初三数学中考专题复习二次函数和圆专题综合检测
2023年九年级中考数学专题训练:二次函数综合(含简单答案)
2023年九年级中考数学专题训练:二次函数综合一、单选题1.已知抛物线()2330y x x c x =++-≤≤与直线2y x =-有且只有一个交点,若c 为整数,则c 的值有( ) A .1个B .2个C .3个D .4个2.方程231x x +=的根可视为函数3y x的图象与函数1y x=的图象交点的横坐标,那么用此方法可推断出方程321x x +=-的实数根x 所在的范围是( ) A .112x -<<-B .1123x -<<-C .1134x -<<-D .104x -<<3.如图,已知二次函数()()5144y x x =-+-的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,Р为该二次函数在第一象限内的一点,连接AP ,交BC 于点K ,则APPK的最小值为( )A .94B .2C .74D .544.如图.抛物线y =ax 2+c 与直线y =mx +n 交于A (﹣1,p ),B (3,q )两点,则不等式ax 2+mx +c >n 的解集为( )A .x >﹣1B .x <3C .x <﹣3或x >1D .﹣1<x <35.如图,抛物线y =12-x 2+7x ﹣452与x 轴交于点A ,B ,把抛物线在x 轴及共上方的部分记作C 1将C 1向左平移得到C 2,C 2与x 轴交于点B ,D ,若直线y =12-x +m 与C 1,C 2共3个不同的交点,则m 的取值范是( )A .52928m << B .12928m << C .54528m << D .14528m <<6.在平面直角坐标系中,对图形F 给出如下定义:若图形F 上的所有点都在以原点为顶点的角的内部或边界上,在所有满足条件的角中,其度数的最小值称为图形的坐标角度,例如,如图中的矩形ABCD 的坐标角度是90°.现将二次函数()213y ax a =≤≤的图象在直线1y =下方的部分沿直线1y =向上:翻折,则所得图形的坐标角度α的取值范围是( )A .3060α︒≤≤︒B .120150α︒≤≤︒C .90120α︒≤≤︒D .6090α︒≤≤︒7.二次函数y =2x 2﹣2x +m (0<m < 12),如果当x =a 时,y <0,那么当x =a ﹣1时,函数值y 的取值范围为( ) A .y <0B .0<y <mC .m <y <m +4D .y >m8.如图,抛物线21322y x x =-++的图象与坐标轴交于点A ,B ,D ,顶点为E ,以AB为直径画半圆交y 负半轴交于点C ,圆心为M ,P 是半圆上的一动点,连接EP . ①点E 在①M 的内部;①CD 的长为32①若P 与C 重合,则①DPE =15°;①在P 的运动过程中,若AP =PE =①N 是PE 的中点,当P 沿半圆从点A 运动至点B 时,点N 运动的路径长是π.则正确的选项为( )A .①①①B .①①①C .①①①D .①①①二、填空题9.如图,已知抛物线24y x x c =-+的顶点为D ,与y 轴交于点C ,过点C 作x 轴的平行线AC 交抛物线于点A ,过点A 作y 轴的平行线AB 交射线OD 于点B ,若OA OB =,则c 的值为_____________.10.已知抛物线()2123y x m x m =-+++以及平面直角坐标系中的点()1,1E --、()3,7F ,若该抛物线与线段EF 只有一个交点,则m 的取值范围是________.11.在平面直角坐标系中,抛物线215y x bx c =-+(0b >,b 、c 为常数)的顶点为A ,与y 轴交于点B ,点B 关于抛物线对称轴的对称点为C .若ABC 是等腰直角三角形,则BC 的长为________.12.如图,2=23y x x --与x 轴交于A ,B 两点(A 在左边)与y 轴交于C 点,P 是线段AC 上的一点,连结BP 交y 轴于点Q ,连结OP ,当OAP △和PQC △的面积之和与OBQ △的面积相等时,点P 的坐标为______.13.如图,在平面直角坐标系中,抛物线214y x mx =-+与x 轴正半轴交于点A ,点B是y 轴负半轴上一点,点A 关于点B 的对称点C 恰好落在抛物线上,过点C 作//CD x 轴,交抛物线于点D ,连结OC 、AD .若点C 的横坐标为4-,则四边形OCDA 的面积为___________.14.若243P m m m ++(,)是一个动点(m 为实数),点Q 是直线4y x =-上的另一个动点,则PQ 长度的最小值为_____.15.已知抛物线2=23y x x --与x 轴交于A ,B 两点(点A 在点B 的左侧)与y 轴交于点C ,点(6,)D y 在抛物线上,E 是该抛物线对称轴上一动点,当BE 十DE 的值最小时,ACE △的面积为是____16.已知:如图,抛物线的顶点为M ,平行于x 轴的直线与该抛物线交于点A ,B (点A 在点B 左侧),我们规定:当AMB 为直角三角形时,就称AMB 为该抛物线的“优美三角形”.若抛物线26y ax bx =++的“优美三角形”的斜边长为4,求a 的值______.三、解答题17.抛物线23y ax bx =++顶点为点(1,4)D ,与x 轴交于点A 、B ,与y 轴交于点C ,点P 是抛物线对称轴上的一个动点.(1)求a 和b 的值;(2)是否存在点P ,使得以P 、D 、B 为顶点的三角形中有两个内角的和等于45°?若存在,求出点P 的坐标;若不存在,说明理由.18.如图,已知直线443y x =+与x 轴交于点A ,与y 轴交于点C ,抛物线2y ax bx c =++经过A ,C 两点,且与x 轴的另一个交点为B ,对称轴为直线=1x -.(1)求抛物线的表达式;(2)已知点M 是抛物线对称轴上一点,当MB MC +的值最小时,点M 的坐标是___________;(3)若点P 在抛物线对称轴上,是否存在点P ,使以点B ,C ,P 为顶点的三角形是等腰三角形?若存在,请求出P 点的坐标;若不存在,请说明理由.19.如图,已知抛物线233384y x x =--与x 轴的交点为点A 、D (点A 在点D 的右侧),与y 轴的交点为点C .(1)直接写出A 、D 、C 三点的坐标;(2)在抛物线的对称轴上找一点M ,使得MD MC +的值最小,并求出点M 的坐标; (3)设点C 关于抛物线对称轴的对称点为点B ,在抛物线上是否存在点P ,使得以A 、B 、C 、P 四点为顶点的四边形为梯形?若存在,求出点P 的坐标;若不存在,请说明理由.20.如图,已知抛物线223y ax ax =++中,当=1x -时,4y =.(1)求此抛物线的解析式;(2)点E 是抛物线上且位于直线AB 上方的一个动点,不与点A ,B 重合,求ABE 的面积最大时,点E 的坐标.(3)若1t x ≤≤时,y 的取值范围是04y ≤≤,请直接写出t 的取值范围.参考答案:1.D 2.B 3.A 4.C 5.A 6.D 7.C 8.D 9.8310.2m <-或m>2或1m = 11.6 12.2,13⎛⎫-- ⎪⎝⎭13.641415.616.12±17.(1)1a =-,2b = (2)存在,(1,2)或(1,6)-18.(1)248433y x x =--+(2)8(1,)3M -(3)存在,P 点的坐标为(1,0)-或(-或(1,-或13(1,)8-19.(1)()4,0A ,()2,0D -,()0,3C -(2)连接AC 交对称轴于点M ,点M 即为所求,91,4M ⎛⎫- ⎪⎝⎭(3)()2,0-或()6,6.20.(1)223y x x =--+(2)315()24-,(3)31t -≤≤-。
专题四 二次函数综合题(含答案)2025年中考数学一轮题型专练(陕西)
专题四 二次函数综合题题型1 二次函数的实际应用二次函数的实际应用问题,在陕西中考2022,2023,2024年连续三年进行考查,其考查本质为二次函数表达式的应用,其主要为顶点式的考查,在表达式的基础上进行实践应用的考查,知x求y或知y求x,利用二次函数性质求最值,感受数学在实际问题中的应用.类型1 抛物线运动轨迹问题(2024·西安市莲湖区模拟)如图,在一场校园羽毛球比赛中,小华在点P选择吊球进行击球,当羽毛球飞行的水平距离是1 m时,达到最大高度3.2 m,建立如图所示的平面直角坐标系.羽毛球在空中的运行轨迹可以近似地看成抛物线的一部分,队友小乐则在点P选择扣球进行击球,羽毛球的飞行高度y1(单位:m)与水平距离x(单位:m)近似地满足一次函数关系y1=-0.4x+2.8.(1)根据如图所示的平面直角坐标系,求吊球时羽毛球满足的二次函数表达式.(2)在(1)的条件下,已知球网AB与y轴的水平距离OA=3 m,CA=2 m,且点A,C都在x轴上,实践发现击球和吊球这两种方式都能使羽毛球过网.要使球的落地点到点C的距离更近,请通过计算判断应该选择哪种击球方式?解题指南 (1)抓住最大高度这一特征,设出顶点式:y=a(x-h)2+k,然后将点P的坐标代入即可.(2)分别令一次函数与二次函数的y为0,对比两种方式在x轴的交点的横坐标到点C的横坐标的距离大小即可.类型2 以建筑为背景的“过桥”问题(2024·西工大模拟)陕北窑洞,具有十分浓厚的民俗风情和乡土气息.如图,某窑洞口的下部近似为矩形OABC,上部近似为一条抛物线.已知OA=3 m,AB=2 m,m.窑洞的最高点M(抛物线的顶点)离地面OA的距离为258(1)建立如图所示的平面直角坐标系,求抛物线的表达式.(2)若在窑洞口的上部要安装一个正方形窗户DEFG,使得点D,E在矩形OABC的边BC上,点F,G在抛物线上,那么这个正方形窗户DEFG的边长为多少米?解题指南 (1)借助点M为顶点,设出顶点式,然后将点B坐标代入顶点式即可.(2)设出小正方形DEFG的边长,然后用所设边长表示出点G的横坐标、纵坐标,最后代入(1)中抛物线的表达式解方程即可.(2024·西安新城区模拟)某地想将新建公园的正门设计为一个抛物线型拱门,设计部门给出了如下方案:将拱门图形放入平面直角坐标系中,如图,抛物线型拱门的跨度ON=24 m,拱高PE=8 m.其中,点N在x轴上,PE⊥ON,OE=EN.(1)求该抛物线的函数表达式.(2)现要在拱门中设置矩形框架,其周长越小越好(框架粗细忽略不计).设计部门给出了两个设计方案:方案一:矩形框架ABCD的周长记为C1,点A、D在抛物线上,边BC在ON上,其中AB=6 m.方案二:矩形框架A'B'C'D'的周长记为C2,点A',D'在抛物线上,边B'C'在ON上,其中A'B'=4 m.求这两个方案中,矩形框架的周长C1,C2,并比较C1,C2的大小.类型3 以“悬挂线”为背景解决高度问题如图,在一个斜坡上架设两个塔柱AB,CD(可看作两条竖直的线段),塔柱间挂起的电缆线下垂可以近似地看成抛物线的形状.两根塔柱的高度满足AB=CD=27 m,塔柱AB与CD之间的水平距离为60 m,且两个塔柱底端点D与点B的高度差为12 m.以点A为坐标原点,1 m为单位长度构建平面直角坐标系. (1)求点B,C,D的坐标.x2一样,且电(2)经过测量,AC段所挂电缆线对应的抛物线的形状与抛物线y=1100缆线距离斜坡面竖直高度至少为15.5 m时,才符合设计安全要求.请结合所学知识判断上述电缆线的架设是否符合安全要求?并说明理由.(2024·陕师大附中模拟)在元旦来临之际,学校安排各班在教室进行联欢.八(2)班同学准备装点一下教室.他们在屋顶对角A,B两点之间拉了一根彩带,彩带自然下垂后呈抛物线形状.若以两面墙交线AO为y轴,以点A正下方的墙角点O为原点建立平面直角坐标系,此时彩带呈现出的抛物线表达式为y=ax2-0.6x+3.5.已知屋顶对角线AB长12 m.(1)a= ,该抛物线的顶点坐标为.(2)小军想从屋顶正中心C(C为AB的中点)系一根绳子CD.将正下方彩带最低点向上提起,这样两侧的彩带就形成了两个对称的新抛物线形状(如图所示).要使两个新抛物线彩带最低点之间的水平距离为5 m,且比之前的最低点提高0.3 m.求这根绳子的下端D到地面的距离.题型2 图形面积探究类型1 面积、线段最值探究二次函数中面积问题,基本上都可以转化为线段相关问题,线段的三种表示方式:①水平型,②垂直型,③斜型.以边为分类标准,可采取不同方法进行面积的求解,现对不同类型线段的表示作以说明.(1)线段AB∥y轴时,点A,B横坐标相等,则AB=|y1-y2|=|y2-y1|=y1-y2.(2)线段BC∥x轴时,点B,C纵坐标相等,则BC=|x2-x1|=|x1-x2|=x2-x1.(3)线段AC与x轴,y轴不平行时,在Rt△ABC中,AC=AB2+BC2=(x1-x2)2+(y1-y2)2.第一步,过动点向x轴作垂线,与定边产生交点第二步,设动点坐标,表示交点坐标第三步,表示纵向线段长度|y上-y下|第四步,利用水平宽铅垂高表示三角形面积:S=12(y 上-y 下)(x 右-x 左)【原创好题】“水平宽”与“铅垂高”的运用:已知△ABC 的三个顶点坐标分别为A(x A ,y A ),B(x B ,y B ),C(x C ,y C ),用含有A,B,C 坐标的方式表示出△ABC 的面积.解题指南 (1)在平面直角坐标系中作△ABC,要求点A,B 在点C 的左、右两侧,经过点C 作x 轴的垂线交AB 于点D,则△ABC 被分成两部分,即S △ABC =S △ACD +S △BCD .(2)过点A 作△ADC 的高h 1,过点B 作△DBC 的高h 2,所以△ACD 与△BCD 的面积表示为S △ADC =12CD·h 1,S △BCD =12CD·h 2.(3)所以S △ABC =S △ADC +S △BCD =12CD·h 1+12CD·h 2=12CD·(h 1+h 2).(4)其中h 1与h 2的和可以看作点A 与点B 的水平间的距离,因此称之为“水平宽”,h 1+h 2=|x B -x A |,CD 是点C 与点D 的竖直间的距离,称之为“铅垂高”,即CD=|y D -y C |,故S △ABC =S △ACD +S △BCD =12|y D -y C |·|x B -x A |.1.如图,在平面直角坐标系xOy 中,直线y=x+4与坐标轴分别交于A,B 两点,抛物线y=-x 2+bx+c 过A,B 两点,D 为线段AB 上一动点,过点D 作CD ⊥x 轴于点C,交抛物线于点E.(1)求抛物线的表达式.(2)求△ABE 面积的最大值.2.如图,抛物线y=-x2+2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接BC.(1)求A,B,C三点的坐标.(2)若P为线段BC上的一点(不与点B,C重合),PM∥y轴,且PM交抛物线于点M,交x轴于点N.当线段PM的长度最大时,求点M的坐标.类型2 面积关系探究(2018.T24)x2+bx与x轴交于O,A 【改编】在平面直角坐标系xOy中,已知抛物线y=-43两点,B(1,4)在抛物线上.若P是抛物线上一点,且在直线AB的上方,且满足△OAB 的面积是△PAB面积的2倍,求点P的坐标.解题指南 (1)第一步,将点B的坐标代入抛物线的表达式,求出b的值,根据A,B两点的坐标,求出直线AB的表达式;(2)第二步,借助三角形的面积公式,求出△OAB的面积,根据△OAB与△PAB的面积关系求出△PAB的面积;(3)第三步,设点P的坐标为t,-43t2+163t,过点P作x轴的垂线,与AB交于点N,并结合直线AB的表达式,表示出点N的坐标;(4)第四步,借助“水平宽,铅垂高”,求出PN的长度,用含有t的式子表示出PN的长度,构造方程求解即可.1.如图,抛物线y=-x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为x+3交于C,D两点,连接BD,AD.(3,0),抛物线与直线y=-32(1)求m的值.(2)求A,D两点的坐标.(3)若抛物线上有一点P,满足S△ABP=4S△ABD,求点P的坐标.2.如图,在平面直角坐标系中,点A(0,-1),抛物线y=-x2+bx+c经过点B(4,5)和C(5,0).(1)求抛物线的表达式.(2)连接AB,BC,求∠ABC的正切值.(3)在抛物线的对称轴上,是否存在点D,使得S△ABD=S△ABC?若存在,直接写出点D 的坐标;若不存在,请说明理由.3.已知抛物线y=-x2+bx+c过点A(-1,0),B(3,0),与y轴交于点C.(1)求抛物线的解析式.(2)P为抛物线对称轴上一动点,当△PCB是以BC为底边的等腰三角形时,求点P 的坐标.(3)在(2)的条件下,是否存在M为抛物线第一象限上的点,使得S△BCM=S△BCP?若存在,求出点M的横坐标;若不存在,请说明理由.解题指南 (1)由交点式可直接得出抛物线的解析式.(2)设P(1,m),根据列出方程,进而求得点P的坐标.(3)作PQ∥BC交y轴于点Q,作MN∥BC交y轴于点N,先求出PQ的解析式,进而求得MN的解析式,进一步求得结果. 借助“同底等高”找等面积的方法在平面直角坐标系中有△ABC,分别在BC所在直线的两侧找出一点P和Q,使得S△PBC=S△QBC=S△ABC.操作方式:(1)根据要求可知△PBC和△QBC均与△ABC具有共同的底边BC,要使它们的面积相等,只需要它们的高相等即可,因此可以设△PBC与△QBC的高均为h;(2)确定高以后,过点A作BC的平行线,则在所作平行线上存在一点P满足S△PBC=S△ABC;(3)如图,将BC所在直线向下平移AO'个单位长度,过A'作BC的平行线,则该直线上存在一点Q满足S△QBC=S△ABC;(4)运用“同底等高”法时,务必考虑不同位置的情况;(5)进行面积计算时,可以直接利用三角形面积公式求解.题型3 特殊三角形问题探究类型1 等腰三角形问题探究等腰三角形存在问题,可以分为两个方向来解决,几何法和代数法,其中几何法的优势在于比较直观地得到结果,对几何图形要求较高;代数法以解析几何为背景可更快地找到等量关系,方法较为单一,等腰三角形问题做完之后一定要验证是否出现三点共线的情况.方法一 几何法(1)两圆一线找出点;(2)利用勾股、相似、三角函数等求线段长,由线段长求得点坐标方法二 代数法(1)表示出三个点坐标A,B,C;(2)由点坐标表示出三条线段AB,AC,BC;(3)分类讨论①AB=AC;②AB=BC;③AC=BC;(4)列出方程求解(2024·铁一中模拟)如图,在平面直角坐标系中,抛物线L的顶点E的坐标为(-2,8),且过点B(0,6),与x轴交于M,N两点.(1)求该抛物线L的表达式.(2)设抛物线L关于y轴对称后的抛物线为L',其顶点记为点D,连接MD,在抛物线L'对称轴上是否存在点Q,使得以点M,D,Q为顶点的三角形为等腰三角形?若存在,求出点Q的坐标;若不存在,请说明理由.(2024·西咸新区模拟)如图,抛物线L:y=ax2+bx-3(a、b为常数,且a≠0)与x轴交于点A(-1,0),B(3,0),与y轴交于点C.将抛物线L向右平移1个单位长度得到抛物线L'.(1)求抛物线L的函数表达式.(2)连接AC,探究抛物线L'的对称轴直线l上是否存在点P,使得以点A,C,P为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.类型2 直角三角形问题探究直角三角形存在问题,菱形中对角线垂直,矩形中的内角为直角,有下列两个方向可以帮助解决问题,不同的方法适用不同方向的题目,注意区分其方法.一、勾股定理若AC2+BC2=AB2,则△ABC为直角三角形二、构造“K”字型相似过直角顶点作坐标轴的平行线,过其他两点向平行线作垂直,出现“一线三等角”模型,利用“一线三等角”的相似模型,构建方程解决问题已知抛物线L:y=ax2-2ax-8a(a≠0)与x轴交于点A,点B,且点A在点B的左侧,与y轴交于点C.(1)求出点A与点B的坐标.(2)当△ABC是以AB为斜边的直角三角形时,求抛物线L的表达式.如图,在平面直角坐标系中,抛物线C1:y=ax2+bx+c(a≠0)交x轴于点A(-5,0),B(-1,0),交y轴于点C(0,5).(1)求抛物线C1的表达式和顶点D的坐标.(2)将抛物线C1关于y轴对称的抛物线记作C2,E为抛物线C2上一点,若△DOE是以DO为直角边的直角三角形,求点E的坐标. 直角三角形中的找点方法和计算方法找点方法:示例:如图,在平面内有A,B两点,试着找出一点C,使得A,B,C三点构成的三角形为直角三角形.分两种情况讨论:当AB为直角边时,{过点A作AB的垂线l1,过点B作AB的垂线l2;当AB为斜边时,以AB为直径作圆.如图,在直线l1,l2上的点C满足△ABC为直角三角形,但要注意一点:点C不与A,B两点重合.我们将这种找点C的方法称为“两线一圆”.计算方法:(1)利用勾股定理构造方程求解;(2)以“K”字型搭建相似三角形,列比例式构造方程求解.类型3 等腰直角三角形问题探究等腰直角三角形相关问题,以等腰直角三角形和正方形问题,主要解题方法相对统一,注意如何构图能直观得到“K”字全等是解决问题的关键之处.(1)过直角顶点作坐标轴平行线,构造“K”字全等(2)方法一:设某小边长度.方法二:设点坐标,表示直角三角形中的直角边(3)利用某纵向或横向线段构建等式(x+1)(x-5)与x轴交于A,B两点,与y轴交于点C.如果P是如图,抛物线y=-25抛物线上一点,M是该抛物线对称轴上的点,当△OMP是以OM为斜边的等腰直角三角形时,求点P的坐标.解题指南 第一步,过直角顶点作平行y轴的垂线,分别过另两个顶点作垂直,构造“K”字全等;第二步,利用坐标分别表示两直角三角形的直角边;第三步,利用某边相等构造方程.(2024·高新一中模拟)如图,在平面直角坐标系中,抛物线L:y=x2+bx+c与x轴交于点A(1,0)和点B,与y轴交于点C(0,3).(1)求出抛物线L的表达式和顶点的坐标.(2)P是抛物线L的对称轴右侧图象上的一点,过点P作x的垂线交x轴于点Q,作抛物线L关于直线PQ对称抛物线L',则C关于直线PQ的对称点为C',若△PCC'为等腰直角三角形,求出抛物线L'的表达式.题型4 三角形关系问题类型1 与相似三角形结合问题三角形的关系问题是陕西考试中非常常见的一个类型,中考中多次连续出现,相似问题的处理方法也相对较为固定,以固定三角形为参照,找到定角,以边为分类标准,进行分类讨论.主要有两个方法.方法一:利用一角相等,邻边成比例证明相似方法二:两组角相等的三角形相似分析目标三角形:第一类:找一角相等,用邻边成比例.第二类:找一角相等(多为90°问题),找另一角相等.方法总结:(1)分动、定三角形;(2)找等角;(3)表示边或者找另一角相等.(2024·曲江一中模拟)如图,抛物线y=ax 2+bx 经过坐标原点O 与点A(3,0),正比例函数y=kx 与抛物线交于点B 72,74.(1)求该抛物线的函数表达式.(2)P 是第四象限抛物线上的一个动点,过点P 作PM ⊥x 轴于点N,交OB 于点M,是否存在点P,使得△OMN 与以点N,A,P 为顶点的三角形相似?若存在,请求出点P 的坐标;若不存在,请说明理由.(2024·陕师大附中模拟)已知抛物线L 1:y=x 2+bx+c 与x 轴交于点A,B(点A 在点B 的左侧),与y 轴交于点C(0,-3),对称轴为直线x=1.(1)求此二次函数表达式和点A,B 的坐标.(2)P 为第四象限内抛物线L 1上一动点,将抛物线L 1平移得到抛物线L 2,抛物线L 2的顶点为点P,抛物线L 2与y 轴交于点E,过点P 作y 轴的垂线交y 轴于点D.是否存在点P,使以点P,D,E 为顶点的三角形与△AOC 相似?如果存在,请写出平移过程,并说明理由.类型2 与全等三角形结合问题1.全等为特殊的相似,相似比为1,方法与相似一致.2.注意相等角的邻边分类情况.【改编】如图,抛物线y=-23x 2+103x+4的图象与x 轴交于A,B 两点,与y 轴的正半轴交于点C,过点C 的直线y=-43x+4与x 轴交于点D.若M 是抛物线上位于第一象限的一动点,过点M 作ME ⊥CD 于点E,MF ∥x 轴交直线CD 于点F,当△MEF ≌△COD 时,求出点M 的坐标.解题指南 当△MEF ≌△COD 时,(1)找准对应角、边.结合关系式可知,∠MEF=∠COD,∠MFE=∠CDO,MF=CD.(2)根据直线CD 的表达式求出线段CD 的长度.由点M 在抛物线上,可以设点M的坐标为m,-23m 2+103m+4,再由MF ∥x 轴,得点F 的纵坐标.根据全等三角形的对应边相等可以得出点F 的横坐标为m-5.(3)由点F 在直线CD 上,将点F 的坐标代入直线CD 的表达式中,求出m 的值.已知经过原点O 的抛物线y=-x 2+4x 与x 轴的另一个交点为A.(1)求点A 的坐标及抛物线的对称轴.(2)B 是OA 的中点,N 是y 轴正半轴上一点,在第一象限内的抛物线上是否存在点M,使得△OMN 与△OBM 全等,且点B 与点N 为对应点?若存在,请求出点M 的坐标;若不存在,请说明理由. 与全等三角形结合问题的求解步骤(1)全等三角形的问题与相似三角形的问题步骤类似,均是先列出三角形的对应关系式,再根据关系式找出对应边相等;(2)借助对应边相等,将边与边的长度关系用点的坐标进行表示,然后运用“两点间距离公式”构造方程求解.题型5 特殊四边形问题探究类型1 平行四边形问题探究平行四边形问题,一般分为三定一动,两定两动问题,选取固定的两个点为分类标准,①以某边为边时;②以某边为对角线时.第一步,寻找分类标准;第二步,平移点,找关系(注意:从A到B和从B到A);第三步,代入关系求值(2024·西工大附中模拟)如图,抛物线y=ax2-2x+c与直线y=kx+b都经过A(0,3),B(-3,0)两点,该抛物线的顶点为C.(1)求此抛物线和直线AB的表达式.(2)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过点M作x轴的垂线交抛物线于点N.使点M,N,C,E是平行四边形的四个顶点?若存在,求出点M的坐标;若不存在,请说明理由.【改编】已知点A(-1,0)在抛物线L:y=x2-x-2上,抛物线L'与抛物线L关于原点对称,点A的对应点为点A',是否在抛物线L上存在一点P,在抛物线L'上存在一点Q,使得以AA'为边,且以A,A',P,Q为顶点的四边形是平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由. 平行四边形中坐标的计算如图1,在平行四边形ABDC 中,关于坐标的计算——平移法则:x B -x A =x D -x C ,y B -y A =y D -y C ,x A -x C =x B -x D ,y A -y C =y B -y D .如图2,在平行四边形ADBC 中,关于坐标的计算——中点坐标公式:x M =x A +x B 2=x C +x D 2,y M =y A +y B 2=y C +y D 2.类型2 菱形问题探究菱形存在问题,主要分两类. 第一类:以平行四边形为背景,在平行四边形的基础上增加对角线垂直或邻边相等即可得菱形.(1)选一定点,再将这一定点与另外点的连线作为对角线,分类讨论.(2)利用中点坐标公式列方程:x A +x C 2=x B +x D 2;y A +y C 2=y B +y D 2.(3)对角线垂直:可参照直角存在问题.邻边相等:可参照等腰存在问题.(4)平移型:先平行四边形,再菱形.翻折型:先等腰,再菱形.第二类:若出现在平面内任意一点存在性问题,则去掉此点,转化为等腰存在问题,可以利用等腰存在问题策略解决问题如图,抛物线y=x 2+bx+c 与x 轴交于A,B 两点,与y 轴交于点C,OA=2,OC=6,连接AC 和BC.(1)求抛物线的函数表达式.(2)若M是y轴上的动点,在坐标平面内是否存在点N,使以A,C,M,N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.类型3 矩形问题探究矩形存在性问题,主要分两类. 第一类:以平行四边形为背景,在平行四边形的基础上增加对角线相等或一内角为90°即可得到矩形.(1)选一定点,再将这一定点与另外点的连线作为对角线,分类讨论.(2)利用中点坐标公式列方程:x A+x C=x B+x D;y A+y C=y B+y D.(3)方向一 对角线相等:(x A-x C)2+(y A-y C)2=(x B-x D)2+(y B-y D)2.方向二 有一角为90°.第二类:若出现在平面内任意一点存在性问题,则去掉此点,转化为直角存在问题,可以利用直角存在问题策略解决问题已知抛物线L:y=ax2+bx(a≠0)经过点B(6,0),C(3,9).(1)求抛物线L的表达式.(2)若抛物线L'与抛物线L关于x轴对称,P,Q(点P,Q不与点O,B重合)分别是抛物线L,L'上的动点,连接PO,PB,QO,QB,问四边形OPBQ能否为矩形?若能,求出满足条件的点P和点Q的坐标;若不能,请说明理由.已知抛物线L:y=-x2+2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)求A,B,C三点的坐标.(2)抛物线L平移后得到抛物线L',点A,C在抛物线L'上的对应点分别为点A',C',若以A,C,A',C'为顶点的四边形是面积为20的矩形,求平移后的抛物线L'的表达式.类型4 正方形问题探究(在菱形的基础上增加对角线相等)(1)选一定点,再将这一定点与另外点的连线作为对角线,分类讨论.(2)利用中点坐标公式列方程:x A+x C=x B+x D;y A+y C=y B+y D.(3)平行四边形题基础上加等腰直角三角形问题.,正方形ABCD的边AB 如图,一条抛物线y=ax2+bx(a≠0)的顶点坐标为2,83落在x轴的正半轴上,点C,D在这条抛物线上.(1)求这条抛物线的表达式.(2)求正方形ABCD的边长.解题指南 (1)已知顶点,可直接设抛物线的顶点式:y=a(x-h)2+k,将点的坐标代入计算即可.(2)①在正方形中,四条边均相等;②设出正方形的边长,并根据所设边长表示出正方形ABCD的顶点坐标;③注意观察正方形ABCD的顶点C,D在抛物线上;④代入相应点的坐标求出所设的边长即可.x2+bx+c的图象L经过原点,且与x轴的另一个交点为(8,0).已知二次函数y=-13(1)求该二次函数的表达式.(2)作x轴的平行线,交L于A,B两点(点A在点B的左侧),过A,B两点分别作x 轴的垂线,垂足分别为D,C.当以A,B,C,D为顶点的四边形是正方形时,求点A的坐标. 借助抛物线判定正方形的思路步骤1.明确在抛物线上的正方形的两个顶点;2.借助抛物线表达式y=ax2+bx+c(a≠0),设出其中一个顶点坐标为(x,ax2+bx+c),然后利用抛物线对称轴表示出另一个顶点坐标;3.根据正方形四条边相等构造一元二次方程求解即可.题型6 角度问题探究角相关问题是二次函数中相对较为综合性的问题,在近几年中考中也常出现在各个省市的中考题中,问题最终都会落到以下问题上来.等角问题,可直接用等角的性质来处理问题.解决策略:(1)寻找相似,出现等角;(2)利用三角函数找等角;(3)利用轴对称来找等角.【改编】在平面直角坐标系xOy中,已知抛物线y=-x2+4x-3与x轴分别交于A,B两点,且点A在点B的左侧.在抛物线上是否存在一点D,使得∠DOA=45°?若存在,求出点D的坐标;若不存在,请说明理由.解题指南 以平面直角坐标系为背景来探究角度问题,常用的思路为借助三角函数构造方程求解.本题具体步骤如下:第一步,根据∠DOA=45°,联想tan∠DOA=1;第二步,根据点D在抛物线上,可以过点D作x轴的垂线,记垂足为H,在△DOH中,tan∠DOH=DH OH;第三步,由点D在抛物线上,设点D的坐标为(t,-t2+4t-3);第四步,根据DH=|y D|=|-t2+4t-3|,OH=|t|,构造方程求解即可.已知抛物线L:y=-23x2+bx+c,与y轴的交点为C(0,2),与x轴的交点分别为A(3,0),B(点A在点B右侧).(1)求抛物线的表达式.(2)将抛物线沿x轴向左平移m(m>0)个单位长度,所得的抛物线与x轴的左交点为M,与y轴的交点为N,若∠NMO=∠CAO,求m的值.参考答案题型1 二次函数的实际应用类型1 抛物线运动轨迹问题例1 解析:(1)在y 1=-0.4x+2.8中,令x=0,则y 1=2.8,∴P (0,2.8).根据题意,二次函数图象的顶点坐标为(1,3.2).设二次函数的表达式为y=a (x-1)2+3.2,把P (0,2.8)代入y=a (x-1)2+3.2,得a+3.2=2.8,解得a=-0.4,∴吊球时羽毛球满足的二次函数表达式y=-0.4(x-1)2+3.2.(2)吊球时,令y=0,则-0.4(x-1)2+3.2=0,解得x 1=1+22,x 2=1-22(舍去),扣球时,令y=0,则-0.4x+2.8=0,解得x=7.∵OA=3 m,CA=2 m,∴OC=OA+AC=5.∵7-5=2,|22+1-5|=4-22<2,∴选择吊球时,球的落地点到点C 的距离更近.类型2 以建筑为背景的“过桥”问题例2 解析:(1)由题意得点M ,B 的坐标分别为32,258,(3,2).设抛物线的表达式为y=a x-322+258,将点B 的坐标代入上式得2=a 3-322+258,解得a=-12,∴抛物线的表达式为y=-12x-322+258.(2)设正方形的边长为2m.把点G 32-m ,2+2m 代入抛物线表达式,得2+2m=-1232-m-322+258,解得m=12(负值已舍去),∴正方形窗户DEFG 的边长为1 m .变式设问 解析:(1)由题意得抛物线的顶点坐标为(12,8),N (24,0).设y=a (x-12)2+8,把N (24,0)代入表达式中,得a=-118,∴该抛物线的函数表达式为y=-118(x-12)2+8.(2)方案一:令y=6,即6=-118(x-12)2+8.解得x 1=6,x 2=18,∴BC=AD=12.又∵AB=CD=6,∴矩形ABCD 的周长C 1=2×12+2×6=36(m).方案二:令y=4,即4=-118(x-12)2+8,解得x 1=12-62,x 2=12+62,∴B'C'=A'D'=12+62-(12-62)=122.又∵A'B'=C'D'=4,∴矩形A'B'C'D'的周长C 2=2×122+2×4=(242+8)m .∵C 1=36=28+8=4×7+8,C 2=242+8=4×62+8,∴36<242+8,即C 1<C 2.类型3 以“悬挂线”为背景解决高度问题例3 解析:(1)如图,过点C 作CE ⊥y 轴,垂足为E ,过点D 作DF ⊥y 轴,垂足为F.记CD 与x 轴相交于点G.根据题意,得点B 的坐标是(0,-27).∵FB=12,则GD=OF=OB-FB=27-12=15,OG=FD=EC=60,CG=CD-GD=27-15=12,∴点C 的坐标是(60,12),点D 的坐标是(60,-15).(2)符合安全要求.理由:设AC 段所挂电缆线对应的抛物线的函数表达式为y=1100x 2+bx ,将点C (60,12)代入表达式中,得12=1100×602+60b ,解得b=-25,∴y=1100x 2-25x.由点B (0,-27),D (60,-15)可知直线BD 的表达式为y=15x-27.记M 为抛物线上一点,过点M 作x 轴的垂线与BD 交于点N.设点M m ,1100m 2-25m ,则点N m ,15m-27,故MN=1100m 2-25m-15m-27=1100(m-30)2+18≥18>15.5,∴电缆线距离斜坡面竖直高度的最小值为18 m,高于安全需要的距离15.5 m,故符合安全要求.变式设问 解析:(1)0.05;(6,1.7).提示:由题意得抛物线的对称轴为直线x=6,则A (0,3.5),B (12,3.5),∴144a-7.2+3.5=3.5,解得a=0.05,∴抛物线的表达式为y=0.05x 2-0.6x+3.5.当x=6时,y=0.05x 2-0.6x+3.5=1.7,即该抛物线的顶点坐标为(6,1.7),(2)∵两个新抛物线彩带最低点之间的水平距离为5 m,且比之前的最低点提高0.3 m,∴左边新抛物线的顶点坐标为(3.5,2).设左边新抛物线的表达式为y=a'(x-3.5)2+2,将点A 的坐标代入上式得3.5=a'(0-3.5)2+2,解得a'=649,∴左侧抛物线的表达式为y=649(x-3.5)2+2.当x=6时,y=649(6-3.5)2+2=27198,∴这根绳子的下端D 到地面的距高为27198m .题型2 图形面积探究类型1 面积、线段最值探究例1 解析:如图,过点C 作垂直于x 轴的直线,与AB 交于点D ,分别过点A ,B 作CD 的垂线段h 1,h 2,即S △ABC =S △ACD +S △BCD .∵S △ADC =12CD ·h 1,S △BCD =12CD ·h 2,∴S △ABC =S △ACD +S △BCD =12CD ·(h 1+h 2).又∵CD=|y D -y C |,h 1+h 2=|x B -x A |,∴S △ABC =S △ACD +S △BCD =12(y D -y C)(x B -x A ).变式设问 1.解析:(1)在一次函数y=x+4中,令x=0,得y=4,令y=0,得x=-4,∴A (-4,0),B (0,4).∵点A (-4,0),B (0,4)在抛物线y=-x 2+bx+c 上,∴{-16-4b +c =0,c =4,解得{b =-3,c =4,∴抛物线的表达式为y=-x 2-3x+4.(2)设点C 的坐标为(m ,0)(-4≤m ≤0),则点E 的坐标为(m ,-m 2-3m+4),点D 的坐标为(m ,m+4),。
2023年九年级数学中考专题:二次函数与圆综合压轴题(含简单答案)
2023年九年级数学中考专题:二次函数与圆综合压轴题1.如图1,在平面直角坐标系中,O为坐标原点,已知抛物线与x轴交于,两点,与y轴交于点C.(1)求抛物线解析式;(2)如图2,M是抛物线顶点,的外接圆与x轴的另一交点为D,与y轴的另一交点为E.①求;②若点N是第一象限内抛物线上的一个动点,在射线上是否存在点P,使得与相似?如果存在,请求出点P的坐标;(3)点Q是拋物线对称轴上一动点,若为锐角,且,请直接写出点Q 纵坐标的取值范围.2.【概念学习】在平面直角坐标系中,对于已知的点和图形,给出如下定义:如果图形上存在一点,使得当时,,则称点为图形的一个“垂近点”.(1)【初步理解】若图形为线段,,,在点、、、中,是线段的“垂近点”的为________;(2)【知识应用】若图形为以坐标原点为圆心,2为半径的圆,直线与轴交于点、与轴交于点,如果线段上的点都是的“垂近点”,求的取值范围;(3)若图形为抛物线,以点为中心,半径为的四边形,轴,轴,如果正四边形上存在“垂近点”,直接写出的取值范围.3.在平面直角坐标系xOy中,已知抛物线y=x2﹣2x﹣3与x轴交于A、B两点,与y 轴交于C点,D为抛物线顶点.(1)连接AD,交y轴于点E,P是抛物线上的一个动点.①如图一,点P是第一象限的抛物线上的一点,连接PD交x轴于F,连接,若,求点P的坐标.②如图二,点P在第四象限的抛物线上,连接AP、BE交于点G,若,则w 有最大值还是最小值?w的最值是多少?(2)如图三,点P是第四象限抛物线上的一点,过A、B、P三点作圆N,过点作轴,垂足为I,交圆N于点M,点在运动过程中,线段是否变化?若有变化,求出MI的取值范围;若不变,求出其定值.(3)点Q是抛物线对称轴上一动点,连接OQ、AQ,设AOQ外接圆圆心为H,当的值最大时,请直接写出点H的坐标.4.如图1,在平面直角坐标系中,已知抛物线y=ax2+bx-4(a≠0)经过点A(-2,0)和点B(4,0).(1)求这条抛物线所对应的函数表达式;(2)点P为抛物线上第一象限内一点,若S△ABC=2S△PBC,求点P的坐标;(3)如图2,点D是第二象限内抛物线上一点,过点D作DF⊥x轴,垂足为F,△ABD 的外接圆与DF相交于点E.试问:线段EF的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.5.如图,抛物线经过点,,直线AC的解析式为,且与y轴相交于点C,若点E是直线AB上的一个动点,过点E作轴交AC于点F.(1)求抛物线的解析式;(2)点H是y轴上一动点,连结EH,HF,当点E运动到什么位置时,四边形EAFH 是矩形?求出此时点E,H的坐标;(3)在(2)的前提下,以点E为圆心,EH长为半径作圆,点M为上以动点,求的最小值.6.已知二次函数的图象经过点A(2,0),B(,0),C(0,4),点为二次函数第二象限内抛物线上一动点,轴于点,交直线于点,以为直径的圆⊙M与交于点.(1)求这个二次函数的关系式;(2)当三角形周长最大时.求此时点点坐标及三角形的周长;(3)在(2)的条件下,点N为⊙M上一动点,连接BN,点Q为BN的中点,连接HQ,求HQ的取值范围.7.如图,在平面直角坐标系中,抛物线,y与轴交于A、B两点,与轴交于点C.(1)求点A、B、C的坐标;(2)如图1,连接BC,点D是抛物线上一点,若∠DCB=∠ABC,求点D的坐标;(3)如图2,若点P在以点O为圆心,OA长为半径作的圆上,连接BP、CP,请你直接写出CP+BP的最小值.8.如图,在平面直角坐标系中,半径为1的圆的圆心在坐标原点,且与两坐标轴分别交于、、、四点,点坐标为.抛物线与轴交于点,与直线交于点、,且、分别与圆相切于点和点.(1)求抛物线的解析式.(2)过点作圆的切线交的延长线于点,判断点是否在抛物线上,说明理由.(3)抛物线对称轴交轴于点,连接并延长交于点,求点的坐标.9.如图,在平面直角坐标系中,抛物线交y轴于点,交x轴于两点.(1)求此抛物线的解析式;(2)已知点P是抛物线上的一个动点,且位于A、C两点之间,问:当点P运动到什么位置时,的面积最大?并求出此时P点的坐标和的最大面积;(3)过点B作线段的垂线交抛物线于点D,如果以点C为圆心的圆与直线相切,请判断抛物线的对称轴l与有怎样的位置关系,并给出证明.10.如图,直线与x轴交于点B,与y轴交于点C,抛物线经过B、C两点,且与x轴交于另一点A.(1)求抛物线的解析式.(2)点P是线段BC下方的抛物线上的动点(不与点B、C重合),过P作PD∥y轴交BC 于点D,以PD为直径的圆交BC于另一点E,求DE的最大值及此时点P的坐标;(3)当(2)中的DE取最大值时,将△PDE绕点D旋转,当点P落在坐标轴上时,求点E的坐标.11.直角坐标系xOy中,有反比例函数上的一动点P,以点P为圆心的圆始终与y轴相切,设切点为A(1)如图1,⊙P运动到与x轴相切时,求OP2的值.(2)设圆P运动时与x轴相交,交点为B、C,如图2,当四边形ABCP是菱形时,①求出A、B、C三点的坐标.②设一抛物线过A、B、C三点,在该抛物线上是否存在点Q,使△QBP的面积是菱形ABCP 面积的?若存在,求出所有满足条件的Q点的坐标;若不存在,说明理由.12.已知:如图,在平面直角坐标系xOy中,以点P(2,)为圆心的圆与y轴相切于点A,与x轴相交于B、C两点(点B在点C的左边).(1)求经过A、B、C三点的抛物线的解析式;(2)在(1)中的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的.如果存在,请直接写出所有满足条件的M点的坐标;如果若不存在,请说明理由;(3)如果一个动点D自点P出发,先到达y轴上的某点,再到达x轴上某点,最后运动到(1)中抛物线的顶点Q处,求使点D运动的总路径最短的路径的长.13.已知,如图,二次函数y=﹣x2+bx+c的图象经过点A(﹣1,0),B(3,0),点E为二次函数第一象限内抛物线上一动点,EH⊥x轴于点H,交直线BC于点F,以EF为直径的圆⊙M与BC交于点R.(1)求这个二次函数关系式.(2)当△EFR周长最大时.①求此时点E点坐标及△EFR周长.②点P为⊙M上一动点,连接BP,点Q为BP的中点,连接HQ,求HQ的最大值.14.如图所示,对称轴为直线的抛物线与轴交于、两点,与轴交于点,点在抛物线对称轴上并且位于轴的下方,以点为圆心作过、两点的圆,恰好使得弧的长为周长的.(1)求该抛物线的解析式;(2)求的半径和圆心的坐标,并判断抛物线的顶点与的位置关系;(3)在抛物线上是否存在一点,使得?若存在,求出所有符合条件的点的坐标;若不存在,请说明理由.15.已知抛物线y=ax2+bx+5(a≠0)经过A(5,0),B(6,1)两点,且与y轴交于点C.(1)求抛物线y=ax2+bx+5(a≠0)的函数关系式;(2)如图1,连接AC,E为线段AC上一点且横坐标为1,⊙P是△OAE外接圆,求圆心P 点的坐标;(3)如图2,连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F;①点E在运动过程中四边形OEAF的面积是否为定值?如果是,请求出这个定值;如果不是,请说明理由;②求出当△AEF的面积取得最大值时,点E的坐标.16.如图1,已知圆O的圆心为原点,半径为2,与坐标轴交于A,C,D,E四点,B 为OD中点.(1)求过A,B,C三点的抛物线解析式;(2)如图2,连接BC,AC.点P在第一象限且为圆O上一动点,连接BP,交AC于点M,交OC于点N,当MC2=MN•MB时,求M点的坐标;(3)如图3,若抛物线与圆O的另外两个交点分别为H,F,请判断四边形CFEH的形状,并说明理由.17.已知一次函数:与轴交于点,与轴交于点.抛物线(、为常数)过定点,连接,点为线段上一动点.(1)求出点的坐标;(2)过作于点,于点,设点横坐标为,长度为,试求关于的函数解析式;(3)①当,时,该抛物线上存在唯一的点使,求此时抛物线的解析式;②过点作交线段于点,连接并延长交的外接圆于点,当点在上移动时,求的最大值.18.已知抛物线经过,,三个点.(1)求抛物线的解析式;(2)如图1,作的外接圆,为上方半圆上一点,当时,求的长;(3)如图2,直线与抛物线交于,两点,与轴交于点,作轴的平行线,分别与线段、抛物线交于,两点(点与点,不重合),点为射线上一点,当与相似时,求的最大面积.参考答案:1.(1)(2)①;②存在,或或或(3)或2.(1),;(2);(3)或时,正方形上存在抛物线的“垂近点”.3.(1)①,②w有最小值,w的最值是(2)不变,(3)或4.(1);(2);(3)为定值.5.(1);(2),;(3)6.(1);(2)F(,4),△EFD的周长为;(3).7.(1),,;(2),;(3)8.(1);(2)点在抛物线上;(3)9.(1);(2),;(3)相交,10.(1)y=x2﹣x﹣2;(2)m=2时,DE有最大值,此时P;(3),或E或11.(1)16;(2)①A(0,),B(2,0),C(6,0);②存在,满足条件的Q点有(0,),(14,),(8,)和(6,0).12.(1).(2)存在,点M的坐标为(0,),(3,0),(4,),(7,).(3).13.(1)y=﹣x2+2x+3;(2)①E(,),周长为+;②HQ的最大值大为:+.14.(1)(2)2,,点在上(3)存在,,,15.(1)抛物线解析式为y=x2﹣x+5(2)圆心P点的坐标为(,)(3)①四边形OEAF的面积是定值,这个定值为;②当△OEF的面积取得最小值时,E点坐标为(,)16.(1)y=﹣x2+x+2;(2)M(,);(3)四边形CFEH是矩形.17.(1);(2)();(3)①;②18.(1);(2);(3).。
初三数学-二次函数、圆复习测试卷
图① 图②xy O 1 BAOM二次函数、圆复习测试卷姓名: 得分:一、选择题(每题3分,共计30分)1、向上发射一枚炮弹,经x 秒后的高度为y 公尺,且时间与高度关系为y =ax 2bx 。
若此炮弹在第7秒与第14秒时的高度相等,则再下列哪一个时间的高度是最高的( ) A.第8秒 B. 第10秒 C.第12秒 D.第15秒2、如图①是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶 (拱桥洞的最高点)离水面2m ,水面宽4m .如图②建立平面直角 ;坐标系,则抛物线的关系式是( ) A .22y x =- B .22y x = C .212y x=-D .212y x =3、在同一坐标系中一次函数y ax b =+和二次函数2y ax bx =+的图象可能为( ) ?4、已知二次函数2y ax bx c =++(a ≠0)的图象开口向上,并经过点(-1,2),(1,0) . 下列结论正确的是( )A. 当x >0时,函数值y 随x 的增大而增大B. 当x >0时,函数值y 随x 的增大而减小C. 存在一个负数x 0,使得当x <x 0时,函数值y 随x 的增大而减小;当x > x 0时,函数值y 随x 的增大而增大D. 存在一个正数x0,使得当x<x0时,函数值y 随x 的增大而减小;当x>x0时,函数值y 随x 的增大而增大)5、已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论:0ac >①;②方程20ax bx c ++=的两根之和大于0;③ 0a b c -+<, ④y 随x 的增大而增大;其中正确的个数( )A .4个B .3个C .2个D .1个6、如果两个圆心角相等,那么( )A .这两个圆心角所对的弦相等;B .这两个圆心角所对的弧相等C .这两个圆心角所对的弦的弦心距相等;D .以上说法都不对:(第7题 ) (第8题) (第9题) (第10题) 7、如图,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB 的长是( )A .4B .6C .7D .8O x y O ` O x y O x yA !C DO BAC 21EDOBACED BACPO/8、如图,A、B、C三点在⊙O上,∠AOC=100°,则∠ABC等于().A.140°B.110°C.120°D.130°9、如图,AD是⊙O的直径,AC是弦,OB⊥AD,若OB=5,且∠CAD=30°,则BC等于().A.3 B.3C.5-123D.510、如图,AB与⊙O切于点C,OA=OB,若⊙O的直径为8cm,AB=10cm,那么OA的长是()A41B.40.14.60C D二、填空题(每题3分,共计30分)11、若二次函数cbxxy++=2的图象经过点(2,0)和点(0,1),则函数关系式为.?12、已知二次函数232)1(2-++-=aaxxay的图象的最低点在x轴上,则a= .13、将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是cm214、P为⊙O内一点,OP=3cm,⊙O半径为5cm,则经过P点的最短弦长为________;•最长弦长为_______.•—(第15题)(第16题)(第17题)(第18题)(第19题)15、如图,A、B是⊙O的直径,C、D、E都是圆上的点,则∠1+∠2=_______.16、如图,AB和DE是⊙O的直径,弦AC∥DE,若弦BE=3,则弦CE=________.17、如图,已知△ABC为⊙O内接等边三角形,BC=•1,∠A=•60°,则⊙O•半径为_______.18、如图,AB为⊙O直径,BD切⊙O于B点,弦AC的延长线与BD交于D点,若AB=10,AC=8,则DC长为________..19、如图,P为⊙O外一点,PA、PB为⊙O的切线,A、B为切点,弦AB与PO交于C,⊙O半径为1,PO=2,则∠AOB=________.20、已知二次函数2y ax bx c=++的图象与x轴交于点(20)-,、1(0)x,,且112x<<,与y轴的正半轴的交点在(02),的下方.列结论:①420a b c-+=;②0a b<<;③20a c+>;④210a b-+>其中正确结论的个数是个.三、解答题(7+6+7+8+7+7+8+10)21、如图,以平行四边形ABCD的顶点A为圆心,AB为半径作圆,分别交BC、AD于E、F,若∠D=50°,求弧BE的度数和弧EF的度数.&22、用6m 长的铝合金型材做一个形状如图所示的矩形窗框。
2023年九年级数学中考专题:二次函数综合压轴题(面积问题)(含简单答案)
2023年九年级数学中考专题:二次函数综合压轴题(面积问题)1.如图,二次函数25y ax bx =++的图象经过点(1,8),且与x 轴交于A 、B 两点,与y 轴交于点C ,其中点(1,0)A -,M 为抛物线的顶点.(1)求二次函数的解析式; (2)求MCB △的面积;(3)在坐标轴上是否存在点N ,使得BCN △为直角三角形?若存在,求出点N 的坐标;若不存在,请说明理由.2.如图,抛物线212y x bx c =-++(b 、c 为常数)经过()4,0A 和()0,4B 两点,其顶点为C .(1)求该抛物线的表达式及其顶点坐标;(2)若点M 是拋物线上第一象限的一个动点.设ABM 的面积为S ,试求S 的最大值; (3)若抛物线222y mx mx m =-++与线段AB 有两个交点,直接写出m 的取值范围. 3.如图,抛物线22(0)y ax ax c a =-+>与y 轴交于点C ,与x 轴交于A ,B 两点,点A 在点B 左侧.点A 的坐标为(1,0),3OC OA -=.(1)求抛物线的解析式;(2)在直线BC 下方的抛物线上是否存在一点P ,使得PBC 的面积等于ABC 面积的三分之二?若存在,求出此时OP 的长;若不存在,请说明理由.(3)将直线AC 绕着点C 旋转45︒得到直线l ,直线l 与抛物线的交点为M (异于点C ),求M 点坐标.4.如图1,抛物线24y ax bx a =+-经过()10A -,,()04C ,两点,与x 轴交于另一点B .(1)求抛物线和直线BC 的解析式;(2)如图2,点P 为第一象限抛物线上一点,是否存在使四边形PBOC 面积最大的点P ?若存在,求出点P 的坐标;若不存在,请说明理由;(3)如图3,若抛物线的对称轴EF (E 为抛物线顶点)与直线BC 相交于点F ,M 为直线BC 上的任意一点,过点M 作MN EF ∥交抛物线于点N ,以E ,F ,M ,N 为顶点的四边形能否为平行四边形?若能,请求出点N 的坐标;若不能,请说明理由. 5.如图,抛物线24y ax bx =+-与x 轴交于点()2,0A -,()4,0B ,与y 轴交于点C ,顶点为D .(1)求抛物线的解析式和顶点D 的坐标;(2)动点P ,Q 以相同的速度从点O 同时出发,分别在线段,OB OC 上向点B ,C 方向运动,过点P 作x 轴的垂线,交抛物线于点E . ①当四边形OQEP 为矩形时,求点E 的坐标;①过点E 作EM BC ⊥于点M ,连接,PM QM ,设BPM △的面积为1S ,CQM 的面积为2S ,当PE 将BCE 的面积分成1:3两部分时,请直接写出12S S 的值. 6.如图,抛物线2(0)y ax bx c a =++≠与x 轴相交于A ,B 两点,抛物线的对称轴为直线=1x -,其中点A 的坐标为(3,0)-.(1)求点B 的坐标;(2)已知1a =,C 为抛物线与y 轴的交点,求抛物线的解析式; (3)若点P 在抛物线上,且4POCBOCSS=,求点P 的坐标;(4)设点Q 是线段AC 上的动点,过点Q 作QD y 轴交抛物线于点D ,求线段QD 长度的最大值.7.如图,在平面直角坐标系中,二次函数22y ax bx =++的图象与x 轴交于()30A -,,()10B ,两点,与y 轴交于点C .(1)求二次函数的解析式;(2)点P 是直线AC 上方的抛物线上一动点,当ACP △的面积最大时,求点P 的坐标;(3)Q 是x 轴上一动点,M 是第二象限内抛物线上一点,若以A ,C ,M ,Q 为顶点的四边形是平行四边形,直接写出点Q 的坐标.8.如图,直线132y x =-+交y 轴于点A ,交x 轴于点C ,抛物线214y x bx c =-++经过点A ,点C ,且交x 轴于另一点B .(1)直接写出点A ,点B ,点C 的坐标及抛物线的解析式;(2)在直线AC 上方的抛物线上有一点M ,求四边形ABCM 面积的最大值及此时点M 的坐标;(3)将线段OA 绕x 轴上的动点(),0P m 顺时针旋转90°得到线段O A '',若线段O A ''与抛物线只有一个公共点,请结合函数图象,求m 的取值范围.9.如图,已知抛物线与x 轴交于()1,0A - 、()4,0B 两点,与y 轴交于点()0,3C .(1)求抛物线的解析式; (2)求直线BC 的函数解析式;(3)在抛物线上,是否存在一点P ,使PAB 的面积等于ABC 的面积?若存在,求出点P 的坐标;若不存在,请说明理由.10.如图,抛物线26y ax bx =++与x 轴交于点()6,0B ,()2,0C -,与y 轴交于点A ,点P 是线段AB 上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P 运动到什么位置时,PAB 的面积最大?(3)过点P 作x 轴的垂线,交线段AB 于点D ,再过点P 作PE x ∥轴交抛物线于点E ,连接DE .是否存在点P ,使PDE △为等腰直角三角形?若存在,求点P 的坐标;若不存在,请说明理由.11.如图,直线l :112y x =-+与x 轴,y 轴分别交于点B ,C ,经过B ,C 两点的抛物线2y x bx c =++与x 轴的另一个交点为A .(1)求该抛物线的解析式;(2)若点P 在直线l 下方的抛物线上,过点P 作PD ①x 轴交l 于点D ,PE ①y 轴交l 于点E ,求PD PE +的最大值;(3)若点P 在直线l 下方的抛物线上,F 为直线l 上的点,以A ,B ,P ,F 为顶点的四边形能否构成平行四边形?若能,直接写出点F 的坐标;若不能,请说明理由. 12.已知顶点为()1,5A 的抛物线2y ax bx c =++经过点()5,1B ,(1)求抛物线的解析式;(2)设C ,D 分别是x 轴、y 轴上的两个动点.①当四边形ABCD 的周长最小时,在图1中作直线CD ,保留作图痕迹并直接写出直线CD 的解析式;①点()(),>0P m n m 是直线y x =上的一个动点,Q 是OP 的中点,以PQ 为斜边按图2所示构造等腰Rt PQR △.在①的条件下,记PQR 与COD △的公共部分的面积为S ,求S 关于m 的函数关系式,并求S 的最大值.13.抛物线24y x x =-与直线y x =交于原点O 和点B , 与x 轴交于另一点A , 顶点为D .(1)填空: 点B 的坐标为___________, 点D 的坐标为___________.(2)如图1 , 连结OD P ,为x 轴上的动点, 当以O D P ,,为顶点的三角形是等腰三角形时, 请直接写出点P 的坐标;(3)如图2, M 是点B 关于拋物线对称轴的对称点, Q 是拋物线上的动点, 它的横坐标为 (05)m m <<, 连结MQ BQ MQ ,,与直线OB 交于点E . 设BEQ 和BEM △的面积分别为1S 和2S , 设12S t s =, 试求t 关于m 的函数解析式并求出t 的最值. 14.如图,二次函数的图象经过点()10A -,,()30B ,,()03C -,,直线22y x =-与x 轴、y 轴交于点D ,E .(1)求该二次函数的解析式(2)点M 为该二次函数图象上一动点.①若点M 在图象上的B ,C 两点之间,求DME 的面积的最大值. ①若MED EDB ∠∠=,求点M 的坐标.15.如图,在平面直角坐标系中,抛物线24y ax bx =+-与x 轴交于()2,0A -,B 两点,其对称轴直线2x =与x 轴交于点D .(1)求该抛物线的函数表达式为______;(2)如图1,点P 为抛物线上第四象限内的一动点,连接CD ,PB ,PC ,求四边形BDCP 面积最大值和点P 此时的坐标;(3)如图2,将该抛物线向左平移得到抛物线y ',当抛物线y '经过原点时,与原抛物线的对称轴相交于点E ,点F 为抛物线y '对称轴上的一点,点M 是平面内一点,若以点A ,E ,F ,M 为顶点的四边形是以AE 为边的菱形,请直接写出满足条件的点M 的坐标______.16.如图,已知抛物线2y x bx c =++与x 轴交于点()21,0A m -和点()2,0B m +,与y 轴交于点C ,对称轴轴为直线=1x -.(1)求抛物线的解析式;(2)点P 是直线AC 上一动点,过点P 作PQ y ∥轴,交抛物线于点Q ,以P 为圆心,PQ 为半径作P ,当P 与坐标轴相切时,求P 的半径;(3)直线()340y kx k k =++≠与抛物线交于M ,N 两点,求AMN 面积的最小值.17.如图,在平面直角坐标系中,抛物线23y ax bx =+-与x 轴交于两点()1,0A -和()3,0B ,与y 轴交于点C ,抛物线上有一动点P ,抛物线的对称轴交x 轴于点E ,连接EC ,作直线BC .(1)求抛物线的解析式;(2)若点P 为直线BC 上方抛物线上一动点时,连接,PB PC ,当23EBC PBC S S =△△时,求点P 坐标;(3)如果抛物线的对称轴上有一动点Q ,x 轴上有一动点N ,是否存在四边形PQCN 是矩形?若存在,在横线上直接写出点N 的坐标,若不存在,请说明理由. 18.如图,直线122y x =-+交y 轴于点A ,交x 轴于点C ,抛物线214y x bx c=-++经过点A ,点C ,且交x 轴于另一点B .(1)直接写出点A ,点B ,点C 的坐标及抛物线的解析式;(2)在直线AC 上方的抛物线上有一点M ,求三角形ACM 面积的最大值及此时点M 的坐标;(3)将线段OA 绕x 轴上的动点(),0P m 顺时针旋转90︒得到线段O A '',若线段O A ''与抛物线只有一个公共点,请结合函数图象,求m 的取值范围(直接写出结果即可).参考答案:1.(1)245y x x =-++; (2)15(3)存在,点N 的坐标为(5,0)-或(0,5)-或(0,0).2.(1)2142y x x =-++,91,2⎛⎫⎪⎝⎭(2)S 的最大值为4 (3)2m ≥或1249m -<≤-3.(1)抛物线的解析式为2=23y x x -- (2)不存在这样的点P , (3)M 点坐标是(45),或315()24-,4.(1)抛物线的解析式:234y x x =-++;直线BC 的解析式为4y x =-+;(2)当()26P ,时,四边形PBOC 面积最大; (3)能,点N 的坐标为52124⎛⎫ ⎪⎝⎭,或724⎛- ⎝或724⎛- ⎝.5.(1)2142y x x =--,91,2D ⎛⎫- ⎪⎝⎭.(2)①(-;①1215S S =或1279S S =6.(1)(1,0) (2)223y x x =+- (3)(4,21)或()4,5- (4)947.(1)224233y x x =--+(2)3(2P -,5)2(3)(5,0)-或(1,0)-8.(1)03A (,),20B -(,),60C (,),抛物线解析式为:2134y x x =-++; (2)3a =时,四边形ABCM 面积最大,其最大值为754,此时M 的坐标为153,4⎛⎫⎪⎝⎭;(3)当3m -≤≤-33m ≤≤时,线段O A ''与抛物线只有一个公共点.9.(1)239344y x x =-++(2)334y x =-+(3)存在,点P 的坐标为:()13,3P ,23P ⎫-⎪⎪⎝⎭,33P ⎫-⎪⎪⎝⎭10.(1)21262y x x =-++(2)153,2P ⎛⎫ ⎪⎝⎭(3)点P 坐标为()46,或()55.11.(1)2512y x x =-+ (2)3(3)13,2⎛⎫- ⎪⎝⎭或1(1,)212.(1)21119424y x x =-++(2)①4y x =-+;①当02m <≤时,218PQRSm =;当823m <≤时,27448S m m =-+-;当843m ≤≤时,21244S m m =-+;S 的最大值为:47答案第3页,共3页 13.(1)()5,5;()2,4-;(2)点P的坐标为()或()-或()4,0或()5,0; (3)()2150566t m m m =-+<<,当52m =时,t 的最大值为2524.14.(1)该二次函数的解析式是()()21323y x x x x =+-=--;(2)①DME 的面积的最大值为52;①点M的坐标为⎝⎭或()12--.15.(1)214433y x x =-- (2)PBDC S 四边形的最大值为17,此时点P 的坐标为()3,5-(3)⎛ ⎝⎭或⎛ ⎝⎭或⎛- ⎝⎭或8,⎛- ⎝⎭16.(1)223y x x =+-(2)2或4(3)817.(1)2=23y x x --(2)⎝⎭或⎝⎭ (3)存在,⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭18.(1)()0,2A ,()2,0B -,()4,0C ,211242y x x =-++ (2)2,()2,2(3)34m -≤≤-或32m -+≤。
人教版九年级数学二次函数、圆综合检测题
二次函数、圆综合检测题一.选择题(共10 小题每题3分)1.关于二次函数y=﹣( x﹣ 1)2+2 的图象与性质,以下说法正确的A.对称轴是直线x=1,最小值是 2B.对称轴是直线x=1,最大值是 2C.对称轴是直线x=﹣ 1,最小值是 2D.对称轴是直线x=﹣ 1,最大值是 22.已知二次函数y=ax2+bx+c( a≠ 0)的图象如下图,以下四个③ b2﹣ 4ac> 0;④﹣<0,正确的选项是()A.①②B.②④C.①③D.③④3.若抛物线y=﹣ x2+bx+c 经过点(﹣ 2,3),则 2c﹣ 4b﹣ 9 的值是A.5B.﹣ 1 C.4D.184 .如图将半径为2cm 的圆形纸片折叠后,圆弧恰巧经过圆心痕 AB 的长为()A.2cm B.cm C. 2cm D. 25.如图,⊙ O 中,弦 AB、 CD 订交于点P,∠ A=42°,∠APD=7A.B.C.D.8.如图,在Rt△ ABC 中,∠ BCA=90°,∠ BAC=30°, BC=2,将 R转 90°获得 Rt△ ADE,则 BC 扫过的面积为(A.B.( 2﹣)π C.π D.π9.如图,抛物线y=ax2+bx+c( a≠ 0)的对称轴为直线x=1,与(﹣ 1, 0),其部分图象如下图,以下结论:①4ac< b2;②方是 x1 =﹣ 1, x2 =3 ;③ 3a+c> 0④当 y> 0 时, x 的取值范围是﹣1≤ x< 3⑤当 x< 0 时, y 随 x 增大而增大此中结论正确的个数是(A.4 个 B.3 个 C.2个 D.1 个10.如图,在△ ABC 中,∠ C=90°,AB=10cm,BC=8cm,点 P 从点的速度运动,同时点 Q 从点 C 沿 CB向点 B 以 2cm/s 的速度运动(在运动过程中,四边形PABQ 的面积最小值为()A. 19cm 2B. 16cm 2C. 15cm 2D. 12cm 2 二.填空题(共 5 小题,每题 4 分)14.如图,圆锥的侧面睁开图是一个圆心角为120 °的扇形,若圆则圆锥的母线l=.15.如图,我们把一个半圆与抛物线的一部分合成的关闭图形称为D 分别是“蛋圆”与坐标轴的交点,AB 为半圆的直径,且抛物线的解则半圆圆心 M 的坐标为.根源学+科+网三.解答题(共 6 小题)16.( 12 分)如图,∠ BAC的均分线交△ABC 的外接圆于点D,点 E.( 1)求证: DE=DB;( 2)若∠ BAC=90°, BD=4,求△ ABC 外接圆半径.( 2)如图②,当BE=BC时,求∠ CDO 的大小.18( 12 分)某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(知计划中的建筑资料可建围墙的总长为50m .设饲养室长为x (( 1)如图1,问饲养室长x 为多少时,占地面积y 最大?( 2 所示地点留2m 宽的门,且仍使饲养室的占地面积最大,小敏说:中的长多2m 就行了.”请你经过计算,判断小敏的说法能否正确.。
2024年 九年级数学中考复习 圆与二次函数结合型压轴题 考前适应性综合训练题
2024年 九年级数学中考复习圆与二次函数结合型压轴题 考前适应性综合训练题1.在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于()1,0A -、B (A 在B 的左边),与y 轴交于C ,且4OB OA =.(1)求抛物线的解析式;(2)如图1,直线y x =交抛物线于D 、E 两点,点F 在抛物线上,且在直线DE 下方,若以F 为圆心作F ,当F 与直线DE 相切时,求F 最大半径r 及此时F 坐标;(3)如图2,M 是抛物线上一点,连接AM 交y 轴于G ,作AM 关于x 轴对称的直线交抛物线于N ,连接AN 、MN ,点K 是MN 的中点,若G 、K 的纵坐标分别是t 、n .直接写出t ,n 的数量关系.2.如图,抛物线的顶点为(0,2)A ,且经过点(2,0)B ,以坐标原点O 为圆心的圆的半径2r =OC AB ⊥于点C .(1)求抛物线的函数解析式.(2)求证:直线AB 与O 相切.(3)已知P 为抛物线上一动点,线段PO 交O 于点M ,当以M ,O ,A ,C 为顶点的四边形是平行四边形时,求PM 的长.3.如图,抛物线24y ax bx =++与x 轴交于A ,()2,0B 两点,与y 轴交于点C .以点B 为圆心,P 是B 上的一个动点,连接AP ,将线段AP 绕点A 顺时针旋转90︒得到AQ .当AP 与B 在x 轴上方的部分相切时,四边形APBQ 为矩形.(1)求抛物线的解析式;(2)求ACQ 面积的最大值.4.如图,二次函数268y x x =-+的图象与x 轴分别交于点A ,B (点A 在点B 的左侧),直线l 是对称轴.点P 在函数图象上,其横坐标大于4,连接PA ,PB ,过点P 作PM l ⊥,垂足为M ,以点M 为圆心,作半径为r 的圆,PT 与M 相切,切点为T .(1)求点A ,B 的坐标;(2)四边形ABPM 能是一个菱形吗?若能,求出点P 的坐标;若不能,说明理由;(3)若以PT 为边长的正方形的面积与PAB 的面积相等,且M 不经过点(3,2)N ,求PM 的取值范围.5.如图(1),二次函数25y ax x c =-+的图象与x 轴交于(4,0)A -,(,0)B b 两点,与y 轴交于点(0,4)C -.(1)求二次函数的解析式和b 的值.(2)在二次函数位于x 轴上方的图象上是否存在点M ,使13BOM ABC S S =△△?若存在,请求出点M 的坐标;若不存在,请说明理由.(3)如图(2),作点A 关于原点O 的对称点E ,连接CE ,作以CE 为直径的圆.点E '是圆在x 轴上方圆弧上的动点(点E '不与圆弧的端点E 重合,但与圆弧的另一个端点可以重合),平移线段AE ,使点E 移动到点E ',线段AE 的对应线段为A E '',连接E C ',A A ',A A '的延长线交直线E C '于点N ,求AA CN'的值.6.已知二次函数2y x bx c =++与x 轴交于()1,0A -,()3,0B 两点,与y 轴交于点C .(1)求这个二次函数的表达式;(2)如图1,连接AC ,BC ,若点M 在抛物线上,且M 的横坐标为53,连接CM ,ACB ∠与BCM ∠相等吗?请说明理由;(3)如图2,点N 是线段AB 上任意一点(N 不与A ,B 重合),过点N 作NE x ⊥轴,交抛物线于点E ,连接AE ,作ABE 的外接圆P ,延长EN 交P 于点F .试说明点F 在某条定直线上.7.已知二次函数图象的顶点坐标为()2,0A ,且与y 轴交于点()0,1,B 点坐标为()2,2,点C 为抛物线上一动点,以C 为圆心,CB 为半径的圆交x 轴于M ,N 两点(M 在N 的左侧).(1)求此二次函数的表达式;(2)当点C 在抛物线上运动时,弦MN 的长度是否发生变化?若变化,说明理由;若不发生变化,求出弦MN 的长;(3)当ABM 与ABN 相似时,求出M 点的坐标.8.如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B 的右侧),与y轴的正半轴交于点C,顶点为D.(1)求顶点D的坐标(用含a的代数式表示);(2)若以AD为直径的圆经过点C.①求抛物线的函数关系式;①如图2,点E是y轴负半轴上一点,连接BE,将①OBE绕平面内某一点旋转180°,得到①PMN (点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF①x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;①点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.9.如图,已知二次函数()22y x m k m =++-的图象与x 轴相交于两个不同的点1(0)A x ,、2(0)B x ,,与y 轴的交点为C .设①ABC 的外接圆的圆心为点P .(1)求P 与y 轴的另一个交点D 的坐标;(2)如果AB 恰好为P 的直径,且①ABC 5m 和k 的值.10.已知圆P 的圆心在反比例函数ky x =(1)k >图象上,并与x 轴相交于A 、B 两点.且始终与y 轴相切于定点C (0,1).(1)求经过A 、B 、C 三点的二次函数图象的解析式;(2)若二次函数图象的顶点为D ,问当k 为何值时,四边形ADBP 为菱形.11.如图,在平面直角坐标系中,抛物线交y 轴于点()0,3A ,交x 轴于点()2,0B ,()6,0C .(1)求此抛物线的解析式;(2)过点B 作线段AB 的垂线交抛物线于点D ,求点D 的坐标;(3)如果以点C 为圆心的圆与直线BD 相切,请判断抛物线的对称轴l 与C 有怎样的位置关系,并给出证明.12.如图,抛物线21342y x x c =--+与x 轴相交于点A ,B (点A 在点B 的左侧),与y 轴相交于点C ,点B 的坐标为(2,0),M 经过,,A B C 三点,且圆心M 在x 轴上.(1)求c 的值.(2)求M 的半径.(3)过点C 作直线CD ,交x 轴于点D ,当直线CD 与抛物线只有一个交点时直线CD 是否与M 相切?若相切,请证明;若不相切,请求出直线CD 与M 的另外一个交点的坐标.13.如图1,抛物线2124y x x -=与x 轴交于O 、A 两点,点B 为抛物线的顶点,连接OB .(1)求①AOB 的度数;(2)如图2,以点A 为圆心,4为半径作①A ,点M 在①A 上.连接OM 、BM ,①当①OBM 是以OB 为底的等腰三角形时,求点M 的坐标;①如图3,取OM 的中点N ,连接BN ,当点M 在①A 上运动时,求线段BN 长度的取值范围.14.定义:平面直角坐标系xOy 中,过二次函数图象与坐标轴交点的圆,称为该二次函数的坐标圆.(1)已知点()2,2P ,以P 为圆心,5请判断①P 是不是二次函数243y x x =-+的坐标圆,并说明理由;(2)已知二次函数244y x x =-+图象的顶点为A ,坐标圆的圆心为P ,如图1,求POA 周长的最小值;(3)已知二次函数()24401y ax x a =-+<<图象交x 轴于点A ,B ,交y 轴于点C ,与坐标圆的第四个交点为D ,连结PC ,PD ,如图2.若120CPD ∠=︒,求a 的值.15.如图,抛物线与x 轴交于点(1,0)A ,(3,0)B ,与y 轴交于点(0,3)C ,过点C 作//CE x 轴交抛物线于点E ,且顶点为D ,连,,,AC AE AD DE .已知P 是抛物线上一动点,且点P 的横坐标大于0小于4.(1)求该抛物线的解析式.∠=∠.求点P的横坐标.(2)直线AP交直线ED于点Q.AQD CAE⊥,垂足为G,交M于点F.在点P的(3)过C,E,P三点作M,过点P作PF CE运动过程中,线段GF的长是否变化,若有变化,求出GF的取值范围:若不变,求GF的长.。
九年级中考复习 二次函数与圆的提高类综合练习(含答案解析)
二次函数与圆的综合习题类型一圆的基本性质应用例1:如图,在直角坐标系中,抛物线y=a(x-)2+与⊙M交于A,B,C,D四点,点A,B在x轴上,点C坐标为(0,-2).(1)求a值及A,B两点坐标;(2)点P(m,n)是抛物线上的动点,当∠CPD为锐角时,请求出m的取值范围;(3)点E是抛物线的顶点,⊙M沿CD所在直线平移,点C,D的对应点分别为点C′,D′,顺次连接A,C′,D′,E四点,四边形AC′D′E(只要考虑凸四边形)的周长是否存在最小值?若存在,请求出此时圆心M′的坐标;若不存在,请说明理由.【答案】(1)A(1,0),B(4,0).(2)m<0或1<m<4或m>5.(3)存在.M′(,-2)【解析】解:(1)∵抛物线y=a(x-)2+经过点C(0,-2),∴-2=a(0-)2+,∴a=-,∴y=-(x-)2+,当y=0时,-(x-)2+=0,∴x1=4,x2=1,∵A、B在x轴上,∴A(1,0),B(4,0).(2)由(1)可知抛物线解析式为y=-(x-)2+,∴C、D关于对称轴x=对称,∵C(0,-2),∴D(5,-2),如图1中,连接AD、AC、CD,则CD=5,∵A(1,0),C(0,-2),D(5,-2),∴AC=,AD=2,∴AC2+AD2=CD2,∴∠CAD=90°,∴CD为⊙M的直径,∴当点P在圆外部的抛物线上运动时,∠CPD为锐角,∴m<0或1<m<4或m>5.(3)存在.如图2中,将线段C′A平移至D′F,则AF=C′D′=CD=5,∵A(1,0),∴F(6,0),作点E关于直线CD的对称点E′,连接EE′正好经过点M,交x轴于点N,∵抛物线顶点(,),直线CD为y=-2,∴E′(,-),连接E′F交直线CD于H,∵AE,C′D′是定值,∴AC′+ED′最小时,四边形AC′D′E的周长最小,∵AC′+D′E=FD′+D′E=FD′+E′D′≥E′F,则当点D′与点H重合时,四边形AC′D′E的周长最小,设直线E′F的解析式为y=kx+b,∵E′(,-),F(6,0),∴可得y=x-,当y=-2时,x=,∴H(,-2),∵M(,-2),∴DD′=5-=,∵-=,∴M′(,-2)针对训练1.已知二次函数y=ax2-2ax+c(a<0)的图像与x轴的负半轴和正半轴分别交于A、B两点,与y轴交于点C,直线BC与它的对称轴交于点F,且CF:FB=1:3.(1)求A、B两点的坐标;(2)若△COB的内心I在对称轴上,求这个二次函数的关系式;(3)在(2)的条件下,Q(m,0)是x轴上一点,过点Q作y轴的平行线,与直线BC交于点M,与抛物线交于点N,连接CN,将△CMN沿直线CN翻折,M的对应点为M′,是否存在点Q,使得M′恰好落在y轴上?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1)B(4,0),A(-2,0);(2)y=x2+x+3;(3)存在,Q(,0)或Q(,0) 【解析】(1)如图所示:对称轴为:直线,∴OE=1,∵OC∥EF,∴,∴EB=3,由对称性得:BE=AE=3,∴A(−2,0),B(4,0);(2)如图,是△的内切圆,过点I作于点D,∴设,则在Rt△OCB中,OB=4,即解得∴C(0,3),∴c=3,把A(−2,0), C(0,3)代入抛物线y=ax2-2ax+c中得:解得:∴抛物线的解析式为:y=x2+x+3;(3)如图,由题意∠M′CN=∠NCB,∵MN∥OM′,∴∠M′CN=∠CNM,∴∠CNM =∠NCB,∴MN=CM,∵直线BC解析式为,∴,,作ME⊥OC于E,∵,∴,∴,①当N在直线BC上方时,,解得:m=或0(舍弃),∴Q(,0),②当N在直线BC下方时, ,解得m=或0(舍弃),∴Q(,0)综上所述:点Q坐标为(,0)或Q(,0).2.对于平面直角坐标系xOy中的点P,Q和图形G,给出如下定义:点P,Q都在图形G 上,且将点P的横坐标与纵坐标互换后得到点Q,则称点P,Q是图形G的一对“关联点”.例如,点P(1,2)和点Q(2,1)是直线y=﹣x+3的一对关联点.(1)请写出反比例函数y=的图象上的一对关联点的坐标:;(2)抛物线y=x2+bx+c的对称轴为直线x=1,与y轴交于点C(0,﹣1).点A,B是抛物线y=x2+bx+c的一对关联点,直线AB与x轴交于点D(1,0).求A,B两点坐标.(3)⊙T的半径为3,点M,N是⊙T的一对关联点,且点M的坐标为(1,m)(m>1),请直接写出m的取值范围.【答案】(1)(2,3),(3,2).(2)A,B两点坐标为(﹣1,2)和(2,﹣1).(3)1<m≤1+3.【解析】解:(1)∵2×3=3×2=6,∴点(2,3),(3,2)是反比例函数y=的图象上的一对关联点.故答案为:(2,3),(3,2).(2)∵抛物线y=x2+bx+c的对称轴为直线x=1,∴﹣=1,解得:b=﹣2.∵抛物线y=x2+bx+c与y轴交于点C(0,﹣1),∴c=﹣1,∴抛物线的解析式为y=x2﹣2x﹣1.由关联点定义,可知:点A,B关于直线y=x对称.又∵直线AB与x轴交于点D(1,0),∴直线AB的解析式为y=﹣x+1.联立直线AB及抛物线解析式成方程组,得:=﹣+=﹣﹣,解得:,,∴A,B两点坐标为(﹣1,2)和(2,﹣1).(3)由关联点定义,可知:点M,N关于直线y=x对称,∴⊙T的圆心在直线y=x上.∵⊙T的半径为3,∴M1M2=×2×3=3,∴m的取值范围为1<m≤1+3..类型二与圆有关的位置关系例2.如图,已知点A(2,0),以A为圆心作⊙A与y轴切于原点,与x轴的另一个交点为B,过B作⊙A的切线l.(1)以直线l为对称轴的抛物线过点A,抛物线与x轴的另一个交点为点C,抛物线的顶点为点E,如果CO=2BE,求此抛物线的解析式;(2)过点C作⊙A的切线CD,D为切点,求此切线长;(3)点F是切线CD上的一个动点,当△BFC与△CAD相似时,求出BF的长.【答案】(1)y=(x-2)(x-6);(2)CD=2;(3)BF的长为或.【解析】(1)∵A(2,0),⊙A与y轴切于原点,∴⊙A的半径为2.∴点B的坐标为为(4,0).∵点A、C关于x=4对称,∴C(6,0).又CO=2BE,∴E(4,-3)设抛物线的解析式为y=a(x-2)(x-6),(a≠0);∵抛物线经过点E(4,-3)∴-3=a(4-2)(4-6),解得:a=.∴抛物线的解析式为y=(x-2)(x-6);(2)如图1所示:连接AD,∵AD是⊙A的切线,∴∠ADC=90°,AD=2,由(1)知,C(6,0).∵A(2,0),∴AC=4,在Rt△ACD中,CD2=AC2-AD2=42-22=12,∴CD=2.(3)如图2所示:当FB⊥AD时,连结AD.∵∠FBC=∠ADC=90°,∠FCB=∠ACD,∴△FBC∽△ADC,∴=,即=.解得:CF=.如图3所示:当BF⊥CD时,连结AD、过点B作BF⊥CD,垂足为F.∵AD⊥CD,∴BF∥AD,∴△BFC∽△ADC,∴=,即=.∴CF=.综上所述,BF的长为或.针对训练1.如图,抛物线y=x2﹣4x﹣1顶点为D,与x轴相交于A、B两点,与y轴相交于点C.(1)求这条抛物线的顶点D的坐标;(2)经过点(0,4)且与x轴平行的直线与抛物线y=x2﹣4x﹣1相交于M、N两点(M在N的左侧),以MN为直径作⊙P,过点D作⊙P的切线,切点为E,求点DE的长;(3)上下平移(2)中的直线MN,以MN为直径的⊙P能否与x轴相切?如果能够,求出⊙P的半径;如果不能,请说明理由.【答案】(1)点D的坐标为(2,-5);(2)DE=6;(3)能够相切,理由见解析.【解析】(1)∵y=x2-4x-1=x2-4x+4-5=(x-2)2-5,∴点D的坐标为(2,-5);(2)∵当y=4时,x2-4x-1=4,解得x=-1或x=5,∴M坐标为(-1,4),点N坐标为(5,4),∴MN=6.P的半径为3,点P的坐标为(2,4),连接PE,则PE⊥DE,∵PD=9,PE=3,根据勾股定理得DE=6;(3)能够相切.理由:设⊙P的半径为r,根据抛物线的对称性,抛物线过点(2+r,r)或(2+r,-r),代入抛物线解析式得:(2+r)2-4(2+r)-1=r,解得r=或r=(舍去),把(2+r,-r)代入抛物线得:(2+r)2-4(2+r)-1=-r,解得:r=,或r=(舍去).2.如图,⊙P的圆心P(m,n)在抛物线y=上.(1)写出m与n之间的关系式;(2)当⊙P与两坐标轴都相切时,求出⊙P的半径;(3)若⊙P的半径是8,且它在x轴上截得的弦MN,满足0≤MN≤2时,求出m、n的范围.【答案】(1)n=m2;(2)⊙P的半径为2;(3)≤m≤4或﹣4≤m≤﹣;7≤ ≤8.【解析】解:(1)∵点P(m,n)在抛物线y=上,∴n=m2;(2)当点P(m,m2)在第一象限时,由⊙P与两坐标轴都相切知m=m2,解得:m=0(舍)或m=2,∴⊙P的半径为2;当点P(m,m2)在第三象限时,由⊙P与两坐标轴都相切知﹣m=m2,解得:m=0或m=﹣2,∴⊙P的半径为2;(3)如图,作PK⊥MN于点K,连接PM,当MN=2时,MK=MN=,∵PM=8,则PK===7,当MN=0时,PK=8,∴7≤PK≤8,即7≤ ≤8,∵n=m2,∴7≤m2≤8,解得:≤m≤4或﹣4≤m≤﹣.类型三构造圆与隐形圆例3:已知:如图1,抛物线与x轴交于,两点,与y轴交于点C,点D为顶点.求抛物线解析式及点D的坐标;若直线l过点D,P为直线l上的动点,当以A、B、P为顶点所作的直角三角形有且只有三个时,求直线l的解析式;如图2,E为OB的中点,将线段OE绕点O顺时针旋转得到,旋转角为,连接、,当取得最小值时,求直线与抛物线的交点坐标.【答案】(1);(2)或;(3).【解析】抛物线与x轴交于,两点,.,抛物线的顶点坐标为.过点A、B分别作x轴的垂线,这两条垂线与直线l总是有交点的,即2个点Q.以AB为直径的如果与直线l相交,那么就有2个点Q;如果圆与直线l相切,就只有1个点Q了.如图所示:以AB为直径作,作QD与相切,则,过Q作...又,.,,.点Q的坐标为.设l的解析式为,则,解得:,,直线l的解析式为.由图形的对称性可知:当直线l经过点时,直线l与相切,则,解得:,,直线l的解析式为.综上所述,直线l的解析式为或.如图所示:取M使,连接.,,,,.△∽△,..,当M、、B在一条直线上时,有最小值,的最小值.针对训练1.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(0,﹣),C(2,0),其对称轴与x轴交于点D(1)求二次函数的表达式及其顶点坐标;(2)若P为y轴上的一个动点,连接PD,求PB+PD的最小值;(3)M(x,t)为抛物线对称轴上一动点①若平面内存在点N,使得以A,B,M,N为顶点的四边形为菱形,则这样的点N共有个;②连接MA,MB,若∠AMB不小于60°,求t的取值范围.【答案】(1)抛物线解析式为y=x2﹣x﹣,顶点坐标(,﹣);(2)PB+PD的最小值为;(3)①5;②取值范围是【解析】(1)方法一:设二次函数的表达式为,B(0,-)代入解得∴∴顶点坐标为方法二:也可以用三点式设代入三点或者顶点式设代入两点求得。
九年级数学二次函数、圆综合检测题
为( ) A.﹣ 20m B.10m C. 20m D.﹣ 10m
二.填空题 10.已知点 A(4,y1),B( ,y2),C(﹣ 2, y3)都在二次函数 y=(x﹣2)2﹣1 的图
象上,则 y1、y2、y3 的大小关系是
.
11.如图, P 是抛物线 y=﹣x2+x+2 在第一象限上的点,过点 P 分别向 x 轴
19.如图,隧道的截面由抛物线和长方形构成,长方形的长是 12m,宽是 4m.按照图 中所示的直角坐标系, 抛物线可以用 y=﹣ x2+bx+c 表示,且抛物线的点 C 到墙面 OB的 水平距离为 3m 时,到地面 OA 的距离为 m.(1)求该抛物线的函数关系式,并计算
6.如图,已知 P 是⊙ O 外一点, Q 是⊙ O 上的动点, 线段 PQ 的中点为 M ,
连接 OP,OM.若⊙ O 的半径为 2,OP=4,则线段 OM 的最小值是(
)
A.0 B. 1 C. 2 D.3
7.以半径为 1 的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则Biblioteka 该三角形的面积是(为
.
13.如图,⊙ O 的半径是 2,直线 l 与⊙ O 相交于 A、 B 两点, M 、N 是⊙ O 上的两个动
点,且在直线 l 的异侧,若∠ AMB=4°5 ,则四边形 MANB 面积的最大值是
.
14.如图,一块直角三角板 ABC的斜边 AB 与量角器的直径恰好重合,点 D 对应的刻度
是 58°,则∠ ACD的度数为
.
15.如图,半径为 5 的半圆的初始状态是直径平行于桌面上的直线 b,然后把半圆沿直
线 b 进行无滑动滚动,使半圆的直径与直线 b 重合为止,则圆心 O 运动路径的长度等
2024年福建中考数学专题复习:二次函数综合题(含答案)
2024年福建中考数学专题复习:二次函数综合题一.定点问题(共3小题)1.已知抛物线y=x2﹣2mx﹣3(m为常数).(1)求抛物线的顶点坐标(用含m的代数式表示);(2)当m≥1时,求抛物线顶点到x轴的最小距离;(3)当m=0时,点A,B为该抛物线上的两点,顶点为D,直线AD的解析式为y1=k1x+b1,直线BD的解析式为y2=k2x+b2,若k1k2=﹣,求证:直线AB过定点.2.已知抛物线y=x2+bx+c关于直线x=1对称,且过点(2,1).(1)求抛物线的解析式;(2)过D(m,﹣1)的直线DE:y=k1x+b1(k>0)和直线DF:y=k2x+b2(k2<0)均与抛物线有且只有一个交点.①求k1k2的值;②平移直线DE,DF,使平移后的两条直线都经过点R(1,0),且分别与抛物线相交于G、H和P、Q两点,若M、N分别为GH,PQ的中点,求证:直线MN必过某一定点.3.在平面直角坐标系中,抛物线l:y=x2﹣2mx﹣2﹣m(m>0)与x轴分别相交于A、B两点(点A在点B的左侧),与y轴相交于点C,设抛物线l的对称轴与x轴相交于点N,且OC=3ON(1)求m的值;(2)设点G是抛物线在第三象限内的动点,若∠GBC=∠ACO,求点G的坐标;(3)将抛物线y=x2﹣2mx﹣2﹣m向上平移3个单位,得到抛物线l′,设点P、Q是抛物线l′上在第一象限内不同的两点,射线PO、QO分别交直线y=﹣2于点P′、Q′,设P′、Q′的横坐标分别为x P′、x Q′,且x P′⋅x Q′=4,求证:直线PQ经过定点.二.定值问题(共2小题)4.过原点的抛物线与x轴的另一个交点为A,且抛物线的对称轴为直线x=2,顶点为B.(1)求抛物线的解析式;(2)如图(1),点E是直线AB上方抛物线上一点,连接AB,BE,AE,若△ABE的面积为4,求点E的坐标;(3)如图(2),设直线y=kx﹣2k(k≠0)与抛物线交于C,D两点,点D关于直线x=2的对称点为D',直线CD'与直线x=2交于点P,求证:BP的长为定值.5.已知抛物线C1:y=mx2+n与x轴于A,B两点,与y轴交于点C,△ABC为等腰直角三角形,且n=﹣1.(1)求抛物线C1的解析式;(2)将C1向上平移一个单位得到C2,点M、N为抛物线C2上的两个动点,O为坐标原点,且∠MON=90°,连接点M、N,过点O作OE⊥MN于点E.求点E到y轴距离的最大值;(3)如图,若点F的坐标为(0,﹣2),直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线C1有且只有一个公共点,设点G的横坐标为b,点H的横坐标为a,则a﹣b是定值吗?若是,请求出其定值,若不是,请说明理由.三.线段之积(共2小题)6.如图,在平面直角坐标系中,抛物线y=x2+bx+c,交x轴于A、B两点(点A在点B的左侧,其中A点坐标(﹣1,0);交y轴负半轴于点C,C点坐标(0,﹣3).(1)求出抛物线的解析式;(2)如图1,若抛物线上有一点D,∠ACD=45°,求点D的坐标.(3)如图2,点P是第一象限抛物线上一点,过点P的直线y=mx+n(n<0)与抛物线交于另外一点Q,连接AP、AQ,分别交y轴于M、N两点.若OM•ON=2,试探究m、n之间的数量关系,并说明理由.7.已知抛物线y=ax2+bx+c经过点A(﹣1,0),B(2,0),C(0,﹣1).(1)求抛物线的解析式;(2)D为抛物线y=ax2+bx+c上不与抛物线的顶点和点A,B重合的动点.①设抛物线的对称轴与直线AD交于点F,与直线BD交于点G,点F关于x轴的对称点为F′,求证:GF′的长度为定值;②当∠BAD=45°时,过线段AD上的点H(不含端点A,D)作AD的垂线,交抛物线于P,Q两点,求PH•QH的最大值.四.线段数量关系(共5小题)8.抛物线C:y=x2﹣2x﹣3交x轴于A,B两点(点A在点B的左边),交y轴于点C.(1)直接写出点A,B的坐标;(2)如图1,直线y=x+1经过点A,交抛物线于另一点N,点D在抛物线上,满足△DAN的面积与△CAN的面积相等,求点D的横坐标;(3)如图2,将抛物线C向上平移,使其顶点M在x轴上,得到抛物线C1,P(x1,y1),Q(x2,y2)是抛物线C1上两点(P点在Q点左侧),直线PQ交抛物线C1对称轴于点E,过点Q作y轴的平行线分别交x轴,直线PM于F,H两点,EH交x轴于点G,求证:EG=GH.9.已知抛物线y=ax2+bx+c(a≠0).(1)若抛物线经过点(﹣1,1)且对称轴为直线x=1,求a,c所满足的数量关系;(2)抛物线与y轴交于点,顶点为Q(2,0),过点的直线与抛物线交于E,F两点(点E在点F的左侧).①求△EQF面积的最小值;②过点E作x轴的垂线,垂足为M,直线EM与直线FQ交于点N,连接PM,求证:PM∥QN.10.如图,抛物线y=﹣x2+bx+c经过A(4,0),C(﹣1,0)两点,与y轴交于点B,点P为抛物线上的一个动点,连接AB,BC,PA,PC,PC与AB相交于点Q.(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一个动点.设△APQ的面积为S1,△BCQ的面积为S2.求S1﹣S2的最大值,并求此时点P的坐标;(3)过点P作PD垂直于x轴于点D,与线段AB交于点N.设点D的横坐标为m,且2<m<4,PD中点为点M,AB中点为点E,若,求m的值.11.抛物线y=﹣x2+bx+c经过点A(4,0),与y轴交于点B,对称轴为,点P是x轴上一点,过点P作垂直于x轴的直线分别交抛物线和直线AB于点E和点F.(1)求二次函数的表达式;(2)若E、F、P三个点中恰有一点是其它两点所连线段的中点(三点重合除外)时,求点P的坐标;(3)分别过点E、F向抛物线的对称轴作垂线,交对称轴于点M、N,矩形EMNF与此抛物线相交,抛物线被截得的部分图象记作G,G的最高点的纵坐标为m,最低点纵坐标为n,当m﹣n=2OP时,求点P的坐标.12.已知抛物线y=﹣﹣2x+3n(n>0)与x轴交于A,B两点(点A位于点B的左侧);与y轴交于点C,顶点为D.(1)如图1,若n=1.①则D的坐标为;②当m≤x≤0时,抛物线的最小值为3,最大值为4,则m的取值范围为.(2)如图2,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线PB 同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2nd.①求证:AC∥PB.②连接AP、OD、OQ、DQ,若AP=QB,PQ=4n,试判断△DOQ的形状是否随着n的变化而变化?并说明理由.五.面积问题(共5小题)13.已知抛物线C1:y=﹣x2﹣2x﹣1,抛物线C2经过点A(﹣1,0),B(m+1,0)(m>0),E为抛物线C2的顶点,M(x M,0)是x轴正半轴上的点.(1)若E在抛物线C1上,求点E的坐标;(用含m的式子表示)(2)若抛物线C2:y=x2﹣mx+n,与y轴交于点C.①点D(m,y D)在抛物线C2上,当AM=AD,x M=5时,求m的值;②若m=2,F是线段OB上的动点,过F作GF⊥CF交线段BC于点G,连接CE,GE,求△CGE面积的最小值.14.如图,在直角坐标系中,抛物线y=x2+bx+c经过点A的坐标为(﹣2,0)和原点O,将线段OA绕原点O 顺时针旋转120°,得到线段OB.(1)求抛物线解析式,判断点B是否在抛物线上;(2)连接AB,作点O关于AB的对称点O′,求四边形AOBO′的面积;(3)点P(n,0)是x轴上一个动点,过P点作x轴的垂线交直线AB于点M,交抛物线于点N,将△ANB的面积记为S,若≤S≤,求n的取值范围.15.在平面直角坐标系xOy中,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的函数解析式;(2)连接AC,BC,点D是直线BC下方抛物线上的一个的动点(不与B,C重合),①求△BCD面积的最大值;②若∠ACO+∠BCD=∠ABC,求点D的坐标.16.在平面直角坐标系中,抛物线经过点和点B(4,0),与y轴交于点C,点P 抛物线上一点.(1)求抛物线的解析式;(2)已知点P为第一象限内抛物线上的点,过点P作PH⊥AB,垂足为H,作PE⊥x轴,垂足为E,交AB于点F,设△PHF的面积为S1,△BEF的面积为S2,当时,求点P的坐标;(3)点N为抛物线对称轴上的动点,是否存在点N,使得直线BC垂直平分线段PN?若存在,请直接写出点N 坐标,若不存在,请说明理由.17.抛物线y=x2+bx+c交x轴于A(﹣1,0),B(3,0)两点,C是第一象限抛物线上一点,直线AC交y轴于点P.(1)求抛物线解析式;(2)如图1,当OP=OA时,D是点C关于抛物线对称轴的对称点,M是抛物线上的动点,它的横坐标为m(﹣1<m<4),连接DM,CM,DM与直线AC交于点N.设△CMN和△CDN的面积分别为S1和S2,求的最大值.(3)如图2,直线BP交抛物线于另一点E,连接CE交y轴于点F,点C的横坐标为n.求的值.2024年福建中考数学专题复习:二次函数综合题(答案)一.定点问题(共3小题)1.已知抛物线y=x2﹣2mx﹣3(m为常数).(1)求抛物线的顶点坐标(用含m的代数式表示);(2)当m≥1时,求抛物线顶点到x轴的最小距离;(3)当m=0时,点A,B为该抛物线上的两点,顶点为D,直线AD的解析式为y1=k1x+b1,直线BD的解析式为y2=k2x+b2,若k1k2=﹣,求证:直线AB过定点.【答案】(1)(m,﹣m2﹣3);(2)抛物线顶点到x轴的最小距离为4;(3)直线AB过定点(0,﹣).2.已知抛物线y=x2+bx+c关于直线x=1对称,且过点(2,1).(1)求抛物线的解析式;(2)过D(m,﹣1)的直线DE:y=k1x+b1(k>0)和直线DF:y=k2x+b2(k2<0)均与抛物线有且只有一个交点.①求k1k2的值;②平移直线DE,DF,使平移后的两条直线都经过点R(1,0),且分别与抛物线相交于G、H和P、Q两点,若M、N分别为GH,PQ的中点,求证:直线MN必过某一定点.【答案】(1)y=x2﹣2x+1;(2)①k1k2=﹣4;②证明见解答过程.3.在平面直角坐标系中,抛物线l:y=x2﹣2mx﹣2﹣m(m>0)与x轴分别相交于A、B两点(点A在点B的左侧),与y轴相交于点C,设抛物线l的对称轴与x轴相交于点N,且OC=3ON(1)求m的值;(2)设点G是抛物线在第三象限内的动点,若∠GBC=∠ACO,求点G的坐标;(3)将抛物线y=x2﹣2mx﹣2﹣m向上平移3个单位,得到抛物线l′,设点P、Q是抛物线l′上在第一象限内不同的两点,射线PO、QO分别交直线y=﹣2于点P′、Q′,设P′、Q′的横坐标分别为x P′、x Q′,且x P′⋅x Q′=4,求证:直线PQ经过定点.【答案】(1)m=1;(2)点G的坐标为;(3)见解析.二.定值问题(共2小题)4.过原点的抛物线与x轴的另一个交点为A,且抛物线的对称轴为直线x=2,顶点为B.(1)求抛物线的解析式;(2)如图(1),点E是直线AB上方抛物线上一点,连接AB,BE,AE,若△ABE的面积为4,求点E的坐标;(3)如图(2),设直线y=kx﹣2k(k≠0)与抛物线交于C,D两点,点D关于直线x=2的对称点为D',直线CD'与直线x=2交于点P,求证:BP的长为定值.【答案】(1)解析式为:y=x2﹣2x;(2)E1(0,0),E2(6,6);(3)证明见解答过程.5.已知抛物线C1:y=mx2+n与x轴于A,B两点,与y轴交于点C,△ABC为等腰直角三角形,且n=﹣1.(1)求抛物线C1的解析式;(2)将C1向上平移一个单位得到C2,点M、N为抛物线C2上的两个动点,O为坐标原点,且∠MON=90°,连接点M、N,过点O作OE⊥MN于点E.求点E到y轴距离的最大值;(3)如图,若点F的坐标为(0,﹣2),直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线C1有且只有一个公共点,设点G的横坐标为b,点H的横坐标为a,则a﹣b是定值吗?若是,请求出其定值,若不是,请说明理由.【答案】(1)y=x2﹣1;(2);(3)定值1.三.线段之积(共2小题)6.如图,在平面直角坐标系中,抛物线y=x2+bx+c,交x轴于A、B两点(点A在点B的左侧,其中A点坐标(﹣1,0);交y轴负半轴于点C,C点坐标(0,﹣3).(1)求出抛物线的解析式;(2)如图1,若抛物线上有一点D,∠ACD=45°,求点D的坐标.(3)如图2,点P是第一象限抛物线上一点,过点P的直线y=mx+n(n<0)与抛物线交于另外一点Q,连接AP、AQ,分别交y轴于M、N两点.若OM•ON=2,试探究m、n之间的数量关系,并说明理由.【答案】(1)y=x2﹣2x﹣3;(2)D(4,5);(3)m、n之间的数量关系为n+3m=2.理由间接性.7.已知抛物线y=ax2+bx+c经过点A(﹣1,0),B(2,0),C(0,﹣1).(1)求抛物线的解析式;(2)D为抛物线y=ax2+bx+c上不与抛物线的顶点和点A,B重合的动点.①设抛物线的对称轴与直线AD交于点F,与直线BD交于点G,点F关于x轴的对称点为F′,求证:GF′的长度为定值;②当∠BAD=45°时,过线段AD上的点H(不含端点A,D)作AD的垂线,交抛物线于P,Q两点,求PH•QH的最大值.【答案】(1)y=x2﹣x﹣1;(2)①F′G=为定值;②PH•QH的最大值为:.四.线段数量关系(共5小题)8.抛物线C:y=x2﹣2x﹣3交x轴于A,B两点(点A在点B的左边),交y轴于点C.(1)直接写出点A,B的坐标;(2)如图1,直线y=x+1经过点A,交抛物线于另一点N,点D在抛物线上,满足△DAN的面积与△CAN的面积相等,求点D的横坐标;(3)如图2,将抛物线C向上平移,使其顶点M在x轴上,得到抛物线C1,P(x1,y1),Q(x2,y2)是抛物线C1上两点(P点在Q点左侧),直线PQ交抛物线C1对称轴于点E,过点Q作y轴的平行线分别交x轴,直线PM于F,H两点,EH交x轴于点G,求证:EG=GH.【答案】(1)A(﹣1,0),B(3,0);(2)3或;(3)见解析.9.已知抛物线y=ax2+bx+c(a≠0).(1)若抛物线经过点(﹣1,1)且对称轴为直线x=1,求a,c所满足的数量关系;(2)抛物线与y轴交于点,顶点为Q(2,0),过点的直线与抛物线交于E,F两点(点E在点F的左侧).①求△EQF面积的最小值;②过点E作x轴的垂线,垂足为M,直线EM与直线FQ交于点N,连接PM,求证:PM∥QN.【答案】(1)3a+c=1;(2)①4;②见解答.10.如图,抛物线y=﹣x2+bx+c经过A(4,0),C(﹣1,0)两点,与y轴交于点B,点P为抛物线上的一个动点,连接AB,BC,PA,PC,PC与AB相交于点Q.(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一个动点.设△APQ的面积为S1,△BCQ的面积为S2.求S1﹣S2的最大值,并求此时点P的坐标;(3)过点P作PD垂直于x轴于点D,与线段AB交于点N.设点D的横坐标为m,且2<m<4,PD中点为点M,AB中点为点E,若,求m的值.【答案】(1)y=﹣x2+3x+4;(2)S1﹣S2的最大值为,点P的坐标为:(,);(3)m=.11.抛物线y=﹣x2+bx+c经过点A(4,0),与y轴交于点B,对称轴为,点P是x轴上一点,过点P作垂直于x轴的直线分别交抛物线和直线AB于点E和点F.(1)求二次函数的表达式;(2)若E、F、P三个点中恰有一点是其它两点所连线段的中点(三点重合除外)时,求点P的坐标;(3)分别过点E、F向抛物线的对称轴作垂线,交对称轴于点M、N,矩形EMNF与此抛物线相交,抛物线被截得的部分图象记作G,G的最高点的纵坐标为m,最低点纵坐标为n,当m﹣n=2OP时,求点P的坐标.【答案】(1);(2)(﹣1,0),,;(3)P(6,0).12.已知抛物线y=﹣﹣2x+3n(n>0)与x轴交于A,B两点(点A位于点B的左侧);与y轴交于点C,顶点为D.(1)如图1,若n=1.①则D的坐标为(﹣1,4);②当m≤x≤0时,抛物线的最小值为3,最大值为4,则m的取值范围为﹣2≤m≤﹣1 .(2)如图2,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线PB 同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2nd.①求证:AC∥PB.②连接AP、OD、OQ、DQ,若AP=QB,PQ=4n,试判断△DOQ的形状是否随着n的变化而变化?并说明理由.【答案】(1)①(﹣1,4);②﹣2≤m≤﹣1;(2)①证明见解析过程;②△DOQ的形状不会随着n的变化而变化,理由见解析过程.五.面积问题(共5小题)13.已知抛物线C1:y=﹣x2﹣2x﹣1,抛物线C2经过点A(﹣1,0),B(m+1,0)(m>0),E为抛物线C2的顶点,M(x M,0)是x轴正半轴上的点.(1)若E在抛物线C1上,求点E的坐标;(用含m的式子表示)(2)若抛物线C2:y=x2﹣mx+n,与y轴交于点C.①点D(m,y D)在抛物线C2上,当AM=AD,x M=5时,求m的值;②若m=2,F是线段OB上的动点,过F作GF⊥CF交线段BC于点G,连接CE,GE,求△CGE面积的最小值.【答案】(1)E(m,﹣m2﹣m﹣1);(2)①m=3﹣1;②6﹣6.14.如图,在直角坐标系中,抛物线y=x2+bx+c经过点A的坐标为(﹣2,0)和原点O,将线段OA绕原点O 顺时针旋转120°,得到线段OB.(1)求抛物线解析式,判断点B是否在抛物线上;(2)连接AB,作点O关于AB的对称点O′,求四边形AOBO′的面积;(3)点P(n,0)是x轴上一个动点,过P点作x轴的垂线交直线AB于点M,交抛物线于点N,将△ANB的面积记为S,若≤S≤,求n的取值范围.【答案】(1)y=x2+x;点B在抛物线上,理由见解答过程;(2)2;(3)≤n≤﹣或≤n≤或≤n≤.15.在平面直角坐标系xOy中,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的函数解析式;(2)连接AC,BC,点D是直线BC下方抛物线上的一个的动点(不与B,C重合),①求△BCD面积的最大值;②若∠ACO+∠BCD=∠ABC,求点D的坐标.【答案】(1)y=x2﹣2x﹣3;(2)①△BCD面积的最大值为;②D(,﹣).16.在平面直角坐标系中,抛物线经过点和点B(4,0),与y轴交于点C,点P抛物线上一点.(1)求抛物线的解析式;(2)已知点P为第一象限内抛物线上的点,过点P作PH⊥AB,垂足为H,作PE⊥x轴,垂足为E,交AB于点F,设△PHF的面积为S1,△BEF的面积为S2,当时,求点P的坐标;(3)点N为抛物线对称轴上的动点,是否存在点N,使得直线BC垂直平分线段PN?若存在,请直接写出点N 坐标,若不存在,请说明理由.【答案】(1)y=﹣x2+x+4;(2);(3)存在点N,使得直线BC垂直平分线段PN;N的坐标是或.17.抛物线y=x2+bx+c交x轴于A(﹣1,0),B(3,0)两点,C是第一象限抛物线上一点,直线AC交y轴于点P.(1)求抛物线解析式;(2)如图1,当OP=OA时,D是点C关于抛物线对称轴的对称点,M是抛物线上的动点,它的横坐标为m(﹣1<m<4),连接DM,CM,DM与直线AC交于点N.设△CMN和△CDN的面积分别为S1和S2,求的最大值.(3)如图2,直线BP交抛物线于另一点E,连接CE交y轴于点F,点C的横坐标为n.求的值.【答案】(1)y=x2﹣2x﹣3;(2);(3).。
2023年中考数学专题复习:二次函数综合题训练(含答案)
9.如图,在平面直角坐标系中,直线 与 轴交于点 ,与 轴交于点 .抛物线 经过点 、 .
(1)求抛物线解析式及顶点 坐标;
(2) 为抛物线第一象限内一点,使得 面积最大,求 面积的最大值及此时点 的坐标;
3.(1)
(2)
(3)存在,
(4) 或
4.(1)
(2)①最大值为8,m=2;②存在, 或
5.(1)C(0,6);抛物线的解析式为y=−x2+5x+6
(2)P(3,12)
(3)点N的坐标为( , )或( , )
6.(1)y= x2﹣3x﹣8,点B坐标(8,0),点E坐标(3,﹣4)
(2)存在,F
(3)﹣ 或﹣
(3)将抛物线沿射线AC方向平移 个单位长度,若点F为新抛物线对称轴上一点,在平面直角坐标系内是否存在点M,使以点B、C、F、M为顶点的四边形为矩形?若存在,请直接写出点F的坐标;若不存在,请说明理由.
12.如图,在平面直角坐标系中,二次函数 的图像与x轴交于点A( ,0)、B(4,0),与y轴交于点C.
(3)点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运点的三角形是等腰三角形?直接写出所有符合条件的t值.
3.如图,已知A(﹣2,0)、B(3,0),抛物线y=ax2+bx+4经过A、B两点,交y轴于点C.点P是第一象限内抛物线上的一动点,点P的横坐标为m.过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.过点P作PN⊥BC,垂足为点N.
(3)在(2)的条件下,有一条长度为 的线段 落在 上( 与点 重合, 与点 重合),将线段 沿 轴正方向以每秒 个单位向右平移,设移动时间为 秒,当四边形 周长最小时,求 的值.
中考数学复习:二次函数和圆的综合题(含答案)
1 二次函数和圆中考综合题【例题1】已知圆P 的圆心在反比例函数ky x =(1)k >图象上,并与x 轴相交于A 、B 两点.且始终与y 轴相切于定点C (0,1).(1)求经过A 、B 、C 三点的二次函数图象的解析式; (2)若二次函数图象的顶点为D ,问当k 为何值时,四边形ADBP 为菱形.【例题2】在平面直角坐标系中,四边形OABC 是矩形,是矩形,OA=4OA=4OA=4,,AB=2AB=2,直线,直线32y x =-+与坐标轴交于D 、E 。
设M 是AB 的中点,的中点,P P 是线段DE 上的动点上的动点. .(1)求M 、D 两点的坐标;(2)当P 在什么位置时,在什么位置时,PA=PB PA=PB PA=PB?求出此时?求出此时P 点的坐标;(3)过P 作PH PH⊥⊥BC BC,垂足为,垂足为H ,当以PM 为直径的⊙为直径的⊙F F 与BC 相切于点N 时,求梯形PMBH 的面积的面积. .【例题3】在直角坐标系中,⊙A的半径为4,圆心A的坐标为(2,0),⊙A与x轴交于E、F两点,与y 轴交于C、D两点,过点C作⊙A的切线BC,交x轴于点B.的解析式;(1)求直线CB的解析式;(2)若抛物线y=ax2+b x+c的顶点在直线BC上,与x轴的交点恰为点E、F,求该抛物线的解析式;,求该抛物线的解析式;(3)试判断点C是否在抛物线上?是否在抛物线上?相似?直接写出两组这样的点. (4)在抛物线上是否存在三个点,由它构成的三角形与△AOC相似?直接写出两组这样的点.【例题4】如图,已知抛物线y= ax2 + bx-3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为5.设⊙M与y轴交于D,抛物线的顶点为E.的值及抛物线的解析式;(1)求m的值及抛物线的解析式;(a-b)的值;)的值;sin((2)设∠DBC = a,∠CBE = b,求sin(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指的坐标;若不存在,请说明理由.出点P的位置,并直接写出点P的坐标;若不存在,请说明理由.【例题5】如图,点M (4,0),以点M 为圆心、为圆心、22为半径的圆与x 轴交于点A 、B .已知抛物线216y x bx c =++过点A 和B ,与y 轴交于点C .(1)求点C 的坐标,并画出抛物线的大致图象.的坐标,并画出抛物线的大致图象.(2)点Q (8,m )在抛物线216y x bx c =++上,点P 为此抛物线对称轴上一个动点,求PQ +PB 的最小值.最小值.(3)CE 是过点C 的⊙M 的切线,点E 是切点,求OE 所在直线的解析式.所在直线的解析式.【例题6】如图所示,如图所示,在平面直角坐标系中,在平面直角坐标系中,M 经过原点O ,且与x 轴、y 轴分别相交于A (-8,0),B (0,-6)两点.)两点.(1)请求出直线AB 的函数表达式;的函数表达式;(2)若有一抛物线的对称轴平行于y 轴且经过点M ,顶点C 在M 上,开口向下,且经过点B ,求此抛物线的函数表达式;函数表达式;(3)设(2)中的抛物线交x 轴于D E ,两点,在抛物线上是否存在点P ,使得115PDE ABC S S =△△?若存在,请求出点P 的坐标;若不存在,请说明理由.的坐标;若不存在,请说明理由.(4)点H 是抛物线对称轴上的一个动点,且在点M 的下方,请问抛物线上是否存在另一点Q ,使得△ABH 与△ABQ 全等。
2024年九年级中考数学专题复习:圆与二次函数的综合压轴题(含答案)
2024年九年级中考数学专题复习:圆与二次函数的综合压轴题(1)求抛物线的解析式.3.如图,在平面直角坐标系中,顶点为(B、C两点(点B在点C的左侧),已知(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线与点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C的位置关系,并给出证明.(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形.若存在,求点P的坐标;若不存在,请说明理由.4.如图所示:在平面直角坐标系中,圆M经过原点O且与X轴Y轴分别相交于A(-6,0),B(0,-8)两点(1)请写出直线AB的解析式(2)若有一抛物线的对称轴平行于Y轴且经过点M,顶点C在圆M上,开口向下且经过点B.求此抛物线的函数表达式(3)设(2)中的抛物线交X轴于D、E两点,在抛物线上是否存在点P,使得.若存在,请直接写出所有点P的坐标,若不存在,请说明理由5.如图,二次函数y=a +bx +c 的图象交x 轴于A 、B 两点,交y 轴于点C .且B (1,0),若将△BOC 绕点O 逆时针旋转90°,所得△DOE 的顶点E 恰好与点A 重合,且△ACD 的面积为3.(1)求这个二次函数的关系式.(2)设这个二次函数图象的顶点为M ,请在y 轴上找一点P ,使得△PAM 的周长最小,并求出点P 的坐标.(3)设这个函数图象的对称轴l 交x 轴于点N ,问:A 、M 、C 、D 、N 这5个点是否会在同一个圆上?若在同一个圆上,请求出这个圆的圆心坐标,并作简要说明;若不可能,请说明理由.6.如图,在直角坐标系中,以点A (,0 )为圆心,以2为半径的圆与x 轴相交于点B 、C ,与y 轴相交于点D 、E (1)若抛物线经过C 、D 两点,求抛物线的表达式,并判断点B 是否在该抛物线上(2)在(1)中的抛物线的对称轴上求一点P ,使得△PBD 的周长最小(3)设Q 为(1)中的抛物线对称轴上的一点,在抛物线上是否存在这样的点M ,使得四边形BCQM 是平行四边形,若存在,求出点M 的坐标;若不存在,说明理由2x7.如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A,B 两点,开口向下的抛物线经过点A,B,且其顶点P在⊙C上.(1)求∠ACB的大小;(2)写出A,B两点的坐标;(3)试确定此抛物线的解析式;(4)在该抛物线上是否存在一点D,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.8.如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D.(1)如图1,已知点A,B,C的坐标分别为(﹣2,0),(8,0),(0,﹣4);①求此抛物线的表达式与点D的坐标;②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;(2)如图2,若a=1,求证:无论b,c取何值,点D均为定点,求出该定点坐标.9.如图,在平面直角坐标系中,圆M经过原点O,且与x轴、y轴分别相交于A(-8,0),B(0,-6)两点.(1)求出直线AB的函数解析式;(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在圆M上,开口向下,且(1)求该抛物线的函数关系式及顶点12.如图,已知在平面直角坐标系xOy 中,抛物线与x 轴交于点A (﹣1,0)和点B ,与y 轴相交于点C (0,3),抛物线的对称轴为直线.(1)求这条抛物线的关系式,并写出其对称轴和顶点M的坐标;(2)如果直线y=kx+b 经过C 、M 两点,且与x 轴交于点D ,点C 关于直线的对称点为N ,试证明四边形CDAN 是平行四边形;(3)点P 在直线上,且以点P 为圆心的圆经过A 、B 两点,并且与直线CD 相切,求点P 的坐标.13.在平面直角坐标系中,直线交轴于点,交轴于点,抛物线经过点,与直线交于点.(1)求抛物线的解析式;(2)如图,横坐标为的点在直线上方的抛物线上,过点作轴交2y ax 2x c =++l l l直线于点,以为直径的圆交直线于另一点.当点在轴上时,求的周长;将绕坐标平面内的某一点按顺时针方向旋转,得到,点的对应点分别是.若的两个顶点恰好落在抛物线上,请直接写出点2)(2)当△BOD为等边三角形时,求点B的坐标;(3)若以点B为圆心、r为半径作圆B,当圆B与两个坐标轴同时相切时,求点B的坐标.16.如图,已知抛物线y=ax2+bx﹣3(a≠0)经过点A(3,0),B(﹣1,0).(1)求该抛物线的解析式;(2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;(3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.参考答案:)((3)-;(,)(,;最大值为;(3≤m≤.﹣x+x+1=;(,)或(﹣,)185。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019 初三数学中考专题复习 二次函数和圆 专题综合检测 1.下列关系式中,属于二次函数的是(x 为自变量)( ) =18x 2 =-x 2
-1 =1x
2 =a 4x 4 2.抛物线y =2x 2
,y =-2x 2
,y =12
x 2
的共同性质是( )
A.开口向上
B.对称轴是y 轴
C.都有最高点 随x 的增大而增大 3.若二次函数y =(x -m)2-1,当x≤1时,y 随x 的增大而减小,则m 的取值范围是( )
=1 >1 ≥1 ≤1
4.如图,AB 是⊙O 的直径.若∠BAC =35°,那么∠ADC =( )
° ° ° °
5.在同圆中,下列四个命题:①圆心角是顶点在圆心的角;②两个圆心角相等,它们所对的弦也相等;③两条弦相等,它们所对的弧也相等;④等弧所对的圆心角相等.其中真命题有( )
个 个 个 个
6.如图,CD 是⊙O 的直径,弦AB ⊥CD 于E ,连接BC 、BD.下列结论错误的是( )
=BE B.
=DE D. .∠DBC =90°
7.如图,AD 、AE 、CB 均为⊙O 的切线,D 、E 、F 分别是切点,AD =8,则△ABC 的周长为( )
D.不能确定
8.如果二次函数y =ax 2+bx +c 的图象如图所示,那么一次函数y =bx +c 和反比例函数y =b
x
在同一坐标系中的图象大致是( )
9.如图,圆形薄铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O ,三角尺的直角顶点C 落在直尺的10cm 处,铁片与直尺的唯一公共点A 落在直尺的14cm 处,铁片与三角尺的唯一公共点为B.下列说法错误的是( )
A.圆形铁片的半径是4cm
B.四边形AOBC 为正方形
C.弧AB 的长度为4πcm
D.扇形OAB 的面积是4πcm 2
10.已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,并且关于x 的一元二次方程ax 2+bx +c -m =0有两个不相等的实数根,下列结论:①b 2-4ac <0;②abc >0;③a -b +c <0;④m >-2,其中正确的个数有( )
11.如图,扇形OAB 的圆心角为120°,半径为3,则该扇形的弧长为 (结果保留π).
12.已知抛物线y =x 2
-4x 上有两点P 1(3,y 1)、P 2(-1
2
,y 2),则y 1与y 2的大
小关系为:y 1 y 2(填“>”“<”或“=”).
13.如图,⊙I 是△ABC 的内切圆,D 、E 、F 为三个切点,若∠DEF =52°,则∠A 的度数为 .
14.某软件商店销售一种益智游戏软件,如果以每盘50元的售价销售,一个月能售出500盘,根据市场分析,若销售单价每涨价1元,月销售量就减少10盘,当每盘的售价涨x 元(x 取整数)时,该商店月销售额y(元)与x 的函数关系式为 ,自变量x 的取值范围是 .
15.设A 、B 、C 三点依次分别是抛物线y =x 2-2x -5与y 轴的交点以及与x 轴的两个交点,则△ABC 的面积是 .
16. 已知二次函数y =-x 2+2x +m 的部分图象如图所示,则关于x 的一元二次方程-x 2+2x +m =0的解为 .
17. 已知抛物线y =12x 2+x -5
2
.
(1)用配方法求出它的顶点坐标和对称轴;
(2)若抛物线与x 轴的两个交点为A 、B ,求线段AB 的长.
18. 如图,AB 是半圆O 的直径,C 、D 是半圆O 上的两点,且OD ∥BC ,OD 与AC 交于点E.
(1)若∠B=70°,求∠CAD的度数;
(2)若AB=4,AC=3,求DE的长.
19. 已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:
x…
-
1
01234…
y…
1
52125…
(1)
(2)当x为何值时,y有最小值,最小值是多少
(3)若A(m,y1)、B(m+1,y2)两点都在该函数的图象上,试比较y1与y2的大小.
20. 如图,已知AB是⊙O的直径,点C、D在⊙O上,∠D=60°且AB=6,过O点作OE⊥AC,垂足为E.
(1)求OE的长;
(2)若OE的延长线交⊙O于点F,求弦AF、AC和围成的图形(阴影部分)的面积.
21. 某公司经销一种绿茶,每千克成本为50元,市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系为w=-2x+240,且物价部门规定这种绿茶的销售单价不得高于90元/千克.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:
(1)求y与x的函数关系式;
(2)当x取何值时,y的值最大
(3)如果公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元
22. 如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且BD=BC,延长AD到E,且有∠EBD=∠CAB.
(1)求证:BE是⊙O的切线;
(2)若BC=3,AC=5,求圆的直径AD及切线BE的长.
23. 如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-3,0)、B(5,0)、C(0,5)三点,O为坐标原点.
(1)求此抛物线的解析式;
(2)若把抛物线y=ax2+bx+c(a≠0)向下平移13
3
个单位长度,再向右平移
n(n>0)个单位长度得到新抛物线,若新抛物线的顶点M在△ABC内,求n的取值范围;
(3)设点P在y轴上,且满足∠OPA+∠OCA=∠CBA,求CP的长.。