根据具体问题选择合适的松弛因子w,并且注意其收敛性和收敛速度。
数值分析实验报告-Sor法分析
数值分析实验报告一、 实验目的1、会使用Sor 法求解一个线性方程组2、熟悉matlab 语言并结合原理编程求方程组3、改变ω的值观察实验结果4、会分析实验结果 二、实验题目编制Sor 迭代格式程序进行求解一个线性方程组的迭代计算情况,运行中要选用不同的松弛因子ω进行尝试三、 实验原理Jacobi 迭代和seidel 迭代对具体的线性方程组来说,逼近*x 的速度是固定不变的,遇到收敛很慢的情况时就显得很不实用。
Sor 法是一seidel 迭代为基础,并在迭代中引入参数ω以增加迭代选择的灵活性,具体为:!用seidel 迭代算出的,)()1()()1(k k J k k Jx x x x x -=∆++相减得到差向量与再用参数ω乘之再加上)1()()()1()1()()()1(++++-=∆+=k Jk k k k k k x x x x x x x x ωωω,即的下一步迭代作为,由seidel 迭代的公式可以得到Sor 法的迭代格式为n i x a x a b a x x k j n i j ij k j i j ij i ii k i k i ,2,1),()1()(1)1(11)()1( =--+-=∑∑+=+-=+ωω式中ω称为松弛因子。
四、 实验内容用matlab 编程得到Sor 法求线性方程组的算法为:function [x,n]=SOR(A,b,x0,w,eps,M)if nargin==4eps= ;M = 200;elseif nargin<4errorreturn:elseif nargin ==5M = 200;endif(w<=0 || w>=2)error;return;endD=diag(diag(A)); %求A的对角矩阵L=-tril(A,-1); %求A的下三角阵(U=-triu(A,1); %求A的上三角阵B=inv(D-L*w)*((1-w)*D+w*U);f=w*inv((D-L*w))*b;x=B*x0+f;n=1; %迭代次数while norm(x-x0)>=epsx0=x;x =B*x0+f;n=n+1;if(n>=M)(disp('Warning: 迭代次数太多,可能不收敛!'); return;endend输入数据:>> A=[20 1 -3 -1;3 18 0 7;-1 2 40 -2;1 0 -1 5];b=[1;2;10;-1];x0=[0;0;0;0];w=1;eps=1e-4;;M=100;>> [x,n]=SOR(A,b,x0,w,eps,M)x =n =;5error;>> A=[20 1 -3 -1;3 18 0 7;-1 2 40 -2;1 0 -1 5];b=[1;2;10;-1];x0=[0;0;0;0];w=;eps=1e-4;M=100;[x,n]=SOR(A,b,x0,w,eps,M)/x =n =@21>>A=[20 1 -3 -1;3 18 0 7;-1 2 40 -2;1 0 -1 5]; b=[1;2;10;-1];x0=[0;0;0;0];w=;eps=1e-4;M=100;[x,n]=SOR(A,b,x0,w,eps,M)Error using ==> errorNot enough input arguments.,Error in ==> SOR at 13用实验3中的线性方程组作为例子比较得当ω=时,x = 迭代次数为n=21当ω=1时,x = 迭代次数为n=5当ω=时,出现error五、实验分析由定理,Sor法收敛的必要条件是0<ω<2,因此,当ω=和1时,算法收敛,能够求出根,并且迭代次数根据ω的不同而不同,在求方程组的根时,只要选择恰当的ω,收敛是很快的。
用sor法解方程组
用SOR法解方程组引言方程组是数学中常见的问题,解决方程组可以帮助我们理解和预测各种实际问题。
解方程组的方法有很多种,其中一种常用的方法是SOR(Successive Over Relaxation)法。
SOR法是一种迭代法,通过不断迭代逼近解的过程来求解方程组。
本文将对SOR法进行详细的介绍和分析。
SOR法概述SOR法是一种求解线性方程组的迭代算法,其基本思想是通过引入松弛因子来加速收敛速度。
对于线性方程组Ax=b,SOR法的迭代公式为:x^(k+1) = (1-w)x^(k) + w * D^(-1) * (b - L * x^(k+1) - U * x^(k))其中,x(k)表示第k次迭代的解向量,x(k+1)表示第k+1次迭代的解向量,w为松弛因子(0 < w< 2),A被分解为下三角矩阵L、上三角矩阵U和对角矩阵D。
算法流程SOR法的算法流程如下:1.初始化解向量x^(0)2.对于每次迭代k = 0, 1, 2, …–计算下一次迭代的解向量x^(k+1): x^(k+1) = (1-w)x^(k) + w * D^(-1) * (b - L * x^(k+1) - U * x^(k))–判断迭代是否收敛:如果迭代误差小于预设的阈值就停止迭代,否则继续迭代3.返回最终的解向量x^(k+1)SOR法特点SOR法具有以下几个特点:1.相对于传统的迭代法,SOR法引入了松弛因子,能够加速迭代的收敛速度。
2.当松弛因子w=1时,SOR法等价于高斯-赛德尔迭代法。
3.大部分情况下,SOR法是收敛的。
收敛速度与松弛因子w有关,一般来说,选择一个合适的松弛因子可以加快算法的收敛速度。
4.SOR法对于对角占优的线性方程组具有较好的收敛性能,但对于一般的线性方程组效果可能不理想。
SOR法的数值实验为了验证SOR法的性能,我们进行了一系列的数值实验。
我们选取了不同规模的线性方程组,通过对比SOR法的迭代次数和收敛速度来评估其性能。
sor迭代法
SOR迭代法的Matlab程序function [x]=SOR_iterative(A,b)% 用SOR迭代求解线性方程组,矩阵A是方阵x0=zeros(1,length(b)); % 赋初值tol=10^(-2); % 给定误差界N=1000; % 给定最大迭代次数[n,n]=size(A); % 确定矩阵A的阶w=1; % 给定松弛因子k=1;% 迭代过程while k<=Nx(1)=(b(1)-A(1,2:n)*x0(2:n)')/A(1,1);for i=2:nx(i)=(1-w)*x0(i)+w*(b(i)-A(i,1:i-1)*x(1:i-1)'-A(i,i+1:n)*x0(i+1:n)')/A(i,i);endif max(abs(x-x0))<=tolfid = fopen('SOR_iter_result.txt', 'wt');fprintf(fid,'\n********用SOR迭代求解线性方程组的输出结果********\n\n');fprintf(fid,'迭代次数: %d次\n\n',k);fprintf(fid,'x的值\n\n');fprintf(fid, '%12.8f \n', x);break;endk=k+1;x0=x;endif k==N+1fid = fopen('SOR_iter_result.txt', 'wt');fprintf(fid,'\n********用SOR迭代求解线性方程组的输出结果********\n\n');fprintf(fid,'迭代次数: %d次\n\n',k);fprintf(fid,'超过最大迭代次数,求解失败!');fclose(fid);end常微分方程的数值解法实验目的:熟悉在Matlab平台上直接求解常微分方程初值问题试验方法1、利用改进欧拉法解方程:程序内容为:fun=@(x,y)x^(-2)-y/x;h=0.05;X=1:h:2;Y(1)=1;for i=2:21Y(i)=Y(i-1)+h/2*(fun(X(i-1),Y(i-1))+fun(X(i),Y(i-1))+h*fun(X(i-1),Y(i-1))); end;Y运行结果为:Y =Columns 1 through 91.0000 0.9989 0.9957 0.9909 0.9848 0.9778 0.9701 0.9618 0.9530Columns 10 through 180.9440 0.9348 0.9254 0.9160 0.9065 0.8971 0.8876 0.8783 0.8690Columns 19 through 210.8598 0.8508 0.8418真实解的求法为:x=1:0.05:2;y=1./x.*(log(x)+1)y =Columns 1 through 81.0000 0.9988 0.9957 0.9911 0.9853 0.9785 0.9710 0.9630Columns 9 through 160.9546 0.9459 0.9370 0.9279 0.9188 0.9096 0.9004 0.8912Columns 17 through 210.8821 0.8731 0.8641 0.8553 0.8466用四阶R-K算法解常微分方程的程序为:fun=@(x,y)x^(-2)-y/x;h=0.1;X=1:h:2;Y(1)=1;for n=2:11k1=fun(x(n-1),Y(n-1));k2=fun(x(n-1)+h/2,Y(n-1)+h/2*k1);k3=fun(x(n-1)+h/2,Y(n-1)+h/2*k2);k4=fun(x(n-1)+h,Y(n-1)+h*k3);Y(n)=Y(n-1)+h/6*(k1+2*k2+2*k3+k4)end;Y运行后了结果为:Y =Columns 1 through 91.0000 0.9957 0.9853 0.9710 0.9546 0.9370 0.9188 0.9004 0.8821Columns 10 through 110.8641 0.8466真实解的求法为:x=1:0.1:2;y=1./x.*(log(x)+1)y =Columns 1 through 91.0000 0.9957 0.9853 0.9710 0.9546 0.9370 0.9188 0.9004 0.8821Columns 10 through 110.8641 0.8466可见其精确度至少已达到0.0012、MATLAB中数值解法“ode45”为:[x1,y1] = ode45(@(x,y)x^(-2)-y/x,[1,2],y0);符号解法“dsolve”求解为:dsolve('Dy=x^(-2)-y/x','y(1) = 1','x')ans =(log(x)+1)/x画出两种算法的图形位:[x1,y1] = ode45(@(x,y)x^(-2)-y/x,[1,2],1);fplot('(log(x)+1)/x',[1,2]);hold on, plot(x1,y1,'ro');数值算法同解析算法几乎完全吻合。
SOR迭代法求解线性方程组
SOR迭代法求解线性方程组一实验名称:实验四:逐次超松弛迭代法。
二实验题目:求解下面的三元一次线性方程组:2x-y+2z=4;x+2y+3z=9;2x-2y-3z=-3;要求选取不同的松弛因子进行计算,并估计最优松弛因子的大小。
三实验目的:1.熟悉掌握逐次超松值迭代法的基本原理和基本方法。
2.学会用逐次超松弛迭代法解简单的方程组。
3.选取不同的w值(0<w<2)进行试探性的计算,从中摸索出近似的最佳松弛因子。
四基础理论:超松弛迭代法以及所涉及的主要算法为:Xi^(k+1)←(1-w)*Xi^(k)+w*Xi的共轭的(k+1)次幂。
五实验环境:Visual C++6.0。
六实验过程:1. 在程序中输入不同的数据时,会得到不同的结果。
2.大于1的时候的松弛因子,被称作超松弛法。
小于则被称做低松弛法。
由于松弛因子对方程组的收敛速度影响很大,所以在一定的误差范围内,选择不同的松弛因子时,迭代次数也会不同。
3. 按照实验题目中的数据输入时,比较结果当w=0.6时,会出现下面的结果:当w=0.7时得当w=0.8时得当w=0.9时,会出现下面的结果当w=1.0时得七结果分析:当在一定的误差范围内,有以上运行结果可以得出答案,最优松弛因子的范围为0.8。
八逐次超松弛迭代法程序代码:#include<iostream.h>#include<stdlib.h>#include<stdio.h>#include<math.h>void SOR(double w, double a[3][3], double b[3], double x[3], double esp) {double t[3];int flag=0;int n=0;while(!flag){flag=1;n++;t[0]=x[0]; t[1]=x[1]; t[2]=x[2];for(int i=0;i<3;i++){double m=b[i];for(int j=0;j<3;j++){m-=(a[i][j]*x[j]);}x[i]=x[i]+w*m/a[i][i];}for(int k=0;k<3;k++){if(fabs(x[k]-t[k])>=esp){flag=0;break;}}}printf("%d\n",n);}void main(){double a[3][3];double b[3];double x[3];double w,esp;a[0][0]=2; a[0][1]=-1; a[0][2]=2;a[1][0]=1; a[1][1]=2; a[1][2]=3;a[2][0]=2; a[2][1]=-2; a[2][2]=-3;b[0]=4; b[1]=9; b[2]=-3;x[0]= x[1]= x[2]=0;w=0.6;esp=0.0001;SOR(w,a,b,x,esp);for(int i=0;i<3;i++)printf("%f\n",x[i]);}。
数值分析PPT55迭代法收敛与SOR法
|| A || || D 1 P 1 APD ||1 max ( | i | ) ( A) 易证:
1 i r
是由 || x ||v || ( PD) 1 x ||1 导出的算子范数。 Bk 0 迭代从任意向量出发收敛
所以只要取 < ,就有|| A || < (A) 。
( k 1 ) (k ) ( k 1 ) (k ) 1 x (1 ) x D [ Lx Ux b ] ( k 1 ) (k ) 1 1 x ( D L) [(1 ) D U ] x ( D L) b H f 松弛迭代阵 定理 设 A 可逆,且 aii 0,松弛法从任意 x ( 0) 出发对 某个 收敛 ( H ) < 1。
(k ) (1) ( 0 ) qk ② || x * x || || x x || 1 q
证明: ① x * x ( k ) B( x * x ( k 1) ) B ( x * x ( k ) x ( k ) x ( k 1 ) ) (k ) (k ) ( k ) ( k 1) || x * x || q(|| x * x || || x x ||)
充分条件: ||B|| < 1
e (k ) 必要条件:
|| B ||k 0 as k ( k )等价于对 ||任何算子范数有 e || 0 || 0 as k Ak || 0 as kk A B ?
( Ak (aijk ) ) nn R nn .
ri( k 1) (1 ) xi( k ) [ aij x (jk 1) aij x (jk ) bi ] xi( k ) aii a ii j<i j i
超松弛迭代法(SOR方法)
解:SOR迭代公式
x1( k
1)
(1 )x1(k )
4
(10 2x2(k )
4x3(k ) )
x
(k 2
1)
(1 )x2(k )
17
(3
2
x1(
k
1)
10x3(k ) )
x3( k
1)
(1 )x3(k )
9
(7 4x1(k 1)
10
x
(k 2
1)
)
初值 x (0) (0,0,0)T k = 0,1,2,…,
例该4方.4程用组S的OR精法确求解解线x (性*) 方 程(2组,1,1)T
如值只果需x(0取)迭ω取代(0=,04ω21,00x(=42)即1次T1xx,要11.高4便26达x斯11,可207到—xx要达22同4塞求到x样319德精0x精x3尔度130度迭要x,(3k7代求需1) 法要x)迭(和k) 代同1一1100初6次
数值计算方法
超松弛迭代法(SOR方法) 使用迭代法的困难在于难以估计其计算
量。有时迭代过程虽然收敛,但由于收敛速 度缓慢,使计算量变得很大而失去使用价值 。因此,迭代过程的加速具有重要意义。逐 次超松弛迭代(Successive Over relaxatic Method,简称SOR方法)法,可以看作是带参 数的高斯—塞德尔迭代法,实质上是高斯-塞 德尔迭代的一种加速方法。
或 Dx(k1) (1)Dx(k) (b Lx(k1) Ux(k) )
故 (D L)x(k1) (1)D Ux(k) b
显然对任何一个ω值,(D+ωL)非奇异,(因为假设 aii 0,i 1,2,, n )于是超松弛迭代公式为
x(k1) (D L)1 (1)D U x(k) (D L)1b
sor迭代法手算例题
sor迭代法手算例题農迭代法是一種重要的數學方法,在農業、經濟學、生物學、物理學等領域中都有廣泛的應用。
本文將通過手算例題,深入探討農迭代法的原理、應用和注意事項。
一、農迭代法的原理農迭代法是一種通過不斷迭代,逐步逼近真實值的方法,其基本原理是:假設一個初始值,然後通過一系列計算,得到一個新的值,再以此新值為初始值,重複進行計算,直到得到一個足夠接近真實值的結果。
以求解方程f(x)=0為例,農迭代法的基本步驟如下:(1)選擇一個初始值x0;(2)根據f(x)=0的形式,將x表示為x=g(x),即x=g(x0);(3)用x0的值代入g(x)中,得到新的值x1=g(x0);(4)重複步驟(3),得到x2=g(x1),x3=g(x2),直到得到一個足夠接近真實值的結果。
需要注意的是,農迭代法的收斂性和速度都與選擇初始值有關,通常需要通過觀察函數圖像、分析函數性質等方法,選擇一個合適的初始值,才能獲得較好的結果。
二、農迭代法的應用1. 求解方程農迭代法在求解方程方面有廣泛的應用。
例如,對於方程f(x)=0,可以通過農迭代法求解,其中g(x)可以選擇為f(x)+x,即x=g(x)=f(x)+x。
2. 求解最小值農迭代法在求解最小值方面也有應用。
例如,對於函數f(x),可以通過農迭代法求解其最小值,其中g(x)可以選擇為f(x+1)。
3. 求解微分方程農迭代法在求解微分方程方面也有應用。
例如,對於微分方程y'=f(x,y),可以通過農迭代法求解其解析解,其中g(y)可以選擇為y0+∫f(x,y)dx。
三、手算例題下面通過手算例題,深入探討農迭代法的具體應用。
例題1:求解方程x^3-3x+1=0的根。
解答:根據農迭代法的原理,可以將方程表示為x=(3x-1)/x^2,即g(x)=(3x-1)/x^2。
選擇初始值x0=1,代入g(x)中,得到x1=g(x0)=(3-1)/1^2=2。
再將x1代入g(x)中,得到x2=g(x1)=(3*2-1)/2^2=5/4。
关于逐次超松弛迭代法(SOR方法)的教学
关于“逐次超松弛迭代法(SOR 方法)”的教学一、SOR 迭代公式逐次超松弛(Successive Over Relaxation)迭代法,简称SOR 方法,它是在GS 法基础上为提高收敛速度,采用加权平均而得到的新算法,设求解线性代数方程组b Ax =的GS 法记为(1)再由与加权平均得这里ω>0称为松弛参数,将(1)代入则得(2)称为SOR 迭代法,ω>0称为松弛因子,当ω=1时,(2)即为GS 法,将(2)写成矩阵形式则得即,于是得SOR 迭代的矩阵表示(3)其中(4)亦可作矩阵分解ωωN M A -=,其中有.从而SOR 迭代矩阵 ωωωN M G 1-=. 例1 给定方程组精确解,用SOR法求解,分别取ω=1及ω=125.解用SOR迭代公式(2)可得取,迭代7次后分别为若要精确到小数后7位,对ω=1(即GS法)需迭代34次,而对ω=1.25的SOR法,只需迭代14次.它表明松弛因子ω选择的好坏,对收敛速度影响很大。
二、SOR迭代法收敛性根据迭代法收敛性定理,SOR法收敛的充分必要条件为,收敛的充分条件为,但要计算比较复杂,通常都不用此结论,而直接根据方程组的系数矩阵A 判断SOR迭代收敛性,下面先给出收敛必要条件定理1设,则解方程的SOR迭代法收敛的必要条件是0<ω<2.证明因为SOR迭代矩阵为,于是另一方面,设的特征值为,由特征根性质,有若SOR法收敛,则,由,则得0<ω<2.定理2若对称正定,且0<ω<2,则解Ax=b的SOR迭代法(3)对迭代收敛。
证明设的特征值为(可能是复数),对应特征向量x≠0, 由(4)得因为实对称矩阵,故, 上式两边与x作内积,得(5)因A正定,故D也正定,记.又记,,由内积性质得于是由(5)有由于A正定及0<ω<2,故,于是。
注一:当ω=1时SOR法即为GS法,故GS法也收敛,此即为GS法的收敛定理结论。
对于SOR迭代法,松弛因子的选择对收敛速度影响较大,关于最优松弛因子研究较为复杂,且已有不少理论结果。
第五章 第三节 SOR迭代法
k
即
DX
k 1
LX
k 1
1 DX UX b
k k
于是有
( D L) X X
k 1 k 1
[1 D U ] X b
k k
( D L) 1[1 D U ] X ( D L) 1 b
阵来说,这一条件是充分的。
定理7 如果矩阵 A 是对称正定的,则 SOR 法 对于0 2 是收敛的。 这一定理说明, 对于对称正定矩阵 ,只要 0 2 , SOR 迭代法总是收敛的。
用 SOR 法计算方程组时,选取合适的松弛因
子很重要,松弛因子选取得好,可能使得收敛速 度大大加快,下面举例来说明松弛因子的选取对 收敛速度的影响。
将方程组 AX b 写成
ai1 x1 ai 2 x2 ai ,i 1 xi 1 aii xi ain xn bi , (i 1, 2,, n)
aii xi bi ai1 x1 ai 2 x2 ai ,i 1 xi 1 ai ,i 1 xi 1 ain xn aii xi aii xi (bi ai1 x1 ai 2 x2 ai ,i 1 xi 1 aii xi ai ,i 1 xi 1 ain xn )
SOR
迭代法收敛与否或收敛快慢都与松弛因 的范围,有如下定理。
子 有关 。 关于
定理6
SOR
迭代法收敛的必要条件是松弛
因子 应满足条件 0 2 。
因 SOR 法收敛,故 B 1 。记 B 的 特征值 为 1,2 , n 。因为n阶矩阵的n个 特征值之积等于其行列式之值,即 证明
数值分析Python实现系列——二、逐次超松弛迭代法(SOR)
数值分析Python 实现系列——⼆、逐次超松弛迭代法(SOR )⼆、超松弛迭代法(SOR)1.原理:回顾:在⼀般情况下 : 收敛过慢甚⾄不收敛的B 与f ,经过对系数矩阵A 分裂成A =M −N 的形式, 使得迭代公式变为: x k +1=(I −M −1)Ax k +M −1f 雅克⽐迭代法选取 : 现将A 如下分解A =D −L −U ,D 为对⾓阵,L 为下三⾓阵,U 为上三⾓阵,取M ≡D ,取N ≡L +U ,在这⼀章中我们选取下三⾓矩阵M =1ω(D −ωL ),ω>0,其中ω为松弛因⼦,我们可以发现当ω为1时,M =D −L ,正是⾼思-赛德尔迭代法,下⾯推导迭代公式:x k +1=I −M −1A x k +M −1bx k +1=I −ω(D −ωL )−1A x k +ω(D −ωL )−1bx k +1=(D −ωL )−1((1−ω)D +ωU )x k +ω(D −ωL )−1b推导完毕,我们较为常⽤的是下式:(D −ωL )x k +1=((1−ω)D +ωU )x k +ωb以及:x (0)=(x (0)1,...,x (0)n )T ,x (k +1)i =x (k +)i +Δx i Δx i =ωb i −i −1∑j =1a ij x (k +1)j −n ∑j =1a ij x (k )j a ii i =1,2,...,n ,k =0,1,...,ω为松弛因⼦当ω>1时为超松弛迭代,当ω<1时为低松弛迭代迭代终⽌条件:max 1≤i ≤n |Δx i |=max1≤i ≤n |x (k +1)i −x (k )i |<ε,下⾯我们试试⽤Python 实现这⼀功能.2.实现:import numpy as npimport matplotlib.pyplot as pltMAX = 110 # 遍历最⼤次数A = np.array([[-4, 1, 1, 1], [1, -4, 1, 1], [1, 1, -4, 1], [1, 1, 1, -4]])b = np.array([[1], [1], [1], [1]]) # 注意这⾥取列向量omega_list = [1 + 0.005 * i for i in range(100)] # 取到不同的omega 值,观察趋势length = len(A)count = [] # 记录遍历的次数for omega in omega_list: # 遍历每⼀个omega 值times = 0x_0 = np.zeros((length, 1))x_hold = x_0 + np.ones((length, 1))while (np.linalg.norm(x_hold - x_0, ord=2) >= 10 ** (-5)) and (times <= MAX):# 遍历停⽌条件以k+1次与k 次迭代的向量差的⼆范数以及遍历最⼤次数为标准x_hold = x_0.copy() # 这⾥不要⽤赋值,要⽤copyx_new = x_0.copy()for i in range(length):# 根据迭代公式迭代x_new[i][0] = x_0[i][0] + omega * (b[i][0] - sum([A[i][j] * x_new[j][0] for j in range(i)]) - sum([A[i][j] * x_0[j][0] for j in range(i, length)])) / A[i][i]x_0 = x_new.copy()times += 1count.append(times)plt.plot(omega_list, count) # 观察omega 与迭代次数的关系plt.show()思路:1.遍历设限:第⼀种是到达精度,到达精度停⽌迭代,第⼆种是到达规定最⼤次数,这个可以⾃⼰设定.2.在根据迭代公式改变各个向量分量时,要注意遍历范围.结果:{。
数值分析第二次大作业SOR最优松弛因子选取方法及SOR迭代法的改进
《数值分析》第二次大作业题目:SOR最优松弛因子选取方法及SOR迭代法的改进内容:1.SOR最优松弛因子选取方法2.SOR迭代法的改进(SSOR迭代法)3.SSOR迭代法的Matlab程序4.举例比较jacobi,Gauss-Seidel,SOR及SSOR 迭代法的收敛速度姓名:合肥工业大学学号:2011班级:信息与计算科学11-1班参考资料:1.《确定SOR最优松弛因子的一个实用算法》李春光等《计算力学学报》2.《数值分析与实验》,薛毅,北京工业大学出版社.3.《数值分析中的迭代法解线性方程组》,马云,科学出版社4.《非线性互补问题的改进超松弛迭代算法》,段班祥等,江西师范大学出版社5.《迭代法解线性方程组的收敛性比较》,郑亚敏,江西科学出版社.一、SOR最优松弛因子选取方法SOR迭代法迭代公式:x(k+1)i=(1-ω)xi+(k) bi-∑aijxjaii⎝j=1ω⎛ i-1(k+1)-j=i+1∑axijn(k)j⎫⎪ (i=1,2,..n.), ⎪⎭1.二分比较法将松弛因子1/2,ω的区间(1,2)进行二分,每个小区间的长度为ω去中间值3/2,按照SOR 迭代法迭代公式,求出跌代次数k,如果k不超过指定的发散常数,则可确定ω的值;否则将(1,2)四等分,每个区间长度为1/4,ω取各分点值,继续迭代,一般地,将1区间(1,2)二分M次,每次二分步长为,ω一次取取各分点值,2M按照SOR迭代法迭代公式,求出跌代次数k,如果k不超过指定的发散常数,则可确定的ω的值,这样总能找到一个不超过指定发散常数ω值。
2.逐步搜索法将1+ω的取值区间(1,2)进行M等分,ω分别取ω的值。
12M-1,1+,...,1+,通过迭代公式依次对同意精度要求求出迭代MMM次数k的值,并从中选出最优松弛因子3.黄金分割法依据黄金分割比的思想,通过计算机主动选取最优松弛因子的近似值,步骤如下a.对(1,2)区间进行第一次0.618的分割,区间边界a1=1,b1=2,在区间(a1,b1)分割出黄金点p1=a1+0.618(b1-a1),进行SOR迭代法的迭代,求出迭代次数k的值,如果没有超过规定的发散常数,迭代结束,否则做步骤b。
MATLAB编制SOR算法求解AX=b
MATLAB 编制SOR 算法求解AX=b 实例1.题目:用SOR 方法求解方程组(分别取松弛因子w=1.03;w=1;w=1.1)。
1212323414443x x x x x x x -=⎧⎪-+-=⎨⎪-+=-⎩ 其中精确解*11,1,22x ⎡⎤=-⎢⎥⎣⎦ 要求当*55*10k x x --<迭代终止,并且对每个w 确定迭代次数。
2.SOR 方法SOR 原理参考李庆扬主编《数值分析》第五版6.3节超松弛迭代法。
MATLAB 编程如下: 首先编制SOR 调用的功能函数。
%SOR 函数%输入变量:x0为初始值,x1为精确值,w 为松弛因子,eps 为精度,M 为最大迭代次数 %输出变量:x2为迭代值,n 为满足精度要求的最小迭代次数function [x2,n]=SOR(A,b,x0,x1,w,eps,M)D=diag(diag(A)); %求A 的对角矩阵L=-tril(A,-1); %求A 的下三角阵U=-triu(A,1); %求A 的上三角阵B=inv(D -L*w)*((1-w)*D+w*U);f=w*inv((D -L*w))*b;x2=B*x0+f; %进行第一次迭代n=1;while norm(x1-x2)>=eps %迭代的精度控制x2=B*x2+f;n=n+1;if(n>=M)disp('Warning: 迭代次数太多,可能不收敛!');return;endend然后编制求解的主程序。
clcclear allA=[4 -1 0;-1 4 -1;0 -1 4]; %输入方程A、b和精确解x1、迭代初值x0 b=[1;4;-3];x1=[0.5;1;-0.5];x0=[0;0;0];eps=5e-5; %控制精度为5e-5w=1.03%w=1 %分别计算w=1.03、w=1、w=1.1三种情况%w=1.1;M=200; %迭代次数超过200认为不收敛[x2,n]=SOR(A,b,x0,x1,w,eps,M);vpa(x2,8) %对迭代值x2保留8位小数3.求解结果。
用SOR迭代法
一、数值求解如下正方形域上的Poisson 方程边值问二、2222(,)2,0,1(0,)(1,)(1),01(,0)(,1)0,01u u f x y x y x y u y u y y y y u x u x x ⎧⎛⎫∂∂-+==<<⎪ ⎪∂∂⎪⎝⎭⎨==-≤≤⎪⎪==≤≤⎩二、用椭圆型第一边值问题的五点差分格式得到线性方程组为2,1,1,,1,10,1,,0,141,?,?,?,?0,1i j i j i j i j i j ijj N j i i N u u u u u h f i j Nu u u u i j N -+-+++----=≤≤====≤≤+,写成矩阵形式Au=f 。
其中 三、基本原理程序步骤:所有的步骤基本一致 1. 设置u ,n ,并给u ,n 赋初值; 2. While 语句循环,到的6步 3. Up 我第K 次迭代的值; 4. 分别进行计算,sum=0; 例如:Jacobi :sun= sum+A(i,j)*Ub; SOR 和Gauss_Seidel= sum+A(i,j)*u; 各自进行相应的下不运算。
5. 计算|Up-u|<ep 的绝对值,判断是否停机 6. 如果小于规定误差,迭代终止; 7. 输出结果u 和迭代次数k8. 在块的迭代中调用了追赶法的求解子程序zg ,在SOR 设计了A 得自动生成子程序creat_matix.1122N N v b v b u f v b ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭4114114ii A -⎛⎫ ⎪- ⎪= ⎪- ⎪-⎝⎭ 11,12,1,121,22,2,21,2,,2211,12,1,121,22,2,221,2,,(,,...,),(,,...,),......,(,,...,)(,,...,)?,(,,...,)?,......,(,,...,)?1,999,0.10.011T T N N TN N N N N T T N N T N N N N N v u u u v u u u v u u u b h f f f b h f f f b h f f f h N h N ====+=+=+===+取或则或,2,,1,2,...,i j f i j N==1122NN A I I A A I IA -⎛⎫ ⎪-⎪= ⎪- ⎪-⎝⎭四、编写求解线性方程组Au=f的算法程序,用下列方法编程计算,并比较计算速度。
sor迭代法
sor迭代法Sor迭代法是一种求解线性方程组的算法,它是Jacobi迭代法和Gauss-Seidel迭代法的改进。
在本文中,我们将深入探讨Sor迭代法的原理、优缺点以及应用。
一、原理1.1 Sor迭代法的基本思想Sor迭代法是通过对Jacobi迭代法和Gauss-Seidel迭代法进行改进得到的。
其基本思想是在Jacobi迭代和Gauss-Seidel迭代中引入一个松弛因子,使得每次更新后的值更接近于真实解。
1.2 Sor迭代公式Sor迭代公式如下:$x^{(k+1)}_i=(1-\omega)x^{(k)}_i+\frac{\omega}{a_{ii}}\left(b_i-\sum_{j=1,j\neq i}^n a_{ij}x^{(k+1)}_j\right)$其中,$x^{(k+1)}_i$表示第$k+1$次迭代中第$i$个未知数的值;$x^{(k)}_i$表示第$k$次迭代中第$i$个未知数的值;$\omega$为松弛因子;$a_{ii}$为系数矩阵中第$i$行第$i$列元素;$\sum_{j=1,j\neq i}^n a_{ij}x^{(k+1)}_j$表示第$k+1$次迭代中除第$i$个未知数外的其他未知数的值的和;$b_i$为方程组中第$i$个方程的常数项。
1.3 松弛因子松弛因子$\omega$是Sor迭代法中一个重要的参数,它控制了每次迭代后更新值与真实解之间的距离。
一般情况下,松弛因子取值在0和2之间。
当$\omega=1$时,Sor迭代法退化成Gauss-Seidel迭代法;当$\omega=0$时,Sor迭代法退化成Jacobi迭代法。
二、优缺点2.1 优点(1)收敛速度快:相比于Jacobi迭代法和Gauss-Seidel迭代法,Sor迭代法具有更快的收敛速度。
(2)适用范围广:Sor迭代法适用于大多数线性方程组求解问题,并且不需要对系数矩阵做任何特殊处理。
2.2 缺点(1)松弛因子需要调整:松弛因子是影响Sor迭代法收敛速度和精度的关键参数,因此需要通过试验或经验来确定最优值。
用SOR迭代法
一、数值求解如下正方形域上的Poisson 方程边值问二、2222(,)2,0,1(0,)(1,)(1),01(,0)(,1)0,01u u f x y x y x y u y u y y y y u x u x x ⎧⎛⎫∂∂-+==<<⎪ ⎪∂∂⎪⎝⎭⎨==-≤≤⎪⎪==≤≤⎩二、用椭圆型第一边值问题的五点差分格式得到线性方程组为2,1,1,,1,10,1,,0,141,?,?,?,?0,1i j i j i j i j i j ijj N j i i N u u u u u h f i j N u u u u i j N -+-+++----=≤≤====≤≤+,写成矩阵形式Au=f 。
其中 三、基本原理程序步骤:所有的步骤基本一致 1. 设置u ,n ,并给u ,n 赋初值; 2. While 语句循环,到的6步 3. Up 我第K 次迭代的值; 4. 分别进行计算,sum=0; 例如:Jacobi :sun= sum+A(i,j)*Ub; SOR 和Gauss_Seidel= sum+A(i,j)*u; 各自进行相应的下不运算。
5. 计算|Up-u|<ep 的绝对值,判断是否停机 6. 如果小于规定误差,迭代终止; 7. 输出结果u 和迭代次数k8. 在块的迭代中调用了追赶法的求解子程序zg ,在SOR 设计了A 得自动生成子程序creat_matix.1122N N v b v b u f v b ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭4114114ii A -⎛⎫ ⎪- ⎪= ⎪- ⎪-⎝⎭11,12,1,121,22,2,21,2,,2211,12,1,121,22,2,221,2,,(,,...,),(,,...,),......,(,,...,)(,,...,)?,(,,...,)?,......,(,,...,)?1,999,0.10.011T T N N TN N N N N T T N N T N N N N N v u u u v u u u v u u u b h f f f b h f f f b h f f f h N h N ====+=+=+===+取或则或,2,,1,2,...,i j f i j N==1122NN A I I A A I IA -⎛⎫ ⎪-⎪= ⎪- ⎪-⎝⎭四、编写求解线性方程组Au=f的算法程序,用下列方法编程计算,并比较计算速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SOR 迭代
基本思想
Gauss-Seidel 迭代(1)
1()
(1)
()()
k k x D L U x
D L +--=-+-的结果作为中间值,记为
(1)
k x
+ 。
SOR 方法是将(1)
k x
+ 与上次计算的结果()
k x 做加权平均作为最后结果。
迭
代格式为:
1(1)
(1)
()()
1
1
1[](1),1,2i n
k k k k i
i ij j
ij j i
j j i ii
x b a x a x x i n
a ω
ω-++==+=-
-
+-=∑
∑
或者
1(1)
()
(1)
()
1
1[],1,2i n
k k k k i
i
i ij j
ij j j j i
ii
x x b a x a x i n
a ω
-++===+-
-
=∑
∑
算法: 1.
0,,,A b x t e ω输入迭代初值松弛参数,为迭代次数初始值为0,为记录误差
2. 当1,2i
n
= 时,1
1:[]n
i i i i j j j ii
x x b a x a ω
==
+-
∑
,结果仍然存储在i
x 中。
迭
代次数:1t t =+ 3.
计算误差*
e x x
=-(真解已知)
4.
如果6
510
e -<⨯,则已达到精确度要求,否则继续第2步
数值结果
04
10101
41,4,001
430A b x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=--== ⎪ ⎪ ⎪
⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭
迭代初值,用Gauss 消去法求的其真解为
*
12112x ⎛⎫
⎪ ⎪=
⎪ ⎪- ⎪⎝
⎭
依次取1,1.03,1.1ω=,数值结果见下表
总结
从实验结果可以看出,当取松弛参数为1.03时只需五步就能达到所需精度。
附录(M文件)
function [t,x]=successiive_over_Rellaxatiion(A,b,x0,w,rx)
n=length(A);
x=x0; %% x0为迭代初值
e=norm(rx-x0,inf); %% rx为真解,e为误差
t=0; %% t为迭代次数
while e>5*10^(-6)
for i=1:n
temp=0;
for j=1:n
temp=temp+A(i,j)*x(j,1);
end
x(i,1)=x(i,1)+w*(b(i,1)-temp)/A(i,i);
end
e=norm(rx-x,inf);
t=t+1;
x
end。