等差数列的前n项和ppt
合集下载
等差数列前n项和公式课件
6
例1 如图,一个堆放铅笔的 V形
架的最下面一层放一支铅笔,往 上每一层都比它下面一层多一支, 最上面一层放120支。这个V形架 上共放着多少支铅笔?
解:由题意可知,这个V形架上共放着120层铅
笔,且自下而上各层的铅笔数成等差数列,记
为{an},其中 a1=1 , a120=120.根据等差数列前n项 和的公式,得
120 (1120)
S120
2
7 260
答:V形架上共放着 7 260支铅笔。
7
例2 等差数列 10,6,2,2,…前多少项的和是54?
解:设题中的等差数列为{an},前n项和是 Sn,
则a1= 10,d= 6(10) 4,设 Sn=54, 根据等差数列前 n项和公式,得
10n n(n 1) 4 54 n2 6n 27 0
100个101
所以 2x 101100, x=5050.
这个问题,可看成是求等差数列 1,2,3,…, n,…的前100项的和。
3
下面将对等差数列的前n项和公式进行推导
设等差数列a1,a2,a3,… 它的前n 项和是 Sn=a1+a2+…+an-1+an (1) 若把次序颠倒是Sn=an+an-1+…+a2+a1 (2) 由等差数列的性质 a1+an=a2+an-1=a3+an-2=… 由(1)+(2) 得 2sn=(a1+an)+(a1+an)+(a1+an)+..
(m,n,p,q∈N),那么: an+am=ap+aq
2
问题1:1+2+3+…+100=?
等差数列的前n项和ppt课件
02
等差数列的前n项和公式
等差数列前n项和的定义
定义
等差数列的前n项和是指从第一项到第n项的所有项的和。
符号表示
记作Sn,其中S表示总和,n表示项数。
等差数列前n项和的公式推导
公式推导
等差数列的前n项和公式为Sn = n/2 * (2a1 + (n-1)d),其中a1是第一项,d是公差。
推导过程
组合数学
等差数列的前n项和在组合数学中 也有广泛应用,例如计算组合数 的公式。
数学分析
在数学分析中,等差数列的前n项 和可用于研究函数的极限、积分 等概念。
在物理中的应用
力学
01
在研究匀加速直线运动时,等差数列的前n项和可用于计算位移、
速度和加速度等物理量。
波动
02
在波动现象中,等差数列的前n项和可用于描述波动方程的解。
等差数列的前n项和
目录
• 等差数列的定义与性质 • 等差数列的前n项和公式 • 等差数列的前n项和的求解方法 • 等差数列的前n项和的应用 • 习题与解答
01
等差数列的定义与性质
等差数列的定义
定义
等差数列是一种常见的数列,其中任 意两个相邻项的差是一个常数,这个 常数被称为公差。
数学表达
对于等差数列 {a_n},如果每一项满 足 a_n = a_1 + (n-1)d,其中 d 是公 差,则该数列为等差数列。
详细描述
等差数列的通项公式为an = a1 + (n-1) * d,其中d是公差。通过通项公式,我们可以 推导出前n项和的表达式为Sn = n/2 * [2a1 + (n-1) * d],从而求出前n项和。
04
等差数列的前n项和的应用
等差数列前n项和的性质ppt课件
解析: 方法一:设 an=a1+(n-1)d,bn=b1+(n-1)e.
取 n=1,则ab11=TS11=12,所以 b1=2a1.所Βιβλιοθήκη 以Sn Tn=
na1+nn- 2 1d nb1+nn- 2 1e
=
a1+n-2 1d b1+n-2 1e
=
a1+n2d-d2 2a1+n2e-2e
=
3n2+n 1,
一个等差数列的前10项之和为100,前100项之和为10,求 前110项之和.
由题目可获取以下主要信息: ①S10=100,S100=10;②此数列为等差数列. 解答本题可充分利用等差数列前n项和的有关性质解答.
[解题过程] 方法一:设等差数列{an}的公差为 d,前 n 项和为 Sn,则 Sn=na1+nn-2 1d.
3.设等差数列{an}的前n项和为Sn.若S9=72,则a2+a4+a9 =________.
解析: 由等差数列的性质S9=9a5=72,a5=8,a2+a4+a9 =a1+a5+a9=3a5=24,故填24.
答案: 24
4.(1)等差数列{an}中,a2+a7+a12=24,求 S13. (2)等差数列{an}的公差 d=12,且 S100=145, 求 a1+a3+a5+…+a99. 解析: (1)∵a2+a12=a1+a13=2a7, 又 a2+a7+a12=24,∴a7=8. ∴S13=13a12+a13=13×8=104. (2)∵S100=(a1+a3+…+a99)+(a2+a4+…+a100) =2(a1+a3+…+a99)+50d=145, 又 d=12,∴a1+a3+…+a99=60.
an=Sn-Sn-1=n2-3n+1-[(n-1)2-3(n-1)+1] =2n-4,
等差数列前n项求和ppt
公式理解
01
公式意义
等差数列的前n项和公式表示等 差数列前n项的和,其中首项为 a1,公差为d,项数为n。
公式结构
02
03
公式参数
公式由首项、公差、项数和求和 符号组成,反映了等差数列的特 性。
首项a1表示等差数列的第一项, 公差d表示相邻两项的差,项数n 表示等差数列的项数。
公式应用
应用场景一
等差数列前n项求和
目录
• 等差数列的定义与性质 • 等差数列的前n项和公式 • 等差数列求和的常见方法 • 等差数列求和的实际应用 • 等差数列求和的注意事项
01
等差数列的定义与性质
定义
总结词
等差数列是一种常见的数列,其特点是任意两个相邻项的差是一个常数。
详细描述
等差数列是一种有序的整数集合,其中任意两个相邻项的差都等于一个常数,这个常数被称为公差。等差数列的 一般形式为 a_n = a_1 + (n-1)d,其中 a_n 是第 n 项,a_1 是第一项,d 是公差。
02
等差数列的前n项和公式
公式推导
公式推导方法一
利用等差数列的性质,将前n项和表示为n/2乘以首项与末项的平均值,再利用等差数列的通项公式, 推导出前n项和公式。
公式推导方法二
利用等差数列的求和公式,将前n项和表示为首项与末项的和乘以项数再除以2,同样利用等差数列的通 项公式,推导出前n项和公式。
日常生活中的应用
购物清单
在购物时,等差数列求和公式可用于计算购 物清单中商品的总价,以便快速计算出总花 费。
工资计算
在工资计算中,等差数列求和公式可用于计算工资 总额,以便计算税款和扣除项。
日常理财
在理财中,等差数列求和公式可用于计算定 期存款、基金定投等理财产品的收益。
等差数列前n项和(公开课)PPT课件
几何等领域。
组合数学
等差数列的前n项和公式可以应 用于组合数学中,解决一些组合 问题,如计算组合数的公式等。
数列求和
等差数列的前n项和公式是数列 求和的一种重要方法,可以用于
解决等差数列的求和问题。
在物理中的应用
力学
在物理学中,等差数列的 前n项和公式可以应用于求 解一些力学问题,如计算 多自由度振动的周期等。
简化计算
等差数列的前n项和公式在日常生活 和科学研究中有着广泛的应用,如计 算存款利息、解决生产计划问题等。
对于一些较大的等差数列,使用前n 项和公式可以大大简化计算过程,提 高计算效率。
验证答案
使用前n项和公式可以快速验证一些 等差数列求和问题的答案,确保计算 的准确性。
实例解析
简单实例
例如,一个等差数列1, 4, 7, 10... ,使用前n项和公式可以快速求出
统计学
在统计学中,等差数列的 前n项和公式可以用于计算 平均值、中位数等统计指 标。
信号处理
在信号处理中,等差数列 的前n项和可以用于计算信 号的频谱、滤波等操作。
在计算机科学中的应用
数据结构
在计算机科学中,等差数列的前n项和公式可以应用于一些数据结 构的设计,如数组、链表等。
算法设计
等差数列的前n项和公式可以用于设计一些算法,如排序算法、查 找算法等。
详细描述
等差数列是一种特殊的数列,其中任意两个相邻的项之间的 差是一个固定的值,这个值被称为公差。等差数列的通项公 式为 a_n = a_1 + (n-1)d,其中 a_n 是第 n 项,a_1 是首项 ,d 是公差。
性质
总结词
等差数列具有一些重要的性质,包括对称性、中项性质和等差中项性质等。
组合数学
等差数列的前n项和公式可以应 用于组合数学中,解决一些组合 问题,如计算组合数的公式等。
数列求和
等差数列的前n项和公式是数列 求和的一种重要方法,可以用于
解决等差数列的求和问题。
在物理中的应用
力学
在物理学中,等差数列的 前n项和公式可以应用于求 解一些力学问题,如计算 多自由度振动的周期等。
简化计算
等差数列的前n项和公式在日常生活 和科学研究中有着广泛的应用,如计 算存款利息、解决生产计划问题等。
对于一些较大的等差数列,使用前n 项和公式可以大大简化计算过程,提 高计算效率。
验证答案
使用前n项和公式可以快速验证一些 等差数列求和问题的答案,确保计算 的准确性。
实例解析
简单实例
例如,一个等差数列1, 4, 7, 10... ,使用前n项和公式可以快速求出
统计学
在统计学中,等差数列的 前n项和公式可以用于计算 平均值、中位数等统计指 标。
信号处理
在信号处理中,等差数列 的前n项和可以用于计算信 号的频谱、滤波等操作。
在计算机科学中的应用
数据结构
在计算机科学中,等差数列的前n项和公式可以应用于一些数据结 构的设计,如数组、链表等。
算法设计
等差数列的前n项和公式可以用于设计一些算法,如排序算法、查 找算法等。
详细描述
等差数列是一种特殊的数列,其中任意两个相邻的项之间的 差是一个固定的值,这个值被称为公差。等差数列的通项公 式为 a_n = a_1 + (n-1)d,其中 a_n 是第 n 项,a_1 是首项 ,d 是公差。
性质
总结词
等差数列具有一些重要的性质,包括对称性、中项性质和等差中项性质等。
等差数列的前n项和 课件
(2)当n=1时,a1=S1=1; 当n≥2时,an=Sn-Sn-1=2×3n-1. ∵a1=1不适合an=2·3n-1.
∴an=12·3n-1
n=1, n≥2.
[点评] 利用数列的前n项和Sn求数列的通项公式an 时,要注意a1是否也满足由an=Sn-Sn-1(n≥2)得出的表达 式,若不满足,数列的通项公式就要用分段形式来表示.
nn-1
2
d
.
类型一 等差数列前n项和公式的基本运算 [例1] 分别按等差数列{an}的下列要求计算: (1)已知a1 005=411,求S2 009; (2)已知d=2,S100=10 000,求an.
[分析] 由题目可获取以下主要信息: ①a1+a2 009=2a1 005;②an=a1+(n-1)d. 解答本题要紧扣等差数列的求和公式的两种形式,利 用等差数列的性质解题.
[解] (1)∵a1+a2 009=2a1 005,
∴S2
009=2
Hale Waihona Puke 009a1+a2 2009=2
009a1
005=2
009×411=49.
(2)由S100=100a1+
100×100-1 2
×2=10
000,解得a1
=1.
∴an=a1+(n-1)d=2n-1.
[点评] a1,n,d称为等差数列的三个基本量,an和Sn 都可以用这三个基本量来表示,五个量a1,n,d,an,Sn中 可知三求二.即等差数列的通项公式及前n项和公式中“知 三求二”的问题,一般是通过通项公式和前n项和公式联立 得方程(组)求解,这种方法是解决数列问题的基本方法, 在具体求解过程中应注意已知与未知的联系及整体思想的 运用.
[分析] 本题是考查前n项和Sn与an之间关系的问题,
4.2.2 第1课时 等差数列的前n项和课件ppt
(2)设Sn为等差数列{an}的前n项和,若S3=3,S6=24,则a9=
(3)在等差数列{an}中,若a1=1,an=-512,Sn=-1 022,则公差d=
.
.
.
分析利用等差数列的通项公式和前n项和公式列方程进行计算求解.
答案 (1)81 (2)15
(3)-171
解析 (1)设等差数列{an}的公差为d,
= 3,
则
3(-1)
Sn=20n+ 2
=
3 2 37
n
+
n.
2
2
令 Sn≤438,即 3n2+37n-876≤0 且 n∈N*,解得 n≤12.
所以最般思路
变式训练 3甲、乙两物体分别从相距70 m的两处同时相向运动,甲第1分钟
438万元.则该研究所最多可以建设的实验室个数是(
A.10
B.11 C.12 D.13
)
答案 C
解析 设第 n 实验室的建设费用为 an 万元,其中 n∈N*,
设等差数列{an}的公差为 d,由题意可得
7 -2 = 5 = 15,
解得
3 + 6 = 21 + 7 = 61,
1 = 20,
+5n=70,
2
素养形成
利用Sn与an的关系式求通项公式
典例 已知数列{an}的各项均为正数,前n项和为Sn,且满足2Sn= 2+n-4.
(1)求证:{an}为等差数列;
(2)求出{an}的通项公式.
分析在等式2Sn= 2 +n-4中,令n取n-1,可得2Sn-1= 2 −1 +n-5.两式相减,利
和公式中“知三求二”的问题,一般是通过通项公式和前n项和公式联立方
《等差数列的前n项和》课件(全国讲课比赛一等奖)
对学生的答疑解惑
01
解答学生在学习过程中遇到的疑 惑和问题,帮助他们更好地理解 和掌握等差数列的前n项和。
02
针对学生的不同学习需求和问题 ,提供个性化的指导和建议。
下节课预告:等差数列的性质探究
• 预告下节课的学习内容,引导学生对等差数列的 性质进行探究和思考,激发他们的学习兴趣和好 奇心。
THANKS。
详细描述
首先,将等差数列的项倒序排列,然后将其与原数列相加。由于倒序数列与原数列的对 应项相加都等于同一个常数(等差数列的首项加末项),因此,这些相加的结果都相互 抵消,除了第一项和最后一项。因此,等差数列的前n项和可以通过求第一项和最后一
项的和,然后乘以项数n再除以2来得到。
错位相减求和
总结词
错位相减法是一种通过将等差数列的每 一项乘以一个递增或递减的系数,然后 求和来找到等差数列的和的方法。
等差数列的前n项和公式的扩 展
推广到等差数列的任意项和
总结词
等差数列的任意项和公式是等差数列前n项和公式的一种扩展,它可以计算等差数列中任意一项的值。
详细描述
等差数列的任意项和公式是基于等差数列的通项公式和前n项和公式推导出来的。通过设定等差数列的首项、公 差以及项数,可以计算出任意一项的值。这个公式在解决一些数学问题时非常有用,特别是那些需要精确计算等 差数列中某一项的值的问题。
要点二
详细描述
首先,将等差数列的每一项拆分成两个部分,通常是一个 常数和一个递增或递减的等差数列。然后,将这些拆分后 的项重新组合成新的数列,并求和。由于相邻的拆分项会 相互抵消,因此最后只剩下首项和末项的和。因此,等差 数列的前n项和可以通过求首项和末项的和,然后乘以项 数n再除以2来得到。
等差数列前n项和(公开课)PPT课件
所以这个等差数列共有(a+d)×(n-2)/2 +10 =25。
04
第二题答案:16;解析:设等差数列的首项为a,公 差为d,根据题意有4a + 6d = 12,解得a+d=2,所 以这个等差数列共有(a+d)×(n-2)/2 +4 =16。
感谢您的观看
THANKS
习题答案与解析
进阶习题答案与解析
01
输标02入题
第一题答案:42;解析:设等差数列的首项为a,公 差为d,根据题意有5a + 10d = 25,解得a+d=5, 所以第6项到第10项的和为5a+35d=42。
03
第三题答案:25;解析:设等差数列的首项为a,公 差为d,根据题意有5a + 20d = 80,解得a+4d=8,
第二题答案:18;解析:设等差数列的首项为a,公差为d,根据题意有3a + 3d = 15,解得a+d=5,所以这个等差数列共有(a+d)×(n-2)/2 +3 =18。
习题答案与解析
• 第三题答案:30;解析:设等差数列的首项为a,公差为d,根据题意有5a + 45d = 200,解得a+d=5,所以这个等差数 列共有(a+d)×(n-2)/2 +10 =30。
公式5
$S_n - S_{n-1} = a_n$
公式6
$S_n = S_{n-1} + a_n$
公式之间的联系与区别
联系
公式1、2、3都是求等差数列前n项 和的基本公式,而公式4、5、6则是 基于这些基本公式的推导或变种。
区别
公式1和公式2形式较为简洁,而公式 3则更便于观察等差数列的对称性质。 公式4、5、6则更注重于相邻两项和 之间的关系,可以用于求解某些特定 问题。
04
第二题答案:16;解析:设等差数列的首项为a,公 差为d,根据题意有4a + 6d = 12,解得a+d=2,所 以这个等差数列共有(a+d)×(n-2)/2 +4 =16。
感谢您的观看
THANKS
习题答案与解析
进阶习题答案与解析
01
输标02入题
第一题答案:42;解析:设等差数列的首项为a,公 差为d,根据题意有5a + 10d = 25,解得a+d=5, 所以第6项到第10项的和为5a+35d=42。
03
第三题答案:25;解析:设等差数列的首项为a,公 差为d,根据题意有5a + 20d = 80,解得a+4d=8,
第二题答案:18;解析:设等差数列的首项为a,公差为d,根据题意有3a + 3d = 15,解得a+d=5,所以这个等差数列共有(a+d)×(n-2)/2 +3 =18。
习题答案与解析
• 第三题答案:30;解析:设等差数列的首项为a,公差为d,根据题意有5a + 45d = 200,解得a+d=5,所以这个等差数 列共有(a+d)×(n-2)/2 +10 =30。
公式5
$S_n - S_{n-1} = a_n$
公式6
$S_n = S_{n-1} + a_n$
公式之间的联系与区别
联系
公式1、2、3都是求等差数列前n项 和的基本公式,而公式4、5、6则是 基于这些基本公式的推导或变种。
区别
公式1和公式2形式较为简洁,而公式 3则更便于观察等差数列的对称性质。 公式4、5、6则更注重于相邻两项和 之间的关系,可以用于求解某些特定 问题。
等差数列前n项和性质上课用ppt课件
等差数列的性质应用:
例、已知一个等差数列的总项数为奇数, 且奇数项之和为77,偶数项之和为 66,求中间项及总项数。
解:由 S奇 S偶 中间项
得中间项为11 又由 S奇 S偶 143 得 n 13
等差数列{an}前n项和的性质的应用
例6.两等差数列{an} 、{bn}的前n项和分
别是Sn和Tn,且 Sn 7n 1
13a1+13×6d<0
24 d 3 7
(2)
∵
Sn
na1
1 2
n(n 1)d
1
n(12 2d ) n(n 1)d
2
d n2 (12 5d )n
2
2 5 12
∴Sn图象的对称轴为 n
由(1)知 24 7
d
3
2d
∴Sn有最大值.
由上得 6 5 12 13 即 6 n 13
A.63 B.45 C.36 D.27
例3.在等差数列{an}中,已知公差d=1/2,且
a1+a3+a5+…+a99=60,a2+a4+a6+…+a100=A( )
A.85 B.145 C.110 D.90
等差数列的性质应用:
例4、已知等差数列an 的前10项之和
为140,其中奇数项之和为125 , 求第6项。
前n项的和分别为Sn和Tn,则
an bn
S2n1 T2 n 1
等差数列的性质应用:
例1、已知一个等差数列前n项和为25, 前2n项的和为100,求前3n项和。
3.等差数列{an}前n项和的性质的应用 例2.设等差数列{an}的前n项和为Sn,若
S3=9,S6=36,则a7+a8+a9=( B)
等差数列的前n项和课件
详细描述
当等差数列的公差d等于0时,数列中的每一项都相等,此时等差数列退化为常 数列。在这种情况下,前n项和公式将简化为求单一数值的和。
当d≠0时,等差数列前n项和的公式简化
总结词:公式简化
详细描述:当公差d不等于0时,等差数列前n项和的公式可以通过求和公式进行简化。具体来说,可以使用等差数列的通项 公式和求和公式来推导出一个更简单的公式,用于计算前n项和。
等差数列前n项和与首末项的和的关 系
等差数列前n项和等于首末项的和乘以项数再除以2。
THANKS
感谢观看
等差数列前n项和公式的变种形式
等差数列前n项和的平方公式
等差数列前n项和的平方等于首项与末项的平方和加上4倍的第二项到倒数第二项的各 项之和。
等差数列前n项和与中间项的和
等差数列前n项和等于中间项与其余各项和的平均值乘以项数。
等差数列前n项和公式的极限形式
等差数列前n项和的极限
当n趋向于无穷大时,等差数列前n项和的极限等于首 项与末项的和除以2。
等差数列的前n项和ppt课件
• 等差数列的定义与性质 • 等差数列的前n项和公式 • 等差数列前n项和的特例 • 等差数列前n项和的实际应用 • 等差数列前n项和的扩展知识
01
等差数列的定义与性质
等差数列的定义
定义
等差数列是一种常见的数列,其 中任意两个相邻项的差是一个常 数,这个常数被称为公差。
前n项和公式的应用
前n项和公式在数学、物理、工程等 领域有广泛的应用。
前n项和公式可以用于解决等差数列 相关的问题,如求和、比较大小等。 此外,该公式还可以用于解决一些实 际问题,如计算存款利息、评估投数列退化为常数列
总结词
等差数列退化为常数列
当等差数列的公差d等于0时,数列中的每一项都相等,此时等差数列退化为常 数列。在这种情况下,前n项和公式将简化为求单一数值的和。
当d≠0时,等差数列前n项和的公式简化
总结词:公式简化
详细描述:当公差d不等于0时,等差数列前n项和的公式可以通过求和公式进行简化。具体来说,可以使用等差数列的通项 公式和求和公式来推导出一个更简单的公式,用于计算前n项和。
等差数列前n项和与首末项的和的关 系
等差数列前n项和等于首末项的和乘以项数再除以2。
THANKS
感谢观看
等差数列前n项和公式的变种形式
等差数列前n项和的平方公式
等差数列前n项和的平方等于首项与末项的平方和加上4倍的第二项到倒数第二项的各 项之和。
等差数列前n项和与中间项的和
等差数列前n项和等于中间项与其余各项和的平均值乘以项数。
等差数列前n项和公式的极限形式
等差数列前n项和的极限
当n趋向于无穷大时,等差数列前n项和的极限等于首 项与末项的和除以2。
等差数列的前n项和ppt课件
• 等差数列的定义与性质 • 等差数列的前n项和公式 • 等差数列前n项和的特例 • 等差数列前n项和的实际应用 • 等差数列前n项和的扩展知识
01
等差数列的定义与性质
等差数列的定义
定义
等差数列是一种常见的数列,其 中任意两个相邻项的差是一个常 数,这个常数被称为公差。
前n项和公式的应用
前n项和公式在数学、物理、工程等 领域有广泛的应用。
前n项和公式可以用于解决等差数列 相关的问题,如求和、比较大小等。 此外,该公式还可以用于解决一些实 际问题,如计算存款利息、评估投数列退化为常数列
总结词
等差数列退化为常数列
等差数列前n项和(公开课)PPT课件
实例
总结词
等差数列的实例包括正整数序列、负数序列、斐波那契数列等。
详细描述
正整数序列1, 2, 3, ...是一个等差数列,其中首项a=1,公差d=1;负数序列-1, 2, -3, ...也是一个等差数列,其中首项a=-1,公差d=-1;斐波那契数列0, 1, 1, 2, 3, 5, ...也是一个等差数列,其中首项a=0,公差d=1。
01
求等差数列3, 6, 9, ..., 3n的前n项和。
进阶习题2
02
求等差数列-2, -4, -6, ..., -2n的前n项和。
进阶习题3
03
求等差数列5, 10, 15, ..., 5n的前n项和。
高阶习题
1 2
Байду номын сангаас
高阶习题1
求等差数列-3, -6, -9, ..., -3n的前n项和。
高阶习题2
总结词
等差数列是一种特殊的数列,其 中任意两个相邻项的差是一个常 数。
详细描述
等差数列通常表示为“an”,其 中a是首项,n是项数,d是公差 (任意两个相邻项的差)。
性质
总结词
等差数列的性质包括对称性、递增性、递减性等。
详细描述
等差数列的对称性是指任意一项与它的对称项相等,即a_n=a_(n+2m),其中 m是整数;递增性是指如果公差d>0,则数列是递增的;递减性是指如果公差 d<0,则数列是递减的。
PART 04
等差数列前n项和的变式 与拓展
REPORTING
变式公式
01
02
03
04
公式1
$S_n = frac{n}{2} (2a_1 + (n-1)d)$
4.2等差数列前n项和PPT课件(人教版)
等差数列的前n项和(1)
考点
考情分析
2012~202X年 202X年 202X年 202X年 202X年 202X年
合计
全 国 卷
地 方 卷
全 国 卷
地 方 卷
全 国 卷
地 方 卷
全 国 卷
地 方 卷
全 国 卷
地 方 卷
全 国 卷
地 方 卷
全国 卷
地方 卷
等差数列的 5 4 1 0 2 1 3 2 3 3 2 0 16 10
通项与求和
命题分析与 备考建议
1命题热度:该部分属于高考必考内容,属于中低档题。 2.考查方向:主要考查等差数列的通项公式与求和公式的综 合应用。 3.命题的关注点在于等差数列的基本量的求解,通常与求和问 题相结合出现在解答题中,考查数学运算、逻辑推理的核心素 养,高三备考,抓住等差数列中的两个基本量——首项与公差。
思路2(拿出末项,再首尾配对) 原式=(1+2+3+… + 100)+101
思路3 (拿出首项,再首尾配对) 原式=1+(2+3+… + 100+101)
思路……
问题3 倒序相加法
计算: 1 2 3 (n 1) n ①
n + (n-1) + (n-2) +…+ 2 +1 ②
分析:这其 实是求一个 具体的等差 数列前n项和.
基本量:a1, d, an , n, Sn 知三求二
回扣课本 夯实双基
做学案:例1
解:(1)因为 a1 7 ,a50 101 ,
根据公式
Sn
n(a1 2
an )
,可得
S50
50 (7 101) 2
4.2.2等差数列的前n项和公式PPT课件(人教版)
解:由已知可得:a1= -10,d=4
n(n 1)
S n 10n
4
2
2n 12n
2
令 2n 12 n 54
2
解得:n 9 或 n (舍)
3
所以数列前9项的和是54.
课堂小结
等差数列前n项和公式
n(a1 an )
Sn
2
n(n 1)
S n na1
101
算法过程:
由①+②,得
1
( + )
=
=
设 =1+2+3+…+100+101
①,则
=101+100+99+…+2+1 ②
2 = (+)
合作探究
思考2:已知数列{an}是等差数列,如何求
= 1 + 2 + 3 +··· +−1 + 的值?
S n na1
d
2
名师点析:(1)两个公式均为等差数列的求和公式,一共涉及a1,an,Sn,n,d
五个量.通常已知其中三个,可求其余两个,而且方法就是解方程(组),这也
是等差数列的基本问题情势之一.
( + )
(2)当已知首项a1,末项an,项数n时,用公式Sn=
.用此公式时,有时要
A.230
B.420
C.450
D.540
20×19
解:S20=20a1+ 2 d=20×2+20×19=420.
B
)
典型例题
例1 已知数列{an}是等差数列.
(1)若a1=7,a50=101,求S50;
(3)若a1= ,d=- ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列的前n项和
• 等差数列的前n项和
等差数列的前n项和
高斯小时候很淘气,有一次他和小 伙伴们惹恼了算术老师,于是老师决定 出一道难题,要求学生求出从1到100的 所有自然数的和,并规定必须做完才能 回家,同学们刚开始低头苦算时,高斯 却已得出了结果,大家都感到很惊讶。
等差数列的前n项和
有一堆钢管,如图放置,共堆 放了7层,自上而下各层的钢 管数为: 4,5,6,7,8,9,10, 求钢管的总数.
a n 中 , a 1
7 , 则 S 7 ______
14 . 5 , a n 32 ,
d 0 .7 , 求 S n .
等差数列的前n项和
Sn
n(a1 an ) 2
(n N )
S n na1
n(n 1) 2
d
(n N)
S n a 1 a 2 a n 1 a n 两式相加得: S n a n a n 1 a 2 a 1 2 S n ( a 1 a n ) ( a 2 a n 1 ) ( a n a 1 )
n个
( a1 a n ) ( a1 a n ) ( a1 a n ) n ( a1 a n )
例1. 数列{a n }是公差为 2的等
差数列,如果a1 a2 a3 12, 求S12 .
等差数列的前n项和
例2. 如图,一个堆放 铅笔的V形架的最下面 一层放1支铅笔,往上 每一层比它下面一层 多放1支,最上面一层 放120支.这个V形架上 共放着多少支铅笔?
等差数列的前n项和
Sn n(a1 an ) 2
等差数列的前n项和
等差数列{an}中:
500 (1) a 1 5 , a n 95 , n 10 , S n _____
2550 ( 2 ) a 1 100 , d 2 , n 50 , S n _____
等差数列的前n项和
在a,b之间插入10个数, 使它们同这两数成等差 数列,求这10个数的和.
等差数列{an}中,已知 a1=a,a12=b,求a2+a3 +a4+…+a11.
等差数列的前n项和
1 . 1 2 3 n _________
2 . 等差数列
3 . 等差数列
a n 中 , 若 a 4
S 7 4 5 6 7 8 9 10
S 7 10 9 8 7 6 5 4
两式相加得:
2 S 7 ( 4 10 ) ( 5 9 ) ( 6 8 ) ( 7 7 ) ( 8 6 ) ( 9 5 ) (10 4 )
共有 14 个元素 , 构成一个等差数列
a 1 7 , a 14 98
S 14
, 记为 a n ,
14 ( 7 98 )
2 答 : 集合 M 共有 14 个元素 , 和等于 735 .
735
等差数列的前n项和
例4. 做一个梯子,最 高一级宽为a,最低一 级宽为b,中间还有10 级,若各级的宽成等 差数列。问做中间各 级,要准备多长材料?
7 ( 4 10 )
S7
7 ( 4 10 ) 2
49
S100 1 2 3 4 99 100
100 (1 100) 2
等差数列的前n项和
一般地 , 设等差数列
a n 的前
n 项和为 S n ,
则
S n a1 a 2 a n ?
例3. 求集合
的元素个数
M m | m 7 n , n N , 且 m 100 , 并求这些元素的和 .
解: 由题意
, m 是 7的倍数 , 且 1 m 100 .
将它们从小到大排列得 : 7 1, 7 2 , 7 3 , , 7 14 . 即 7 ,14 , 21 , , 98 .
• 等差数列的前n项和
等差数列的前n项和
高斯小时候很淘气,有一次他和小 伙伴们惹恼了算术老师,于是老师决定 出一道难题,要求学生求出从1到100的 所有自然数的和,并规定必须做完才能 回家,同学们刚开始低头苦算时,高斯 却已得出了结果,大家都感到很惊讶。
等差数列的前n项和
有一堆钢管,如图放置,共堆 放了7层,自上而下各层的钢 管数为: 4,5,6,7,8,9,10, 求钢管的总数.
a n 中 , a 1
7 , 则 S 7 ______
14 . 5 , a n 32 ,
d 0 .7 , 求 S n .
等差数列的前n项和
Sn
n(a1 an ) 2
(n N )
S n na1
n(n 1) 2
d
(n N)
S n a 1 a 2 a n 1 a n 两式相加得: S n a n a n 1 a 2 a 1 2 S n ( a 1 a n ) ( a 2 a n 1 ) ( a n a 1 )
n个
( a1 a n ) ( a1 a n ) ( a1 a n ) n ( a1 a n )
例1. 数列{a n }是公差为 2的等
差数列,如果a1 a2 a3 12, 求S12 .
等差数列的前n项和
例2. 如图,一个堆放 铅笔的V形架的最下面 一层放1支铅笔,往上 每一层比它下面一层 多放1支,最上面一层 放120支.这个V形架上 共放着多少支铅笔?
等差数列的前n项和
Sn n(a1 an ) 2
等差数列的前n项和
等差数列{an}中:
500 (1) a 1 5 , a n 95 , n 10 , S n _____
2550 ( 2 ) a 1 100 , d 2 , n 50 , S n _____
等差数列的前n项和
在a,b之间插入10个数, 使它们同这两数成等差 数列,求这10个数的和.
等差数列{an}中,已知 a1=a,a12=b,求a2+a3 +a4+…+a11.
等差数列的前n项和
1 . 1 2 3 n _________
2 . 等差数列
3 . 等差数列
a n 中 , 若 a 4
S 7 4 5 6 7 8 9 10
S 7 10 9 8 7 6 5 4
两式相加得:
2 S 7 ( 4 10 ) ( 5 9 ) ( 6 8 ) ( 7 7 ) ( 8 6 ) ( 9 5 ) (10 4 )
共有 14 个元素 , 构成一个等差数列
a 1 7 , a 14 98
S 14
, 记为 a n ,
14 ( 7 98 )
2 答 : 集合 M 共有 14 个元素 , 和等于 735 .
735
等差数列的前n项和
例4. 做一个梯子,最 高一级宽为a,最低一 级宽为b,中间还有10 级,若各级的宽成等 差数列。问做中间各 级,要准备多长材料?
7 ( 4 10 )
S7
7 ( 4 10 ) 2
49
S100 1 2 3 4 99 100
100 (1 100) 2
等差数列的前n项和
一般地 , 设等差数列
a n 的前
n 项和为 S n ,
则
S n a1 a 2 a n ?
例3. 求集合
的元素个数
M m | m 7 n , n N , 且 m 100 , 并求这些元素的和 .
解: 由题意
, m 是 7的倍数 , 且 1 m 100 .
将它们从小到大排列得 : 7 1, 7 2 , 7 3 , , 7 14 . 即 7 ,14 , 21 , , 98 .