特殊平行四边形典型例题解 析题

合集下载

八年级数学特殊平行四边形经典强化题型(解析版)

八年级数学特殊平行四边形经典强化题型(解析版)

第一章 特殊平行四边形(强化题型)多结论问题【例1】如图,分别以直角的斜边,直角边为边向外作等边和等边,为的中点,与交于点,与交于点,,.给出如下结论:①;②四边形为菱形;③;④;其中正确结论的是 A.①②③B.①②④C.①③④D.②③④【解答】解:是等边三角形,,,,,,为的中点,,,,,,,故①正确,,,,是的中点,,,,,故④说法正确;,,,,,,,,,,,,四边形为平行四边形,,四边形不是菱形;故②说法不正确;,,,则,故③说法正确,故选:.【变式训练1】如图,在菱形中,,、分别是,的中点,、相交于点,连接,.有下列结论:①;②;③;④;⑤;⑥,正确结论的有 个.A.1B.2C.3D.4【解答】解:四边形是菱形,..,,是等边三角形,是等边三角形.,.,分别是,的中点,,,,,,故①正确;在和中,,,.,,.故②正确.为直角三角形,,,与不全等.故③错误;,故④错误;,,故⑤正确;,,,故⑥错误.正确的有:①②⑤共三个.故选:.【变式训练2】如图,在正方形中,边长为2的等边三角形的顶点,分别在和上,下列结论:其中正确的序号是 ①;②;③;④.A.①②④B.①②C.②③④D.①③④【解答】解:四边形是正方形,是等边三角形,,,,,在和中,,,,,,,,故①正确;,故②正确;连接,则,,同理,,,故③错误;,,,,设,则,,,解得,(舍去),,,即,由上可得,正确的是①②④,故选:.一些常见的辅助线求线段和角度【例1】如图,在菱形中,,,分别是边和的中点,于点,则 A.B.C.D.【解答】解:延长交的延长线于点.在菱形中,,,分别是边和的中点,,..,.又,,..,.,则.故选:.【变式训练1】矩形与如图放置,点,,共线,点,,共线,连接,取的中点,连接.若,,则 A.1B.C.D.【解答】解:如图,延长交于点,四边形和四边形都是矩形,,、,,,又是的中点,,在和中,,,,,,、,,则,故选:.【变式训练2】如图正方形的边长为,是对角线上的点,连结,过点作交线段于点.当时,的长为 A.B.C.D.【解答】解:过作于,交于,如图,四边形为正方形,,,,为等腰直角三角形,,而,,,,而,,在和中,,,正方形的边长为,,,设,则,,,,.故选:.动点和为定值【例1】如图,在菱形中,是对角线上一动点,过点作于点.于点.若菱形的周长为20,面积为24,则的值为 A.4B.C.6D.【解答】解:连结,如图,四边形为菱形,菱形的周长为20,,,,,,故选:.【变式训练1】如图,矩形的对角线,交于点,点在边上从点到点运动,过点作于点,作于点.已知,,随着点的运动,关于的值,下面说法正确的是 A.先增大,后减小B.先减小,后增大C.始终等于2.4D.始终等于3【解答】解:过点作,交的延长线于点,过点作于点,过点作于点,在矩形中,,,,,,,,,、、三点共线,,,,由勾股定理可知:,,,即,故选:.【变式训练2】如图,点是矩形的边上一动点,矩形两边长、长分别为15和20,那么到矩形两条对角线和的距离之和是 A.6B.12C.24D.不能确定【解答】解:连接,如图所示:四边形是矩形,,,,,,,,,,,,,.点到矩形的两条对角线和的距离之和是12.故选:.【变式训练3】如图,正方形的边长为2,为对角线上一点,且,点为线段上一动点,且于,于,则的值为 .【解答】解:连接,,交于,四边形 为正方形,,,垂足为,,,,,,,,,.故答案为.动点最值问题【例1】如图,在边长为2的正方形中,点为对角线上一动点,于点,于点,连接,则的最小值为 A.1B.C.D.【解答】解:连接,如图所示:四边形是正方形,,,于,于四边形为矩形,,当时,取得最小值,此时是等腰直角三角形,,的最小值为;故选:.【变式训练1】如图,在中,且,,点是斜边上的一个动点,过点分别作于点,于点,连接,则线段的最小值为 A.B.C.3D.4【解答】解:,且,,,,,,四边形是矩形,,当时,的值最小,此时,的面积,,的最小值为;故选:.【变式训练2】如图,在中,,,,是斜边上一动点,于,于,与相交于点,则的最小值是 A.4.8B.3.6C.2.4D.1.2【解答】解:四边形是矩形,,互相平分.且,,当的值最小时,的值就最小,当时,的值最小,即的值最小.,.在中,由勾股定理,得.,,,.,故选:.胡不归问题【例1】如图,在中,,,,若是边上的动点,则的最小值 A.B.6C.D.4【解答】解:过点作射线,使,再过动点作,垂足为点,连接,如图所示:在中,,,,当,,在同一直线上,即时,的值最小,最小值等于垂线段的长,此时,,是等边三角形,,在中,,,,,,,,,的最小值为6,故选:.【变式训练1】如图,矩形中,,,点是边上一动点,连接、,则的最小值为 .【解答】解:作直线,使,作,垂足为,则,的最小值为的最小值,即、、三点共线时值最小,如图,,,,,,,,,的最小值为.故答案为:.【变式训练2】如图,矩形中,,,点是上一动点,则的最小值为 .【解答】解:如图,作平分交于,过点作于,过点作于.四边形是矩形,,,,,,平分,,,,,在中,,,,,,,的最小值为,故答案为:.辅助圆【例1】如图,,是正方形的边上两个动点,满足.连接交于点,连接交于点.若正方形的边长为2,则线段长度的最小值是.【解答】解:在正方形中,,,,在和中,,,,在和中,,,,,,,,取的中点,连接、,则,在中,,根据三角形的三边关系,,当、、三点共线时,的长度最小,最小值.(解法二:可以理解为点是在,直径的半圆上运动当、、三点共线时,长度最小)故答案为:.【变式训练1】如图,在边长为2的菱形中,,是边的中点,是边上的一动点,将沿所在直线翻折得到△,连接,则长度的最小值是 .【解答】解:如图所示:是定值,长度取最小值时,即在上时,过点作于点,在边长为2的菱形中,,为中点,,,,,,,.故答案为:.【变式训练2】如图,在正方形中,,点,分别在,上,,,相交于点,连接.点从点运动到点的过程中,的最小值为 .【解答】解:如图,四边形是正方形,,,,,,,,,点的运动轨迹是以为直径的,当,,共线时,的值最小,最小值,故答案为.【变式训练3】如图,在矩形纸片中,边,,点为边上的动点(点不与点,重合),将纸片沿折叠,则的最小值为 .【解答】解:连接,当点在上时,有最小值,四边形是矩形,,,,,,由折叠性质得:,,的最小值,故答案为:8.证明综合【例1】如图,在正方形中,点是边延长线上一点,联结,过点作,垂足为点,与边相交于点.(1)求证:;(2)联结,求证:;(3)如果正方形的边长为2,点是边的中点,求的长.【解答】解:(1)四边形为正方形,,,,,,在与中,,.(2)作交于点,,,,,在和中,,,,,为等腰直角三角形,.(3)作于点,为等腰直角三角形,,为中点,正方形的边长为2,,,,,在和中,,,,.【变式训练1】如图,正方形中,点在边上,连接,过点作与的延长线相交于点,连接与边相交于点、与对角线相交于点.(1)若,且,求的长;(2)若,求证:.【解答】(1)解:四边形是正方形,且,,,,,,,在和中,,,,,,;(2)在上取一点,使,连接,由(1)得是等腰直角三角形,,,在和中,,,,,在和中,,(对顶角相等),,,,,是等边三角形,,,.【变式训练2】如图,在正方形中,,为正方形内一点,,,连结,,过点作,垂足为点,交的延长线于点,连结.(1)当时,求的度数;(2)判断的形状,并说明理由;(3)当时,求的长.【解答】解:(1)四边形是正方形,,,,,,,.(2)结论:是等腰直角三角形.理由:,,是的垂直平分线,,,,,,,,,,,为等腰直角三角形.(3)如图,连接,四边形是正方形,,为等腰直角三角形,,,,,,(负根已经舍弃).【变式训练3】已知:如图,四边形的对角线、相交于点,,.(1)求证:四边形是矩形;(2)如果点在边上,平分,,求证:.【解答】证明:(1)在和中,,,,,四边形是平行四边形,,,,,平行四边形是矩形;(2)过点作于,如图所示:由(1)得:四边形是矩形,,,是等腰直角三角形,,,,是等腰直角三角形,,平分,,在和中,,,,,,,.【变式训练4】如图,,为平行四边形的对角线,点是上一点,点在延长线上,且,与交于点,连结.(1)求证:.(2)连结,,若,且恰好是的中点,求证:四边形是菱形.(3)在(2)的条件下,若四边形是正方形,且,求的长.【解答】(1)证明:四边形是平行四边形,,,是的中位线,;(2)证明:由(1)得:,,是的中点,,在和中,,,,四边形是平行四边形,四边形是平行四边形,,,,平行四边形是菱形;(3)解:四边形是正方形,,,,,,在中,由勾股定理得:.45°角模型【例1】如图,已知正方形中,点、分别在边、上,.(1)求证:;(2)当,时,求的面积.【解答】解:(1)延长到,使,在和中,,,,,,在和中,,,;(2)由(1)得,,,,.【变式训练1】正方形的边长为3,、分别是、边上的点,且.(1)求证:;(2)当时,求的长.【解答】解:(1)证明:延长至,使,连接,如图,四边形是正方形,,..,.,,..即..在和中,...,.(2)设,则.正方形的边长为3,.,,...在中,,.解得:..【变式训练2】如图,在正方形中,为的中点,点在边上,且.(1)求证:;(2)求的值.【解答】(1)证明:如图,过点作于点,,四边形是正方形,,,,,..在和中,,,,,在和中,,,,;(2)解:设正方形的边长为,,,,由(1)知:,,,,,在中,根据勾股定理,得,,解得,,,.【变式训练3】正方形的边长为6,,分别是,边上的点,且,将绕点逆时针旋转,得到.(1)求证:;(2)当时,求的长.【解答】(1)证明:逆时针旋转得到,,,、、三点共线,,,,,,在和中,,,,;(2)解:设,,且,,,,在中,由勾股定理得,即,解得:,则.非坐标系下的动点问题【例1】在矩形中,,,动点从出发,以每秒1个单位的速度,沿射线方向运动,连接,以为边向上作正方形.设点的运动时间为.(1)如图1,与边交于点,当时,求此时的值;(2)如图2,当点恰好落在矩形任意两个顶点的所在直线上时,请求出所有符合条件的的值.【解答】解:(1)连接,如图,正方形,矩形,,,在和中,,,,在中,,动点从出发,以每秒1个单位的速度,;(2)分四种情况,当点在上时,如图,矩形,,,,正方形,,,,,,在和中,,,,,动点从出发,以每秒1个单位的速度,;当点落在上时,如图,时正方形的对角线,,矩形,,,,动点从出发,以每秒1个单位的速度,;当点落在上时,过点作交于点,如图,正方形,,,,矩形,,,,在和中,,,,,设,则,,,,,,解得:,即,动点从出发,以每秒1个单位的速度,;当点落在上时,过点作交于点,如图,正方形,,,,矩形,,,,在和中,,,,,设,,则,,,,,,解得,,动点从出发,以每秒1个单位的速度,;故所有符合条件的的值或或或.【变式训练1】如图,在正方形中,,为对角线上一动点,连接、,过点作,交直线于点,点从点出发,沿方向以每秒的速度运动,当点与点重合时,运动停止.设的面积为,点的运动时间为秒.(1)点在整个运动过程中,试说明总有:;(2)求与之间关系的表达式,并写出的取值范围.【解答】证明:(1)如图1,过作,交于,交于,四边形是正方形,,,,,,,,,,,,,,四边形是正方形,,,,,,;(2)在中,由勾股定理得:,,由题意得:,,由(1)知:,分两种情况:①当时,如图1,,,,;②当时,如图2,过作于,,,,;综上,与之间关系的函数表达式为:.坐标系中的动点问题【例1】已知:如图,为坐标原点,四边形为矩形,,点是中点,点在上以每秒2个单位的速度由向运动,设动点的运动时间为秒.(1)为何值时,四边形是平行四边形?(2)在直线上是否存在一点,使得、、、四点为顶点的四边形是菱形?若存在,求的值,并求出点的坐标;若不存在,请说明理由.【解答】解:(1)四边形为矩形,,,,点时的中点,,由运动知,,,四边形是平行四边形,,,;(2)①当点在的右边时,如图,。

北师大版数学九年级上册特殊的平行四边形(含中考真题解析)

北师大版数学九年级上册特殊的平行四边形(含中考真题解析)

特殊的平行四边形知识点名师点晴矩形1.矩形的性质会从边、角、对角线方面通过合情推理提出性质猜想,并用演绎推理加以证明;能运用矩形的性质解决相关问题.2.矩形的判定会用判定定理判定平行四边形是否是矩形及一般四边形是否是矩形菱形1.菱形性质能应用这些性质计算线段的长度2.菱形的判别能利用定理解决一些简单的问题正方形1.正方形的性质了解平行四边形、矩形、菱形、正方形及梯形之间的相互关系,能够熟练运用正方形的性质解决具体问题2.正方形判定掌握正方形的判定定理,并能综合运用特殊四边形的性质和判定解决问题,发现决定中点四边形形状的因素,熟练运用特殊四边形的判定及性质对中点四边形进行判断,并能对自己的猜想进行证明☞2年中考1.下列命题是假命题的是()A.对角线互相垂直且相等的平行四边形是正方形.B.对角线互相垂直的矩形是正方形.C.对角线相等的菱形是正方形.D.对角线互相垂直平分的四边形是正方形.【答案】D.考点:1.正方形的判定;2.平行四边形的判定;3.菱形的判定;4.矩形的判定.2.(连云港)已知四边形ABCD,下列说法正确的是()A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形【答案】B.【解析】试题分析:∵一组对边平行且相等的四边形是平行四边形,∴A不正确;∵两组对边分别相等的四边形是平行四边形,∴B正确;∵对角线互相平分且相等的四边形是矩形,∴C不正确;∵对角线互相垂直平分且相等的四边形是正方形,∴D不正确;故选B.考点:1.平行四边形的判定;2.矩形的判定;3.正方形的判定.3.(徐州)如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于()A.3.5 B.4 C.7 D.14【答案】A.【解析】试题分析:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵E为AD边中点,∴OE 是△ABD的中位线,∴OE=12AB=12×7=3.5.故选A.考点:菱形的性质.4.(柳州)如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=12GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH 其中,正确的结论有()A.1个B.2个C.3个D.4个【答案】B.考点:1.全等三角形的判定与性质;2.正方形的性质;3.相似三角形的判定与性质;4.综合题.5.(内江)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.3B.23C.26D.6【答案】B.考点:1.轴对称-最短路线问题;2.最值问题;3.正方形的性质.6.(南充)如图,菱形ABCD的周长为8cm,高AE长为3cm,则对角线AC长和BD长之比为()A.1:2 B.1:3 C.1:2D.1:3【答案】D.【解析】试题分析:如图,设AC,BD相较于点O,∵菱形ABCD的周长为8cm,∴AB=BC=2cm,∵高AE长为3cm,∴BE=22AB AE-=1(cm),∴CE=BE=1cm,∴AC=AB=2cm,∵OA=1cm,AC⊥BD,∴OB=22AB OA-=3(cm),∴BD=2OB=23cm,∴AC:BD=1:3.故选D.考点:菱形的性质.7.(安徽省)如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.25B.35C.5 D.6【答案】C.考点:1.菱形的性质;2.矩形的性质.8.(十堰)如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=53,且∠ECF=45°,则CF的长为()A.102B.53C5103D1053【答案】A.考点:1.全等三角形的判定与性质;2.勾股定理;3.正方形的性质;4.综合题;5.压轴题.9.(鄂州)在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2015B2015C2015D2015的边长是()A.201421)(B.201521)(C.201533)(D.201433)(【答案】D.考点:1.正方形的性质;2.规律型;3.综合题.10.(广安)如图,已知E、F、G、H分别为菱形ABCD四边的中点,AB=6cm,∠ABC=60°,则四边形EFGH的面积为cm2.【答案】93.【解析】试题分析:连接AC,BD,相交于点O,如图所示,∵E、F、G、H分别是菱形四边上的中点,∴EH=12BD=FG,EH∥BD∥FG,EF=12AC=HG,∴四边形EHGF是平行四边形,∵菱形ABCD中,AC⊥BD,∴EF⊥EH,∴四边形EFGH是矩形,∵四边形ABCD是菱形,∠ABC=60°,∴∠ABO=30°,∵AC⊥BD,∴∠AOB=90°,∴AO=12AB=3,∴AC=6,在Rt△AOB中,由勾股定理得:OB=22AB OA=33,∴BD=63,∵EH=12BD,EF=12AC,∴EH=33,EF=3,∴矩形EFGH的面积=EF•FG=93cm2.故答案为:93.考点:1.中点四边形;2.菱形的性质.11.(凉山州)菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.【答案】(233-,23-).的交点,∴点P的坐标为方程组3(13)1y xy x⎧=⎪⎨⎪=-⎩的解,解方程组得:3323xy⎧=⎪⎨=⎪⎩,所以点P的坐标为(33,23-),故答案为:(233-,23).考点:1.菱形的性质;2.坐标与图形性质;3.轴对称-最短路线问题;4.动点型;5.压轴题;6.综合题.12.(潜江)菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(03),动点P从点A出发,沿A→B→C→D→A→B→…的路径,在菱形的边上以每秒0.5个单位长度的速度移动,移动到第2015秒时,点P的坐标为.【答案】(0.5,32.考点:1.菱形的性质;2.坐标与图形性质;3.规律型;4.综合题.13.(北海)如图,已知正方形ABCD的边长为4,对角线AC与BD相交于点O,点E在DC边的延长线上.若∠CAE=15°,则AE= .【答案】8.【解析】试题分析:∵正方形ABCD的边长为4,对角线AC与BD相交于点O,∴∠BAC=45°,AB∥DC,∠ADC=90°,∵∠CAE=15°,∴∠E=∠BAE=∠BAC﹣∠CAE=45°﹣15°=30°.∵在Rt△ADE中,∠ADE=90°,∠E=30°,∴AE=2AD=8.故答案为:8.考点:1.含30度角的直角三角形;2.正方形的性质.14.(南宁)如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.【答案】45°.考点:1.正方形的性质;2.等边三角形的性质.15.(玉林防城港)如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是.【答案】9 2.【解析】试题分析:如图1所示,作E关于BC的对称点E′,点A关于DC的对称点A′,连接A′E′,四边形AEPQ的周长最小,∵AD=A′D=3,BE=BE′=1,∴AA′=6,AE′=4.∵DQ∥AE′,D是AA′的中点,∴DQ是△AA′E′的中位线,∴DQ=12AE′=2;CQ=DC﹣CQ=3﹣2=1,∵BP∥AA′,∴△BE′P∽△AE′A′,∴'''BP BEAA AE=,即164BP=,BP=32,CP=BC﹣BP=332-=32,S四边形AEPQ=S正方形ABCD﹣S△ADQ﹣S△PCQ﹣SBEP=9﹣12AD•DQ﹣12CQ•CP﹣12BE•BP=9﹣12×3×2﹣12×1×32﹣12×1×32=92,故答案为:92.考点:1.轴对称-最短路线问题;2.正方形的性质.16.(达州)在直角坐标系中,直线1y x =+与y 轴交于点A ,按如图方式作正方形A1B1C1O 、A2B2C2C1、A3B3C1C2…,A1、A2、A3…在直线1y x =+上,点C1、C2、C3…在x 轴上,图中阴影部分三角形的面积从左到游依次记为1S 、2S、3S 、…n S ,则n S 的值为(用含n 的代数式表示,n 为正整数).【答案】232n -.故答案为:232n .考点:1.一次函数图象上点的坐标特征;2.正方形的性质;3.规律型;4.综合题.17.(齐齐哈尔)如图,正方形ABCB1中,AB=1.AB与直线l的夹角为30°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3D4,…,依此规律,则A2014A2015= .【答案】20142(3).考点:1.相似三角形的判定与性质;2.正方形的性质;3.规律型;4.综合题.18.(梧州)如图,在正方形ABCD中,点P在AD上,且不与A、D重合,BP的垂直平分线分别交CD、AB于E、F两点,垂足为Q,过E作EH⊥AB于H.(1)求证:HF=AP;(2)若正方形ABCD的边长为12,AP=4,求线段EQ的长.【答案】(1)证明见试题解析;(21010.【解析】考点:1.正方形的性质;2.全等三角形的判定与性质;3.勾股定理;4.综合题.19.(恩施州)如图,四边形ABCD、BEFG均为正方形,连接AG、CE.(1)求证:AG=CE;(2)求证:AG⊥CE.【答案】(1)证明见试题解析;(2)证明见试题解析.【解析】试题分析:(1)由ABCD、BEFG均为正方形,得出AB=CB,∠ABC=∠GBE=90°,BG=BE,得出∠ABG=∠CBE,从而得到△ABG≌△CBE,即可得到结论;(2)由△ABG≌△CBE,得出∠BAG=∠BCE,由∠BAG+∠AMB=90°,对顶角∠AMB=∠CMN,得出∠BCE+∠CMN=90°,证出∠CNM=90°即可.试题解析:(1)∵四边形ABCD、BEFG均为正方形,∴AB=CB,∠ABC=∠GBE=90°,BG=BE,∴∠ABG=∠CBE,在△ABG和△CBE中,∵AB=CB,∠ABG=∠CBE,BG=BE,∴△ABG ≌△CBE(SAS),∴AG=CE;(2)如图所示:∵△ABG≌△CBE,∴∠BAG=∠BCE,∵∠ABC=90°,∴∠BAG+∠AMB=90°,∵∠AMB=∠CMN,∴∠BCE+∠CMN=90°,∴∠CNM=90°,∴AG⊥CE.考点:1.全等三角形的判定与性质;2.正方形的性质.20.(武汉)已知锐角△ABC中,边BC长为12,高AD长为8.(1)如图,矩形EFGH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K.①求EFAK的值;②设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值;(2)若AB=AC,正方形PQMN的两个顶点在△ABC一边上,另两个顶点分别在△ABC 的另两边上,直接写出正方形PQMN的边长.【答案】(1)①32;②3(8)2S x x=-,S的最大值是24;(2)245或24049.试题解析:(1)①∵EF∥BC,∴AK EFAD BC=,∴EF BCAK AD==128=32,即EFAK的值是32;考点:1.相似三角形的判定与性质;2.二次函数的最值;3.矩形的性质;4.正方形的性质;5.分类讨论;6.综合题;7.压轴题.21.(荆州)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.【答案】(1)证明见试题解析;(2)90°;(3)AP=CE.【解析】试题分析:(1)先证出△ABP≌△CBP,得到PA=PC,由PA=PE,得到PC=PE;(2)由△ABP≌△CBP,得到∠BAP=∠BCP,进而得到∠DAP=∠DCP,由PA=PC,得到∠DAP=∠E,∠DCP=∠E,最后∠CPF=∠EDF=90°得到结论;(3)借助(1)和(2)的证明方法容易证明结论.考点:1.正方形的性质;2.全等三角形的判定与性质;3.菱形的性质;4.探究型;5.综合题;6.压轴题.1.(宜宾)如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…An分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n﹣1 C.(14)n﹣1 D.14n【答案】B.【解析】试题分析:由题意可得一个阴影部分面积等于正方形面积的14,即是14×4=1,5个这样的正方形重叠部分(阴影部分)的面积和为:1×4,n个这样的正方形重叠部分(阴影部分)的面积和为:1×(n﹣1)=n﹣1.故选B.考点:1.正方形的性质2.全等三角形的判定与性质.2.(山东省淄博市)如图,矩形纸片ABCD中,点E是AD的中点,且AE=1,BE的垂直平分线MN恰好过点C.则矩形的一边AB的长度为()A. 1 B.2C.3D. 2【答案】C.考点:1.勾股定理;2.线段垂直平分线的性质;3.矩形的性质.3.(山东省聊城市)如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BEDF是菱形,且EF=AE+FC,则边BC的长为()A.3B. 3 3C.3D93【答案】B.【解析】试题分析:∵四边形ABCD是矩形,∴∠A=90°,即BA⊥BF,∵四边形BEDF是菱形,∴EF⊥BD,∠EBO=∠DBF,∴AB=BO=3,∠ABE=∠EBO,∴∠ABE=∠EBD=∠DBC=30°,∴BE=23cos30BO=︒,∴BF=BE=23,∵EF=AE+FC,AE=CF,EO=FO∴CF=AE=3,∴BC=BF+CF=33,故选B.考点:1.矩形的性质;2.菱形的性质.4.(广西来宾市)顺次连接菱形各边的中点所形成的四边形是()A.等腰梯形B.矩形C.菱形D.正方形【答案】B.考点:1.正方形的判定;2.三角形中位线定理;3.菱形的性质.5.(贵州铜仁市)如图所示,在矩形ABCD中,F是DC上一点,AE平分∠BAF交BC于点E,且DE⊥AF,垂足为点M,BE=3,AE=26,则MF的长是()A15B15C.1 D.15【答案】D.考点:1.相似三角形的判定与性质;2.角平分线的性质;3.勾股定理;4.矩形的性质.6.(襄阳)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=13AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A.①②B.②③C.①③D.①④【答案】D.【解析】试题分析:∵AE=13AB,∴BE=2AE.由翻折的性质得,PE=BE,∴∠APE=30°.∴∠AEP=90°﹣30°=60°,∴∠BEF=12(180°﹣∠AEP)=12(180°﹣60°)=60°.∴∠EFB=90°﹣60°=30°.∴EF=2BE.故①正确.∵BE=PE,∴EF=2PE.∵EF>PF,∴PF>2PE.故②错误.由翻折可知EF⊥PB,∴∠EBQ=∠EFB=30°.∴BE=2EQ,EF=2BE.∴FQ=3EQ.故③错误.由翻折的性质,∠EFB=∠BFP=30°,∴∠BFP=30°+30°=60°.∵∠PBF=90°﹣∠EBQ=90°﹣30°=60°,∴∠PBF=∠PFB=60°.∴△PBF是等边三角形.故④正确;综上所述,结论正确的是①④.故选D.考点:1.矩形的性质;2.含30度角直角三角形的判定和性质;3.等边三角形的判定.7.(宁夏)菱形ABCD中,若对角线长AC=8cm,BD=6cm,则边长AB= cm.【答案】5.考点:1.菱形的性质;2.勾股定理.8.(山东省聊城市)如图,四边形ABCD是平行四边形,作AF∥CE,BE∥DF,AF交BE 与G点,交DF与F点,CE交DF于H点、交BE于E点.求证:△EBC≌△FDA.【答案】证明见解析.考点:1.平行四边形的性质;2.全等三角形的判定.9.(梅州)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?【答案】(1)证明见解析;(2)GE=BE+GD成立,理由见解析.【解析】试题分析:(1)由DF=BE,四边形ABCD为正方形可证△CEB≌△CFD,从而证出CE=CF.(2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF,故可证得△ECG≌△FCG,即EG=FG=GD+DF.又因为DF=BE,所以可证出GE=BE+GD成立.试题解析:(1)在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF (SAS).∴CE=CF.(2)GE=BE+GD成立.理由是:考点:1.正方形的性质;2.全等三角形的判定和性质;3.等腰直角三角形的性质.☞考点归纳归纳1:矩形基础知识归纳:1、矩形的概念有一个角是直角的平行四边形叫做矩形.2、矩形的性质(1)具有平行四边形的一切性质(2)矩形的四个角都是直角(3)矩形的对角线相等(4)矩形是轴对称图形3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形基本方法归纳:关于矩形,应从平行四边形的内角的变化上认识其特殊性:一个内角是直角的平行四边形,进一步研究其特有的性质:是轴对称图形、内角都是直角、对角线相等.同时平行四边形的性质矩形也都具有.注意问题归纳:证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.【例1】如图,在矩形ABCD中,对角线AC、BD相交于点O,∠ACB=30°,则∠AOB 的大小为()A、30°B、60°C、90°D、120°【答案】B.考点:矩形的性质.归纳2:菱形基础知识归纳:1、菱形的概念有一组邻边相等的平行四边形叫做菱形2、菱形的性质(1)具有平行四边形的一切性质(2)菱形的四条边相等(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角(4)菱形是轴对称图形3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形4、菱形的面积S菱形=底边长×高=两条对角线乘积的一半注意问题归纳:菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.【例2】如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.【答案】B.考点:菱形的性质.归纳3:正方形基础知识归纳:1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质(2)正方形的四个角都是直角,四条边都相等(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角(4)正方形是轴对称图形,有4条对称轴(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等.注意问题归纳:正方形的判定没有固定的方法,只要判定既是矩形又是菱形就可以判定.【例3】如图,ABCD是正方形场地,点E在DC的延长线上,AE与BC相交于点F.有甲、乙、丙三名同学同时从点A出发,甲沿着A﹣B﹣F﹣C的路径行走至C,乙沿着A﹣F﹣E ﹣C﹣D的路径行走至D,丙沿着A﹣F﹣C﹣D的路径行走至D.若三名同学行走的速度都相同,则他们到达各自的目的地的先后顺序(由先至后)是()A.甲乙丙B.甲丙乙C.乙丙甲D.丙甲乙【答案】B.考点:正方形的性质.☞1年模拟1.(山东省潍坊市昌乐县中考一模)下列说法中,错误的是()A.平行四边形的对角线互相平分B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直D.对角线互相垂直的四边形是菱形【答案】D.【解析】试题分析:根据平行四边形的菱形的性质得到A、B、C选项均正确,而D不正确,因为对角线互相垂直的四边形也可能是梯形.故选D.考点:1.菱形的判定与性质;2.平行四边形的判定与性质.2.(广东省广州市中考模拟)如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为()A.30°B.60°C.90°D.120°【答案】B.考点:矩形的性质.3.(山东省日照市中考模拟)如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB1E,则△AB1E与四边形AECD重叠部分的面积为()A.0.7 B.0.9 C.2−2 D2【答案】C.【解析】试题分析:如图,∵∠B=45°,AE⊥BC,∴∠BAE=∠B=45°,∴AE=BE,由勾股定理得:BE2+AE2=22,解得:2,由题意得:△ABE≌△AB1E,∴∠BAB1=2∠BAE=90°,2,∴2,2-2,∵四边形ABCD为菱形,∴∠FCB1=∠B=45°,∠CFB1=∠BAB1=90°,∴∠CB1F=45°,CF=B1F,∵CF∥AB,∴△CFB1∽△BAB1,∴11B CCFAB BB=,解得:2,∴△AEB1、△CFB1的面积分别为:12212=,21(22)3222⨯=-,∴△AB1E与四边形AECD重叠部分的面积=1(322)222--=.故选C.考点:1.菱形的性质;2.翻折变换(折叠问题).4.(山东省济南市平阴县中考二模)如图,菱形OABC的顶点O在坐标系原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点O顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A.(-2,2)B.(2,-2)C.(2,-2)D.(3,-3)【答案】B.考点:1.菱形的性质;2.坐标与图形变化-旋转.5.(山东省青岛市李沧区中考一模)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=13AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A.①②B.②③C.①③D.①④【答案】D.综上所述,结论正确的是①④.故选D.考点:1.翻折变换(折叠问题);2.矩形的性质.6.(山东省日照市中考一模)小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD 为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①②B.②③C.①③D.②④【答案】B.考点:正方形的判定.7.(山东省青岛市李沧区中考一模)如图,在矩形ABCD中,AB=3,AD=1,把该矩形绕点A顺时针旋转α度得矩形AB′C′D′,点C′落在AB的延长线上,则图中阴影部分的面积是.34π-.考点:1.旋转的性质;2.矩形的性质;3.扇形面积的计算.8.(河北省中考模拟二)如图,在矩形ABCD中,AB=3,⊙O与边BC,CD相切,现有一条过点B的直线与⊙O相切于点E,连接BE,△ABE恰为等边三角形,则⊙O的半径为.【答案】3【解析】试题分析:过O点作GH⊥BC于G,交BE于H,连接OB、OE,∴G是BC的切点,OE ⊥BH,∴BG=BE,∵△ABE为等边三角形,∴BE=AB=3,∴BG=BE=3,∵∠HBG=30°,∴3,BH=23,设OG=OE=x,则3-3,3-x,在RT△OEH中,EH2+OE2=OH2,即(3-3)2+x2=3-x)2,解得3,∴⊙O的半径为3.故答案为:3考点:1.切线的性质;2.矩形的性质.9.(山东省日照市中考一模)边长为1的一个正方形和一个等边三角形如图摆放,则△ABC 的面积为.【答案】14.考点:1.正方形的性质;2.等边三角形的性质;3.含30度角的直角三角形.10.(山东省青岛市李沧区中考一模)如图,正方形ABCD和正方形CEFG中,点D在CG 上,BC=1,CE=3,H是AF的中点,那么CH的长是.5考点:1.正方形的性质;2.直角三角形斜边上的中线;3.勾股定理.11.(山西省晋中市平遥县九年级下学期4月中考模拟)如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.【答案】(1)FG⊥ED.理由见解析;(2)证明见解析.【解析】考点:1.旋转的性质;2.正方形的判定;3.平移的性质;4.探究型.12.(北京市平谷区中考二模)如图,已知点E,F分别是□ABCD的边BC,AD上的中点,且∠BAC=90°.(1)求证:四边形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面积.【答案】(1)见解析(22532【解析】试题分析:(1)利用平行四边形的性质和菱形的性质即可判定四边形AECF是菱形;(2)连接EF交于点O,运用解直角三角形的知识点,可以求得AC与EF的长,再利用菱形的面积公式即可求得菱形AECF的面积.试题解析:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.在Rt△ABC中,∠BAC=90°,点E是BC边的中点,∴AE=CE=12BC.同理,AF=CF=12AD.∴AF=CE.∴四边形AECF是平行四边形.∴平行四边形AECF是菱形.考点:1.菱形的性质;2.平行四边形的性质;3.解直角三角形.13.(山东省日照市中考模拟)如图,▱ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2-7x+12=0的两个根,且OA>OB.(1)求sin∠ABC的值;(2)若E为x轴上的点,且S△AOE=163,求经过D、E两点的直线的解析式,并判断△AOE 与△DAO是否相似?(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.【答案】(1)45.(2)△AOE∽△DAO.(3)F1(3,8);F2(-3,0);F3(4751-,722-),F4(-4225,4425).【解析】试题分析:(1)求得一元二次方程的两个根后,判断出OA、OB长度,根据勾股定理求得AB长,那么就能求得sin∠ABC的值;(2)易得到点D的坐标为(6,4),还需求得点E的坐标,OA之间的距离是一定的,那么点E的坐标可能在点O的左边,也有可能在点O的右边.根据所给的面积可求得点E的坐标,把A、E代入一次函数解析式即可.然后看所求的两个三角形的对应边是否成比例,成比例就是相似三角形;(3)根据菱形的性质,分AC与AF是邻边并且点F在射线AB上与射线BA上两种情况,以及AC与AF分别是对角线的情况分别进行求解计算.试题解析:(1)解x2-7x+12=0,得x1=4,x2=3.∵OA>OB ,∴OA=4,OB=3.在Rt△AOB中,由勾股定理有AB=225OA OB+=,∴sin∠ABC=54OAAB=;(3)根据计算的数据,OB=OC=3,∴AO平分∠BAC,①AC、AF是邻边,点F在射线AB上时,AF=AC=5,所以点F与B重合,即F(-3,0);②AC、AF是邻边,点F在射线BA上时,M应在直线AD上,且FC垂直平分AM,点F (3,8);③AC是对角线时,做AC垂直平分线L,AC解析式为y=-43x+4,直线L过(32,2),且k值为34(平面内互相垂直的两条直线k值乘积为-1),L解析式为y=34x+78,联立直线L 与直线AB求交点,∴F(4751-,722-);④AF是对角线时,过C做AB垂线,垂足为N,根据等积法求出CN=245,勾股定理得出,AN=75,做A关于N的对称点即为F,AF=145,过F做y轴垂线,垂足为G,FG=145×35=4225,∴F(-4225,4425).综上所述,满足条件的点有四个:F1(3,8);F2(-3,0);F3(4751-,722-),F4(-4225,4425).考点:1.相似三角形的判定;2.解一元二次方程-因式分解法;3.待定系数法求一次函数解析式;4.平行四边形的性质;5.菱形的判定;6.分类讨论;7.存在型;8.探究型.14.(河北省中考模拟二)如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,连接BF、EF,恰有BF=EF,将线段EF绕点F顺时针旋转90°得FG,过点B 作EF的垂线,交EF于点M,交DA的延长线于点N,连接NG.(1)求证:BE=2CF;(2)试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.【答案】(1)证明见解析.(2)四边形BFGN为菱形,证明见解析.(2)解:四边形BFGN为菱形,证明如下:考点:1.正方形的性质;2.全等三角形的判定与性质;3.菱形的判定;4.旋转的性质;5.和差倍分.15.(广东省广州市中考模拟)如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为CC',则图中阴影部分的面积为.【答案】33 42π+.【解析】试题分析:连接CD′和BC′,∵∠DAB=60°,∴∠DAC=∠CAB=30°,∵∠C′AB′=30°,∴A、D′、C及A、B、C′分别共线∴AC=3,∴扇形ACC′230(3)3604ππ⨯⨯=.∵AC=AC′,AD′=AB,∴在△OCD′和△OC'B中,CD BCACO AC DCOD C OB''=⎧⎪''∠=∠⎨⎪''∠=∠⎩,∴△OCD′≌△OC′B (AAS),∴OB=OD′,CO=C′O.∵∠CBC′=60°,∠BC′O=30°,∴∠COD′=90°.∵CD′=AC-AD′=3-1,OB+C′O=1,∴在Rt△BOC′中,BO2+(1-BO)2=(3-1)2,解得BO=3122-,3322C O'=-,∴考点:1.菱形的性质;2.全等三角形的判定与性质;3.扇形面积的计算;4.旋转的性质.。

特殊平行四边形专题含答案

特殊平行四边形专题含答案

特殊平行四边形专题一.解答题(共20小题)1.如图,正方形ABCD,点E,F分别在AD,BD上,且DE=CF,AF,BE相交于点G,求证:BE⊥AF.2.如图,四边形ABCD是正方形,对角线AC、BD相交于点F,∠E=90°,ED=EC.求证:四边形DFCE是正方形.3.已知,如图,在▱ABCD中,分别在边BC、AD上取两点,使得CE=DF,连接EF,AE、BF相交于点O,若AE⊥BF.(1)求证:四边形ABEF是菱形;(2)若菱形ABEF的周长为16,∠BEF=120°,求AE的长.4.如图,BD为平行四边形ABCD的对角线,∠ADB=90°,E是AB的中点,F是BD的中点,连接EF并延长交DC于点G,连接BG.(1)求证:△BEF≌△DGF;(2)证明四边形DEBG是菱形.5.如图,在正方形ABCD中,点E,F在AC上,且AF=CE.求证:四边形BEDF是菱形.6.如图,在矩形ABCD中,O为对角线AC的中点,过点O作直线分别与矩形的边AD,BC交于M,N两点,连接CM,AN.(1)求证:四边形ANCM为平行四边形;(2)若AD=4,AB=2,且MN⊥AC,求DM的长.7.如图,正方形ABCD,G是BC边上任意一点(不与B、C重合),DE⊥AG于点E,BF ∥DE,且交AG于点F.(1)求证:AF﹣BF=EF;(2)四边形BFDE是否可能是平行四边形,如果可能,请指出此时点G的位置,如不可能,请说明理由.8.如图,四边形ABCD中,已知AB⊥BC,CD⊥BC,且AB=CD.(1)求证:四边形ABCD为矩形;(2)对角线AC,BD相交于O,AE⊥BD,垂足为E,已知AB=3,AD=4,求△AEO的面积.9.如图,矩形ABCD的对角线交于点O,点E是矩形外的一点,其中AE∥BD,BE∥AC.求证:四边形AEBO是菱形.10.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD交于点O,AO =BO,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=1,求△OEC的面积.11.如图,在矩形ABCD中,过对角线BD的中点O作BD的垂线EF,分别交AD,BC于点E,F.(1)求证:△DOE≌△BOF;(2)若AB=6,AD=8,连接BE,DF,求四边形BFDE的周长.12.如图,矩形ABCD中,AB=BC,在边AB上截取BE,使得BE=BC,连接CE,作DF⊥EC于点F,连接BF并延长交AD于点G,连接DE.(1)求证:DE平分∠AEC;(2)若AD=,求出DG的长.13.在边长为5的正方形ABCD中,点E在边CD所在直线上,连接BE,以BE为边,在BE的下方作正方形BEFG,并连接AG.(1)如图1,当点E与点D重合时,AG=______;(2)如图2,当点E在线段CD上时,DE=2,求AG的长;(3)若AG=,请直接写出此时DE的长.14.如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:△BAE≌△CDE;(2)求∠AEB的度数.15.如图,点E,F分别在菱形ABCD的边BC,CD上,且BE=DF.求证:∠BAE=∠DAF.16.如图,矩形ABCD的对角线AC,BD相交于点O,延长CD到E,使DE=CD,连接AE,OE.(1)求证:四边形ABDE是平行四边形;(2)若AD=DE=4,求OE的长.17.菱形ABCD中,AD=6,AE⊥BC,垂足为E,F为AB边中点,DF⊥EF.(1)直接写出结果:EF=_______;(2)求证:∠ADF=∠EDF;(3)求DE的长.18.如图,在▱ABCD中,对角线AC、BD相交于点O,AC⊥AB,∠AOB=60°.点E、点F分别是OB、OD的中点,连接AE、EC、CF、F A.(1)求证:四边形AECF为矩形;(2)若AB=3,求矩形AECF的面积.19.如图,在△ABC中,∠A=60°,BD⊥AC于点D,CE⊥AB于点E,F为BC边的中点,连接EF,DF.(1)求证:EF=DF;(2)若BC=6.求△DEF的周长;(3)在(2)的条件下,若EC=BF,求四边形EFDA的面积.20.如图,在正方形ABCD中,点E在BC边的延长线上,点F在CD边的延长线上,且CE=DF,连接AE和BF相交于点M.求证:AE=BF.特殊平行四边形专题参考答案与试题解析一.解答题(共20小题)1.如图,正方形ABCD,点E,F分别在AD,BD上,且DE=CF,AF,BE相交于点G,求证:BE⊥AF.解:∵四边形形ABCD是正方形,∴AB=AD=DC,∠BAD=∠D=90°,又∵DE=CF,∴AE=DF,∴在△BAE和△ADF中,,∴△BAE≌△ADF(SAS).∴∠ABE=∠DAF,∵∠DAF+∠BAG=90°,∴∠ABE+∠BAG=90°,∴∠AGB=90°,∴BE⊥AF.2.如图,四边形ABCD是正方形,对角线AC、BD相交于点F,∠E=90°,ED=EC.求证:四边形DFCE是正方形.解:∵四边形ABCD是正方形,∴∠FDC=∠DCF=45°,∵∠E=90°,ED=EC,∴∠EDC=∠ECD=45°,∴∠FCE=∠FDE=∠E=90°,∴四边形DFCE是矩形,∵DE=CE,∴四边形DFCE是正方形.3.已知,如图,在▱ABCD中,分别在边BC、AD上取两点,使得CE=DF,连接EF,AE、BF相交于点O,若AE⊥BF.(1)求证:四边形ABEF是菱形;(2)若菱形ABEF的周长为16,∠BEF=120°,求AE的长.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵CE=DF,∴AF=BE,∴四边形ABEF是平行四边形,又∵AE⊥BF,∴四边形ABEF是菱形;(2)解:∵菱形ABEF的周长为16,∴AB=BE=4,AB∥EF,∴∠ABE=180°﹣∠BEF=180°﹣120°=60°,∴△ABE是等边三角形,∴AE=AB=4.4.如图,BD为平行四边形ABCD的对角线,∠ADB=90°,E是AB的中点,F是BD的中点,连接EF并延长交DC于点G,连接BG.(1)求证:△BEF≌△DGF;(2)证明四边形DEBG是菱形.证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠FEB=∠FGD,∠FBE=∠FDG,∵F是BD的中点,∴BF=DF,在△BEF和△DGF中,,∴△BEF≌△DGF(AAS);(2)由(1)得:△BEF≌△DGF,∴BE=DG,∵BE∥DG,∴四边形DEBG是平行四边形,∵∠ADB=90°,E是AB的中点,∴DE=AB=BE,∴四边形DEBG是菱形.5.如图,在正方形ABCD中,点E,F在AC上,且AF=CE.求证:四边形BEDF是菱形.证明:∵四边形ABCD是正方形,∴AB=AD=CD=BC,∠DAE=∠BAE=∠BCF=∠DCF=45°,在△ABE和△ADE中,,∴△ABE≌△ADE(SAS),∴BE=DE,同理可得△BFC≌△DFC,可得BF=DF,在△ABE和△CBF中,,∴△ABE≌△CBF(SAS),∴BE=BF,∴BE=BF=DE=DF,∴四边形BEDF是菱形.6.如图,在矩形ABCD中,O为对角线AC的中点,过点O作直线分别与矩形的边AD,BC交于M,N两点,连接CM,AN.(1)求证:四边形ANCM为平行四边形;(2)若AD=4,AB=2,且MN⊥AC,求DM的长.解:(1)证明:∵在矩形ABCD中,O为对角线AC的中点,∴AD∥BC,AO=CO,∴∠OAM=∠OCN,∠OMA=∠ONC,在△AOM和△CON中,,∴△AOM≌△CON(AAS),∴AM=CN,∵AM∥CN,∴四边形ANCM为平行四边形;(2)∵在矩形ABCD中,AD=BC,由(1)知:AM=CN,∴DM=BN,∵四边形ANCM为平行四边形,MN⊥AC,∴平行四边形ANCM为菱形,∴AM=AN=NC=AD﹣DM,∴在Rt△ABN中,根据勾股定理,得AN2=AB2+BN2,∴(4﹣DM)2=22+DM2,解得DM=.7.如图,正方形ABCD,G是BC边上任意一点(不与B、C重合),DE⊥AG于点E,BF ∥DE,且交AG于点F.(1)求证:AF﹣BF=EF;(2)四边形BFDE是否可能是平行四边形,如果可能,请指出此时点G的位置,如不可能,请说明理由.解:(1)证明:∵正方形,∴AB=AD,∠BAF+∠DAE=90°,∵DE⊥AG,∴∠DAE+∠ADE=90°,∴∠ADE=∠BAF,又∵BF∥DE,∴∠BF A=90°=∠AED,∴△ABF≌△DAE(AAS),∴AF=DE,AE=BF,∴AF﹣BF=AF﹣AE=EF;(2)不可能,理由是:如图,若要四边形是平行四边形,已知DE∥BF,则当DE=BF时,四边形BFDE为平行四边形,∵DE=AF,∴BF=AF,即此时∠BAF=45°,而点G不与B和C重合,∴∠BAF≠45°,矛盾,∴四边形不能是平行四边形.8.如图,四边形ABCD中,已知AB⊥BC,CD⊥BC,且AB=CD.(1)求证:四边形ABCD为矩形;(2)对角线AC,BD相交于O,AE⊥BD,垂足为E,已知AB=3,AD=4,求△AEO 的面积.(1)证明:∵AB⊥BC,CD⊥BC,∴AB∥CD,∵AB=CD,∴四边形ABCD是平行四边形,∵AB⊥BC,∴∠ABC=90°,∴四边形ABCD为矩形;(2)解:∵四边形ABCD为矩形,∴∠BAC=90°,∵AB=3,AD=4,∴BD=5,∵S△ABD=AB•AD=BD•AE,∴3×4=5AE,∴AE=,∵AC=BD=5,∴AO=AC=,∵AE⊥BD,∴OE===,∴△AEO的面积==.9.如图,矩形ABCD的对角线交于点O,点E是矩形外的一点,其中AE∥BD,BE∥AC.求证:四边形AEBO是菱形.证明:∵AE∥BD,BE∥AC,∴四边形AEBO是平行四边形,∵四边形ABCD是矩形,∴AC=BD,∴OA=OB,∴四边形AEBO是菱形.10.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD交于点O,AO =BO,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=1,求△OEC的面积.(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADC+∠BCD=180°,∵∠ABC=∠ADC,∴∠BAD=∠BCD,∴四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,∵OA=OB,∴AC=BD,∴四边形ABCD是矩形.(2)解:作OF⊥BC于F,如图所示.∵四边形ABCD是矩形,∴CD=AB=1,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=CD=,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=1,∴△OEC的面积=•EC•OF=.11.如图,在矩形ABCD中,过对角线BD的中点O作BD的垂线EF,分别交AD,BC于点E,F.(1)求证:△DOE≌△BOF;(2)若AB=6,AD=8,连接BE,DF,求四边形BFDE的周长.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,DO=BO,∴∠EDO=∠FBO,又∵EF⊥BD,∴∠EOD=∠FOB=90°,在△DOE和△BOF中,,∴△DOE≌△BOF(ASA);(2)解:∵由(1)可得,ED∥BF,ED=BF,∴四边形BFDE是平行四边形,∵BO=DO,EF⊥BD,∴ED=EB,∴四边形BFDE是菱形,根据AB=6,AD=8,设AE=x,可得BE=ED=8﹣x,在Rt△ABE中,根据勾股定理可得:BE2=AB2+AE2,即(8﹣x)2=x2+62,解得:,∴,∴四边形BFDE的周长=.12.如图,矩形ABCD中,AB=BC,在边AB上截取BE,使得BE=BC,连接CE,作DF⊥EC于点F,连接BF并延长交AD于点G,连接DE.(1)求证:DE平分∠AEC;(2)若AD=,求出DG的长.解:(1)∵四边形ABCD是矩形,∴AB=CD,AB∥DC,∠ABC=90°,∵BC=BE,∴CE=BC,∵AB=BC,∴CD=CE,∴∠CDE=∠CED,∵AB∥CD,∴∠CDE=∠AED,∴∠AED=∠DEC,∴DE平分∠AEC;(2)∵BC=BE,∠CBE=90°,∴∠BCE=∠BEC=45°,∵CD∥AB,∴∠DCE=∠BEC=45°,∵DF⊥CE,∴∠CDF=45°,∴DF=CF,∴CD=DF,∵AB=CD,AB=,BC=BE,∴BE=DF=CF=BC,∵∠ADC=90°,∴∠FDG=45°,∴∠BEF=∠EDF,∵BC=CF,∠BCF=45°,∴∠CBF=∠CFB=67.5°,∴∠EBF=90°﹣67.5°=22.5°,∠DFG=180°﹣67.5°﹣90°=22.5°,∴∠EBF=∠DFG,在△DFG和△EBF中,∴△DFG≌△EBF(ASA),∴DG=EF,∵EF=CE﹣CF=AB﹣BC=,∴DG=2.13.在边长为5的正方形ABCD中,点E在边CD所在直线上,连接BE,以BE为边,在BE的下方作正方形BEFG,并连接AG.(1)如图1,当点E与点D重合时,AG=5;(2)如图2,当点E在线段CD上时,DE=2,求AG的长;(3)若AG=,请直接写出此时DE的长.解:(1)如图1,连接CG,∵四边形ABCD和四边形EBGF是正方形,∴∠CDB=∠CBD=45°,∠DBG=90°,BD=BG,∴∠CBG=45°,∴∠CBG=∠CBD,∵BC=BC,∴△CBD≌△CBG(SAS),∴∠DCB=∠BCG=90°,DC=CG=5,∴G,C,D三点共线,∴AG===5;故答案为:5;(2)如图2,过点G作GK⊥AB,交AB的延长线于K,∵DE=2,DC=5,∴CE=3,∵∠EBG=∠EBC+∠CBG=90°,∠CBG+∠GBK=90°,∴∠EBC=∠GBK,∵BE=BG,∠K=∠BCE=90°,∴△BCE≌△BKG(AAS),∴CE=KG=3,BC=BK=5,∴AK=10,由勾股定理得:AG==;(3)分三种情况:①当点E在CD的延长线上时,如图3,同理知△BCE≌△BKG(AAS),∴BC=BK=5,∵AG=,由勾股定理得:KG==,∴CE=KG=,此种情况不成立;②当点E在边CD上时,如图4,同理得:DE=;③当点E在DC的延长线上时,如图5,同理得CE=GK=,∴DE=5+=,综上,DE的长是或.14.如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:△BAE≌△CDE;(2)求∠AEB的度数.(1)证明:∵△ADE为等边三角形,∴AD=AE=DE,∠EAD=∠EDA=60°,∵四边形ABCD为正方形,∴AB=AD=CD,∠BAD=∠CDA=90°,∴∠EAB=∠EDC=150°,在△BAE和△CDE中,∴△BAE≌△CDE(SAS);(2)∵AB=AD,AD=AE,∴AB=AE,∴∠ABE=∠AEB,∵∠EAB=150°,∴∠AEB=(180°﹣150°)=15°.15.如图,点E,F分别在菱形ABCD的边BC,CD上,且BE=DF.求证:∠BAE=∠DAF.证明:四边形ABCD是菱形,∴∠B=∠D,AB=AD,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴∠BAE=∠DAF.16.如图,矩形ABCD的对角线AC,BD相交于点O,延长CD到E,使DE=CD,连接AE,OE.(1)求证:四边形ABDE是平行四边形;(2)若AD=DE=4,求OE的长.解:(1)∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∵DE=CD,∴DE=AB,∴四边形ABDE是平行四边形.(2)∵AD=DE=4,∠ADE=90°,∴AE=4,∴BD=AE=4.在Rt△BAD中,O为BD中点,∴AO=BD=2.∵AD=CD,∴矩形ABCD是正方形,∴∠EAO=∠OAD+∠DAE=45°+45°=90°,∴OE=2.17.菱形ABCD中,AD=6,AE⊥BC,垂足为E,F为AB边中点,DF⊥EF.(1)直接写出结果:EF=3;(2)求证:∠ADF=∠EDF;(3)求DE的长.解:(1)∵AE⊥BC,∴∠AEB=90°,∵AD=6,F为AB边中点,∴EF=AB=AD=3.故答案为:3;(2)延长EF交DA于G,∵AD∥BC,∴∠G=∠FEB,∠GAB=∠B,∵AF=BF,∴△AGF≌△BEF(AAS),∴GF=EF,∵DF⊥EF,∴DG=DE,∴∠ADF=∠EDF;(3)设BE=x,则AG=x,则DE=DG=6+x,∵AE2=AB2﹣BE2=62﹣x2,AE2=DE2﹣AD2=(x+6)2﹣62,∴62﹣x2=(x+6)2﹣62,解得x=﹣3±3,∴BE=﹣3+3,∴DE═﹣3+3+6═3+3.18.如图,在▱ABCD中,对角线AC、BD相交于点O,AC⊥AB,∠AOB=60°.点E、点F分别是OB、OD的中点,连接AE、EC、CF、F A.(1)求证:四边形AECF为矩形;(2)若AB=3,求矩形AECF的面积.(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵点E、点F分别是OB、OD的中点,∴OE=OB,OF=OD,∴OE=OF,∴四边形AECF是平行四边形,∵AC⊥AB,∠AOB=60°,∴∠ABO=30°,∴OA=OB=OE,∴AC=EF,∴四边形AECF为矩形;(2)解:由(1)得:OA=OE=OC=OF,∠AOB=60°,∠ABO=30°,∴△OAE是等边三角形,∠OF A=∠OAF=30°=∠ABO,∴AE=OA,AF=AB=3,∵AC⊥AB,∴∠OAB=90°,∴AE=OA=AB=,∴矩形AECF的面积=AF×AE=3.19.如图,在△ABC中,∠A=60°,BD⊥AC于点D,CE⊥AB于点E,F为BC边的中点,连接EF,DF.(1)求证:EF=DF;(2)若BC=6.求△DEF的周长;(3)在(2)的条件下,若EC=BF,求四边形EFDA的面积.(1)证明:∵BD⊥AC于点D,CE⊥AB于点E,∴∠BDC=∠BEC=90°,∵BF=CF,∴DF=EF=BC.(2)解:∵FE=FB=FC=FD,∴∠FBE=∠FEB,∠FCD=∠FDC,∵∠A=60°,∴∠ABC+∠ACB=120°,∴∠BFE+∠DFC=180°﹣2∠ABC+180°﹣2∠ACB=120°,∴∠EFD=60°,∵EF=DF,∴△EFD是等边三角形,∵EF=BC=3,∴△DEF使得周长为9.(3)∵EC=BF,BF=CF,∴EC=BC,∴cos∠BCE=,∴∠ECB=45°,∵BC=6,∴EB=EC=3,∵∠A=60°,∠AEC=90°,∴AE=×3=,∴AB=BE+AE=3+,在Rt△ADB中,∵∠ABD=30°,∴AD=AB=,∴S四边形EFDA=S△EDF+S△ADE=×32+×××=3+.20.如图,在正方形ABCD中,点E在BC边的延长线上,点F在CD边的延长线上,且CE=DF,连接AE和BF相交于点M.求证:AE=BF.解:在正方形ABCD中,AB=CD=CD=AD,∵CE=DF,∴BE=CF,在△AEB与△BFC中,,∴△AEB≌△BFC(SAS),∴AE=BF.。

中考数学专题复习31特殊平行四边形专题(全国通用解析版)

中考数学专题复习31特殊平行四边形专题(全国通用解析版)

特殊平行四边形考点1:菱形的性质与判定1.(2021·安徽中考真题)如图.在菱形ABCD 中.2AB =.120A ∠=︒.过菱形ABCD 的对称中心O 分别作边AB .BC 的垂线.交各边于点E .F .G .H .则四边形EFGH 的周长为( )A .33B .23+C .23+D .13+【答案】A【分析】 依次求出OE =OF =OG =OH .利用勾股定理得出EF 和OE 的长.即可求出该四边形的周长.【详解】∵HF ∵BC ,EG ∵AB ,∵∵BEO =∵BFO =90°.∵∵A =120°.∵∵B =60°.∵∵EOF =120°.∵EOH =60°.由菱形的对边平行.得HF ∵AD ,EG ∵CD .因为O点是菱形ABCD的对称中心.∵O点到各边的距离相等.即OE=OF=OG=OH.∵∵OEF=∵OFE=30°.∵OEH=∵OHE=60°.∵∵HEF=∵EFG=∵FGH=∵EHG=90°.所以四边形EFGH是矩形;设OE=OF=OG=OH=x.∵EG=HF=2x.()2223EF HG x x x==-=.如图.连接AC.则AC经过点O.可得三角形ABC是等边三角形.∵∵BAC=60°.AC=AB=2,∵OA=1,∵AOE=30°.∵AE=1 2 .∵x=OE2213 12⎛⎫-=⎪⎝⎭∵四边形EFGH的周长为EF+FG+GH+HE=33 23223233 x x+=+=,故选A.2.(2021·陕西中考真题)如图.在菱形ABCD 中.60ABC ∠=︒.连接AC 、BD .则AC BD的值为( )A .12B .22C .32D .33【答案】D【分析】设AC 与BD 的交点为O .由题意易得1,2ABD CBD ABC AB BC ∠=∠=∠=.,,AC BD BO DO AO CO ⊥==.进而可得∵ABC 是等边三角形.3BO AO =.然后问题可求解.【详解】解:设AC 与BD 的交点为O .如图所示:∵四边形ABCD 是菱形. ∵1,2ABD CBD ABC AB BC ∠=∠=∠=.,,AC BD BO DO AO CO ⊥==.∵60ABC ∠=︒.∵∵ABC 是等边三角形.∵30,ABO AB AC ∠=︒=. ∵12AO AB =. ∵223OB AB AO OA -=. ∵23,2BD OA AC AO ==. ∵3323AC BD OA==; 故选D .3.(2021·四川凉山彝族自治州·中考真题)菱形ABCD 中.对角线10, 24AC BD ==.则菱形的高等于___________. 【答案】12013【分析】过A 作AE ∵BC .垂足为E .根据菱形的性质求出菱形边长.再利用菱形的面积公式得到方程.解之可得AE .【详解】解:如图.过A 作AE ∵BC .垂足为E .即AE 为菱形ABCD 的高.∵菱形ABCD 中.AC =10.BD =24.∵OB =12BD =12.OA =12AC =5. 在Rt ∵ABO 中.AB =BC 22125+=13.∵S 菱形ABCD =12AC BD BC AE ⨯⨯=⨯.∵11024132AE ⨯⨯=⨯.解得:AE=120 13.故答案为:120 13.4.(2021·江苏镇江·中考真题)如图.四边形ABCD是平行四边形.延长DA.BC.使得AE =CF.连接BE.DF.(1)求证:ABE CDF△≌△;(2)连接BD.∵1=30°.∵2=20°.当∵ABE=°时.四边形BFDE是菱形.【答案】(1)见解析;(2)当∵ABE=10°时.四边形BFDE是菱形【分析】(1)根据平行四边形的性子和“SAS”可证∵ABE∵∵CDF;(2)先证明四边形BFDE 是平行四边形.再通过证明BE =DE .可得结论.【解析】解:(1)证明:∵四边形ABCD 是平行四边形.∵AB =CD .∵BAD =∵BCD .∵∵1=∵DCF .在∵ABE 和∵CDF 中.1AE CF DCF AB CD =⎧⎪∠=∠⎨⎪=⎩. ∵∵ABE ∵∵CDF (SAS );(2)当∵ABE =10°时.四边形BFDE 是菱形.理由如下:∵∵ABE ∵∵CDF .∵BE =DF .AE =CF .∵BF =DE .∵四边形BFDE 是平行四边形.∵∵1=30°.∵2=20°.∵∵ABD =∵1-∵2=10°.∵∵DBE =20°.∵∵DBE =∵EDB =20°.∵BE =DE .∵平行四边形BFDE 是菱形.故答案为10.5.(2021·四川遂宁市·中考真题)如图.在平行四边形ABCD 中.对角线AC 与BD 相交于点O .过点O 的直线EF 与BA 、DC 的延长线分别交于点E 、F .(1)求证:AE =CF ;(2)请再添加一个条件.使四边形BFDE 是菱形.并说明理由.【答案】(1)见解析;(2)EF ∵BD 或EB =ED .见解析【分析】(1)根据平行四边形的性质和全等三角形的证明方法证明AOE COF ≌.则可得到AE =CF ;(2)连接BF .DE .由AOE COF ≌.得到OE = OF .又AO =CO .所以四边形AECF 是平行四边形.则根据EF ∵BD 可得四边形BFDE 是菱形.【详解】证明:(1)∵四边形ABCD 是平行四边形∵OA =OC .BE ∵DF∵∵E =∵F在∵AOE 和∵COF 中E F AOE COF OA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩∵AOE COF ≌()AAS∵AE=CF(2)当EF∵BD时.四边形BFDE是菱形.理由如下:如图:连结BF.DE∵四边形ABCD是平行四边形∵OB=OD≌∵AOE COF=∵OE OF∵四边形BFDE是平行四边形∵EF∵BD.∵四边形BFDE是菱形⨯的正方形网格中.网格线的交点称为格点. 6.(2021·浙江嘉兴市·中考真题)如图.在77B在格点上.每一个小正方形的边长为1.(1)以AB为边画菱形.使菱形的其余两个顶点都在格点上(画出一个即可).(2)计算你所画菱形的面积.【答案】(1)答案不唯一.见解析;(2)6或8或10(答案不唯一)【分析】(1)根据菱形的定义并结合格点的特征进行作图;(2)利用菱形面积公式求解.【详解】解:(1)根据题意.菱形ABCD即为所求(2)图1中AC=2.BD=6∵图1中菱形面积1266 2=⨯⨯=.图2中.AC 224442.BD 22222+=∵图2中菱形面积1224282=⨯=. 图3中.222425AC BD =+=∵图3菱形面积12525102=⨯=.考点2:矩形的性质与判定7.(2021·江苏扬州市·中考真题)如图.在ABC 中.AC BC =.矩形DEFG 的顶点D 、E 在AB 上.点F 、G 分别在BC 、AC 上.若4CF =.3BF =.且2DE EF =.则EF 的长为________.【答案】125【分析】根据矩形的性质得到GF ∵AB .证明∵CGF ∵∵CAB .可得72x AB =.证明∵ADG ∵∵BEF .得到AD =BE =34x .在∵BEF 中.利用勾股定理求出x 值即可. 【详解】解:∵DE =2EF .设EF =x .则DE =2x . ∵四边形DEFG 是矩形.∵GF∵AB.∵∵CGF∵∵CAB.∵44437GF CFAB CB===+.即247xAB=.∵72x AB=.∵AD+BE=AB-DE=722xx-=32x.∵AC=BC.∵∵A=∵B.又DG=EF.∵ADG=∵BEF=90°.∵∵ADG∵∵BEF(AAS).∵AD=BE=1322x⨯=34x.在∵BEF中.222BE EF BF+=.即222 33 4x x⎛⎫+=⎪⎝⎭.解得:x=125或125-(舍).∵EF=12 5.故答案为:125.8.(2021·山东泰安市·中考真题)如图.将矩形纸片ABCD折叠(AD AB>).使AB落在AD上.AE为折痕.然后将矩形纸片展开铺在一个平面上.E点不动.将BE边折起.使点B落在AE上的点G处.连接DE.若DE EF=.2CE=.则AD的长为________.【答案】422+【分析】根据矩形的性质和正方形的性质.证明BEF GEF ≅△△.从而2BF FG ==.又因为)21AG FG AE EG AB ==-=.代入求解即可. 【详解】 解:∵四边形ABCD 是矩形,AB AB '=.∵AB CD =,AD BC =,90B C ∠=∠=,且四边形ABEB '是正方形.∵AB BE =.∵BE CD =.又∵DE EF =.∵BEF CDE ≅△△.∵2BF CE ==又∵BEF GEF ≅△△(折叠.∵2BF FG ==.BE GE =,90FGE B ∠=∠= .设AB x =,则2AE x =. ∵)21AG AE GE AE BE AE AB x =-=-=-=. 又∵AE 是正方形ABEB '对角线.∵45GAF ∠= .∵45AFG ∠= .∵FG AG = . ∵()212x = .解得:222x =.即222AB BE == . ∵2222422AD BC BE EC ==+=+=+ 故答案为:4+229.(2021·湖北十堰市·中考真题)如图.O 是矩形ABCD 的对角线AC 的中点.M 是AD 的中点.若AB=5.AD=12.则四边形ABOM 的周长为_______.【答案】20.【详解】∵AB =5.AD =12.∵根据矩形的性质和勾股定理.得AC =13.∵BO 为R t∵ABC 斜边上的中线∵BO =6.5∵O 是AC 的中点.M 是AD 的中点.∵OM 是∵ACD 的中位线∵OM =2.5∵四边形ABOM 的周长为:6.5+2.5+6+5=20故答案为2010.(2021·江苏连云港市·中考真题)如图.点C 是BE 的中点.四边形ABCD 是平行四边形.(1)求证:四边形ACED是平行四边形;.求证:四边形ACED是矩形.(2)如果AB AE【答案】(1)见解析;(2)见解析【分析】(1)由平行四边形的性质以及点C是BE的中点.得到AD∵CE.AD=CE.从而证明四边形ACED是平行四边形;(2)由平行四边形的性质证得DC=AE.从而证明平行四边形ACED是矩形.【详解】证明:(1)∵四边形ABCD是平行四边形.∵AD∵BC.且AD=BC.∵点C是BE的中点.∵BC=CE.∵AD=CE.∵AD∵CE.∵四边形ACED是平行四边形;(2)∵四边形ABCD是平行四边形.∵AB=DC.∵AB=AE.∵DC =AE .∵四边形ACED 是平行四边形.∵四边形ACED 是矩形.考点3:正方形的性质与判定11.(2021·重庆中考真题)如图.正方形ABCD 的对角线AC .BD 交于点O .M 是边AD 上一点.连接OM .过点O 做ON ∵OM .交CD 于点N .若四边形MOND 的面积是1.则AB 的长为( )A .1B 2C .2D .22【答案】C【分析】 先证明()MAO NDO ASA ≅.再证明四边形MOND 的面积等于.DAO 的面积.继而解得正方形的面积.据此解题.【详解】解:在正方形ABCD 中.对角线BD ∵AC .90AOD ∴∠=︒ON OM ⊥90MON ∴∠=︒AOM DON ∴∠=∠又45,MAO NDO AO DO ∠=∠=︒=()MAO NDO ASA ∴≅MAO NDO S S ∴=四边形MOND 的面积是1.1DAO S ∴=∴正方形ABCD 的面积是4.24AB ∴=2AB ∴=故选:C .12.(2021·重庆中考真题)如图.把含30°的直角三角板PMN 放置在正方形ABCD 中.30PMN ∠=︒.直角顶点P 在正方形ABCD 的对角线BD 上.点M .N 分别在AB 和CD 边上.MN 与BD 交于点O .且点O 为MN 的中点.则AMP ∠的度数为( )A .60°B .65°C .75°D .80°【答案】C【分析】 根据斜边中线等于斜边一半.求出∵MPO =30°.再求出∵MOB 和∵OMB 的度数.即可求出AMP ∠的度数.【详解】解:∵四边形ABCD 是正方形中.∵∵MBO =∵NDO =45°.∵点O 为MN 的中点∵OM =ON .∵∵MPN =90°.∵OM =OP .∵∵PMN =∵MPO =30°.∵∵MOB =∵MPO+∵PMN =60°.∵∵BMO =180°-60°-45°=75°.180753075AMP ∠=︒-︒-︒=︒.故选:C .13.(2021·四川自贡市·中考真题)如图.在正方形ABCD 中.6AB =.M 是AD 边上的一点.:1:2AM MD =.将BMA △沿BM 对折至BMN △.连接DN .则DN 的长是( )A .52B .58C .3D 65 【答案】D【分析】延长MN 与CD 交于点E.连接BE.过点N 作NF CD ⊥.根据折叠的正方形的性质得到NE CE =.在Rt MDE 中应用勾股定理求出DE 的长度.通过证明MDE NFE ∽.利用相似三角形的性质求出NF 和DF 的长度.利用勾股定理即可求解.【详解】解:如图.延长MN 与CD 交于点E.连接BE.过点N 作NF CD ⊥.∵6AB =.M 是AD 边上的一点.:1:2AM MD =. ∵2AM =.4DM =.∵将BMA △沿BM 对折至BMN △.四边形ABCD 是正方形. ∵90BNE C ∠=∠=︒.AB AN BC ==.∵Rt BNE Rt BCE ≌(HL).∵NE CE =.∵2EM MN NE NE =+=+.在Rt MDE 中.设DE x =.则628ME x x =-+=-. 根据勾股定理可得()22248x x +=-.解得3x =. ∵3NE DE ==.5ME =.∵NF CD ⊥.90MDE ∠=︒.∵MDE NFE ∽. ∵25EF NF NE DE MD ME ===. ∵125NF =.95EF =. ∵65DF =.∵2265+. DN DF NF故选:D.。

专题02 特殊平行四边形中的四种最值问题(解析版)

专题02 特殊平行四边形中的四种最值问题(解析版)

专题02特殊平行四边形中的四种最值问题类型一、将军饮马(轴对称)型最值问题A .5B .【答案】B 【分析】作点E 关于BD 的对称点为∵E 关于BD 的对称点为'E ,∴'PE PE =,'BE BE =,∵正方形ABCD 的边长为2,点A.0B.3【答案】C【分析】要使四边形APQE的周长最小,由于在BC边上确定点P、Q的位置,可在与BC交于一点即为Q点,过A点作后过G点作BC的平行线交DC的延长线于长度.【答案】210【分析】①连接PO并延长交BC②过点O作关于BC的对称点【点睛】本题考查矩形的性质、全等三角形的判定与性质、勾股定理及轴对称识是解题的关键.【变式训练1】如图,正方形ABCD的周长为24,P为对角线AC上的一个动点,E是CD的中点,则PE PD+的最小值为()C.6D.5A.B.【答案】A【详解】解:如图,连接BE,设BE与AC交于点P',∵四边形ABCD 是正方形,∴点B 与D 关于AC 对称,∴P'D =P'B ,∴P'D +P'E =P'B +P'E =BE 最小.即P 在AC 与BE 的交点上时,PD +PE 最小,即为BE 的长度.∵正方形ABCD 的周长为24,∴直角△CBE 中,∠BCE =90°,BC =6,CE =12CD =3,∴BE ==故选A.【变式训练2】如图,在矩形ABCD 中,AB =2,AD =3,动点P 满足S △PBC =14S 矩形ABCD ,则点P 到B ,C 两点距离之和PB +PC 的最小值为()A B C D .【答案】B 【详解】解:设△PBC 中BC 边上的高是h .∵S △PBC =14S 矩形ABCD .∴12BC •h =14AB •AD ,∴h =12AB =1,∴动点P 在与BC 平行且与BC 的距离是1的直线l 上,如图,作B 关于直线l 的对称点E ,连接CE ,则CE 的长就是所求的最短距离.在Rt △BCE 中,∵BC =3,BE =BA =2,∴CE =即PB +PC 故选:B .【变式训练3】如图,在正方形ABCD 中,4AB =,AC 与BD 交于点O ,N 是AO 的中点,点M 在BC 边上,且3BM =,P 为对角线BD 上一点,则PM PN -的最大值为_____________.∴PN=PE,则PM-PN=PM-PE,∴当点P,E,M三点共线时,在正方形ABCD中,AB=4,∴AC=42,【答案】13【分析】连接CF、AF+=+,故当EF MN EF AF为AE的长,由12AB=类型二、翻折型最值问题【变式训练1】如图,在矩形ABCD 中,3AB =,4=AD ,E 在AB 上,1BE =,F 是线段BC 上的动点,将EBF △沿EF 所在的直线折叠得到'EB F △,连接'B D ,则'B D 的最小值是()A .6B .4C .2D .1-【答案】D 【详解】解:如图,'B 的运动轨迹是以E 为圆心,以BE 的长为半径的圆.所以,当'B 点落在DE 上时,'B D 取得最小值.根据折叠的性质,△EBF ≌△EB’F ,∴E 'B ⊥'B F ,∴E 'B =EB ,∵1BE =∴E 'B =1,∵3AB =,4=AD ,∴AE =3-1=2,∴DE 224225+=D 'B =25.故选:D .【变式训练2】如图,在正方形ABCD 中,AB =6,E 是CD 边上的中点,F 是线段BC 上的动点,将△ECF 沿EF 所在的直线折叠得到EC F '△,连接AC ',则的最小值是AC '_______.【答案】353-【详解】解:∵四边形ABCD 是正方形,∴6CD AB AD ===,∵E 是CD 边上的中点,∴132EC CD ==∵△ECF 沿EF 所在的直线折叠得到EC F '△,∴3EC EC '==,∴当点A ,C ',E 三点共线时,AC '最小,如图,在Rt ADE △中,由勾股定理得:22226335AE AD DE =+=+=353AE EC '-=,∴AC '的最小值为353.类型三、旋转型最值问题例1.如图,正方形ABCD 中,6AB =,E 是边BC 的中点,F 是正方形ABCD 内一动点,且3EF =,连接EF ,DE ,DF ,并将DEF 绕点D 逆时针旋转90︒得到DMN (点M ,N 分别为点E ,F 的对应点).连接CN ,则线段CN 长度的最小值为_____________.【答案】353-【分析】过点M 作MP CD ⊥,垂足为P ,连接CM ,根据正方形的性质求出CE ,证明EDC DMP △≌△股定理求出CM ,根据CN MN CM +≥即可求出CN 【详解】解:过点M 作MP CD ⊥,垂足为P ,连接由旋转可得:DE DM =,3EF MN ==,90EDM ∠=在正方形ABCD 中,6AB =,E 为BC 中点,∴132CE BC ==,∵90EDM ∠=︒,∴90EDC CDM ∠+∠=︒,又90EDC DEC ∠+∠=︒,∴DEC CDM ∠=∠,例2.如图,长方形ABCD 中,6AB =,8BC =,E 为BC 上一点,且2BE =,F 为AB 边上的一个动点,连接EF ,将EF 绕着点E 顺时针旋转30°到EG 的位置,连接FG 和CG ,则CG 的最小值为______.【答案】2+【详解】解:如图,将线段BE 绕点E 顺时针旋转30°得到线段ET ,连接GT ,过E 作EJ CG ⊥,垂足为J ,∵四边形ABCD 是矩形,∴AB =CD =6,∠B =∠BCD =90°,∵∠BET =∠FEG =30°,∴∠BEF =∠TEG ,在△EBF 和△TEG 中,EB ET BEF TEG EF EG =⎧⎪∠=∠⎨⎪=⎩,∴△EBF ≌△ETG (SAS ),∴∠B =∠ETG =90°,∴点G 的在射线TG 上运动,∴当CG ⊥TG 时,CG 的值最小,∵∠EJG =∠ETG =∠JGT =90°,∴四边形ETGJ 是矩形,∴∠JET =90°,GJ =TE =BE =2,∵∠BET =30°,∴∠JEC =180°-∠JET -∠BET =60°,∵8BC =,∴6,3,EC BC BE EJ CJ =-===,∴CG =CJ +GJ =2+.∴CG 的最小值为2+.故答案为:2.【答案】()51a +【分析】连接BF ,过点F 作FG 的角平分线上运动,作点C 关于勾股定理求出DC DF CF '=+的最小值为 将ED 绕点E 顺时针旋转90︒到EF ,EF DE ∴⊥,EF DE =,90DEA FEG DEA ADE ∴∠+∠=∠+∠=︒,ADE FEG ∴∠=∠,又90DAE FGE ∠=∠=︒ ,(1)试猜想线段BG 和AE 的数量关系,并证明你得到的结论;(2)将正方形DEFG 绕点D 逆时针方向旋转一定角度后(旋转角度大于过观察或测量等方法判断(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由;(3)若2BC DE ==,在(2)的旋转过程中,①当AE 为最大值时,则AF =___________.ABC是等腰直角三角形,=,AD BC∴⊥,BD CD∴∠=∠=︒.90ADB ADC四边形DEFG是正方形,∴=.DE DG在Rt BAC 中,D 为斜边BC 中点,AD BD ∴=,AD BC ⊥,90ADG GDB ∴∠+∠=︒.四边形EFGD 为正方形,DE DG ∴=,且90GDE ∠=︒,90ADG ADE ∴∠+∠=︒,BDG ADE ∴∠=∠.在BDG 和ADE V 中,BD AD BDG ADE GD ED =⎧⎪∠=∠⎨⎪=⎩,(SAS)BDG ADE ∴△≌△,BG AE ∴=,BGD AED ∠=∠,GOK DOE ∠=∠ ,90OKG ODE ∴∠=∠=︒,EA BG ∴⊥.(3)①如图③,当旋转角为270︒时,BG AE =,此时AE 的值最大.2BC DE == ,中,如图②中,在BDG∴-≤≤+,2112BG∴的最小值为1,此时如图④中,AE在Rt AEF中,2=AF EF类型四、PA+KPB型最值问题3A .27B .23【答案】C 【分析】连接AC 与EF 相交于∵四边形ABCD 是菱形,∴OAE OCF ∠=∠,∵,AOE COF AE CF ∠=∠=,A.3B.22【答案】D【分析】连接AF,利用三角形中位线定理,可知四边形ABCD是菱形,∴==,AB BC23,H分别为AE,EF的中点,G∴是AEFGH△的中位线,【答案】51-【分析】连接BD交EF的中点,求出OB的长,得到>=-AH AM MH–51直线l平分正方形∴O是BD的中点,四边形ABCD是正方形,∴==,BD AB24【答案】26【分析】利用轴对称的性质作出如图的辅助线,在【详解】解:延长DC 作D A CD '''⊥,使A∴E F G H E '''、、、、在同一直线上时,四边形EFCH 作E K AB '⊥交AB 延长于点K ,则23EK BE CD A E AB CD '''=++=+=,E K BC '=+∴()()22232326EE '=+=.故答案为:26.【点睛】本题考查了正方形的性质,对称的性质,解题的关键是理解题意,灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考压轴题.在△ABH中,∠AHB=90°,∠ABH过点D作DE∥AC交BC延长线于点E,作点C。

新北师大版九年级数学上册 特殊的平行四边形(含中考真题解析)

新北师大版九年级数学上册  特殊的平行四边形(含中考真题解析)

特殊的平行四边形知识点名师点晴矩形1.矩形的性质会从边、角、对角线方面通过合情推理提出性质猜想,并用演绎推理加以证明;能运用矩形的性质解决相关问题.2.矩形的判定会用判定定理判定平行四边形是否是矩形及一般四边形是否是矩形菱形1.菱形性质能应用这些性质计算线段的长度2.菱形的判别能利用定理解决一些简单的问题正方形1.正方形的性质了解平行四边形、矩形、菱形、正方形及梯形之间的相互关系,能够熟练运用正方形的性质解决具体问题2.正方形判定掌握正方形的判定定理,并能综合运用特殊四边形的性质和判定解决问题,发现决定中点四边形形状的因素,熟练运用特殊四边形的判定及性质对中点四边形进行判断,并能对自己的猜想进行证明☞2年中考【2015年题组】1.(2015崇左)下列命题是假命题的是()A.对角线互相垂直且相等的平行四边形是正方形.B.对角线互相垂直的矩形是正方形.C.对角线相等的菱形是正方形.D.对角线互相垂直平分的四边形是正方形.【答案】D.考点:1.正方形的判定;2.平行四边形的判定;3.菱形的判定;4.矩形的判定. 2.(2015连云港)已知四边形ABCD ,下列说法正确的是( ) A .当AD=BC ,AB ∥DC 时,四边形ABCD 是平行四边形 B .当AD=BC ,AB=DC 时,四边形ABCD 是平行四边形 C .当AC=BD ,AC 平分BD 时,四边形ABCD 是矩形 D .当AC=BD ,AC ⊥BD 时,四边形ABCD 是正方形 【答案】B . 【解析】试题分析:∵一组对边平行且相等的四边形是平行四边形,∴A 不正确; ∵两组对边分别相等的四边形是平行四边形,∴B 正确; ∵对角线互相平分且相等的四边形是矩形,∴C 不正确;∵对角线互相垂直平分且相等的四边形是正方形,∴D 不正确; 故选B .考点:1.平行四边形的判定;2.矩形的判定;3.正方形的判定. 3.(2015徐州)如图,菱形中,对角线AC 、BD 交于点O ,E 为AD 边中点,菱形ABCD 的周长为28,则OE 的长等于( )A .3.5B .4C .7D .14 【答案】A . 【解析】试题分析:∵菱形ABCD 的周长为28,∴AB=28÷4=7,OB=OD ,∵E 为AD 边中点,∴OE是△ABD 的中位线,∴OE=12AB=12×7=3.5.故选A .考点:菱形的性质. 4.(2015柳州)如图,G ,E 分别是正方形ABCD 的边AB ,BC 的点,且AG=CE ,AE ⊥EF ,AE=EF ,现有如下结论:①BE=12GE ;②△AGE ≌△ECF ;③∠FCD=45°;④△GBE ∽△ECH其中,正确的结论有( )A .1个B .2个C .3个D .4个 【答案】B .考点:1.全等三角形的判定与性质;2.正方形的性质;3.相似三角形的判定与性质;4.综合题.5.(2015内江)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.3B.23C.26D.6【答案】B.考点:1.轴对称-最短路线问题;2.最值问题;3.正方形的性质.6.(2015南充)如图,菱形ABCD 的周长为8cm ,高AE 长为3cm ,则对角线AC 长和BD 长之比为( )A .1:2B .1:3C .1:2D .1:3【答案】D . 【解析】试题分析:如图,设AC ,BD 相较于点O ,∵菱形ABCD 的周长为8cm ,∴AB=BC=2cm ,∵高AE 长为3cm ,∴BE=22AB AE -=1(cm ),∴CE=BE=1cm ,∴AC=AB=2cm ,∵OA=1cm ,AC ⊥BD ,∴OB=22AB OA -=3(cm ),∴BD=2OB=23cm ,∴AC :BD=1:3.故选D .考点:菱形的性质.7.(2015安徽省)如图,矩形ABCD 中,AB =8,BC =4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( ) A .25 B .35 C .5 D .6【答案】C .考点:1.菱形的性质;2.矩形的性质.8.(2015十堰)如图,正方形ABCD 的边长为6,点E 、F 分别在AB ,AD 上,若CE=53,且∠ECF=45°,则CF 的长为( )A .102B .53C 5103D 1053【答案】A .考点:1.全等三角形的判定与性质;2.勾股定理;3.正方形的性质;4.综合题;5.压轴题. 9.(2015鄂州)在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3…按如图所示的方式放置,其中点B1在y 轴上,点C1、E1、E2、C2、E3、E4、C3…在x 轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2015B2015C2015D2015的边长是( )A .201421)(B .201521)( C .201533)( D .201433)(【答案】D .考点:1.正方形的性质;2.规律型;3.综合题. 10.(2015广安)如图,已知E 、F 、G 、H 分别为菱形ABCD 四边的中点,AB=6cm ,∠ABC=60°,则四边形EFGH 的面积为 cm2.【答案】93.【解析】试题分析:连接AC ,BD ,相交于点O ,如图所示,∵E 、F 、G 、H 分别是菱形四边上的中点,∴EH=12BD=FG ,EH ∥BD ∥FG ,EF=12AC=HG ,∴四边形EHGF 是平行四边形,∵菱形ABCD 中,AC ⊥BD ,∴EF ⊥EH ,∴四边形EFGH 是矩形,∵四边形ABCD 是菱形,∠ABC=60°,∴∠ABO=30°,∵AC ⊥BD ,∴∠AOB=90°,∴AO=12AB=3,∴AC=6,在Rt △AOB 中,由勾股定理得:OB=22AB OA =33,∴BD=63,∵EH=12BD ,EF=12AC ,∴EH=33,EF=3,∴矩形EFGH 的面积=EF•FG=93cm2.故答案为:93.考点:1.中点四边形;2.菱形的性质. 11.(2015凉山州)菱形ABCD 在平面直角坐标系中的位置如图所示,顶点B (2,0),∠DOB=60°,点P 是对角线OC 上一个动点,E (0,﹣1),当EP+BP 最短时,点P 的坐标为 .【答案】(233-,23-).的交点,∴点P 的坐标为方程组3(13)1y x y x ⎧=⎪⎨⎪=-⎩的解,解方程组得:3323x y ⎧=⎪⎨=⎪⎩,所以点P 的坐标为(33,23-),故答案为:(233-,23).考点:1.菱形的性质;2.坐标与图形性质;3.轴对称-最短路线问题;4.动点型;5.压轴题;6.综合题. 12.(2015潜江)菱形ABCD 在直角坐标系中的位置如图所示,其中点A 的坐标为(1,0),点B 的坐标为(03,动点P 从点A 出发,沿A→B→C→D→A→B→…的路径,在菱形的边上以每秒0.5个单位长度的速度移动,移动到第2015秒时,点P 的坐标为 .【答案】(0.5,32.考点:1.菱形的性质;2.坐标与图形性质;3.规律型;4.综合题.13.(2015北海)如图,已知正方形ABCD 的边长为4,对角线AC 与BD 相交于点O ,点E 在DC 边的延长线上.若∠CAE=15°,则AE= .【答案】8. 【解析】试题分析:∵正方形ABCD 的边长为4,对角线AC 与BD 相交于点O ,∴∠BAC=45°,AB ∥DC ,∠ADC=90°,∵∠CAE=15°,∴∠E=∠BAE=∠BAC ﹣∠CAE=45°﹣15°=30°.∵在Rt △ADE 中,∠ADE=90°,∠E=30°,∴AE=2AD=8.故答案为:8. 考点:1.含30度角的直角三角形;2.正方形的性质. 14.(2015南宁)如图,在正方形ABCD 的外侧,作等边△ADE ,则∠BED 的度数是 .【答案】45°.考点:1.正方形的性质;2.等边三角形的性质.15.(2015玉林防城港)如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是.【答案】9 2.【解析】试题分析:如图1所示,作E关于BC的对称点E′,点A关于DC的对称点A′,连接A′E′,四边形AEPQ的周长最小,∵AD=A′D=3,BE=BE′=1,∴AA′=6,AE′=4.∵DQ∥AE′,D是AA′的中点,∴DQ是△AA′E′的中位线,∴DQ=12AE′=2;CQ=DC﹣CQ=3﹣2=1,∵BP∥AA′,∴△BE′P∽△AE′A′,∴'''BP BEAA AE=,即164BP=,BP=32,CP=BC﹣BP=332-=32,S四边形AEPQ=S正方形ABCD﹣S△ADQ﹣S△PCQ﹣SBEP=9﹣12AD•DQ﹣12CQ•CP﹣12BE•BP=9﹣12×3×2﹣12×1×32﹣12×1×32=92,故答案为:92.考点:1.轴对称-最短路线问题;2.正方形的性质.16.(2015达州)在直角坐标系中,直线1y x =+与y 轴交于点A ,按如图方式作正方形A1B1C1O 、A2B2C2C1、A3B3C1C2…,A1、A2、A3…在直线1y x =+上,点C1、C2、C3…在x 轴上,图中阴影部分三角形的面积从左到游依次记为1S 、2S 、3S 、…nS ,则nS 的值为 (用含n 的代数式表示,n 为正整数).【答案】232n -.故答案为:232n .考点:1.一次函数图象上点的坐标特征;2.正方形的性质;3.规律型;4.综合题. 17.(2015齐齐哈尔)如图,正方形ABCB1中,AB=1.AB 与直线l 的夹角为30°,延长CB1交直线l 于点A1,作正方形A1B1C1B2,延长C1B2交直线l 于点A2,作正方形A2B2C2B3,延长C2B3交直线l 于点A3,作正方形A3B3C3D4,…,依此规律,则A2014A2015= .【答案】20142(3).考点:1.相似三角形的判定与性质;2.正方形的性质;3.规律型;4.综合题.18.(2015梧州)如图,在正方形ABCD 中,点P 在AD 上,且不与A 、D 重合,BP 的垂直平分线分别交CD 、AB 于E 、F 两点,垂足为Q ,过E 作EH ⊥AB 于H . (1)求证:HF=AP ;(2)若正方形ABCD 的边长为12,AP=4,求线段EQ 的长.【答案】(1)证明见试题解析;(21010.【解析】考点:1.正方形的性质;2.全等三角形的判定与性质;3.勾股定理;4.综合题. 19.(2015恩施州)如图,四边形ABCD 、BEFG 均为正方形,连接AG 、CE . (1)求证:AG=CE ; (2)求证:AG ⊥CE .【答案】(1)证明见试题解析;(2)证明见试题解析. 【解析】 试题分析:(1)由ABCD 、BEFG 均为正方形,得出AB=CB ,∠ABC=∠GBE=90°,BG=BE ,得出∠ABG=∠CBE ,从而得到△ABG ≌△CBE ,即可得到结论;(2)由△ABG ≌△CBE ,得出∠BAG=∠BCE ,由∠BAG+∠AMB=90°,对顶角∠AMB=∠CMN ,得出∠BCE+∠CMN=90°,证出∠CNM=90°即可. 试题解析:(1)∵四边形ABCD 、BEFG 均为正方形,∴AB=CB ,∠ABC=∠GBE=90°,BG=BE ,∴∠ABG=∠CBE ,在△ABG 和△CBE 中,∵AB=CB ,∠ABG=∠CBE ,BG=BE ,∴△ABG ≌△CBE (SAS ),∴AG=CE ;(2)如图所示:∵△ABG ≌△CBE ,∴∠BAG=∠BCE ,∵∠ABC=90°,∴∠BAG+∠AMB=90°,∵∠AMB=∠CMN ,∴∠BCE+∠CMN=90°,∴∠CNM=90°,∴AG ⊥CE .考点:1.全等三角形的判定与性质;2.正方形的性质. 20.(2015武汉)已知锐角△ABC 中,边BC 长为12,高AD 长为8.(1)如图,矩形EFGH 的边GH 在BC 边上,其余两个顶点E 、F 分别在AB 、AC 边上,EF 交AD 于点K .①求EFAK 的值;②设EH=x ,矩形EFGH 的面积为S ,求S 与x 的函数关系式,并求S 的最大值;(2)若AB=AC ,正方形PQMN 的两个顶点在△ABC 一边上,另两个顶点分别在△ABC 的另两边上,直接写出正方形PQMN 的边长.【答案】(1)①32;②3(8)2S x x =-, S 的最大值是24;(2)245或24049.试题解析:(1)①∵EF ∥BC ,∴AK EF AD BC =,∴EF BC AK AD ==128=32,即EF AK 的值是32;考点:1.相似三角形的判定与性质;2.二次函数的最值;3.矩形的性质;4.正方形的性质;5.分类讨论;6.综合题;7.压轴题. 21.(2015荆州)如图1,在正方形ABCD 中,P 是对角线BD 上的一点,点E 在AD 的延长线上,且PA=PE ,PE 交CD 于F . (1)PC=PE ;(2)求∠CPE 的度数;(3)如图2,把正方形ABCD 改为菱形ABCD ,其他条件不变,当∠ABC=120°时,连接CE ,试探究线段AP 与线段CE 的数量关系,并说明理由.【答案】(1)证明见试题解析;(2)90°;(3)AP=CE . 【解析】 试题分析:(1)先证出△ABP ≌△CBP ,得到PA=PC ,由PA=PE ,得到PC=PE ;(2)由△ABP ≌△CBP ,得到∠BAP=∠BCP ,进而得到∠DAP=∠DCP ,由PA=PC ,得到∠DAP=∠E ,∠DCP=∠E ,最后∠CPF=∠EDF=90°得到结论; (3)借助(1)和(2)的证明方法容易证明结论.考点:1.正方形的性质;2.全等三角形的判定与性质;3.菱形的性质;4.探究型;5.综合题;6.压轴题.【2014年题组】 1.(2014·宜宾) 如图,将n 个边长都为2的正方形按如图所示摆放,点A1,A2,…An 分别是正方形的中心,则这n 个正方形重叠部分的面积之和是( )A .nB .n ﹣1C .(14)n ﹣1D .14n【答案】B . 【解析】试题分析:由题意可得一个阴影部分面积等于正方形面积的14,即是14×4=1,5个这样的正方形重叠部分(阴影部分)的面积和为:1×4,n 个这样的正方形重叠部分(阴影部分)的面积和为:1×(n ﹣1)=n ﹣1. 故选B .考点:1.正方形的性质2.全等三角形的判定与性质. 2.(2014·山东省淄博市)如图,矩形纸片ABCD 中,点E 是AD 的中点,且AE=1,BE 的垂直平分线MN 恰好过点C .则矩形的一边AB 的长度为( )A . 1B .2C .3D . 2【答案】C .考点:1.勾股定理;2.线段垂直平分线的性质;3.矩形的性质. 3.(2014山东省聊城市)如图,在矩形ABCD 中,边AB 的长为3,点E ,F 分别在AD ,BC 上,连接BE ,DF ,EF ,BD .若四边形BEDF 是菱形,且EF=AE+FC ,则边BC 的长为( )A .3B . 33 C .3 D 93【答案】B . 【解析】试题分析:∵四边形ABCD 是矩形,∴∠A=90°,即BA ⊥BF ,∵四边形BEDF 是菱形,∴EF ⊥BD ,∠EBO=∠DBF ,∴AB=BO=3,∠ABE=∠EBO ,∴∠ABE=∠EBD=∠DBC=30°,∴BE=23cos30BO=︒,∴BF=BE=23,∵EF=AE+FC ,AE=CF ,EO=FO∴CF=AE=3,∴BC=BF+CF=33,故选B .考点:1.矩形的性质;2.菱形的性质.4.(2014·广西来宾市)顺次连接菱形各边的中点所形成的四边形是( ) A . 等腰梯形 B . 矩形 C . 菱形 D . 正方形 【答案】B .考点:1.正方形的判定;2.三角形中位线定理;3.菱形的性质. 5.(2014·贵州铜仁市)如图所示,在矩形ABCD 中,F 是DC 上一点,AE 平分∠BAF 交BC 于点E ,且DE ⊥AF ,垂足为点M ,BE=3,AE=26,则MF 的长是( )A 15B 15C .1D . 15【答案】D .考点:1.相似三角形的判定与性质;2.角平分线的性质;3.勾股定理;4.矩形的性质.6.(2014·襄阳)如图,在矩形ABCD 中,点E ,F 分别在边AB ,BC 上,且AE=13AB ,将矩形沿直线EF 折叠,点B 恰好落在AD 边上的点P 处,连接BP 交EF 于点Q ,对于下列结论:①EF=2BE ;②PF=2PE ;③FQ=4EQ ;④△PBF 是等边三角形.其中正确的是( )A .①②B .②③C .①③D .①④ 【答案】D . 【解析】试题分析:∵AE=13AB ,∴BE=2AE .由翻折的性质得,PE=BE ,∴∠APE=30°.∴∠AEP=90°﹣30°=60°,∴∠BEF=12(180°﹣∠AEP )=12(180°﹣60°)=60°.∴∠EFB=90°﹣60°=30°.∴EF=2BE .故①正确. ∵BE=PE ,∴EF=2PE .∵EF>PF,∴PF>2PE.故②错误.由翻折可知EF⊥PB,∴∠EBQ=∠EFB=30°.∴BE=2EQ,EF=2BE.∴FQ=3EQ.故③错误.由翻折的性质,∠EFB=∠BFP=30°,∴∠BFP=30°+30°=60°.∵∠PBF=90°﹣∠EBQ=90°﹣30°=60°,∴∠PBF=∠PFB=60°.∴△PBF是等边三角形.故④正确;综上所述,结论正确的是①④.故选D.考点:1.矩形的性质;2.含30度角直角三角形的判定和性质;3.等边三角形的判定.7.(2014·宁夏)菱形ABCD中,若对角线长AC=8cm,BD=6cm,则边长AB= cm.【答案】5.考点:1.菱形的性质;2.勾股定理.8.(2014·山东省聊城市)如图,四边形ABCD是平行四边形,作AF∥CE,BE∥DF,AF 交BE与G点,交DF与F点,CE交DF于H点、交BE于E点.求证:△EBC≌△FDA.【答案】证明见解析.考点:1.平行四边形的性质;2.全等三角形的判定.9.(2014·梅州)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?【答案】(1)证明见解析;(2)GE=BE+GD成立,理由见解析.【解析】试题分析:(1)由DF=BE,四边形ABCD为正方形可证△CEB≌△CFD,从而证出CE=CF.(2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF,故可证得△ECG≌△FCG,即EG=FG=GD+DF.又因为DF=BE,所以可证出GE=BE+GD成立.试题解析:(1)在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF (SAS).∴CE=CF.(2)GE=BE+GD成立.理由是:考点:1.正方形的性质;2.全等三角形的判定和性质;3.等腰直角三角形的性质.☞考点归纳归纳1:矩形基础知识归纳:1、矩形的概念有一个角是直角的平行四边形叫做矩形.2、矩形的性质(1)具有平行四边形的一切性质(2)矩形的四个角都是直角(3)矩形的对角线相等(4)矩形是轴对称图形3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形基本方法归纳:关于矩形,应从平行四边形的内角的变化上认识其特殊性:一个内角是直角的平行四边形,进一步研究其特有的性质:是轴对称图形、内角都是直角、对角线相等.同时平行四边形的性质矩形也都具有.注意问题归纳:证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.【例1】如图,在矩形ABCD中,对角线AC、BD相交于点O,∠ACB=30°,则∠AOB 的大小为()A、30°B、60°C、90°D、120°【答案】B.考点:矩形的性质.归纳2:菱形基础知识归纳:1、菱形的概念有一组邻边相等的平行四边形叫做菱形2、菱形的性质(1)具有平行四边形的一切性质(2)菱形的四条边相等(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角(4)菱形是轴对称图形3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形4、菱形的面积S菱形=底边长×高=两条对角线乘积的一半注意问题归纳:菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.【例2】如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.【答案】B.考点:菱形的性质.归纳3:正方形基础知识归纳:1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质(2)正方形的四个角都是直角,四条边都相等(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角(4)正方形是轴对称图形,有4条对称轴(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等.注意问题归纳:正方形的判定没有固定的方法,只要判定既是矩形又是菱形就可以判定. 【例3】如图,ABCD 是正方形场地,点E 在DC 的延长线上,AE 与BC 相交于点F .有甲、乙、丙三名同学同时从点A 出发,甲沿着A ﹣B ﹣F ﹣C 的路径行走至C ,乙沿着A ﹣F ﹣E ﹣C ﹣D 的路径行走至D ,丙沿着A ﹣F ﹣C ﹣D 的路径行走至D .若三名同学行走的速度都相同,则他们到达各自的目的地的先后顺序(由先至后)是( )A . 甲乙丙B . 甲丙乙C . 乙丙甲D .丙甲乙【答案】B .考点:正方形的性质. ☞1年模拟 1.(2015届山东省潍坊市昌乐县中考一模)下列说法中,错误的是( ) A .平行四边形的对角线互相平分B .对角线互相平分的四边形是平行四边形C .菱形的对角线互相垂直D .对角线互相垂直的四边形是菱形 【答案】D . 【解析】试题分析:根据平行四边形的菱形的性质得到A 、B 、C 选项均正确,而D 不正确,因为对角线互相垂直的四边形也可能是梯形.故选D .考点:1.菱形的判定与性质;2.平行四边形的判定与性质. 2.(2015届广东省广州市中考模拟)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,∠ACB=30°,则∠AOB 的大小为( )A.30°B.60°C.90°D.120°【答案】B.考点:矩形的性质.3.(2015届山东省日照市中考模拟)如图,在边长为2的菱形ABCD中,∠B=45°,AE 为BC边上的高,将△ABE沿AE所在直线翻折得△AB1E,则△AB1E与四边形AECD重叠部分的面积为()A.0.7 B.0.9 C.2−2 D2【答案】C.【解析】试题分析:如图,∵∠B=45°,AE⊥BC,∴∠BAE=∠B=45°,∴AE=BE,由勾股定理得:BE2+AE2=22,解得:2,由题意得:△ABE≌△AB1E,∴∠BAB1=2∠BAE=90°,2,∴2,2-2,∵四边形ABCD为菱形,∴∠FCB1=∠B=45°,∠CFB1=∠BAB1=90°,∴∠CB1F=45°,CF=B1F,∵CF∥AB,∴△CFB1∽△BAB1,∴11B CCFAB BB=,解得:2,∴△AEB1、△CFB1的面积分别为:12212=,21(22)3222⨯=-,∴△AB1E与四边形AECD重叠部分的面积=1(322)222--=.故选C.考点:1.菱形的性质;2.翻折变换(折叠问题).4.(2015届山东省济南市平阴县中考二模)如图,菱形OABC的顶点O在坐标系原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点O顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A.(-2,2)B.(2,-2)C.(2,-2)D.(3,-3)【答案】B.考点:1.菱形的性质;2.坐标与图形变化-旋转.5.(2015届山东省青岛市李沧区中考一模)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=13AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A.①②B.②③C.①③D.①④【答案】D.综上所述,结论正确的是①④.故选D.考点:1.翻折变换(折叠问题);2.矩形的性质.6.(2015届山东省日照市中考一模)小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A .①②B .②③C .①③D .②④ 【答案】B .考点:正方形的判定.7.(2015届山东省青岛市李沧区中考一模)如图,在矩形ABCD 中,AB=3,AD=1,把该矩形绕点A 顺时针旋转α度得矩形AB′C′D′,点C′落在AB 的延长线上,则图中阴影部分的面积是 .34π-.考点:1.旋转的性质;2.矩形的性质;3.扇形面积的计算. 8.(2015届河北省中考模拟二)如图,在矩形ABCD中,AB=3,⊙O 与边BC ,CD 相切,现有一条过点B 的直线与⊙O 相切于点E ,连接BE ,△ABE 恰为等边三角形,则⊙O 的半径为 .【答案】3【解析】试题分析:过O 点作GH ⊥BC 于G ,交BE 于H ,连接OB 、OE ,∴G 是BC 的切点,OE ⊥BH ,∴BG=BE ,∵△ABE 为等边三角形,∴BE=AB=3,∴BG=BE=3,∵∠HBG=30°,∴3,BH=23,设OG=OE=x ,则3-3,3-x ,在RT △OEH 中,EH2+OE2=OH2,即(3-3)2+x2=3-x )2,解得3,∴⊙O 的半径为3.故答案为:3考点:1.切线的性质;2.矩形的性质. 9.(2015届山东省日照市中考一模)边长为1的一个正方形和一个等边三角形如图摆放,则△ABC 的面积为.【答案】14.考点:1.正方形的性质;2.等边三角形的性质;3.含30度角的直角三角形. 10.(2015届山东省青岛市李沧区中考一模)如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC=1,CE=3,H 是AF 的中点,那么CH 的长是 .5考点:1.正方形的性质;2.直角三角形斜边上的中线;3.勾股定理.11.(2015届山西省晋中市平遥县九年级下学期4月中考模拟)如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.【答案】(1)FG⊥ED.理由见解析;(2)证明见解析.【解析】考点:1.旋转的性质;2.正方形的判定;3.平移的性质;4.探究型. 12.(2015届北京市平谷区中考二模)如图,已知点E ,F 分别是□ABCD 的边BC ,AD 上的中点,且∠BAC=90°.(1)求证:四边形AECF 是菱形; (2)若∠B=30°,BC=10,求菱形AECF 面积.【答案】(1)见解析(22532【解析】试题分析:(1)利用平行四边形的性质和菱形的性质即可判定四边形AECF 是菱形;(2)连接EF 交于点O ,运用解直角三角形的知识点,可以求得AC 与EF 的长,再利用菱形的面积公式即可求得菱形AECF 的面积. 试题解析:(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC .在Rt △ABC 中,∠BAC=90°,点E 是BC 边的中点,∴AE=CE=12BC . 同理,AF=CF=12AD .∴AF=CE .∴四边形AECF 是平行四边形. ∴平行四边形AECF 是菱形.考点:1.菱形的性质;2.平行四边形的性质;3.解直角三角形. 13.(2015届山东省日照市中考模拟)如图,▱ABCD 在平面直角坐标系中,AD=6,若OA 、OB 的长是关于x 的一元二次方程x2-7x+12=0的两个根,且OA >OB .(1)求sin ∠ABC 的值;(2)若E 为x 轴上的点,且S △AOE=163,求经过D 、E 两点的直线的解析式,并判断△AOE与△DAO 是否相似?(3)若点M 在平面直角坐标系内,则在直线AB 上是否存在点F ,使以A 、C 、F 、M 为顶点的四边形为菱形?若存在,请直接写出F 点的坐标;若不存在,请说明理由.【答案】(1)45.(2)△AOE ∽△DAO .(3)F1(3,8);F2(-3,0);F3(4751-,722-),F4(-4225,4425).【解析】 试题分析:(1)求得一元二次方程的两个根后,判断出OA 、OB 长度,根据勾股定理求得AB 长,那么就能求得sin ∠ABC 的值; (2)易得到点D 的坐标为(6,4),还需求得点E 的坐标,OA 之间的距离是一定的,那么点E 的坐标可能在点O 的左边,也有可能在点O 的右边.根据所给的面积可求得点E 的坐标,把A、E代入一次函数解析式即可.然后看所求的两个三角形的对应边是否成比例,成比例就是相似三角形;(3)根据菱形的性质,分AC与AF是邻边并且点F在射线AB上与射线BA上两种情况,以及AC与AF分别是对角线的情况分别进行求解计算.试题解析:(1)解x2-7x+12=0,得x1=4,x2=3.∵OA>OB ,∴OA=4,OB=3.在Rt△AOB中,由勾股定理有AB=225OA OB+=,∴sin∠ABC=54OAAB=;(3)根据计算的数据,OB=OC=3,∴AO平分∠BAC,①AC、AF是邻边,点F在射线AB上时,AF=AC=5,所以点F与B重合,即F(-3,0);②AC、AF是邻边,点F在射线BA上时,M应在直线AD上,且FC垂直平分AM,点F (3,8);③AC是对角线时,做AC垂直平分线L,AC解析式为y=-43x+4,直线L过(32,2),且k值为34(平面内互相垂直的两条直线k值乘积为-1),L解析式为y=34x+78,联立直线L 与直线AB求交点,∴F(4751-,722-);④AF是对角线时,过C做AB垂线,垂足为N,根据等积法求出CN=245,勾股定理得出,AN=75,做A关于N的对称点即为F,AF=145,过F做y轴垂线,垂足为G,FG=145×35=4225,∴F(-4225,4425).综上所述,满足条件的点有四个:F1(3,8);F2(-3,0);F3(4751-,722-),F4(-4225,4425).考点:1.相似三角形的判定;2.解一元二次方程-因式分解法;3.待定系数法求一次函数解析式;4.平行四边形的性质;5.菱形的判定;6.分类讨论;7.存在型;8.探究型. 14.(2015届河北省中考模拟二)如图,已知正方形ABCD ,E 是AB 延长线上一点,F 是DC 延长线上一点,连接BF 、EF ,恰有BF=EF ,将线段EF 绕点F 顺时针旋转90°得FG ,过点B 作EF 的垂线,交EF 于点M ,交DA 的延长线于点N ,连接NG .(1)求证:BE=2CF ;(2)试猜想四边形BFGN 是什么特殊的四边形,并对你的猜想加以证明. 【答案】(1)证明见解析.(2)四边形BFGN 为菱形,证明见解析.(2)解:四边形BFGN为菱形,证明如下:考点:1.正方形的性质;2.全等三角形的判定与性质;3.菱形的判定;4.旋转的性质;5.和差倍分.15.(2015届广东省广州市中考模拟)如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为¼CC',则图中阴影部分的面积为.【答案】33 42π+.【解析】试题分析:连接CD′和BC′,∵∠DAB=60°,∴∠DAC=∠CAB=30°,∵∠C′AB′=30°,∴A、D′、C及A、B、C′分别共线∴AC=3,∴扇形ACC′230(3)3604ππ⨯⨯=.∵AC=AC′,AD′=AB,∴在△OCD′和△OC'B中,CD BCACO AC DCOD C OB''=⎧⎪''∠=∠⎨⎪''∠=∠⎩,∴△OCD′≌△OC′B (AAS),∴OB=OD′,CO=C′O.∵∠CBC′=60°,∠BC′O=30°,∴∠COD′=90°.∵CD′=AC-AD′=3-1,OB+C′O=1,∴在Rt△BOC′中,BO2+(1-BO)2=(3-1)2,解得BO=3122-,3322C O'=-,∴考点:1.菱形的性质;2.全等三角形的判定与性质;3.扇形面积的计算;4.旋转的性质.。

特殊平行四边形(习题及答案)

特殊平行四边形(习题及答案)
3
12. 如图,两张等宽的纸条交叉重叠在一起,重叠的部分 ABCD 是菱形吗?为什么? 【思路分析】 ①读题标注: ②梳理思路: 要证四边形 ABCD 是菱形,根据题目中已有的条件选择判定 定理:_____________________________________________. 【过程书写】
7. 已知四边形 ABCD 是平行四边形,对角线 AC,BD 相交于点 O, 则下列结论不正确的是( ) A.当 AB=BC 时,四边形 ABCD 是菱形 B.当 AC⊥BD 时,四边形 ABCD 是菱形 C.当 OA=OB 时,四边形 ABCD 是矩形 D.当∠ABD=∠CBD 时,四边形 ABCD 是矩形
如图在正方形abcd中对角线acbd相交于点o则图中的等腰三角形共有a4个b6个c8个d10个aadbdbcc第5题图第7题图6
特殊平行四边形(习题)
例题示范
例 1:如图,在矩形 ABCD 中,BE 平分∠ABC,CE 平分∠DCB, BF∥CE,CF∥BE. 求证:四边形 BECF 是正方形.
【思路分析】 ①读题标注:
A.对角线互相平分
B.对角线互相垂直
C.对角线相等
D.每条对角线平分一组对角
5. 符合下列条件之一的四边形不一定是菱形的是( ) A.四条边都相等 B.两组邻边分别相等 C.对角线互相垂直平分 D.两条对角线分别平分一组对角
6. 下列命题错误的是( ) A.矩形的对角线相等 B.对角线互相垂直的四边形是菱形 C.平行四边形的对边相等 D.两组对边分别相等的四边形是平行四边形
13. 如图,在四边形 ABCD 中,AB=BC,对角线 BD 平分∠ABC. P 是 BD 上一点,过点 P 作 PM⊥AD,PN⊥CD,垂足分别为 点 M,N. (1)求证:∠ADB=∠CDB; (2)若∠ADC=90°,求证:四边形 MPND 是正方形.

第1章特殊平行四边形《特殊四边形》典型题型1 特殊四边形中的多结论题型-北师大版九年级数学上册

第1章特殊平行四边形《特殊四边形》典型题型1 特殊四边形中的多结论题型-北师大版九年级数学上册

《特殊四边形》典型题型1 特殊四边形中的多结论题型【知识梳理】 总体解题思路和方法:①直接证明:不一定按顺序,哪个结论最好证就先证哪个; ②已证明的结论可以作为题目的已知条件;③假设法:遇到不好证的,可以假设它成立,倒过去反推,若推出的结论与题目已知条件相符,说明假设成立,即结论也成立,反之,结论错误;④涉及几何计算时,常用解题技巧是:特殊值法或字母参数法【典型例题】例1.如图,在平行四边形ABCD 中,CD=2AD ,BE ⊥AD 于点E ,F 为DC 的中点,连接EF 、BF ,下列结论:①∠ABC=2∠ABF ;②EF=BF ;③;④∠CFE=3∠DEF ;其中正确结论的个数有( D )个 A. 1 B. 2 C. 3 D. 4解析:多结论题型,几何综合题型,压轴题(1)数学典型模型:“等腰△+平行线=角平分线”,∵FC=BC ,FC//AB , ∴∠CFB=∠ABF=∠CBF ,∴∠ABC=2∠ABF ,①正确;(2)数学典型模型:“中线倍长”;延长BC 交EF 的延长线于点G ,由AAS 易证△DEF ≌△CGF ,则EF=FG ,∵AD//BC ,∴∠AEB=∠EBC=90°,则BF 是Rt △EBG 斜边上的中线,∴BF=EF=FG ,②正确; (3)由△DEF ≌△CGF 可得,由BF 是中线,可得, ∴,③正确;CBADEFGFEDABC(4)依几何图形的审题技巧:想办法拉近∠CFE与∠DEF的位置距离,由AD//BG,可得∠DEF=∠G,由BF=FG可得∠G=∠FBG,由CF=CB可得∠FBG=∠CFB,∴∠DEF=∠CFB,由外角定理可得∠EFB=∠G+∠FBC=2∠FBC=2∠CFB,∴∠CFE=3∠CFB=3∠DEF,④正确,故选D.例2.已知如图,四边形ABCD为矩形,点O是AC的中点,过点O的一直线分别与AB、CD交于点E、F,连接BF交AC于点M,连接DE、BO,若∠COB=60°,FO=FC,则下列结论:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四边形EBFD 是菱形;④MB:OE=3:2,其中正确结论是___________解析:多结论题型,压轴题。

八年级数学平行四边形30道经典题(含答案和解析)

八年级数学平行四边形30道经典题(含答案和解析)

八年级数学平行四边形30道经典题(含答案和解析)1.如图,平行四边形ABCD中,AB=3,BC=5,AE平分∠BAD交BC于点E,则CE的长为().A.1B.2C.3D.4答案:B.解析:∵平行四边形ABCD,AE平分∠BAD交BC于点E.∴∠BAE=∠EAD,∠EAD=∠AEB.∴∠BAE=∠AEB.∴AB=BE=3.∴EC=2.所以答案为B.考点:三角形——全等三角形——角平分线的性质定理.四边形——平行四边形——平行四边形的性质.2.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AB的长为().A.13B.14C.15D.16答案:D解析:∵平行四边形ABCD,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F.∴四边形ABEF为平行四边形.∴∠FAB+∠ABE=180°,∠FAE=∠EAB,∠ABF=∠FBE. ∴∠BAE+∠ABF=90°,AE⊥BF.∴四边形ABEF为菱形.设AE,BF交点为点O,则点O平分线段AE,BF.在△ABO中,AO2+BO2=AB2,(12AE)2+(12BF)2=AB2.∵BF=12,AB=10.解得AE=16.所以答案为D.考点:三角形——直角三角形——勾股定理.四边形——平行四边形——平行四边形的性质.四边形——菱形——菱形的判定.3.如图,已知平行四边形纸片ABCD的周长为20,将纸片沿某条直线折叠,使点D与点B重合,折痕交AD于点E,交BC于点F,连接BE,则△ABE的周长为.答案:10.解析:依题可知,翻折轴对称BE=DE,△ABE的周长=AB+AE+BE=AB+AD=10.考点:四边形——平行四边形.几何变换——图形的对称——翻折变换(折叠问题).4.下列条件中,不能判断四边形是平行四边形的是().A. AB∥CD,AD∥BCB. AB=CD,AD∥BCC. AB∥CD,AB=CDD. ∠A=∠C,∠B=∠D答案:B.解析:如图:A选项,∵AB∥CD,AD∥BC .∴四边形ABCD是平行四边形,正确,故本选项错误.B选项,根据AB=CD和AD∥BC 可以是等腰梯形,错误,故本选项正确.C选项,∵AB∥CD,AB=CD.∴四边形ABCD是平行四边形,正确,故本选项错误.D选项,∵∠A=∠C,∠B=∠D.∴四边形ABCD是平行四边形,正确,故本选项错误.故选B.考点:四边形——平行四边形——平行四边形的判定.5.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:过直线外一点作已知直线的平行线.已知:直线l及其外一点A.求作:l的平行线,使它经过点A.小云的作法如下:(1)在直线l上任取一点B,以点B为圆心,任意长为半径作弧,交直线l于点C.(2)分别以A,C为圆心,以BC,AB的长为半径作弧,两弧相交于点D.(3)作直线AD.所以直线AD即为所求.老师说:“小云的作法正确.”请回答:小云的作图依据是.答案:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线. 解析:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.考点:四边形——平行四边形——平行四边形的判定.尺规作图——过一点作已知直线的平行线.6.如图所示,平行四边形ABCD中,∠ABC=60°,点E,F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,CF=√3.(1)求证:四边形ABDE是平行四边形.(2)求AB的长.答案:(1)证明见解析.(2)AB=√3.解析:(1)∵四边形ABCD是平行四边形.∴AB∥DC,AB=CD.∵AE∥BD.∴四边形ABDE是平行四边形.(2)由(1)知,AB=DE=CD.即D为CE中点.∵EF⊥BC.∴∠EFC=90°.∵AB∥CD.∴∠DCF=∠ABC=60°.∴∠CEF=30°.∴CE=2CF=2√3.∴AB=CD=√3.考点:三角形——直角三角形——含30°角的直角三角形.四边形——平行四边形——平行四边形的性质——平行四边形的判定.7.如图,在矩形ABCD中,E是BC边的中点,沿直线AE翻折△ABE,使B点落在点F处,连结CF并延长交AD于G点.(1)依题意补全图形.(2)连接BF 交AE 于点O ,判断四边形AECG 的形状并证明.(3)若BC =10,AB =203,求CF 的长.答案:(1)画图见解析. (2)四边形AECG 是平行四边形,证明见解析.(3)CF =6.解析:(1)依题意补全图形,如图:(2)依翻折的性质可知,点O 是BF 中点.∵E 是BC 边的中点. ∴EO ∥CG. ∵AG ∥CE.∴四边形AECG 是平行四边形.(3)在Rt △ABE 中.∵BE =12BC =5,AB =203.∴AE =253.∵S △BAE =12AB×BE =12AE×BO.∴BO =4. ∴BF =2BO =8. ∵BF ⊥AE ,AE ∥CG. ∴∠BFC =90°. ∴CF =6.考点:三角形——直角三角形——勾股定理.四边形——平行四边形——平行四边形的判定.几何变换——图形的对称——作图:轴对称变换.8.如图,平行四边形ABCD的周长为40,△BOC的周长比△AOB的周长多10,则AB为().A.20B.15C.10D.5答案:D.解析:∵平行四边形的周长为40.∴AB+BC=20.又∵△BOC的周长比△AOB的周长多10.∴BC-AB=10.解得:AB=5,BC=15.故答案为:D.考点:四边形——平行四边形——平行四边形的性质.9.如图,将矩形ABCD沿对角线BD所在直线折叠,点C落在同一平面内,落点记为C′和B C′与AD交于点E,若AB=3,BC=4,则DE的长为.答案:25.8解析:由折叠得,∠CBD=∠EBD.由AD∥BC得,∠CBD=∠EDB.∴∠EDB=∠EBD.∴DE=BE.设DE=BE=x,则AE=4-x.在Rt△ABE中.AE2+AB2=BE2.(4−x)2+32=x2..解得x=258∴DE的长为25.8考点:三角形——直角三角形——勾股定理.四边形——矩形——矩形的性质.几何变换——图形的对称——翻折变换(折叠问题).10.如图,矩形ABCD的对角线AC,BD交于点O,DE∥AC交BA的延长线于点E,点F在BC上,BF=BO,且AE=6,AD=8.(1)求BF的长.(2)求四边形OFCD的面积.答案:(1)BF=5..(2)S四边形OFCD=332解析:(1)∵四边形ABCD是矩形.∴∠BAD=90°.∴∠EAD=180°-∠BAD=90°.∵在Rt△EAD中,AE=6,AD=8.∴DE=√AE2+AD2=10.∵DE∥AC,AB∥CD.∴四边形ACDE 是平行四边形. ∴AC =DE =6.在Rt △ABC 中,∠ABC =90°. ∵OA =OC. ∴BO =12AC =5.∵BF =BO. ∴BF =5. (2)取BC 中点为O.∴BG =CG.∵四边形ABCD 是矩形.∴OB =OD ,∠BCD =90°,CD ⊥BC . ∴OG 是△BCD 的中位线. ∴OG ∥CD .由(1)知,四边形ACDE 是平行四边形,AE =6. ∴CD =AE =6. ∴OG =12CD =3.∵AD =8. ∴BC =AD =8.∴S △BCD =12BC×CD =24,S △BOF =12BF×OG =152. ∴S 四边形OFCD =S △BCD -S △BOF =332.考点:三角形——三角形基础——三角形中位线定理.直角三角形——勾股定理.四边形——平行四边形——平行四边形的性质——平行四边形的判定. 矩形——矩形的性质. 四边形基础——四边形面积.11. 如图,在菱形ABCD 中,∠B =60°,AB =1,延长AD 到点E ,使DE =AD ,延长CD 到点F ,使DF =CD ,连接AC 、CE 、EF 、AF .(1)求证:四边形ACEF是矩形.(2)求四边形ACEF的周长.答案:(1)证明见解析.(2)四边形ACEF的周长为:2+2√3.解析:(1)∵DE=AD,DF=CD.∴四边形ACEF是平行四边形.∵四边形ABCD为菱形.∴AD=CD.∴AE=CF.∴四边形ACEF是矩形.(2)∵△ACD是等边三角形.∴AC=1.∴EF=AC=1.过点D作DG⊥AF于点G,则AG=FG=AD×cos30°=√3.2∴AF=CE=2AG=√3.∴四边形ACEF的周长为:AC+CE+EF+AF=1+√3+1+√3=2+2√3.考点:三角形——等腰三角形——等边三角形的判定.锐角三角函数——解直角三角形.四边形——平行四边形——平行四边形的判定.矩形——矩形的判定.菱形——菱形的性质.四边形基础——四边形周长.12.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F,M,N分别是OA,OB,OC,OD的中点,连接EF,FM,MN,NE.(1)依题意,补全图形. (2)求证:四边形EFMN 是矩形.(3)连接DM ,若DM ⊥AC 于点M ,ON =3,求矩形ABCD 的面积.答案:(1)答案见解析. (2)证明见解析.(3)36√3.解析:(1)(2)∵点 E ,F 分别为OA ,OB 的中点.∴EF ∥AB ,EF =12AB .同理,NM ∥DC ,NM =12DC .∵四边形ABCD 是矩形. ∴AB ∥DC ,AB =DC ,AC =BD. ∴EF ∥NM ,EF =NM.∴四边形EFMN 是平行四边形.∵点E ,F ,M ,N 分别OA ,OB ,OC ,OD 的中点. ∴OE =12OA ,OM =12OC . 在矩形ABCD 中.OA =OC =12AC ,OB =OD =12BD.∴EM =OE +OM =12AC . 同理可证FN =12BD . ∴EM =FN .∴四边形EFMN 是矩形.(3)∵DM ⊥AC 于点M.由(2)可知,OM =12OC. ∴OD =CD . 在矩形ABCD 中.OA =OC =12AC ,OB =OD =12BD ,AC =BD. ∴OA =OB =OC =OD. ∴△COD 是等边三角形. ∴∠ODC =60°. ∵NM ∥DC.∴∠FNM =∠ODC =60°. 在矩形EFMN 中,∠FMN =90°. ∴∠NFM =90°-∠FNM =30°. ∵ON =3.∴FN =2ON =6,FM =3√3,MN =3. ∵点F ,M 分别OB ,OC 的中点. ∴BC =2FM =6√3.∴矩形ABCD 的面积为BC×CD =36√3.考点:直线、射线、线段——直线、射线、线段的基本概念——线段中点、等分点.三角形——三角形基础——三角形中位线定理. 直角三角形——含30°角的直角三角形——勾股定理. 四边形——矩形——矩形的性质——矩形的判定.13. 如图,在平面直角坐标系xOy 中,若菱形ABCD 的顶点A ,B 的坐标分别为(-3,0) ,(2,0),点D 在y 轴正半轴上,则点C 的坐标是 .答案:(5,4).解析:由题意及菱形性质,得:AO=3,AD=AB=DC=5.根据勾股定理,得DO=√AD2−AO2=√52−32=4.∴点C的坐标是(5,4).考点:三角形——直角三角形——勾股定理的应用.四边形——菱形——菱形的性质.14.如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BFDE是菱形,且EF=AE+FC,则边BC的长为().√3A. 2√3B.3√3C. 6√3D.92答案:B.解析:∵四边形ABCD是矩形.∴∠A=90°,AD=BC,AB=DC=3.∵四边形BEDF是菱形.∴EF⊥BD,∠EBO=∠DBF,ED=BE=BF.∴AD-DE=BC-BF,即AE=CF.∵EF=AE+FC,EO=FO.∴AE=EO=CF=FO.∴△ABE≌△OBE.∴AB=BO=3,∠ABE=∠EBO.∴∠ABE=∠EBD=∠DBC=30°.∴在Rt△BCD中,BD=2DC=6.∴BC=√BD2−DC2=3√3.考点:三角形——直角三角形——勾股定理.四边形——矩形——矩形的性质.菱形——菱形的性质.15.如图,在给定的一张平行四边形纸片上作一个菱形.小米的作法是:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM 是菱形.则小米的依据是.答案:一组对边平行且相等的四边形是平行四边形;对角线互相垂直的平行四边形是菱形.解析:根据平行四边形定义可知,一组对边平行且相等的四边形是平行四边形;根据菱形的定义可知对角线互相垂直的平行四边形是菱形,所以答案为一组对边平行且相等的四边形是平行四边形;对角线互相垂直的平行四边形是菱形.考点:四边形——平行四边形——平行四边形的判定.菱形——菱形的判定.16.在数学课上,老师提出如下问题:如图1:将锐角三角形纸片ABC(BC>AC)经过两次折叠,得到边AB,BC,CA上的点D,E,F.使得四边形DECF恰好为菱形.小明的折叠方法如下:如图2:(1)AC边向BC边折叠,使AC边落在BC边上,得到折痕交AB于D.(2)c点向AB边折叠,使C点与D点重合,得到折痕交BC边于E,交AC边于F.老师说:“小明的作法正确.”请回答:小明这样折叠得到菱形的依据是.答案:CD和EF是四边形DECF对角线,而CD和EF互相垂直且平分(答案不唯一).解析:如图,连接DF、DE.根据折叠的性质知,CD⊥EF,且OD=OC,OE=OF.则四边形DECF恰为菱形.考点:四边形——菱形——菱形的判定.几何变换——图形的对称——翻折变换(折叠问题).17.如图,在平行四边形ABCD中,点E,M分别在边AB,CD上,且AE=CM.点F,N分别在边BC,AD上,且DN=BF.(1)求证:△AEN≌△CMF.(2)连接EM,FN,若EM⊥FN,求证:四边形EFMN是菱形.答案:(1)证明见解析.(2)证明见解析.解析:(1)∵四边形ABCD是平行四边形.∴AD=BC,∠A=∠C.∵ND=BF.∴AD-ND=BC-BF.即AN=CF.在△AEN和△CMF中.{AN=CM ∠A=∠C AN=CF.∴△AEN ≌△CMF.(2)由(1)△AEN ≌△CMF.∴EN=FM.同理可证:△EBF ≌△MDB.∴EF=MN.∵EN=FM,EF=MN.∴四边形EFMN是平行四边形.∵EM⊥FN.∴四边形EFMN是菱形.考点:三角形——全等三角形——全等三角形的判定.四边形——平行四边形——平行四边形的性质.菱形——菱形的判定.18.如图,Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,分别过点A,C作AE∥DC和CE∥AB,两线交于点E.(1)求证:四边形AECD是菱形.(2)若∠B=60°,BC=2,求四边形AECD的面积.答案:(1)证明见解析.(2)S菱形AECD=2√3.解析:(1)∵AE∥DC,CE∥AB.∴四边形AECD是平行四边形.∵Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.∴CD=AD.∴四边形AECD是菱形.(2)连结DE.∵∠ACB=90°,∠B=60°.∴∠BAC=30°.∴AB=4,AC=2√3.∵四边形AECD是菱形.∴EC=AD=DB.又∵CE∥DB.∴四边形ECBD是平行四边形. ∴ED=CB=2.∴S菱形AECD=AC×ED2=2√3×22=2√3.考点:四边形——平行四边形——平行四边形的性质——平行四边形的判定.菱形——菱形的性质——菱形的判定.四边形基础——四边形面积.19.如图,正方形ABCD的面积是2,E,F,P分别是AB,BC,AC上的动点,PE+PF的最小值等于.答案:√2.解析:∵线段AC是正方形ABCD的对角线.∴F对线段AC的对称点永远落在线段DC上.如图所示,做F对线段AC的对称点于F’,连接EF’,EF’的长就是PE+PF的值.根据两平行线的距离定义,从一条平行线上的任意一点到另外一条直线做垂线,垂线段的长度叫两条平行线之间的距离.∴PE+PF的最小值等于垂线段EH的长度.根据平行线间的距离处处相等,可知EH=AD.∵正方形ABCD的面积是2.∴AD=EH=√2.所以答案为√2.考点:几何变换——图形的对称——轴对称与几何最值.20.如图,正方形ABCD的边长为2,点E在AB边上,四边形EFGB也为正方形,设△AFC的面积为S,则().A. S=2B. S=2.4C. S=4D. S随BE长度的变化而变化答案:A.解析:法一:∵AC∥BF.∴S△AFC=S△ABC=2.法二:∵S△AFC=S正方形ABCD+S正方形EFGB+S△AEF-S△FGC-S△ADC.∴设正方形EFGB的边长为a.∴S△AFC=2×2+a2+12a(2−a)−12(2+a)a−12×2×2.=4+a2+a−12a2−a−12a2−2.=2.考点:三角形——三角形基础——三角形面积及等积变换.四边形——正方形.21.将正方形A的一个顶点与正方形的对角线交点重合,如图1位置,则阴影部分面积是正方形A面积的18,将正方形A与B按图2放置,则阴影部分面积是正方形B面积的.(几分之几)答案:12.解析:在图1中,∠GBF +∠DBF =∠CBD +∠DBF =90°.∴∠GBF =∠CBD ,∠BGF =∠CDB =45°,BD =BG. ∴ △FBG ≌△CBD.∴阴影部分的面积等于△DGB 的面积,且是小正方形的面积的14,是大正方形面积的18.设小正方形的边长为x ,大正方形的边长为y. 则有14X 2=18y 2. ∴y =√2x .同上,在图2中,阴影部分的面积是大正方形的面积的14,为14y 2=12x 2.∴阴影部分的面积是正方形B 面积的12.考点:三角形——全等三角形——全等三角形的性质——全等三角形的判定.四边形——正方形——正方形的性质.22. 如图,正方形 的对角线交于O ,OE ⊥AB ,EF ⊥OB ,FG ⊥EB .若△BGF 的面积为1,则正方形ABCD 的面积为 .答案:32.解析:∵两条对角线将正方形分成四个全等的等腰直角三角形.且OE ⊥AB 于点E ,EF ⊥OB 于点F ,FG ⊥EB 于点G. ∴E 为AB 的中点,F 为BO 的中点,G 为EB 的中点. ∴AB =EB =EO =12AB ,EF =BF =FO ,GF =BG =EG =12EB .∴BGAB =14.∴S△BGFS△BAD =(BGAB)2=116.∴S△BAD=16.∴S正方形ABCD=2S△ABD=32.故答案为32.考点:三角形——相似三角形——相似三角形的性质.四边形——正方形——正方形的性质.23.在数学兴趣小组活动中,小明进行数学探究活动.将边长为2的正方形ABCD与边长为3的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.(1)小明发现DG=BE且DG⊥BE,请你给出证明.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时△ADG的面积.答案:(1)证明见解析.(2)1+12√14.解析:(1)如图1,延长EB交DG于点H.∵四边形ABCD与四边形AEFG是正方形.∴AD=AB,∠DAG=∠BAE=90°,AG=AE.∴△ABC≌△ABE(SAS).∴∠AGD=∠AEB,DG=BE.∵△ADG中,∠AGD+∠ADG=90°.∴∠AEB+∠ADG=90°.∴△DEH中,∠AEB+∠ADG+∠DHE=180°.∴∠DHE=90°.∴DG⊥BE.(2)如图2,过点A作AM⊥DG交DG于点M.∴∠AMD=∠AMG=90°.∵BD是正方形ABCD的对角线.∴∠MDA=45°.在Rt△AMD中.∵∠MDA=45°,AD=2.∴AM=DM=√2.在Rt△AMG中.∵AM2+GM2=AG2.∴GM=√7.∵DG=DM+GM=√2+√7.∴S△ADG=12×DG×AM=12×(√2+√7)×√2=1+12√14.考点:三角形——全等三角形——全等三角形的性质——全等三角形的判定.直角三角形——勾股定理.四边形——正方形——正方形的性质.24.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°.若AB=5,BC=8,则EF的长为.答案:32.解析:∵DE 为△ABC 的中位线.∴DE =12BC =4,点D 是线段AB 的中点. 又∵∠AFB =90°. ∴DF =12AB =52. ∴EF =DE −DF =32.所以答案为32.考点:三角形——三角形基础——三角形中位线定理.直角三角形——直角三角形斜边上的中线.25. 如图,在四边形ABCD 中,对角线AC ⊥BD ,点E 、F 、G 、H 分别为AB 、BC 、CD 、DA的中点.若AC =8,BD =6,则四边形EFGH 的面积为( ).A. 14B. 12C. 24D.48 答案:B解析:∵点E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点.∴EF =HG =12AC =4,FG =EH =12BD =3,EF ∥HG ,FG ∥EH. ∴四边形EFGH 是平行四边形.∵AC⊥BD.∴EF⊥FG.∴四边形EFGH是矩形.∴四边形EFGH的面积为3×4=12.考点:三角形——三角形基础——三角形中位线定理.四边形——矩形——矩形的判定.四边形基础——四边形面积.26.如图,在Rt△ABC中,∠ACB=90°,D,E,F分别是AB、BC、CA的中点,若CD=6cm,则EF=cm .答案:6.解析:由题意,得:EFAB =12.在Rt△ABC中,D是AB的中点.∴CD=EF=12AB.又∵CD=6.∴EF=CD=6cm.考点:三角形——三角形基础——三角形中位线定理.直角三角形——直角三角形斜边上的中线.27.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点.那么CH的长是.答案:√5.解析:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3.∴AB=BC=1,CE=EF=3,∠E=90°.延长AD交EF于M,连接AC、CF.则AM=BC+CE=1+3=4,FM=EF-AB=3-1=2.∵四边形ABCD和四边形GCEF是正方形.∴∠ACD=∠GCF=45°.∴∠ACF=90°.∵H为AF的中点.AF.∴CH=12在Rt△AMF中,由勾股定理得:AF=√AM2+FM2=√42+22=2√5.∴CH=√5.故答案为:√5.考点:三角形——直角三角形——直角三角形斜边上的中线——勾股定理.四边形——正方形——正方形的性质.28.用两个全等的直角三角形无缝隙不重叠地拼下列图形:①矩形;②菱形;③正方形;④等腰三角形;⑤等边三角形.一定能够拼成的图形是(填序号).答案:①④.解析:由于菱形和正方形中都有四边相等的特点,而直角三角形不一定有两边相等,故两个全等的直角三角形不一定能拼成菱形和正方形.由于等边三角形三个角均为60°,而直角三角形不一定含60°角,故个全等的直角三角形不一定能拼成等边三角形.两个全等的直角三角形一定能拼成矩形和等腰三角形,如图.考点:三角形——等腰三角形——等腰三角形的判定——等边三角形的判定.四边形——矩形——矩形的判定.菱形——菱形的判定——正方形——正方形的判定.29. 边长为a 的菱形是由边长为a 的正方形“形变”得到的,若这个菱形一组对边之间的距离为h ,则称ah 为这个菱形的“形变度”.(1)一个“形变度”为3的菱形与其“形变”前的正方形的面积之比为 . (2)如图,A 、B 、C 为菱形网格(每个小菱形的边长为1,“形变度”为98)中的格点,则△ABC 的面积为 .答案:(1)1:3.(2)12. 解析:(1)如图所示.∵“形变度”为3. ∴ah =3,即h =13a .∴一个“形变度”为3的菱形与其“形变”前的正方形的面积之比为aℎa 2=ℎa =13. (2)在正方形网格中,△ABC 的面积为:6×6−12×3×3-12×3×6−12×3×6=272.由(1)可得,在菱形网格中,△ABC的面积为89×272=12.考点:式——探究规律——定义新运算.三角形——三角形基础——三角形面积及等积变换.四边形——菱形——菱形的性质.30.有这样一个问题:如图,在四边形ABCD中,AB=AD,CB=CD,我们把这种两组邻边分别相等的四边形叫做筝形.请探究筝形的性质与判定方法.小南根据学习四边形的经验,对筝形的性质和判定方法进行了探究.下面是小南的探究过程:(1)由筝形的定义可知,筝形的边的性质是:筝形的两组邻边分别相等,关于筝形的角的性质,通过测量,折纸的方法,猜想:筝形有一组对角相等,请将下面证明此猜想的过程补充完整.已知:如图,在筝形ABCD中,AB=AD,CB=CD.求证:___________________________.证明:由以上证明可得,筝形的角的性质是:筝形有一组对角相等.(2)连接筝形的两条对角线,探究发现筝形的另一条性质:筝形的一条对角线平分另一条对角线.结合图形,写出筝形的其他性质(一条即可):.(3)筝形的定义是判定一个四边形为筝形的方法之一.试判断命题“一组对角相等,一条对角线平分另一条对角线的四边形是筝形”是否成立,如果成立,请给出证明:如果不成立,请举出一个反例,画出图形,并加以说明.答案:(1)求证:∠B=∠D.证明见解析.(2)筝形的两条对角线互相垂直.(3)不成立.解析:(1)求证:∠B =∠D .已知:如图,筝形ABCD 中,AB =AD ,CB =CD .求证:∠B =∠D . 证明:连接AC ,如图. 在△ABC 和△ADC 中.{AB =AD CB =CD AC =AC.∴△ABC ≌△ADC . ∴∠B =∠D .(2)筝形的其他性质.①筝形的两条对角线互相垂直. ②筝形的一条对角线平分一组对角. ③筝形是轴对称图形.(3)不成立.反例如图2所示.在平行四边形ABCD 中,AB≠AD ,对角线AC ,BD 相交于点O .由平行四边形性质可知此图形满足∠ABC =∠ADC ,AC 平分BD ,但该四边形不是筝形.考点:四边形——平行四边形.。

初二数学特殊的平行四边形试题答案及解析

初二数学特殊的平行四边形试题答案及解析

初二数学特殊的平行四边形试题答案及解析1.如图,在菱形ABCD中,已知∠A=60°,AB=5,则△ABD的周长是()A.10B.12C.15D.20【答案】C【解析】∵四边形ABCD是菱形,∴AB=AD,又∵∠A=60°,∴△ABD是等边三角形,∴△ABD的周长=3AB=15.2.如图,菱形ABCD中,AC=8,BD=6,则菱形的周长是()A.20B.24C.28D.40【答案】A【解析】据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.3.已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是()A.12cm2B.24cm2C.48cm2D.96cm2【答案】B【解析】设菱形的对角线分别为8x和6x,已知菱形的周长为20cm,故菱形的边长为5cm,根据菱形的性质可知,菱形的对角线互相垂直平分,即可知(4x)2+(3x)2=25,解得x=1,故菱形的对角线分别为8cm和6cm,所以菱形的面积=×8×6=24cm2.4.矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为()A.16 B.12 C.24 D.20【答案】B【解析】根据矩形性质求出AO=BO=4,得出等边三角形AOB,求出AB,即可求出答案.5.如图,在矩形ABCD中,若AC=2AB,则∠AOB的大小是()A.30°B.45°C.60°D.90°【答案】C【解析】∵AC=2AB,∴∠BAC=60°,OA=OB,∴△OAB是正三角形,∴∠AOB的大小是60°.故选C.6.如图,长方形ABCD中,E点在BC上,且AE平分∠BAC.若BE=4,AC=15,则△AEC面积为()A.15 B.30 C.45 D.60【答案】B【解析】利用角平分线的性质定理可得AC边上的高.进而求得所求三角形的面积.7.如图,正方形ABCD中,对角线AC,BD相交于点O,则图中的等腰三角形有()A.4个B.6个C.8个D.10个【答案】C【解析】先根据正方形的四边相等即对角线相等且互相平分的性质,可得AB=BC=CD=AD,AO=OD=OC=OB,再根据等腰三角形的定义即可得出图中的等腰三角形的个数.8.如图,在正方形ABCD中,点E、F分别在CD、BC上,且BF=CE,连接BE、AF相交于点G,则下列结论不正确的是()A.BE=AF B.∠DAF=∠BEC C.∠AFB+∠BEC="90°" D.AG⊥BE【答案】C【解析】∵ABCD是正方形,∴∠ABF=∠C=90°,AB=BC.∵BF=CE,∴△ABF≌△BCE.∴AF=BE(第一个正确).∠BAF=∠CBE,∠BFA=∠BEC(第三个错误).∵∠BAF+∠DAF=90°,∠BAF+∠BFA=90°,∴∠DAF=∠BEC(第二个正确).∵∠BAF=∠CBE,∠BAF+∠AFB=90°.∴∠CBE+∠AFB=90°.∴AG⊥BE(第四个正确).所以不正确的是C,故选C.9.已知四边形ABCD的两条对角线AC与BD互相垂直,则下列结论正确的是()A.当AC=BD时,四边形ABCD是矩形B.当AB=AD,CB=CD时,四边形ABCD是菱形C.当AB=AD=BC时,四边形ABCD是菱形D.当AC=BD,AD=AB时,四边形ABCD是正方形【答案】C【解析】A、对角线AC与BD互相垂直,AC=BD时,无法得出四边形ABCD是矩形,故此选项错误;B、当AB=AD,CB=CD时,无法得到,四边形ABCD是菱形,故此选项错误;C、当两条对角线AC与BD互相垂直,AB=AD=BC时,∴BO=DO,AO=CO,∴四边形ABCD是平行四边形,∵两条对角线AC与BD互相垂直,∴平行四边形ABCD是菱形,故此选项正确;D、当AC=BD,AD=AB时,无法得到四边形ABCD是正方形,故此选项错误.10.用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形【答案】B【解析】由作图痕迹可知,四边形ABCD的边AD=BC=CD=AB,根据四边相等的四边形是菱形可得四边形ABCD是菱形.11.如图,在△ABC中,点E、D、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA.下列四个判断中,不正确的是()A.四边形AEDF是平行四边形B.如果∠BAC=90°,那么四边形AEDF是矩形C.如果AD平分∠BAC,那么四边形AEDF是矩形D.如果AD⊥BC且AB=AC,那么四边形AEDF是菱形【答案】C【解析】由DE∥CA,DF∥BA,根据两组对边分别平行的四边形是平行四边形可得四边形AEDF是平行四边形;又有∠BAC=90°,根据有一角是直角的平行四边形是矩形,可得四边形AEDF是矩形.故A、B正确;如果AD平分∠BAC,那么∠EAD=∠FAD,又有DF∥BA,可得∠EAD=∠ADF,∴∠FAD=∠ADF,∴AF=FD,那么根据邻边相等的平行四边形是菱形,可得四边形AEDF是菱形,而不一定是矩形.故C错误;如果AD⊥BC且AB=AC,那么AD平分∠BAC,同上可得四边形AEDF是菱形.故D正确.12.如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在AB上且BE=BO,则∠BEO=_______度.【答案】65【解析】因为AB=AD,∠BAD=80°,可求∠ABD=50°;又BE=BO,所以∠BEO=∠BOE,根据三角形内角和定理求解.13.如图,菱形ABCD的对角线的长分别为6和8,点P是对角线AC上的任意一点(点P不与点A,C重合),且PE∥BC交AB于点E,PF∥CD交AD于点F,则阴影部分的面积是______.【答案】12【解析】易知四边形AEPF是平行四边形,设AP与EF相交于O点,则S△POF=S△AOE.所以阴影部分的面积等于菱形面积的一半.14.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点O2,同样以AB,AO2为两邻边作平行四边形ABC2O2,…,依此类推,则平行四边形ABCnOn的面积为_______.【答案】【解析】后面的每一个平行四边形都与第一个矩形ABCD同底不同高,而第n个平行四边形的高是矩形ABCD的,所以平行四边形ABCn On的面积为.15.如图,在四边形ABCD中,AB=BC=CD=DA,对角线AC与BD相交于点O,若不增加任何字母与辅助线,要使四边形ABCD是正方形,则还需增加一个条件是_______.【答案】AC=BD或AB⊥BC【解析】∵在四边形ABCD中,AB=BC=CD=DA,∴四边形ABCD是菱形,∴要使四边形ABCD是正方形,则还需增加一个条件是:AC=BD或AB⊥BC.16.如图,在Rt△ABC中,∠C=90°,DE垂直平分AC,DF⊥BC,当△ABC满足条件_______时,四边形DECF是正方形.(要求:①不再添加任何辅助线,②只需填一个符合要求的条件)【答案】AC=BC【解析】由已知可得四边形的四个角都为直角,根据有一组邻边相等的矩形是正方形,可知添加条件为AC=BC时,能说明CE=CF,即此四边形是正方形.17.如图,四边形ABCD是矩形,△PBC和△QCD都是等边三角形,且点P在矩形上方,点Q在矩形内.计算:∠PBA=∠PCQ=30°.【答案】解:∵四边形ABCD是矩形.∴∠ABC=∠BCD=90°.∵△PBC和△QCD是等边三角形.∴∠PBC=∠PCB=∠QCD=60°.∴∠PBA=∠ABC-∠PBC=30°,∠PCD=∠BCD-∠PCB=30°.∴∠PCQ=∠QCD-∠PCD=30°.∴∠PBA=∠PCQ=30°.【解析】因为矩形的内角是直角,等边三角形的内角是60∘,所以根据这两个特殊角可以计算角的度数.18.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,过点O作直线EF⊥BD,分别交AD、BC于点E和点F,求证:四边形BEDF是菱形.【答案】证明:∵四边形ABCD是菱形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,∠OED=∠OFB,∴△OED≌△OFB,∴DE=BF,又∵DE∥BF,∴四边形BEDF是平行四边形,∵EF⊥BD,∴四边形BEDF是菱形.【解析】若要证明四边形BEDF是菱形,只需要证明四边形BEDF是平行四边形即可,而DE∥BF,只需要证明DE=BF即可判定四边形BEDF是平行四边形,证明DE=BF可通过证明△OED≌△OFB.19.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1) 证明:∠BAC=∠DAC,∠AFD=∠CFE;(2) 若AB∥CD,试证明四边形ABCD是菱形;(3) 在(2)的条件下,试确定E点的位置,使∠EFD=∠BCD,并说明理由.【答案】解:(1) ∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC.∴∠BAC =∠DAC.∵ AB=AD,∠BAF =∠DAF,AF=AF.∴△ABF≌△ADF.∴∠AFB=∠AFD.又∵∠CFE =∠AFB,∴∠AFD=∠CFE.∴∠BAC=∠DAC,∠AFD=∠CFE.(2) ∵AB∥CD,∴∠BAC=∠ACD.又∵∠BAC=∠DAC,∴∠BAC=∠ACD.∴∠DAC=∠ACD.∴AD=CD,∵AB="AD" , CB=CD,∴AB=CB=CD=AD.∴四边形ABCD是菱形.(3)当BE⊥CD时,∠EFD=∠BCD.理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF.又∵CF为公共边,∴△BCF≌△DCF.∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC =∠DEF=90°.∴∠EFD =∠BCD.【解析】(1)利用已知条件和公共边,证得△ABC≌△ADC,即可证明∠BAC=∠DAC;再证明△ABF≌△ADF,得到∠AFB=∠AFD,再利用对顶角相等,易知结论;(2)有平行线的性质和(1)中结论,易知∠DAC=∠ACD,所以AD=CD,进而证得AB=CB=CD=AD,即可证明结论;(3)当BE⊥CD时,有(2)可知BC="CD" ,∠BCF=∠DCF,利用△BCF≌△DCF证得∠CBF=∠CDF,再利用等角的余角相等即可证明结论∠EFD =∠BCD.20.已知矩形BEDG和矩形BNDQ中,BE=BN,DE=DN.(1)将两个矩形叠合成如图10,求证:四边形ABCD是菱形;(2)若菱形ABCD的周长为20,BE=3,求矩形BEDG的面积.【答案】解:(1)答:四边形ABCD是菱形.证明:作AR⊥BC于R,AS⊥CD于S,由题意知:AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵矩形BEDG和矩形BNDQ中,BE=BN,DE=DN,∴两个矩形全等,∴AR=AS,∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形;(2)解:∵菱形ABCD的周长为20,∴AD=AB=BC=CD=5,∵BE=3,∴AE=4,∴DE=5+4=9,∴矩形BEDG的面积为:3×9=27.【解析】(1)作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由BC=CD得平行四边形ABCD是菱形;(2)根据菱形的性质得出AD的长,进而得出AE的长,再利用矩形面积公式求出即可.。

初二数学特殊的平行四边形试题答案及解析

初二数学特殊的平行四边形试题答案及解析

初二数学特殊的平行四边形试题答案及解析1. (2011福建莆田)如图,在△ABC中,D是AB的中点,E是CD的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.(1)求证:DB=CF;(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.【答案】见解析【解析】(1)证明:∵CF∥AB,∴∠DAE=∠CFE.又∵DE=CE,∠AED=∠FEC,∴△ADE≌△FCE,∴AD=CF.∵AD=DB,∴DB=CF.(2)四边形BDCF是矩形.证明:由(1)知DB=CF,又DB∥CF,∴四边形BDCF为平行四边形.∵AC=BC,AD=DB,∴CD⊥AB.∴四边形BDCF是矩形.2.矩形ABCD中,点O是BC的中点,∠AOD=90°,矩形ABCD的周长为20cm,则AB的长为()A.1cmB.2cmC.cmD.cm【答案】D【解析】∵四边形ABCD是矩形,∴∠B=∠C=90°,AB=DC.又∵O是BC的中点,∴BO=CO,∴△ABO≌△DCO,∴AO=DO.∵∠AOD=90°,∴∠OAD=∠ODA=45°,∴∠BAO=∠AOB=45°,∴AB=OB.设AB=xcm,则BC=2xcm,∴2(x+2x)=20,解得,故选D.3. (2014重庆)如图,在矩形ABCD中,对角线AC、BD相交于点O,∠ACB=30°,则∠AOB的大小为()A.30°B.60°C.90°D.120°【答案】B【解析】在矩形ABCD中,OA=OB=OC=OD,所以∠OBC=∠OCB=30°,所以∠AOB=∠OCB+∠OBC=60°.4.(2014四川巴中)如图,在四边形ABCD中,点H是边BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,连接BE,CF.(1)请你添加一个条件,使得△BEH≌△CFH,你添加的条件是________,并证明;(2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形?请说明理由.【答案】见解析【解析】(1)添加条件:BE∥CF(答案不唯一).证明:如图,∵BE∥CF,∴∠1=∠2.∵点H是边BC的中点,∴BH=CH.又∵∠3=∠4,∴△BEH≌△CFH.(2)当BH=EH时,四边形BFCE是矩形,理由如下:连接BF,CE.∵△BEH≌△CFH.∴EH=FH,又BH=CH,∴四边形BFCE是平行四边形.又∵BH=EH,∴EF=BC,∴四边形BFCE是矩形.5.已知在四边形ABCD中,,请添加一个条件,使四边形ABCD成为矩形,添加的条件可以是________.(只填一个即可)【答案】∠A=90°(答案不唯一)【解析】由可知,该四边形是平行四边形,根据矩形的定义,只要加上条件“一个角是直角”即可,故填∠A=90°,或∠B=90°,或∠C=90°,或∠D=90°.6.如图所示,在□ABCD中,点E,F分别为BC边上的点,且BE=CF,AF=DE求证:□ABCD是矩形.【答案】∵四边形ABCD是平行四边形,∴AB=CD.∵BE=CF,∴BF=CE.又∵AF=DE,∴△ABF≌△DCE.∴∠B=∠C.又∵∠B+∠C=180°,∴∠B=∠C=90°.∴□ABCD是矩形.【解析】已知四边形ABCD是平行四边形,欲证它是矩形,只需证一角是直角即可,由题意易知△ABF≌△DCE,而∠B+∠C=180°,因此有∠B=∠C=90°,问题迎刃而解.7.将矩形纸片ABCD按如图所示的方式折叠,使顶点B与顶点D重合,折痕为EF.若,AD=3,则△DEF的周长为________.【答案】6【解析】∵沿EF折叠后,点B与点D重合,点A在点A′的位置,∴A′E=AE,,BF=DF.∵四边形ABCD为矩形,∴,BC=AD=3,∠C=∠A=90°.在Rt△DCF中,设CF=x,则DF=BF=3-x,由勾股定理得,解得x=1,∴DF=3-x=3-1=2.同理,DE=2.连接BD,交EF于点O,则点B与点D关于EF称,∴,BD⊥EF.在Rt△EDO中,,由DE=DF,BD⊥EF,得EO=OF=1,∴EF=2,∴△DEF的周长为DE+DF+EF=2+2+2=6.8.如图,矩形ABCD的对角线相交于点O,过点O的直线交AD、BC于点E、F,AB=2,BC =4,则图中阴影部分的面积为()A.2B.3C.4D.5【答案】C【解析】矩形ABCD的面积=AB·BC=2×4=8,图中阴影部分面积的和等于矩形面积的一半,故选C.9.如图,在矩形ABCD中,DF平分∠ADC交AC于点E,交BC于点F,∠BDF=15°,求∠DOC与∠COF的度数.【答案】75°【解析】解:∵DF平分∠ADC,∴∠FDC=45°.又∵∠BDF=15°,∴∠BDC=45°+15°=60°.又∵四边形ABCD是矩形,∴AC=BD,AO=OC=BO=OD,∴△DOC是等边三角形.∴∠DOC=60°.在Rt△DCF中,∠FDC=45°,∴CF=CD=OC,∴∠COF=∠CFO.又∵∠OCF=90°-∠OCD=90°-60°=30°,∴∠COF=75°.10.(2013湖南邵阳)如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件________,使四边形ABCD为矩形.【答案】∠B=90°(答案不唯一)【解析】∵△ABC绕AC的中点O顺时针旋转180°得到△CDA,∴AB=CD,∠BAC=∠DCA,∴AB∥CD,∴四边形ABCD为平行四边形.当∠B=90°时,平行四边形ABCD为矩形,∴添加的条件为∠B=90°.11.如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CDB.AD=BCC.∠AOB=45°D.∠ABC=90°【答案】D【解析】因为四边形ABCD的对角线互相平分,所以四边形ABCD为平行四边形,A、B两选项为平行四边形具有的性质,C选项添加后也不是矩形,根据矩形的定义知D正确.故选D.12.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对角线互相平分C.一组对边平行另一组对边相等D.对角线相等【答案】D【解析】矩形的对角线相等,而平行四边形的对角线不一定相等.13.如图,已知在Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线AB平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由:(2)连接CG,求证:四边形CBEG是正方形.(提示:旋转前后,图形中对应的角和对应的边分别相等)【答案】见解析【解析】(1)DE⊥FG,理由如下:由题意得∠A=∠EDB=∠GFE,∠ABC=∠DBE=90°.∴∠BDE+∠BED=90°.∴∠GFE+∠BED=90°.∴∠FHE=90°.∴DE⊥FG.(2)证明:∵△ABC沿射线AB平移至△FEG,∴CB∥GE,CB=GE,∴四边形CBEG是平行四边形.∵∠ABC=∠GEF=90°.∴四边形CBEG是矩形.∵BC=BE.∴四边形CBEG是正方形.14.如图,正方形ABCD中,对角线AC、BD相交于点O,则图中的等腰三角形有( )A.4个B.6个C.8个D.10个【答案】C【解析】在正方形ABCD中,AB=BC=CD=AD,OA=OB=OC=OD,所以等腰三角形有△ABC,△ADC,△ABD,△CBD,△OAB,△OBC,△OCD,△OAD.15.下列命题错误的是( )A.有一组邻边相等的平行四边形叫做正方形B.有一组邻边相等的矩形是正方形C.有一组邻边相等并且有一个角是直角的平行四边形叫做正方形D .有一个角是直角的菱形是正方形【答案】A【解析】由定义可知,正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形,A 不正确,故选A .16. 如图,正方形ABCD 的对角线相交于点O ,点O 也是正方形A′B′C′O 的一个顶点,两个正方形的边长都等于1,当正方形A′B′C′O 绕顶点O 转动时,两个正方形重叠部分的面积大小有什么规律?并说明理由.【答案】两个正方形重叠部分的面积保持不变,始终为.理由:∵四边形ABCD 是正方形,∴OB =OC ,∠OBE =∠OCF =45°,∠BOC =90°. ∵四边形A′B′C′O 是正方形, ∴∠EOF =90°,∴∠BOC =∠EOF . ∴∠BOC -∠BOF =∠EOF -∠BOF ,即∠COF =∠BOE .∴△BOE ≌△COF(ASA),∴S △BOE =S △COF .∴重叠部分面积等于S △BOC .∵S 正方形ABCD =1×1=1,∴,即两个正方形重叠部分的面积保持不变,始终为.【解析】正方形的两条对角线分正方形为四个全等的等腰直角三角形.通过证△BOE ≌△COF ,得.17. 如图,将矩形ABCD 中的△AOB 沿着BC 的方向平移线段AD 长的距离.(1)画出△AOB 平移后的图形.(2)设(1)中O 点平移后的对应点为E ,试判断四边形CODE 的形状,并说明理由.(3)当四边形ABCD 是什么四边形时,(2)中的四边形CODE 是正方形?并说明你的理由.【答案】(1)平移后的图形如图.(2)四边形CODE 是菱形.理由如下:∵△AOB 平移后得到△DEC , ∴DE ∥AC ,CE ∥BD . ∵四边形ABCD 是矩形,∴,,且AC=BD,∵OC=OD,∴四边形CODE是菱形.(3)当四边形ABCD是正方形时,(2)中的四边形CODE是正方形,理由如下:∵四边形ABCD是正方形,∴AC⊥BD,∴∠COD=90°.∴菱形CODE是正方形.【解析】在图形移动过程中,图形的大小、形状不变,可得四边形CODE是菱形.当AC⊥BD 时,四边形CODE是正方形,此时四边形ABCD是正方形.18.(2013江苏南京)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD 上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M、N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【答案】见解析【解析】证明:(1)∵BD平分∠ABC,∴∠ABD=∠CBD.又∵BA=BC,BD=BD,∴△ABD≌△CBD,∴∠ADB=∠CDB.(2)∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°.又∵∠ADC=90°,∴四边形MPND是矩形.∵∠ADB=∠CDB,PM⊥AD,PN⊥CD,∴PM=PN.∴四边形MPND是正方形.19.(2013济宁)如图中图(1),在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE.(2)如图中图(2),在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.【答案】(1)证明:如图(1),在正方形ABCD中,AB=DA,∠BAE=∠D=90°,∴∠DAF+∠BAF=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠ABE=∠DAF,∵在△ABE和△DAF中,∴△ABE≌△DAF(ASA),∴BE=AF.(2)解:MP与NQ相等.理由如下:如图(2),过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,则BE=NQ,AF=MP.只需证BE=AF即可.与(1)的情况完全相同.【解析】(1)根据正方形的性质可得AB=DA,∠BAE=∠D=90°,再根据同角的余角相等求∠ABE=∠DAF,然后利用“角边角”证明△ABE和△DAF全等,再根据全等三角形的性质证明即可;(2)过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,然后解法与(1)相同.20.在四边形ABCD中,O是对角线的交点,下面能判断这个四边形是正方形的是()A.AD⊥CD,AC=BDB.AD∥BC,∠A=∠CC.AO=BO=CO=DO,AC⊥BDD.AO=CO,BO=DO,AB=BC【答案】C【解析】对角线相等、互相平分且垂直的四边形是正方形.21.如图,过正方形ABCD的顶点B作直线l,过点A、C作l的垂线,垂足分别为点E、F,若AE=1,CF=3,则AB的长度为________.【答案】【解析】由题意,知△BFC≌△AEB,∴CF=BE,∴.22. 已知,在四边形ABCD 中,∠A =∠B =∠C =90°,如果添加一个条件即可推出该四边形是正方形,那么这个条件可以是( )A .∠D =90°B .AB =CDC .AD =BCD .BC =CD【答案】D【解析】由∠A =∠B =∠C =90°可判定为矩形,根据正方形的定义,再添加条件“一组邻边相等”即可判定为正方形,故选D .23. (2014福建福州)如图,在正方形ABCD 的外侧,作等边三角形ADE ,AC ,BE 相交于点F ,则∠BFC 为( )A .45°B .55°C .60°D .75°【答案】C【解析】由已知得AB =AE ,∠BAE =150°,∴∠ABF =15°,∴∠BFC =∠ABF +∠BAF =15°+45°=60°.24. 如图,边长为2的正方形ABCD 的对角线相交于点O ,过点O 的直线分别交AD 、BC 于E 、F ,则阴影部分的面积是________.【答案】1【解析】由题意可知△DEO ≌△BFO ,∴S △DEO =S △BFO ,∴.25. 如图所示,在菱形ABCD 中,AE 垂直平分BC ,垂足为E ,AB =4cm .那么,菱形ABCD的面积是________,对角线BD的长是________.【答案】cm2;cm【解析】在菱形ABCD中,由AE垂直平分BC可知△ABC是正三角形,故BC=AC=4cm,由勾股定理可知cm,∴菱形ABCD的面积是(cm2),同时菱形的面积还等于两条对角线乘积的一半,∴对角线BD的长为(cm).26.如图,平行四边形ABCD的两条对角线AC和BD相交于点O,并且BD=4,AC=6,.(1)AC与BD有什么位置关系?为什么?(2)四边形ABCD是菱形吗?为什么?【答案】见解析【解析】(1)AC⊥BD,理由如下:∵四边形ABCD为平行四边形,∴,.在△OBC中,OC2+OB2=9+4=13=BC2,∴△OBC为直角三角形,即OC⊥OB,∴AC⊥BD.(2)四边形ABCD是菱形,理由如下:∵AC⊥BD.∴平行四边形ABCD是菱形.27.(2012山西)如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是( )A.cmB.cmC.cmD.cm【答案】D【解析】由菱形的性质知菱形边长为(cm),所以,得cm,故选D.28. (2013山东潍坊)如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件________,使ABCD成为菱形.(只需添加一个即可)【答案】本题答案不唯一,如OA=OC或AD=BC或AD∥BC或AB=BC等【解析】根据对角线互相垂直平分可添加OA=OC;或添加AD=BC或AB=DC或AD∥BC或AB∥DC或AB=BC或AD=DC,由三角形全等得到AO=CO,再由对角线互相垂直平分得到四边形ABCD是菱形.29.如图,□ABCD的对角线AC的垂直平分线与AD、BC、AC分别交于点E、F、O,求证:四边形AFCE是菱形.【答案】∵四边形ABCD是平行四边形,∴AE∥CF,∴∠CAE=∠ACF又∵∠AOE=∠COF,OA=OC,∴△AOE≌△COF.∴OE=OF,∴四边形AFCE是平行四边形.又∵EF⊥AC.∴四边形AFCE是菱形.【解析】要证四边形AFCE是菱形,首先要证四边形AFCE是平行四边形.30.如图,在菱形ABCD中,E是AB的中点,且DE⊥AB,AB=10.(1)求∠ABC的度数;(2)求对角线AC的长度;(3)求菱形ABCD的面积.【答案】(1)连接BD,交AC于点O,如图.∵四边形ABCD是菱形,∴AD=AB.∵E是AB的中点,且DE⊥AB,∴AD=BD.∴△ABD是等边三角形.∴∠ABD=60°.∴∠ABC=60°×2=120°.(2)∵四边形ABCD是菱形,∴AC,BD互相垂直平分.∴.∴在Rt△AOB中,,∴.(3).【解析】(1)连接BD,与AC相交于点O,可证△ABD是等边三角形,所以∠ABD=60°,可得∠ABC的度数;(2)在Rt△OAB中,由勾股定理可求出OA的长,则AC=2OA;(3)根据菱形的面积公式可求其面积.。

特殊的平行四边形典型例题

特殊的平行四边形典型例题

《特殊平行四边形》典型例题例1:已知:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长.分析:因为矩形是特殊的平行四边形,所以它具有对角线相等且互相平分的特殊性质,根据矩形的这个特性和已知,可得△OAB是等边三角形,因此对角线的长度可求.解:∵四边形ABCD是矩形,∴AC与BD相等且互相平分.∴OA=OB.又∠AOB=60°,∴△OAB是等边三角形.∴矩形的对角线长AC=BD = 2O A=2×4=8(cm).例2:已知:如图,矩形 ABCD,AB长8 cm ,对角线比AD边长4 cm.求AD的长及点A到BD的距离AE的长.分析:(1)因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法.略解:设AD=xcm,则对角线长(x+4)cm,在Rt△ABD中,由勾股定理:x2+82=(x+4)2解得x=6.则 AD=6cm.(2)“直角三角形斜边上的高”是一个基本图形,利用面积公式,可得到两直角边、斜边及斜边上的高的一个基本关系式:AE×DB=AD×AB,解得 AE= 4.8cm.例3:已知:如图,矩形ABCD中,E是BC上一点,DF⊥AE于F,若AE=BC.求证:CE =EF.分析:CE、EF分别是BC,AE等线段上的一部分,若AF=BE,则问题解决,而证明AF =BE,只要证明△ABE≌△DFA即可,在矩形中容易构造全等的直角三角形.证明:∵四边形ABCD是矩形,∴∠B=90°,且AD∥BC.∴∠1=∠2.∵ DF⊥AE,∴∠AFD=90°.∴∠B=∠AFD.又 AD=AE,∴△ABE≌△DFA(AAS).∴ AF=BE.∴ EF=EC.此题还可以连接DE,证明△DEF≌△DEC,得到EF=EC.例4:已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE.证明:∵四边形ABCD是菱形,∴ CB=CD, CA平分∠BCD.∴∠BCE=∠DCE.又 CE=CE,∴△BCE≌△COB(SAS).∴∠CBE=∠CDE.∵在菱形ABCD中,AB∥CD,∴∠AFD=∠FDC∴∠AFD=∠CBE.例5:已知:如图,AD是三角形ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F,求证:四边形AEDF是菱形.(提示:运用定义判定.)例6 (教材P111的例4)求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形.已知:四边形ABCD是正方形,对角线AC、BD相交于点O(如图).求证:△ABO、△BCO、△CDO、△DAO是全等的等腰直角三角形.证明:∵四边形ABCD是正方形,∴ AC=BD,AC⊥BD,AO=CO=BO=DO(正方形的两条对角线相等,并且互相垂直平分).∴△ABO、△BCO、△CDO、△DAO都是等腰直角三角形,并且△ABO ≌△BCO≌△CDO≌△DAO.例7:已知:如图,正方形ABCD中,对角线的交点为O,E是OB上的一点,DG⊥AE于G,DG交OA于F.求证:OE=OF.分析:要证明OE=OF,只需证明△AEO≌△DFO,由于正方形的对角线垂直平分且相等,可以得到∠AOE=∠DOF=90°,AO=DO,再由同角或等角的余角相等可以得到∠EAO=∠FDO,根据ASA可以得到这两个三角形全等,故结论可得.证明:∵ 四边形ABCD是正方形,∴ ∠AOE=∠DOF=90°,AO=DO(正方形的对角线垂直平分且相等).又DG⊥AE,∴ ∠EAO+∠AEO=∠EDG+∠AEO=90°.∴∠EAO=∠FDO.∴△AEO ≌△DFO.∴ OE=OF.例8:已知:如图,四边形ABCD是正方形,分别过点A、C两点作l1∥l2,作BM⊥l1于M,DN⊥l1于N,直线MB、DN分别交l2于Q、P点.求证:四边形PQMN是正方形.分析:由已知可以证出四边形PQMN是矩形,再证△ABM≌△DAN,证出AM=DN,用同样的方法证AN=DP.即可证出MN=NP.从而得出结论.证明:∵PN⊥l1,QM⊥l1,∴ PN∥QM,∠PNM=90°.∵PQ∥NM,∴四边形PQMN是矩形.∵ 四边形ABCD 是正方形∴ ∠BAD=∠ADC=90°,AB=AD=DC (正方形的四条边都相等,四个角都是直角). ∴ ∠1+∠2=90°.又 ∠3+∠2=90°, ∴ ∠1=∠3.∴ △ABM≌△DAN.∴ AM=DN. 同理 AN=DP .∴ AM+AN=DN+DP即 MN=PN .∴ 四边形PQMN 是正方形(有一组邻边相等的矩形是正方形).例4、如图是菱形花坛ABCD ,它的边长为20m ,∠ABC =60°,沿着菱形的对角线修建了两条小路AC 和BD ,求两条小路的长和花坛的面积(分别精确到0.01m 和0.01m 2).例5、如图,四边形ABCD是菱形. 对角线AC =8㎝,DB =6㎝,DH ⊥AB 与H .求DH 的长.【能力提高】1、如图A D 是⊿ABC 的角平分线,DE ∥AEDF 是菱形.2、已知如图,菱形ABCD 中,∠ADC (1)求BD 的长;(2)求菱形ABCD 的面积,(3)写出A 、B 、C 、D 的坐标.D C A B C C EA F D。

初二数学特殊的平行四边形试题答案及解析

初二数学特殊的平行四边形试题答案及解析

初二数学特殊的平行四边形试题答案及解析1.如图,在菱形ABCD中,AC、BD是对角线,若∠BAC=50°,则∠ABC等于()A.40° B.50° C.80° D.100°【答案】C【解析】首先根据菱形的菱形的每一条对角线平分一组对角可得∠BAD的度数,再根据菱形的性质可得AD∥BC,根据平行线的性质可得∠ABC+∠BAD=180°,再代入所求的∠BAD的度数即可算出答案.2.如图,菱形ABCD中,AC=8,BD=6,则菱形的周长是()A.20B.24C.28D.40【答案】A【解析】据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.3.如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.2cm D.1cm【答案】C【解析】由折叠可知,∠BAE=∠B1AE,∴∠BAE=∠B1AE=45°,又∵∠B=45°,∴∠AEB=45°,∴BE=AB=4,∴CE=BC-BE=8-6=2.故选C.4.如图,在矩形ABCD中,若AC=2AB,则∠AOB的大小是()A.30°B.45°C.60°D.90°【答案】C【解析】∵AC=2AB,∴∠BAC=60°,OA=OB,∴△OAB是正三角形,∴∠AOB的大小是60°.故选C.5.如图,长方形ABCD中,E点在BC上,且AE平分∠BAC.若BE=4,AC=15,则△AEC面积为()A.15 B.30 C.45 D.60【答案】B【解析】利用角平分线的性质定理可得AC边上的高.进而求得所求三角形的面积.6.如图,矩形ABCD的周长为20cm,两条对角线相交于O点,过点O作AC的垂线EF,分别交AD,BC于E,F点,连接CE,则△CDE的周长为()A.5cm B.8cm C.9cm D.10cm【答案】D【解析】∵ABCD为矩形,∴AO=OC.∵EF⊥AC,∴AE=EC.∴△CDE的周长=CD+DE+EC=CD+DE+AE=CD+AD=10(cm).7.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=5,则四边形CODE的周长是()A.5 B.7 C.9 D.10【答案】D【解析】根据矩形性质求出OC=OD,根据菱形判定得出四边形DECO是菱形,求出OD=OC=EC=DE=,即可求出答案.8.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°【答案】B【解析】∵将△ABC沿BC方向平移得到△DCE,∴AB∥CD,且AB=CD,∴四边形ABCD为平行四边形,当AC=BC时,平行四边形ACED是菱形.9.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF【答案】D【解析】根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC进而得出四边形BECF是菱形;由菱形的性质知,以及菱形与正方形的关系,进而分别分析得出即可.10.如图,P是菱形ABCD对角线BD上一点,PE⊥AB于点E,PE=4cm,则点P到BC的距离是______cm.【答案】4【解析】根据菱形的性质,BD是∠ABC的平分线,再根据角平分线的性质即可得到点P到BC的距离.11.如图,菱形ABCD的对角线的长分别为6和8,点P是对角线AC上的任意一点(点P不与点A,C重合),且PE∥BC交AB于点E,PF∥CD交AD于点F,则阴影部分的面积是______.【答案】12【解析】易知四边形AEPF是平行四边形,设AP与EF相交于O点,则S△POF=S△AOE.所以阴影部分的面积等于菱形面积的一半.12.如图,在△ABC中,∠ACB=90°.D是AC的中点,DE⊥AC,AE∥BD,若BC=4,AE=5,则四边形ACBE的周长是______.【答案】18【解析】求出∠CDB=∠DAE,∠C=∠ADE=90°,AD=DC,证△ADE≌△DCB,推出DE=BC,得出平行四边形DEBC,推出BE=DC,根据勾股定理求出DC,即可得出答案.13.如图,矩形ABCD的两条线段交于点O,过点O作AC的垂线EF,分别交AD、BC于点E、F,连接CE,已知△CDE的周长为24cm,则矩形ABCD的周长是_______cm.【答案】48【解析】∵OA=OC,EF⊥AC,∴AE=CE,∵矩形ABCD的周长=2(AE+DE+CD),∵DE+CD+CE=24,∴矩形ABCD的周长=2(AE+DE+CD)=48cm.14.如图,在四边形ABCD中,AB=BC=CD=DA,对角线AC与BD相交于点O,若不增加任何字母与辅助线,要使四边形ABCD是正方形,则还需增加一个条件是_______.【答案】AC=BD或AB⊥BC【解析】∵在四边形ABCD中,AB=BC=CD=DA,∴四边形ABCD是菱形,∴要使四边形ABCD是正方形,则还需增加一个条件是:AC=BD或AB⊥BC.15.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,过点O作直线EF⊥BD,分别交AD、BC于点E和点F,求证:四边形BEDF是菱形.【答案】证明:∵四边形ABCD是菱形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,∠OED=∠OFB,∴△OED≌△OFB,∴DE=BF,又∵DE∥BF,∴四边形BEDF是平行四边形,∵EF⊥BD,∴四边形BEDF是菱形.【解析】若要证明四边形BEDF是菱形,只需要证明四边形BEDF是平行四边形即可,而DE∥BF,只需要证明DE=BF即可判定四边形BEDF是平行四边形,证明DE=BF可通过证明△OED≌△OFB.16.如图△ABC中,点O是AC上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠GCA的平分线于点F.(1)说明 EO=FO.(2)当点O运动到何处,四边形AECF是矩形?说明你的结论.(3)当点O运动到何处,AC与BC具有怎样的关系时,四边形AECF是正方形?为什么?【答案】解:(1)∵MN∥BC,∴∠ECB=∠CEO,∠GCF=∠CFO,∵CE,CF分别为∠BOC,∥GOC的角平分线,∴∠ECB=∠ECO,∠GCF=∠OCF,∴∠CEO=∠ECO,∠CFO=∠OCF,∴OC=OE,OC=OF,∴OE=OF,(2)当O点运动到AC的中点时,四边形AECF为矩形,理由:∵O点为AC的中点,∴OA=OC,∵OE=OF,OC=OE=OF,∴OA=OC=OE=OF,∴AC=EF,∴四边形AECF是矩形,(3)当O点运动到AC的中点时,AC⊥BC时,四边形AECF是正方形,理由:∵O点为AC的中点时,四边形AECF是矩形,∴AC=EF,∵AC⊥BC,MN∥BC,∴AC⊥EF,∴四边形AECF是正方形.【解析】(1)由平行线的性质和角平分线的性质,推出∠ECB=∠CEO,∠GCF=∠CFO,∠ECB=∠ECO,∠GCF=∠OCF,通过等量代换即可推出∠CEO=∠ECO,∠CFO=∠OCF,便可确定OC=OE,OC=OF,可得OE=OF;(2)当O点运动到AC的中点时,四边形AECF为矩形,根据矩形的判定定理(对角线相等且互相平分的四边形为矩形),结合(1)所推出的结论,即可推出OA=OC=OE=OF,求出AC=EF后,即可确定四边形AECF为矩形;(3)当O点运动到AC的中点时,AC⊥BC时,四边形AECF是正方形,根据(2)所推出的结论,由AC⊥BC,MN∥BC,确定AC⊥EF,即可推出结论.17.已知矩形BEDG和矩形BNDQ中,BE=BN,DE=DN.(1)将两个矩形叠合成如图10,求证:四边形ABCD是菱形;(2)若菱形ABCD的周长为20,BE=3,求矩形BEDG的面积.【答案】解:(1)答:四边形ABCD是菱形.证明:作AR⊥BC于R,AS⊥CD于S,由题意知:AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵矩形BEDG和矩形BNDQ中,BE=BN,DE=DN,∴两个矩形全等,∴AR=AS,∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形;(2)解:∵菱形ABCD的周长为20,∴AD=AB=BC=CD=5,∵BE=3,∴AE=4,∴DE=5+4=9,∴矩形BEDG的面积为:3×9=27.【解析】(1)作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由BC=CD得平行四边形ABCD是菱形;(2)根据菱形的性质得出AD的长,进而得出AE的长,再利用矩形面积公式求出即可.18.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形.(2)当AM的值为何值时,四边形AMDN是矩形?请说明理由.【答案】(1)证明:∵四边形ABCD为菱形,∴ND∥AM.∴∠NDE=∠MAE,∠DNE=∠AME.又∵点E是AD边的中点,∴DE=AE.∴ΔNDE≌ΔMAE,∴ND=MA,∴四边形AMND是平行四边形(一组对边平行且相等的四边形是平行四边形).(2)当AM的值为1时,四边形AMDN是矩形.理由如下:∵AM=1=AD,∴∠ADM=30°∵∠DAM=60°,∴∠AMD=90°,∴平行四边形AMDN是矩形.【解析】(1)由四边形ABCD为菱形,可以说明ΔNDE≌ΔMAE,得到ND=MA和ND∥AM,推出四边形AMND是平行四边形.(2)若四边形AMDN为矩形,则∠AMD为直角,此时AM=1.19.如图,在平行四边形ABCD中,∠DAB=60°,AB=2AD,点 E、F分别是AB、CD的中点,过点A作AG∥BD,交CB的延长线于点G.(1)求证:四边形DEBF是菱形;(2)请判断四边形AGBD是什么特殊四边形?并加以证明.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD且AB=CD,AD∥BC且AD=BC.E,F分别为AB,CD的中点,∴BE=AB,DF=CD,∴BE=BF,∴四边形DEBF是平行四边形在△ABD中,E是AB的中点,∴AE=BE=AB=AD,而∠DAB=60°,∴△AED是等边三角形,即DE=AE=AD,故DE=BE.∴平行四边形DEBF是菱形.(2)解:四边形AGBD是矩形,理由如下:∵AD∥BC且AG∥DB,∴四边形AGBD是平行四边形.由(1)的证明知AD=DE=AE=BE,∴∠ADE=∠DEA=60°,∠EDB=∠DBE=30°.故∠ADB=90°.∴平行四边形AGBD是矩形.【解析】(1)利用平行四边形的性质证得△AED是等边三角形,从而证得DE=BE,问题得证;(2)利用平行四边形的性质证得∠ADB=90°,利用有一个角是直角的平行四边形是矩形判定矩形.20.已知:如图,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE,CF.(1)求证:AF=CE;(2)若AC=EF,试判断四边形AFCE是什么样的四边形,并证明你的结论.【答案】(1)证明:在△ADF和△CDE中,∵AF∥BE,∴∠FAD=∠ECD.又∵D是AC的中点,∴AD=CD.∵∠ADF=∠CDE,∴△ADF≌△CDE.∴AF=CE.(2)解:若AC=EF,则四边形AFCE是矩形.证明:由(1)知:AF=CE,AF∥CE,∴四边形AFCE是平行四边形.又∵AC=EF,∴平行四边形AFCE是矩形.【解析】(1)可通过全等三角形来证明简单的线段相等.△ADF和△CDE中,已知了AD=CD,∠ADF=∠CDE,AF∥BE,因此不难得出两三角形全等,进而可得出AF=CE.(2)需先证明四边形AFCE是平行四边形,那么对角线相等的平行四边形是矩形.。

新人教版初中数学——特殊的平行四边形-知识点归纳及中考典型题解析

新人教版初中数学——特殊的平行四边形-知识点归纳及中考典型题解析

新人教版初中数学——特殊的平行四边形知识点归纳及中考题型解析一、矩形的性质与判定1.矩形的性质:(1)四个角都是直角;(2)对角线相等且互相平分;(3)面积=长×宽=2S△ABD=4S△AOB.(如图)2.矩形的判定:(1)定义法:有一个角是直角的平行四边形;(2)有三个角是直角;(3)对角线相等的平行四边形.二、菱形的性质与判定1.菱形的性质:(1)四边相等;(2)对角线互相垂直、平分,一条对角线平分一组对角;(3)面积=底×高=对角线乘积的一半.2.菱形的判定:(1)定义法:有一组邻边相等的平行四边形;(2)对角线互相垂直的平行四边形;(3)四条边都相等的四边形.三、正方形的性质与判定1.正方形的性质:(1)四条边都相等,四个角都是直角;(2)对角线相等且互相垂直平分;(3)面积=边长×边长=2S△ABD=4S△AOB.2.正方形的判定:(1)定义法:有一个角是直角,且有一组邻边相等的平行四边形;(2)一组邻边相等的矩形;(3)一个角是直角的菱形;(4)对角线相等且互相垂直、平分.四、联系(1)两组对边分别平行;(2)相邻两边相等;(3)有一个角是直角;(4)有一个角是直角;(5)相邻两边相等;(6)有一个角是直角,相邻两边相等;(7)四边相等;(8)有三个角都是直角.五、中点四边形(1)任意四边形所得到的中点四边形一定是平行四边形.(2)对角线相等的四边形所得到的中点四边形是矩形.(3)对角线互相垂直的四边形所得到的中点四边形是菱形.(4)对角线互相垂直且相等的四边形所得到的中点四边形是正方形.考向一矩形的性质与判定1.矩形除了具有平行四边形的一切性质外,还具有自己单独的性质,即:矩形的四个角都是直角;矩形的对角线相等.2.利用矩形的性质可以推出直角三角形斜边中线的性质,即在直角三角形中,斜边上的中线等于斜边的一半.3.矩形的判定:有三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形.典例1 如图,矩形ABCD的对角线交于点O,若∠BAO=55°,则∠AOD等于A.105°B.110°C.115°D.120°【答案】B【解析】∵四边形ABCD是矩形,∴OA=O B.∴∠BAO=∠ABO=55°.∴∠AOD=∠BAO+∠ABO=55°+55°=110°.故选B.典例2 如图,矩形ABCD的对角线AC与数轴重合(点C在正半轴上),AB=5,BC=12,点A表示的数是–1,则对角线AC、BD的交点表示的数A.5.5 B.5 C.6 D.6.5【答案】A【解析】连接BD交AC于E,如图所示:∵四边形ABCD是矩形,∴190,2B AE AC ∠==,∴13AC=,∴AE=6.5,∵点A表示的数是−1,∴OA=1,∴OE=AE−OA=5.5,∴点E表示的数是5.5,即对角线AC、BD的交点表示的数是5.5;故选A.1.如图,四边形ABCD 的对角线互相平分,要使它成为矩形,那么需要添加的条件是A .AB =BC B .AC 垂直BD C .∠A =∠C D .AC =BD2.如图,在平行四边形ABCD 中,对角线AC BD 、交于点O ,并且6015DAC ADB ∠=︒∠=︒,,点E 是AD 边上一动点,延长EO 交于BC 点F ,当点E 从点D 向点A 移动过程中(点E 与点D ,A 不重合),则四边形AFCE 的变化是A .平行四边形→菱形→平行四边形→矩形→平行四边形B .平行四边形→矩形→平行四边形→菱形→平行四边形C .平行四边形→矩形→平行四边形→正方形→平行四边形D .平行四边形→矩形→菱形→正方形→平行四边形考向二 菱形的性质与判定1.菱形除了具有平行四边形的一切性质外,具有自己单独的性质,即:菱形的四条边都相等; 菱形的对角线互相垂直,并且每一条对角线平分一组对角. 2.菱形的判定:四条边都相等的四边形是菱形; 对角线互相垂直的平行四边形是菱形.典例3 菱形具有而平行四边形不具有的性质是 A .两组对边分别平行 B .两组对边分别相等 C .一组邻边相等D .对角线互相平分【答案】C【解析】根据菱形的性质及平行四边形的性质进行比较,可发现A,B,D两者均具有,而C只有菱形具有平行四边形不具有,故选C.【名师点睛】有一组邻边相等的平行四边形是菱形.典例4如图,四边形ABCD的对角线互相垂直,且满足AO=CO,请你添加一个适当的条件_____________,使四边形ABCD成为菱形.(只需添加一个即可)【答案】BO=DO(答案不唯一)【解析】四边形ABCD中,AC、BD互相垂直,若四边形ABCD是菱形,需添加的条件是:AC、BD 互相平分(对角线互相垂直且平分的四边形是菱形).故答案为:BO=DO(答案不唯一).3.已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为A.45°,135°B.60°,120°C.90°,90°D.30°,150°4.如图,在△ABC中,AD是∠BAC的平分线,DE∥AC交AB于E,DF∥AB交AC于F,求证:四边形AEDF是菱形.考向三正方形的性质与判定1.正方形的性质=矩形的性质+菱形的性质.2.正方形的判定:以矩形和菱形的判定为基础,可以引申出更多正方形的判定方法,如对角线互相垂直平分且相等的四边形是正方形.证明四边形是正方形的一般步骤是先证出四边形是矩形或菱形,再根据相应判定方法证明四边形是正方形.典例5面积为9㎝2的正方形以对角线为边长的正方形面积为A.18㎝2B.20㎝2C.24㎝2D.28㎝2【答案】A【解析】∵正方形的面积为9cm2,∴边长为3cm,∴根据勾股定理得对角线长cm,∴以=2=18cm2.故选A.典例6如图,在△ABC中,∠B=90°,AB=BC=4,把△ABC绕点A逆时针旋转45°得到△ADE,过点C作CF⊥AE于F,DE交CF于G,则四边形ADGF的周长是A.8 B.C.D.【答案】D【解析】如图,连接AG,∵∠B=90°,AB=BC=4,∴∠CAB=∠ACB=45°,AC,∵把△ABC绕点A逆时针旋转45°得到△ADE,∴AD=AB=4,∠EAD=∠CAB=45°,∴∠FAB=90°,CD=AC﹣AD﹣4,∵∠B=90°=∠FAB,CF⊥AE,∴四边形ABCF是矩形,且AB=BC=4,∴四边形ABCF是正方形,∴AF=CF=AB=4=AD,∠AFC=∠FCB=90°,∴∠GCD =45°,且∠GDC =90°,∴∠GCD =∠CGD =45°,∴CD =GD ﹣4,∵AF =AD ,AG =AG ,∴Rt △AGF ≌Rt △AGD (HL ),∴FG =GD ﹣4,∴四边形ADGF 的周长=AF +AD +FG +GD ﹣﹣,故选D .5.如图,在正方形ABCD 内一点E 连接BE 、CE ,过C 作CF ⊥CE 与BE 延长线交于点F ,连接DF 、DE .CE =CF =1,DE ,下列结论中:①△CBE ≌△CDF ;②BF ⊥DF ;③点D 到CF 的距离为2;④S 四边形DECF +1.其中正确结论的个数是A .1B .2C .3D .46.如图,在正方形ABCD 中,,2BE FC CF FD ==,AE 、BF 交于点G ,下列结论中错误的是A .AE BF ⊥B .AE BF =C .43BG GE =D .ABGCEGF S S=四边形考向四 中点四边形1.中点四边形一定是平行四边形;2.中点四边形的面积等于原四边形面积的一半.典例7如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形【答案】D【解析】A.当E,F,G,H是四边形ABCD各边中点,且AC=BD时,存在EF=FG=GH=HE,故四边形EFGH为菱形,故A正确;B.当E,F,G,H是四边形ABCD各边中点,且AC⊥BD时,存在∠EFG=∠FGH=∠GHE=90°,故四边形EFGH为矩形,故B正确;C.如图所示,当E,F,G,H不是四边形ABCD各边中点时,若EF∥HG,EF=HG,则四边形EFGH 为平行四边形,故C正确;D.如图所示,当E,F,G,H不是四边形ABCD各边中点时,若EF=FG=GH=HE,则四边形EFGH 为菱形,故D错误,故选D.7.顺次连接下列四边形的四边中点所得图形一定是菱形的是A.平行四边形B.菱形C.矩形D.梯形8.如图,我们把依次连接任意四边形ABCD各边中点所得四边形EFGH叫中点四边形.若四边形ABCD的面积记为S1,中点四边形EFGH的面积记为S2,则S1与S2的数量关系是A.S1=3S2B.2S1=3S2C.S1=2S2D.3S1=4S21.如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=4,则OC=A.5 B.4 C.3.5 D.32.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AC=16,则图中长度为8的线段有A.2条B.4条C.5条D.6条3.如图,在长方形ABCD中,AB=3,BC=4,若沿折痕EF折叠,使点C与点A重合,则折痕EF 的长为A.158B.154C.152D.154.如图,菱形ABCD的对角线交于点O,AC=8 cm,BD=6 cm,则菱形的高为A.485cm B.245cm C.125cm D.105cm5.如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB的度数是A.108°B.72°C.90°D.100°6.如图,在正方形ABCD中,点E,F分别在边BC,CD上,且BE=CF.连接AE,BF,AE与BF 交于点G.下列结论错误的是A.AE=BF B.∠DAE=∠BFCC.∠AEB+∠BFC=90°D.AE⊥BF7.如图,矩形ABCD中将其沿EF翻折后,D点恰落在B处,∠BFE=65°,则∠AEB=____________.8.如图,P为正方形ABCD内一点,且BP=2,PC=3,∠APB=135°,将△APB绕点B顺时针旋转90°得到△CP′B,连接PP′,则AP=_______.9.如图,在ABCD中,AB=6,BC=8,AC=10.(1)求证:四边形ABCD是矩形;(2)求BD的长.10.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.11.如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由;(2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由;(3)在(2)的条件下,当△ABC满足什么条件时,四边形AECF是正方形.直接写出答案,不需说明理由.1.下列命题正确的是A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形2.如图,四边形ABCD为菱形,A,B两点的坐标分别是(2,0),(0,1),点C,D在坐标轴上,则菱形ABCD的周长等于AB.C.D.203.如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是A.0 B.4 C.6 D.84.如图,正方形ABCD中,点E.F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF=1,则GF的长为A.135B.125C.195D.1655.如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE.折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上.若5DE ,则GE的长为__________.6.如图,把某矩形纸片ABCD沿EF、GH折叠(点E、H在AD边上,点F、G在BC边上),使得点B、点C落在AD边上同一点P处,A点的对称点为A 点,D点的对称点为D点,若FPG,A EP90△的面积为1,则矩形ABCD的面积等于__________.△的面积为4,D PH7.如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为__________.8.如图,正方形ABCD,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G.(1)求证:BE=AF;(2)若AB=4,DE=1,求AG的长.9.已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,E,F分别为垂足.(1)求证:△ABE≌△CDF;(2)求证:四边形AECF是矩形.10.如图,在菱形ABCD中,点E.F分别为A D.CD边上的点,DE=DF,求证:∠1=∠2.11.如图,点E、F分别是矩形ABCD的边AB、CD上的一点,且DF=BE.求证:AF=CE.12.如图,四边形ABCD中,AB=CD,AD=BC,对角线AC,BD相交于点O,且OA=OD.求证:四边形ABCD是矩形.13.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.1.【答案】D【解析】结合选项可知,添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形,故选D.2.【答案】A【解析】点E从D点向A点移动过程中,当∠EOD<15°时,四边形AFCE为平行四边形,当∠EOD=15°时,AC⊥EF,四边形AFCE为菱形,当15°<∠EOD <75°时,四边形AFCE 为平行四边形, 当∠EOD =75°时,∠AEF =90°,四边形AFCE 为矩形, 当75°<∠EOD <105°时,四边形AFCE 为平行四边形,故选A . 3.【答案】B【解析】如图,由题意知AB =BC =AC ,∵AB =BC =AC ,∴△ABC 为等边三角形,即60B ∠=︒,根据平行四边形的性质,18060120.BAD ∠=-=︒︒︒故选B .4.【解析】∵DE ∥AC ,DF ∥AB , ∴四边形AEDF 为平行四边形, ∴∠FAD =∠EDA ,∵AD 是∠BAC 的平分线,∴∠EAD =∠FAD ,∴∠EAD =∠EDA , ∴AE =ED ,∴四边形AEDF 是菱形. 5.【答案】B【解析】∵四边形ABCD 是正方形,∴BC =CD ,∠BCD =90°, ∵CF ⊥CE ,∴∠ECF =∠BCD =90°,∴∠BCE =∠DCF ,在△BCE 与△DCF 中,BC CDBCE DCF CE CF =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△DCF (SAS ),故①正确;∵△BCE ≌△DCF ,∴∠CBE =∠CDF ,∴∠DFB =∠BCD =90°,∴BF ⊥ED , 故②正确,过点D 作DM ⊥CF ,交CF 的延长线于点M ,∵∠ECF =90°,FC =EC =1,∴∠CFE =45°,∵∠DFM +∠CFB =90°,∴∠DFM =∠FDM =45°,∴FM =DM ,∴由勾股定理可求得:EF ,∵DE ,∴由勾股定理可得:DF =2,∵EF 2+BE 2=2BE 2=BF 2,∴DM =FM ∵△BCE ≌△DCF ,∴S △BCE =S △DCF ,∴S 四边形DECF =S △DCF +S △DCE =S △ECF +S △DEF =S △AFP +S △PFB =12B . 6.【答案】C【解析】在正方形ABCD 中,AB =BC ,∠ABE =∠C =90,又∵BE =CF ,∴△ABE ≌△BCF (SAS ),∴AE =BF ,∠BAE =∠CBF ,∴∠FBC +∠BEG =∠BAE +∠BEG =90°,∴∠BGE =90°,∴AE ⊥BF .故A 、B 正确; ∵CF =2FD ,∴CF :CD =2:3,∵BE =CF ,AB =CD ,32AB BE ∴=, ∵∠EBG +∠ABG =∠ABG +∠BAG =90°,∴∠EBG =∠BAG , ∵∠EGB =∠ABE =90°,∴△BGE ∽△ABE ,32BG AB GE BE ∴==,故C 不正确, ∵△ABE ≌△BCF ,∴S △ABE =S △BFC ,∴S △ABE –S △BEG =S △BFC –S △BEG ,∴S 四边形CEGF =S △ABG , 故D 正确.故选C .7.【答案】C【解析】∵顺次连接任意四边形的四边中点所得图形一定是平行四边形, 当对角线相等时,所得图形一定是菱形,故选C . 8.【答案】C【解析】如图,设AC 与EH 、FG 分别交于点N 、P ,BD 与EF 、HG 分别交于点K 、Q , ∵E 是AB 的中点,F 是BC 的中点,∴EF ∥AC , 同理可证EH ∥BD ,∴△EBK ∽△ABM ,△AEN ∽△EBK ,1.【答案】B【解析】∵四边形ABCD 是矩形,∴AC =BD ,OA =OC ,∠BAD =90°, ∵∠ADB =30°,∴AC =BD =2AB =8,∴OC =AC =4.故选B . 2.【答案】D【解析】∵AC =16,四边形ABCD 是矩形, ∴DC =AB ,BO =DO =12BD ,AO =OC =12AC =8,BD =AC , ∴BO =OD =AO =OC =8,∵∠AOD =120°,∴∠AOB =60°,∴△ABO 是等边三角形,∴AB =AO =8,∴DC =8,即图中长度为8的线段有AO 、CO 、BO 、DO 、AB 、DC 共6条,故选D . 3.【答案】B【解析】如图,连接AF .根据折叠的性质,得EF 垂直平分AC ,则设,则,在中,根据勾股定理,得,解得. 在中,根据勾股定理,得AC =5,则AO =2.5.12.AF CF =AF x =4BF x =-Rt △ABF 229(4)x x =+-258x =Rt △ABC在中,根据勾股定理,得 根据全等三角形的性质,可以证明则故选B .4.【答案】B【解析】∵菱形ABCD 的对角线∴AC ⊥BD ,OA =AC =4 cm ,OB =BD =3 cm ,根据勾股定理,(cm ).设菱形的高为h ,则菱形的面积,即,解得,即菱形的高为cm .故选B . 5.【答案】B【解析】如图,连接AP ,∵在菱形ABCD 中,∠ADC =72°,BD 为菱形ABCD 的对角线,∴∠ADP =∠CDP =12∠ADC =36°. ∵AD 的垂直平分线交对角线BD 于点P ,垂足为E ,∴PA =P D. ∴∠DAP =∠ADP =36°.∴∠APB =∠DAP +∠ADP =72°. 又∵菱形ABCD 是关于对角线BD 对称的,∴∠CPB =∠APB =72°.故选B.6.【答案】CRt △AOF 158,OF =,OE OF =154.EF=8cm 6cm AC BD ==,,12125AB ===12AB h AC BD =⋅=⋅15862h =⨯⨯245h =245【解析】∵AD//BC,∴∠DAE=∠AEB,∵BE=CF,AB=BC,∠ABE=∠BCF,∴△ABE≌△BCF,∴AE=BF,∠DAE=∠BFC,∵∠FBC+∠BFC=90°,∠AEB=∠BFC,∴∠FBC+AEB=90°,∴AE ⊥BF,所以A、B、D三个选项正确,∠AEB=∠BFC,故C选项错误,故选C.7.【答案】50°【解析】如图所示,由矩形ABCD可得AD∥BC,∴∠1=∠BFE=65°,由翻折得∠2=∠1=65°,∴∠AEB=180°–∠1–∠2=180°–65°–65°=50°.故答案为:50°.8.【答案】1【解析】∵△BP'C是由△BPA旋转得到,∴∠APB=∠CP'B=135°,∠ABP=∠CBP',BP=BP',AP=CP',∵∠ABP+∠PBC=90°,∴∠CBP'+∠PBC=90°,即∠PBP'=90°,∴△BPP'是等腰直角三角形,∴∠BP'P=45°,∵∠APB=∠CP'B=135°,∴∠PP'C=90°,∵BP=2,∴PP,∵PC=3,∴CP,∴AP=CP′=1,故答案为1.9.【解析】(1)∵AB=6,BC=8,AC=10,∴AB2+BC2=AC2,∴∠ABC=90°,∵四边形ABCD是平行四边形,∴ABCD是矩形.(2)∵四边形ABCD是矩形,∴BD=AC=10.10.【解析】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,AC ABCAF BAEAF AE=⎧⎪∠=∠⎨⎪=⎩,∴△ACF≌△ABE,∴BE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴BEBD=BE﹣DE1.11.【解析】(1)OE=OF,理由如下:因为CE平分∠ACB,所以∠1=∠2,又因为MN∥BC,所以∠1=∠3,所以∠3=∠2,所以EO=CO,同理,FO=CO,所以OE=OF.(2)当点O运动到AC的中点时,四边形AECF是矩形,理由如下:因为OE=OF,点O是AC的中点,所以四边形AECF是平行四边形,又因为CF平分∠BCA的外角,所以∠4=∠5,又因为∠1=∠2,所以∠1=∠2,∠2+∠4=11802⨯︒=90°,即∠ECF=90°,所以平行四边形AECF是矩形.(3)当△ABC是直角三角形时,即∠ACB=90°时,四边形AECF是正方形,理由如下:由(2)证明可知,当点O运动到AC的中点时,四边形AECF是矩形,又因为∠ACB=90°,CE,CN分别是∠ACB与∠ACB的外角的平分线,所以∠1=∠2=∠3=∠4=∠5=45°,所以AC⊥MN,所以四边形AECF是正方形.1.【答案】A【解析】A.有一个角为直角的平行四边形是矩形满足判定条件;B.四条边都相等的四边形是菱形,故B错误;C有一组邻边相等的平行四边形是菱形,故C错误;对角线相等且相互平分的四边形是矩形,则D错误;故选A.【名师点睛】本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.2.【答案】C【解析】∵菱形ABCD的顶点A,B的坐标分别为(2,0),(0,1),∴AO=2,OB=1,AC⊥BD,∴由勾股定理知:AB==,∵四边形ABCD为菱形,∴AB=DC=BC=AD∴菱形ABCD的周长为:C.【名师点睛】此题主要考查了菱形的性质,勾股定理以及坐标与图形的性质,得出AB的长是解题关键.3.【答案】D【解析】如图,过E点作关于AB的对称点E′,则当E′,P,F三点共线时PE+PF取最小值,∵∠EAP=45°,∴∠EAE′=90°,又∵AE=EF=AE′=4,∴PE+PF的最小值为E′F=,∵满足PE+PF∴在边AB上存在两个P点使PE+PF=9,同理在其余各边上也都存在两个P点满足条件,∴满足PE+PF=9的点P的个数是8,故选D.【名师点睛】本题主要考查了正方形的性质以及根据轴对称求最短路径,有一定难度,巧妙的运用求最值的思想判断满足题意的点的个数是解题关键.4.【答案】A【解析】正方形ABCD 中,∵BC =4, ∴BC =CD =AD =4,∠BCE =∠CDF =90°, ∵AF =DE =1,∴DF =CE =3,∴BE =CF =5,在△BCE 和△CDF 中,BC CD BCE CDF CE DF =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△CDF (SAS ),∴∠CBE =∠DCF , ∵∠CBE +∠CEB =∠ECG +∠CEB =90°=∠CGE , cos ∠CBE =cos ∠ECG =BC CGBE CE=, ∴453CG =,CG =125,∴GF =CF ﹣CG =5﹣125=135, 故选A .【名师点睛】此题主要考查了正方形的性质,全等三角形的判定和性质,勾股定理,锐角三角函数,证明△BCE ≌△CDF 是解本题的关键. 5.【答案】4913【解析】如图,令AE 与BF 的交点为M . 在正方形ABCD 中,∠BAD =∠D =90︒,∴∠BAM +∠FAM =90︒, 在Rt ADE △中,13==A E ,∵由折叠的性质可得ABF GBF △≌△, ∴AB =BG ,∠FBA =∠FBG , ∴BF 垂直平分AG , ∴AM =MG ,∠AMB =90︒, ∴∠BAM +∠ABM =90︒, ∴∠ABM =∠FAM ,∴ABM EAD △∽△,∴AM AB DE AE = ,∴12513AM =,∴AM =6013,∴AG =12013,∴GE =13–120491313=. 【名师点睛】本题考查了正方形与折叠,勾股定理,等腰三角形的性质,以及三角形相似的判定和性质,熟练掌握相关的知识是解题的关键.6.【答案】【解析】∵A 'E ∥PF ,∴∠A 'EP =∠D 'PH ,又∵∠A =∠A '=90°,∠D =∠D '=90°,∴∠A '=∠D ',∴△A 'EP ~△D 'PH , 又∵AB =CD ,AB =A 'P ,CD =D 'P ,∴A 'P = D 'P , 设A 'P =D 'P =x ,∵S △A 'EP :S △D 'PH =4:1,∴A 'E =2D 'P =2x ,∴S △A 'EP =2112422A E A P x x x ''⨯⨯=⨯⨯==, ∵0x >,∴2x =,∴A 'P =D 'P =2,∴A 'E =2D 'P =4,∴EP ==∴1=2PH EP =112DH D H A P ''===,∴415AD AE EP PH DH =+++=+=+ ∴2AB A P '==,∴25)10ABCD S AB AD =⨯=⨯=矩形,【名师点睛】本题考查矩形的性质、折叠的性质,解题的关键是掌握矩形的性质、折叠的性质. 7.【答案】24【解析】∵四边形ABCD 是菱形, ∴AB =BC =CD =AD ,BO =DO , ∵点E 是BC 的中点, ∴OE 是△BCD 的中位线, ∴CD =2OE =2×3=6,∴菱形ABCD 的周长=4×6=24; 故答案为:24.【名师点睛】本题考查了菱形的性质以及三角形中位线定理;熟记菱形性质与三角形中位线定理是解题的关键.8.【解析】(1)∵四边形ABCD是正方形,∴∠BAE=∠ADF=90°,AB=AD=CD,∵DE=CF,∴AE=DF,在△BAE和△ADF中,AB ADBAE ADF AE DF=⎧⎪∠=∠⎨⎪=⎩,∴△BAE≌△ADF(SAS),∴BE=AF;(2)解:由(1)得:△BAE≌△ADF,∴∠EBA=∠FAD,∴∠GAE+∠AEG=90°,∴∠AGE=90°,∵AB=4,DE=1,∴AE=3,∴BE,在Rt△ABE中,12AB×AE=12BE×AG,∴AG=435⨯=125.【名师点睛】本题考查了全等三角形的判定与性质、正方形的性质、勾股定理以及三角形面积公式;熟练掌握正方形的性质,证明三角形全等是解题的关键.9.【解析】(1)∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,AD∥BC,∵AE⊥BC,CF⊥AD,∴∠AEB=∠AEC=∠CFD=∠AFC=90°,在△ABE和△CDF中,B DAEB CFD AB CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△CDF(AAS);(2)∵AD∥BC,∴∠EAF=∠AEB=90°,∴∠EAF=∠AEC=∠AFC=90°,∴四边形AECF是矩形.【名师点睛】本题考查了矩形的判定、平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质和矩形的判定是解题的关键.10.【解析】∵四边形ABCD是菱形,∴AD=CD,在△ADF和△CDE中,AD CDD D DF DE=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△CDE(SAS),∴∠1=∠2.【名师点睛】本题考查了菱形的性质、全等三角形的判定与性质;熟练掌握菱形的性质,证明三角形全等是解题的关键.11.【答案】见解析.【解析】∵四边形ABCD是矩形,∴∠D=∠B=90°,AD=BC,在△ADF和△CBE中,AD CBD B DF BE⎧=∠=∠=⎪⎨⎪⎩,∴△ADF≌△CBE(SAS),∴AF=CE.【名师点睛】本题考查了矩形的性质、全等三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等是解题的关键.12.【答案】见解析.【解析】∵四边形ABCD中,AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴AC=2AO,BD=2OD,∵OA=OD,∴AC=BD,∴四边形ABCD是矩形.【名师点睛】本题考查了平行四边形的性质和判定,矩形的判定等知识点,能由题中已知信息推出四边形ABCD是平行四边形是关键.13.【解析】(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.【名师点睛】本题考查了菱形的性质,矩形的性质,全等三角形的判定和性质,正确的识别作图是解题的关键.。

初中数学特殊平行四边形的证明及详细答案

初中数学特殊平行四边形的证明及详细答案

初中数学特殊平行四边形的证明一. 解答题(共30小题)1.(2019•泰安模拟)如图, 在△ABC中, ∠ACB=90°, BC的垂直平分线DE交BC于D, 交AB于E, F在DE上, 并且AF=CE.(1)求证: 四边形ACEF是平行四边形;(2)当∠B满足什么条件时, 四边形ACEF是菱形?请回答并证明你的结论.2.(2019•福建模拟)已知: 如图, 在△ABC中, D、E分别是AB.AC的中点, BE=2DE, 延长DE到点F, 使得EF=BE, 连接CF.求证: 四边形BCFE是菱形.3.(2019•深圳一模)如图, 四边形ABCD中, AB∥CD, AC平分∠BAD, CE∥AD交AB于E.(1)求证: 四边形AECD是菱形;(2)若点E是AB的中点, 试判断△ABC的形状, 并说明理由.4.(2019•济南模拟)如图, 四边形ABCD是矩形, 点E是边AD的中点.求证: EB=EC.5. (2019•临淄区校级模拟)如图所示, 在矩形ABCD中, DE⊥AC于点E, 设∠ADE=α, 且cosα= , AB=4, 则AC的长为多少?6. (2019春•宿城区校级月考)如图, 四边形ABCD是矩形, 对角线AC、BD相交于点O, BE ∥AC交DC的延长线于点E. 求证:BD=BE.7.(2019•雅安)如图:在▱ABCD中, AC为其对角线, 过点D作AC的平行线及BC的延长线交于E.(1)求证: △ABC≌△DCE;(2)若AC=BC, 求证: 四边形ACED为菱形.8.(2019•贵阳)如图, 在Rt△ABC中, ∠ACB=90°, D.E分别为AB, AC边上的中点, 连接DE, 将△ADE绕点E旋转180°得到△CFE, 连接AF, AC.(1)求证: 四边形ADCF是菱形;(2)若BC=8, AC=6, 求四边形ABCF的周长.9.(2019•遂宁)已知:如图, 在矩形ABCD中, 对角线AC、BD相交于点O, E是CD中点, 连结OE.过点C作CF∥BD交线段OE的延长线于点F, 连结DF.求证:(1)△ODE≌△FCE;(2)四边形ODFC是菱形.10. (2019•宁德)如图, 在梯形ABCD中, AD∥BC, 点E是BC的中点, 连接AC, DE, AC=AB, DE∥AB. 求证: 四边形AECD是矩形.11. (2019•钦州)如图, 在正方形ABCD中, E、F分别是AB、BC上的点, 且AE=BF. 求证:CE=DF.12.(2019•贵港)如图, 在正方形ABCD中, 点E是对角线AC上一点, 且CE=CD, 过点E 作EF⊥AC交AD于点F, 连接BE.(1)求证: DF=AE;(2)当AB=2时, 求BE2的值.13.(2019•吴中区一模)已知:如图, 菱形ABCD中, E、F分别是CB.CD上的点, ∠BAF=∠DAE.(1)求证: AE=AF;(2)若AE垂直平分BC, AF垂直平分CD, 求证: △AEF为等边三角形.14. (2019•新乡一模)小明设计了一个如图的风筝, 其中, 四边形ABCD及四边形AEFG都是菱形, 点C在AF上, 点E, G分别在BC, CD上, 若∠BAD=135°, ∠EAG=75°, AE=100cm, 求菱形ABCD的边长.15. (2019•槐荫区三模)如图, 菱形ABCD的边长为1, ∠D=120°. 求对角线AC的长.16. (2019•历城区一模)如图, 已知菱形ABCD的对角线AC.BD的长分别为6cm、8cm, AE ⊥BC于点E, 求AE的长.17.(2019•湖南校级模拟)如图, AE=AF, 点B.D分别在AE、AF上, 四边形ABCD是菱形, 连接EC、FC(1)求证: EC=FC;(2)若AE=2, ∠A=60°, 求△AEF的周长.18.(2019•清河区一模)如图, 在△ABC中, AB=AC, 点D.E、F分别是△ABC三边的中点.求证: 四边形ADEF是菱形.19. (2019春•防城区期末)如图, 已知四边形ABCD是平行四边形, DE⊥AB, DF⊥BC, 垂足分别是为E, F, 并且DE=DF. 求证:四边形ABCD是菱形.20.(2019•通州区一模)如图, 在四边形ABCD中, AB=DC, E、F分别是AD.BC的中点, G、H分别是对角线BD.AC的中点.(1)求证: 四边形EGFH是菱形;(2)若AB=1, 则当∠ABC+∠DCB=90°时, 求四边形EGFH的面积.21.(2019•顺义区二模)如图, 在△ABC中, D、E分别是AB.AC的中点, BE=2DE, 过点C 作CF∥BE交DE的延长线于F.(1)求证: 四边形BCFE是菱形;(2)若CE=4, ∠BCF=120°, 求菱形BCFE的面积.22.(2019•祁阳县校级模拟)如图, O为矩形ABCD对角线的交点, DE∥AC, CE∥BD.(1)求证: 四边形OCED是菱形.(2)若AB=6, BC=8, 求四边形OCED的周长.23. (2019•荔湾区校级一模)已知点E是矩形ABCD的边AD延长线上的一点, 且AD=DE, 连结BE交CD于点O, 求证:△AOD≌△BOC.24.(2019•东海县二模)已知:如图, 在正方形ABCD中, 点E、F在对角线BD上, 且BF=DE, (1)求证: 四边形AECF是菱形;(2)若AB=2, BF=1, 求四边形AECF的面积.25.(2019•玉溪模拟)如图, 正方形ABCD的边CD在正方形ECGF的边CE上, 连接BE、DG.求证: BE=DG.26.(2019•工业园区一模)已知:如图正方形ABCD中, E为CD边上一点, F为BC延长线上一点, 且CE=CF(1)求证: △BCE≌△DCF;(2)若∠FDC=30°, 求∠BEF的度数.27.(2019•深圳模拟)四边形ABCD是正方形, E、F分别是DC和CB的延长线上的点, 且DE=BF, 连接AE、AF、EF.(1)求证: △ADE≌△ABF;(2)若BC=8, DE=6, 求△AEF的面积.28. (2019•碑林区校级模拟)在正方形ABCD中, AC为对角线, E为AC上一点, 连接EB、ED. 求证:∠BEC=∠DEC.29.(2019•温州一模)如图, AB是CD的垂直平分线, 交CD于点M, 过点M作ME⊥A C, MF ⊥AD, 垂足分别为E、F.(1)求证: ∠CAB=∠DAB;(2)若∠CAD=90°, 求证: 四边形AEMF是正方形.30.(2019•湖里区模拟)已知:如图, △ABC 中, ∠ABC=90°, BD 是∠ABC 的平分线, DE⊥AB 于点E, DF ⊥BC 于点F .求证:四边形DEBF 是正方形.初中数学 特殊平行四边形的证明参考答案及试题解析一. 解答题(共30小题)1.(2019•泰安模拟)如图, 在△ABC 中, ∠ACB=90°, BC 的垂直平分线DE 交BC 于D, 交AB 于E, F 在DE 上, 并且AF=CE .(1)求证: 四边形ACEF 是平行四边形;(2)当∠B 满足什么条件时,四边形ACEF是菱形?请回答并证明你的菱形的判定;线段垂直平分线的性质;平行四边形的判定. 菁优网版权所有结论.考点:考点:专题:证明题.(1)ED是BC的垂直平分线, 根据中垂线的性质: 中垂线上的分析:点线段两个端点的距离相等, 则EB=EC, 故有∠3=∠4, 在直角三角形ACB中, ∠2及∠4互余, ∠1及∠3互余, 则可得到AE=CE, 从而证得△ACE和△EFA都是等腰三角形, 又因为FD⊥BC, AC⊥BC, 所以AC∥FE, 再根据内错角相等得到AF∥CE, 故四边形ACEF是平行四边形;(2)由于△ACE是等腰三角形, 当∠1=60°时△ACE是等边三角形, 有AC=EC, 有平行四边形ACEF是菱形.(2)由于△ACE是等腰三角形,当∠1=60°时△ACE是等边三角形,有AC=EC,有平行四边形ACEF是菱形.(2)由于△ACE是等腰三角形,当∠1=60°时△ACE是等边三角形,有AC=EC,有平行四边形ACEF是菱形.解: (1)∵ED是BC的垂直平分线解答:∴EB=EC, ED⊥BC,∴∠3=∠4,∵∠ACB=90°,∴FE∥AC,∴∠1=∠5,∵∠2及∠4互余, ∠1及∠3互余∴∠1=∠2,∴AE=CE,又∵AF=CE,∴△ACE和△EFA都是等腰三角形,∴∠5=∠F,∴∠2=∠F,∴在△EFA和△ACE中∵,∴△EFA≌△ACE(AAS),∴∠AEC=∠EAF∴AF∥CE∴四边形ACEF是平行四边形;(2)当∠B=30°时, 四边形ACEF是菱形. 证明如下: ∵∠B=30°, ∠ACB=90°∴∠1=∠2=60°∴∠AEC=60°∴AC=EC∴平行四边形ACEF是菱形.点评:本题综合利用了中垂线的性质、等边对等角和等角对等边、直角三角形的性质、平行四边形和判定和性质、菱形的判定求解, 有利于学生思维能力的训练.涉及的知识点有:有一组邻边相等的平行四边形是菱形.2. (2019•福建模拟)已知: 如图, 在△ABC中, D.E分别是AB.AC 的中点, BE=2DE, 延长DE到点F, 使得EF=BE, 连接CF.菱形的判定. 菁优网版权所有求证:四边形BCFE是菱形.考点:考点:专题:证明题.分析:由题意易得, EF 及BC 平行且相等, ∴四边形BCFE 是平行四边形.又EF=BE, ∴四边形BCFE 是菱形.解答: 解: ∵BE=2DE, EF=BE,∴EF=2DE. (1分)∵D.E 分别是AB.AC 的中点,∴BC=2DE 且DE ∥BC. (2分)∴EF=BC. (3分)又EF ∥BC,∴四边形BCFE 是平行四边形. (4分)又EF=BE,∴四边形BCFE 是菱形. (5分)∴四边形BCFE 是菱形.(5分)点评: 此题主要考查菱形的判定, 综合利用了平行四边形的性质和判定.3. (2019•深圳一模)如图, 四边形ABCD 中, AB ∥CD, AC 平分∠BAD, CE ∥AD 交AB 于E.(1)求证: 四边形AECD 是菱形;菱形的判定及性质. 菁优网版权所有(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.考点:考点:几何图形问题.专题:(1)利用两组对边平行可得该四边形是平行四边形, 进而证明分析:一组邻边相等可得该四边形为菱形;(2)利用菱形的邻边相等的性质及等腰三角形的性质可得两组角相等, 进而证明∠ACB为直角即可.(2)利用菱形的邻边相等的性质及等腰三角形的性质可得两组角相等,进而证明∠ACB为直角即可.(2)利用菱形的邻边相等的性质及等腰三角形的性质可得两组角相等,进而证明∠ACB为直角即可.解: (1)∵AB∥CD, CE∥AD,解答:∴四边形AECD为平行四边形, ∠2=∠3,又∵AC平分∠BAD,∴∠1=∠2,∴∠1=∠3,∴AD=DC,∴四边形AECD是菱形;(2)直角三角形.理由: ∵AE=EC∴∠2=∠4,∵AE=EB,∴EB=EC,∴∠5=∠B,又因为三角形内角和为180°,∴∠2+∠4+∠5+∠B=180°,∴∠ACB=∠4+∠5=90°,∴△ACB为直角三角形.点评:考查菱形的判定及性质的应用;用到的知识点为:一组邻边相等的平行四边形是菱形;菱形的4条边都相等.4. (2019•济南模拟)如图, 四边形ABCD是矩形, 点E是边AD的中点.求证:矩形的性质;全等三角形的判定及性质. 菁优网版权所有EB=EC.考点:考点:专题: 证明题.分析: 利用矩形的性质结合全等三角形的判定及性质得出△ABE ≌△DCE(SAS), 即可得出答案.解答: 证明: ∵四边形ABCD是矩形,∴AB=DC, ∠A=∠D=90°,∵点E是边AD的中点,∴AE=ED,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS),∴EB=EC.∴EB=EC.点评: 此题主要考查了全等三角形的判定及性质以及矩形的性质, 得出△ABE≌△DCE是解题关键.矩形的性质. 菁优网版权所有5. (2019•临淄区校级模拟)如图所示, 在矩形ABCD中, DE⊥AC于点E, 设∠ADE=α,且cosα= ,AB=4, 则AC的长为多少?考点:分析: 根据等角的余角相等, 得∠BAC=∠ADE=α;根据锐角三角函数定义可求AC的长.解答: 解: ∵四边形ABCD是矩形,∴∠ABC=90°, AD∥BC,∴∠EAD=∠ACB,∵在△ABC及△AED中,∵DE⊥AC于E, ∠ABC=90°∴∠BAC=∠ADE=α.∴cos∠BAC=cosα= ,∴AC= = .∴AC==.点评: 此题综合运用了锐角三角函数的知识、勾股定理、矩形的性质.矩形的性质;平行四边形的判定及性质. 菁优网版权所有6.(2019春•宿城区校级月图, 四边形ABCD是矩形, 对角线AC.BD相交于点O,BE∥AC交DC的延长线于点E. 求证:BD=BE.考点:考点:专题: 证明题.分析: 根据矩形的对角线相等可得AC=BD, 对边平行可得AB∥CD,再求出四边形ABEC 是平行四边形, 根据平行四边形的对边相等可得AC=BE, 从而得证.解答: 证明: ∵四边形ABCD 是矩形,∴AC=BD, AB ∥CD,又∵BE ∥AC,∴四边形ABEC 是平行四边形,∴AC=BE,∴BD=BE.∴BD=BE.点评: 本题考查了矩形的性质, 平行四边形的判定及性质, 熟记各性质并求出四边形ABEC 是平行四边形是解题的关键.7. (2019•雅安)如图: 在▱ABCD 中, AC 为其对角线, 过点D 作AC 的平行线及BC 的延长线交于E.(1)求证: △ABC ≌△DCE ;(2)若AC=BC, 求证:四边形ACED为菱菱形的判定;全等三角形的判定及性质;平行四边形的性质. 菁优网版权所有形.考点:考点:专题: 证明题.分析: (1)利用AAS判定两三角形全等即可;(2)首先证得四边形ACED为平行四边形, 然后证得AC=AD,利用邻边相等的平行四边形是菱形判定即可.(2)首先证得四边形ACED为平行四边形,然后证得AC=AD,利用邻边相等的平行四边形是菱形判定即可.(2)首先证得四边形ACED为平行四边形,然后证得AC=AD,利用邻边相等的平行四边形是菱形判定即可.解答: 证明: (1)∵四边形ABCD为平行四边形,∴AB∥CD, AB=CD,∴∠B=∠1,又∵DE∥AC∴∠2=∠E,在△ABC及△DCE中,,∴△ABC≌△DCE;(2)∵平行四边形ABCD中,∴AD∥BC,即AD∥CE,由DE∥AC,∴ACED为平行四边形,∵AC=BC,∴∠B=∠CAB,由AB∥CD,∴∠CAB=∠ACD,又∵∠B=∠ADC,∴∠ADC=∠ACD,∴AC=AD,∴四边形ACED为菱形.点评: 本题考查了菱形的判定等知识, 解题的关键是熟练掌握菱形的判定定理, 难度不大.8. (2019•贵阳)如图, 在Rt△ABC中, ∠ACB=90°, D.E分别为AB, AC边上的中点, 连接DE, 将△ADE绕点E旋转180°得到△CFE, 连接AF, AC.(1)求证: 四边形ADCF是菱形;(2)菱形的判定及性质;旋转的性质. 菁优网版权所有若BC=8,AC=6,求四边形ABCF的周长.考点:考点:几何综合题.专题:(1)根据旋转可得AE=CE, DE=EF, 可判定四边形ADCF是平行分析:四边形, 然后证明DF⊥AC, 可得四边形ADCF是菱形;(2)首先利用勾股定理可得AB长, 再根据中点定义可得AD=5, 根据菱形的性质可得AF=FC=AD=5, 进而可得答案.(2)首先利用勾股定理可得AB长,再根据中点定义可得AD=5,根据菱形的性质可得AF=FC=AD=5,进而可得答案.(2)首先利用勾股定理可得AB长,再根据中点定义可得AD=5,根据菱形的性质可得AF=FC=AD=5,进而可得答案.(1)证明: ∵将△ADE绕点E旋转180°得到△CFE,解答:∴AE=CE, DE=EF,∴四边形ADCF是平行四边形,∵D.E分别为AB, AC边上的中点,∴DE是△ABC的中位线,∴DE∥BC,∵∠ACB=90°,∴∠AED=90°,∴DF⊥AC,∴四边形ADCF是菱形;(2)解: 在Rt△ABC中, BC=8, AC=6,∴AB=10,∵D是AB边上的中点,∴AD=5,∵四边形ADCF是菱形,∴AF=FC=AD=5,∴四边形ABCF的周长为8+10+5+5=28.∴四边形ABCF的周长为8+10+5+5=28.此题主要考查了菱形的判定及性质, 关键是掌握菱形四边相点评:等, 对角线互相垂直的平行四边形是菱形.9. (2019•遂宁)已知: 如图, 在矩形ABCD中, 对角线AC.BD相交于点O, E是CD中点, 连结OE. 过点C作CF∥BD交线段OE的延长线于点F, 连结DF. 求证:(1)△ODE≌△FCE;(2)四边形ODFC是菱形. 考点: 考点:矩形的性质;全等三角形的判定及性质;菱形的判定. 菁优网版权所有专题: 证明题.分析: (1)根据两直线平行, 内错角相等可得∠ODE=∠FCE, 根据线段中点的定义可得CE=DE, 然后利用“角边角”证明△ODE和△FCE全等;(2)根据全等三角形对应边相等可得OD=FC, 再根据一组对边平行且相等的四边形是平行四边形判断出四边形ODFC是平行四边形, 根据矩形的对角线互相平分且相等可得OC=OD, 然后根据邻边相等的平行四边形是菱形证明即可.(2)根据全等三角形对应边相等可得OD=FC,再根据一组对边平行且相等的四边形是平行四边形判断出四边形ODFC是平行四边形,根据矩形的对角线互相平分且相等可得OC=OD,然后根据邻边相等的平行四边形是菱形证明即可.(2)根据全等三角形对应边相等可得OD=FC,再根据一组对边平行且相等的四边形是平行四边形判断出四边形ODFC是平行四边形,根据矩形的对角线互相平分且相等可得OC=OD,然后根据邻边相等的平行四边形是菱形证明即可.解答: 证明: (1)∵CF∥BD,∴∠ODE=∠FCE,∵E是CD中点,∴CE=DE,在△ODE和△FCE中,,∴△ODE≌△FCE(ASA);(2)∵△ODE≌△FCE,∴OD=FC,∵CF∥BD,∴四边形ODFC是平行四边形,在矩形ABCD中, OC=OD,∴四边形ODFC是菱形.∴四边形ODFC是菱形.点评: 本题考查了矩形的性质, 全等三角形的判定及性质, 菱形的判定, 熟记各性质及平行四边形和菱形的判定方法是解题的关键.10.矩形的判定. 菁优网版权所有(2019•宁德)如图, 在梯形ABCD中,AD∥BC,点E是BC的中点,连接AC,DE,AC=AB,DE∥AB.求证:四边形AECD是矩形.考点:考点:专题: 证明题.分析: 先判断四边形AECD为平行四边形, 然后由∠AEC=90°即可判断出四边形AECD是矩形.解答: 证明: ∵AD∥BC, DE∥AB,∴四边形ABED是平行四边形.∴AD=BE.∵点E是BC的中点,∴EC=BE=AD.∴四边形AECD是平行四边形.∵AB=AC, 点E是BC的中点,∴AE⊥BC, 即∠AEC=90°.∴▱AECD是矩形.∴▱AECD是矩形.点评: 本题考查了梯形和矩形的判定, 难度适中, 解题关键是掌握平行四边形和矩形的判定定理.正方形的性质;全等三角形的判定及性质. 菁优网版权所有11.(2019•钦州)如图,在正方形ABCD中, E、F分别是AB.BC上的点, 且AE=BF.求证:CE=DF.考点:考点:专题: 证明题.分析: 根据正方形的性质可得AB=BC=CD, ∠B=∠BCD=90°, 然后求出BE=CF, 再利用“边角边”证明△BCE和△CDF全等, 根据全等三角形对应边相等证明即可.解答: 证明: 在正方形ABCD中, AB=BC=CD, ∠B=∠BCD=90°, ∵AE=BF,∴AB﹣AE=BC﹣BF,即BE=CF,在△BCE和△CDF中,,∴△BCE≌△CDF(SAS),∴CE=DF.∴CE=DF.点评: 本题考查了正方形的性质, 全等三角形的判定及性质, 熟记性质并确定出三角形全等的条件是解题的关键.12. (2019•贵港)如图, 在正方形ABCD中, 点E是对角线AC上一点, 且CE=CD, 过点E作EF⊥AC交AD于点F, 连接BE.(1)求证: DF=AE;正方形的性质;角平分线的性质;勾股定理. 菁优网版权所有(2)当AB=2时,求BE2的值.考点:考点:(1)连接CF, 根据“HL”证明Rt△CDF和Rt△CEF全等, 根分析:据全等三角形对应边相等可得DF=EF, 根据正方形的对角线平分一组对角可得∠EAF=45°, 求出△AEF是等腰直角三角形, 再根据等腰直角三角形的性质可得AE=EF, 然后等量代换即可得证;(2)根据正方形的对角线等于边长的倍求出AC, 然后求出AE, 过点E作EH⊥AB于H, 判断出△AEH是等腰直角三角形, 然后求出EH=AH= AE, 再求出BH, 然后利用勾股定理列式计算即可得解.(2)根据正方形的对角线等于边长的倍求出AC,然后求出AE,过点E作EH⊥AB于H,判断出△AEH是等腰直角三角形,然后求出EH=AH= AE,再求出BH,然后利用勾股定理列式计算即可得解.(2)根据正方形的对角线等于边长的倍求出AC,然后求出AE,过点E作EH⊥AB于H,判断出△AEH是等腰直角三角形,然后求出EH=AH=AE,再求出BH,然后利用勾股定理列式计算即可得解.(1)证明: 如图, 连接CF,解答:在Rt△CDF和Rt△CEF中,,∴Rt△CDF≌Rt△CEF(HL),∴DF=EF,∵AC是正方形ABCD的对角线,∴∠EAF=45°,∴△AEF是等腰直角三角形,∴AE=EF,∴DF=AE;(2)解: ∵AB=2,∴AC= AB=2 ,∵CE=CD,∴AE=2 ﹣2,过点E作EH⊥AB于H,则△AEH是等腰直角三角形,∴EH=AH= AE= ×(2 ﹣2)=2﹣,∴BH=2﹣(2﹣)= ,在Rt△BEH中, BE2=BH2+EH2=()2+(2﹣)2=8﹣4 .本题考查了正方形的性质, 全等三角形的判定及性质, 等腰直点评:角三角形的判定及性质, 勾股定理的应用, 作辅助线构造出全等三角形和直角三角形是解题的关键.13. (2019•吴中区一模)已知: 如图, 菱形ABCD中, E、F分别是CB.CD上的点, ∠BAF=∠DAE.(1)求证: AE=AF ;(2)若AE 垂直平分BC, AF 垂直平分CD, 求证:△AEF 为等边三角形.考点:考点:菱形的性质;全等三角形的判定及性质;等边三角形的判定. 菁优网版权所有专题:证明题. 分析:(1)首先利用菱形的性质得出AB=AD, ∠B=∠D, 进而得出△ABE ≌△ADF (ASA ), 即可得出答案;(2)利用垂直平分线的性质得出△ABC 和△ACD 都是等边三角形, 进而得出∠EAF=∠CAE+∠CAF=60°, 求出△AEF 为等边三角形.(2)利用垂直平分线的性质得出△ABC 和△ACD 都是等边三角形,进而得出∠EAF=∠CAE+∠CAF=60°,求出△AEF 为等边三角形.(2)利用垂直平分线的性质得出△ABC 和△ACD 都是等边三角形,进而得出∠EAF=∠CAE+∠CAF=60°,求出△AEF 为等边三角形.解答: (1)证明: ∵四边形ABCD 是菱形,∴AB=AD, ∠B=∠D,又∵∠BAF=∠DAE,∴∠BAE=∠DAF,在△ABE和△ADF中,,∴△ABE≌△ADF(ASA),∴AE=AF;(2)解: 连接AC,∵AE垂直平分BC, AF垂直平分CD,∴AB=AC=AD,∵AB=BC=CD=DA,∴△ABC和△ACD都是等边三角形,∴∠CAE=∠BAE=30°, ∠CAF=∠DAF=30°,∴∠EAF=∠CAE+∠CAF=60°,又∵AE=AF,∴△AEF是等边三角形.点评: 此题主要考查了等边三角形的判定及性质以及全等三角形的判定及性质等知识, 熟练掌握全等三角形的判定方法是解题关键.14. (2019•新乡菱形的性质. 菁优网版权所有一模)小明设计了一个如图的风筝, 其中, 四边形ABCD及四边形AEFG都是菱形,点C在AF上, 点E, G分别在BC,CD上, 若∠BAD=135°, ∠EAG=75°,AE=100cm, 求菱形ABCD的边长.考点:考点:分析: 根据菱形的性质可得出∠BAE=30°, ∠B=45°, 过点E作EM⊥AB于点M, 设EM=x, 则可得出AB、AE的长度, 继而可得出的值, 求出AB即可.解答: 解: ∵∠BAD=135°, ∠EAG=75°, 四边形ABCD及四边形AEFG都是菱形,∴∠B=180°﹣∠BAD=45°, ∠BAE=∠BAC﹣∠EAC=30°,过点E作EM⊥AB于点M, 设EM=x,在Rt△AEM中, AE=2EM=2x, AM= x,在Rt△BEM中, BM=x,则= = ,∵AE=100cm, ∴AB=50(+1)cm,∴菱形ABCD的边长为:50(+1)cm.点评: 本题考查了菱形的性质及解直角三角形的知识, 属于基础题, 关键是掌握菱形的对角线平分一组对角.15. (2019菱形的性质. 菁优网版权所有•槐荫区三模)如图,菱形ABCD的边长为1, ∠D=120°.求对角线AC的长.考点:考点:分析: 连接BD及AC交于点O, 根据菱形的性质可得AB=AD, AC=2AO, ∠ADB= ∠ADC, AC⊥BD, 然后判断出△ABD是等边三角形, 根据等边三角形的性质求出AO, 再根据AC=2AO计算即可得解.解答: 解: 如图, 连接BD及AC交于点O,∵四边形ABCD是菱形,∴AB=AD, AC=2AO, ∠ADB= ∠ADC, AC⊥BD,∵∠D=120°,∴∠ADB=60°,∴△ABD是等边三角形,∴AO=AD×sin∠ADB= ,∴AC=2AO= .点评: 本题考查了菱形的性质, 等边三角形的判定及性质, 熟记性质并作辅助线构造出等边三角形是解题的关键.16.菱形的性质;勾股定理. 菁优网版权所有(2019•历城区一模)如图, 已知菱形ABCD的对角线AC.BD的长分别为6cm、8cm,AE⊥BC于点E, 求AE的长.考点:分析: 根据菱形的对角线互相垂直平分求出CO、BO, 再利用勾股定理列式求出BC, 然后利用菱形的面积等于底乘以高和对角线乘积的一半列出方程求解即可.解答: 解: ∵四边形ABCD是菱形,∴CO= AC=3cm, BO= BD=4cm, AO⊥BO,∴BC= = =5cm,∴S菱形ABCD= =BC•AE,即×6×8=5•AE,解得AE= cm.答:AE的长是cm.答: AE的长是cm.答:AE 的长是cm.点评: 本题考查了菱形的性质, 勾股定理, 熟记菱形的对角线互相垂直平分是解题的关键, 难点在于利用菱形的面积列出方程.17. (2019•湖南校级模拟)如图, AE=AF, 点B.D分别在AE、AF上, 四边形ABCD是菱形, 连接EC.FC(1)求证: EC=FC;(2)若菱形的性质;全等三角形的判定及性质. 菁优网版权所有∠A=60°,求△AEF的周长.考点:考点:分析: (1)连接AC, 根据菱形的对角线平分一组对角可得∠CAE=∠CAF, 然后利用“边角边”证明△ACE和△ACF全等, 根据全等三角形对应边相等可得EC=FC;(2)判断出△AEF是等边三角形, 然后根据等边三角形的三条边都相等解答.(2)判断出△AEF是等边三角形,然后根据等边三角形的三条边都相等解答.(2)判断出△AEF是等边三角形,然后根据等边三角形的三条边都相等解答.解答: (1)证明: 如图, 连接AC,∵四边形ABCD是菱形,∴∠CAE=∠CAF,在△ACE和△ACF中,,∴△ACE≌△ACF(SAS),∴EC=FC;(2)解: 连接EF,∵AE=AF, ∠A=60°,∴△AEF是等边三角形,∴△AEF的周长=3AE=3×2=6.点评: 本题考查了菱形的性质, 全等三角形的判定及性质, 等边三角形的判定及性质, 熟记各性质并作出辅助线是解题的关键.18. (2019•清河区一模)如图, 在△ABC中, AB=AC, 点D.E、F分别是△ABC三边的中点.求证:菱形的判定;三角形中位线定理. 菁优网版权所有四边形ADEF是菱形.考点:专题: 证明题.分析: 利用三角形中位线的性质得出DE AC, EF AB, 进而得出四边形ADEF 为平行四边形., 再利用DE=EF 即可得出答案.解答: 证明: ∵D.E 、F 分别是△ABC 三边的中点,∴DE AC, EF AB,∴四边形ADEF 为平行四边形.又∵AC=AB,∴DE=EF.∴四边形ADEF 为菱形.∴四边形ADEF 为菱形.点评: 此题主要考查了三角形中位线的性质以及平行四边形的判定和菱形的判定等知识, 熟练掌握菱形判定定理是解题关键.19. (2019春•防城区期末)如图, 已菱形的判定;全等三角形的判定及性质;平行四边形的性质. 菁优网版权所有形ABCD是平行四边形, DE⊥AB,DF⊥BC, 垂足分别是为E, F,并且DE=DF.求证:四边形ABCD是菱形.考点:考点:专题: 证明题.分析: 首先利用已知条件和平行四边形的性质判定△ADE≌△CDF, 再根据邻边相等的平行四边形为菱形即可证明四边形ABCD是菱形.解答: 证明: 在△ADE和△CDF中,∵四边形ABCD是平行四边形,∴∠A=∠C,∵DE⊥AB, DF⊥BC,∴∠AED=∠CFD=90°.又∵DE=DF,∴△ADE≌△CDF(AAS)∴DA=DC,∴平行四边形ABCD是菱形.∴平行四边形ABCD是菱形.点评: 本题考查了平行四边形的性质, 全等三角形的判定和性质以及菱形的判定方法, 解题的关键是熟练掌握各种图形的判定和性质.20. (2019•通州区一模)如图, 在四边形ABCD中, AB=DC, E、F分别是AD.BC的中点, G、H分别是对角线BD.AC的中点.(1)求证: 四边形EGFH是菱形;(2)若AB=1, 则当∠ABC+∠DCB=90°时, 求四边形EGFH 的面积.考点:考点:菱形的判定及性质;正方形的判定及性质;中点四边形. 菁优网版权所有分析: (1)利用三角形的中位线定理可以证得四边形EGFH 的四边相等, 即可证得;(2)根据平行线的性质可以证得∠GFH=90°, 得到菱形EGFH 是正方形, 利用三角形的中位线定理求得GE 的长, 则正方形的面积可以求得.(2)根据平行线的性质可以证得∠GFH=90°,得到菱形EGFH 是正方形,利用三角形的中位线定理求得GE 的长,则正方形的面积可以求得.(2)根据平行线的性质可以证得∠GFH=90°,得到菱形EGFH 是正方形,利用三角形的中位线定理求得GE 的长,则正方形的面积可以求得.解答: (1)证明: ∵四边形ABCD中, E、F、G、H分别是AD.BC.BD.AC 的中点,∴FG= CD, HE= CD, FH= AB, GE= AB.∵AB=CD,∴FG=FH=HE=EG.∴四边形EGFH是菱形.(2)解: ∵四边形ABCD中, G、F、H分别是BD.BC.AC的中点,∴GF∥DC, HF∥AB.∴∠GFB=∠DCB, ∠HFC=∠ABC.∴∠HFC+∠GFB=∠ABC+∠DCB=90°.∴∠GFH=90°.∴菱形EGFH是正方形.∵AB=1,∴EG= AB= .∴正方形EGFH的面积=()2= .点评: 本题考查了三角形的中位线定理, 菱形的判定以及正方形的判定, 理解三角形的中位线定理是关键.21. (2019•顺义区二模)如图, 在△ABC中, D.E分别是AB.AC的中点, BE=2DE, 过点C作CF∥BE交DE的延长线于F.(1)求证: 四边形BCFE是菱形;(2)若菱形的判定及性质. 菁优网版权所有CE=4, ∠BCF=120°,求菱形BCFE的面积.考点:考点:分析: (1)由题意易得, EF及BC平行且相等, 故四边形BCFE 是平行四边形. 又麟边EF=BE, 则四边形BCFE是菱形;(2)连结BF, 交CE于点O.利用菱形的性质和等边三角形的判定推知△BCE是等边三角形.通过解直角△BOC求得BO的长度, 则BF=2BO.利用菱形的面积= CE•BF进行解答.(2)连结BF,交CE于点O. 利用菱形的性质和等边三角形的判定推知△BCE是等边三角形. 通过解直角△BOC求得BO的长度,则BF=2BO. 利用菱形的面积= CE•BF进行解答.(2)连结BF,交CE于点O.利用菱形的性质和等边三角形的判定推知△BCE是等边三角形.通过解直角△BOC求得BO的长度,则BF=2BO.利用菱形的面积=CE•BF进行解答.解答: (1)证明: ∵D.E分别是AB.AC的中点,∴DE∥BC, BC=2DE.∵CF∥BE,∴四边形BCFE是平行四边形.∵BE=2DE, BC=2DE,∴BE=BC.∴□BCFE是菱形;(2)解: 连结BF, 交CE于点O.∵四边形BCFE是菱形, ∠BCF=120°,∴∠BCE=∠FCE=60°, BF⊥CE,∴△BCE是等边三角形.∴BC=CE=4.∴.∴.点评: 此题主要考查菱形的性质和判定以及面积的计算, 使学生能够灵活运用菱形知识解决有关问题.22. (2019•祁阳县校级模拟)如图, O为矩形ABCD对角线的交点, DE ∥AC, CE∥BD.矩形的性质;菱形的判定. 菁优网版权所有(1)求证: 四边形OCED是菱形.(2)若AB=6,BC=8,求四边形OCED的周长.考点:考点:分析: (1)根据矩形性质求出OC=OD, 根据平行四边形的判定得出四边形OCED是平行四边形, 根据菱形判定推出即可;(2)根据勾股定理求出AC, 求出OC, 得出OC=OD=CE=ED=5,相加即可.(2)根据勾股定理求出AC,求出OC,得出OC=OD=CE=ED=5,相加即可.(2)根据勾股定理求出AC,求出OC,得出OC=OD=CE=ED=5,相加即可.解答: (1)证明: ∵四边形ABCD是矩形,∴AC=2OC, BD=2OD, AC=BD,∴OD=OC,∵DE∥AC, CE∥BD,∴四边形OCED是菱形.(2)解: ∵四边形ABCD是矩形,∴∠ABC=90°,∵AB=6, BC=8,∴在Rt△ABC中, 由勾股定理得: AC=10,即OC= AC=5,∵四边形OCED是菱形,∴OC=OD=DE=CE=5,∴四边形OCED的周长是5+5+5+5=20.∴四边形OCED的周长是5+5+5+5=20.。

特殊的平行四边形典型例题讲解一

特殊的平行四边形典型例题讲解一

思路和变式一是一样的,只是这里没有
G
直角三角形,所以我们要构造一个,怎 A
D
么构造哪?构造出直角三角形又该怎么
证明他们全等哪?
思考:若M是BE的中点,连接CM.
若CM=1,则FG=_________.
E
若M是中点就说明CM是直角三角形斜边的
,能得到
,所以BM= ,
M
由变式2得 = =
BP
F
C
3、如图,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF GH交于点O,∠FOH=90°,EF=4.求GH的长.
△ABC面积的一半。
既 1 11 1
2
2
归纳总结:
一个含有直角的平面图形的直角顶点与正方形对角线的交点重合,平面图形绕着 这个交点旋转,且直角的两边分别与正方形两邻边相交,则两个图形重合部分的
1
面积始终等于正方形面积的
4
A
M
E
B
典型例题二有关旋转类的问题
1如图,正方形ABCD的对角线AC和BD相交于点O,O又是正方形A1B1C1O的一个顶点, OA1 交AB于点E,OC1 交BC于点F.
(1长都为a,那么正方形A1B1C1O 绕O点转动,两个正方形
重叠部分的面积等于多少?为什么?
于点O,∠AOF=90°.
求证:BE=CF. 正方形ABCD
∠AOF=90°
F
D
C
AB=BC ∠ABC=∠BCD
∠BOE=90°
∠BEO+∠OBE=90°∠FBC+∠BFC=90°
O
E
∠BFC=∠AEB
A
B
Rt△ABE≌Rt△BCF (AAS)

特殊的平行四边形典型例题讲解二

特殊的平行四边形典型例题讲解二

思路同上,菱形的对角线将菱形ABCD分成 两个面积相等的三角形。
连接AP得:
1 AB PE 1 AD PF 1 25
2
2
2
既:PE+PF=2.5
【变式2】如图,已知正方形ABCD的边长为1cm,点E在对角线BD上,BE=BC, P是CE上一动点,PF⊥BD,PG⊥BC,垂足分别为F,G,则PF+PG的值 为_________cm.
特殊的平行四边形典型例题讲解二
典型例题三、 特殊平行四边形的性质与判定
类型1 与特殊平行四边形边长有关的计算
1、如图,在矩形ABCD中,点P是线段BC上一动点,且PE⊥AC,PF⊥BD, E,F为垂足,AB=6,BC=8,则PE+PF的值为_________.
我们知道矩形的对角线相等且互相平分表示为AC=BD且OA=O=OC=OD22
2
因为BE=BC,所以整理得PF+PG=OC
结论:等腰三角形底边任意一点到两腰的距离等于腰上的高。
类型2 与特殊平行四边形角度有关的计算 1、如图,在正方形ABCD的内部作等边△ADE,则∠AEB的度数为( ) A.80° B.75° C.70° D.60°
正方形ABCD和等边△ADE
AB=AD=AE=ED ∠BAD=90° ∠AED=∠EAD=∠ADE=60°
CF=CF
∠ABC=100° ∠CAB=40°
FA=FB
F
A
△DCF≌△BCF
C
∠FAB=∠FBA=40°
∠CDF=∠CBF
E
∠CBF=100°-40°=60°
B
∠CDF=∠CBF=60°
3、如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足 为E.若∠EAC=2∠CAD,则∠BAE=_________.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、参考例题[例1]如下图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO(2)当点O运动到何处时,四边形AECF是矩形?并说明你的结论.分析:(1)要证明OE=OF,可借助第三条线段OC,即证:OE=OC,OF=OC,这两对线段又分别在两个三角形中,所以只需证△OEC、△OCF是等腰三角形,由已知条件即可证明.(2)假设四边形AECF是矩形,则对角线互相平分且相等,四个角都是直角.由已知可得到:∠ECF=90°,由(1)可证得OE=OF,所以要使四边形AECF是矩形,只需OA=OC.证明:(1)∵CE、CF分别是∠ACB、∠ACD的平分线.∴∠ACE=∠BCE,∠ACF=∠DCF∵MN∥BC∴∠OEC=∠ECB,∠OFC=∠FCD∴∠ACE=∠OEC,∠ACF=∠OFC∴OE=OC,OF=OC∴OE=OF(2)当点O运动到AC的中点时,即OA=OC又由(1)证得OE=OF∴四边形AECF是平行四边形(对角线互相平分的四边形是平行四边形)由(1)知:∠ECA+∠ACF=∠ACB+∠ACD= (∠ACB+∠ACD)=90°即∠ECF=90°∴四边形AECF是矩形.因此:当点O运动到AC的中点时,四边形AECF是矩形.[例2]如下图,已知矩形ABCD的对角线AC、BD相交于O,OF⊥AD于F,OF=3 cm,AE⊥BD于E,且BE∶ED=1∶3,求AC的长.分析:本题主要利用矩形的有关性质,进行计算.即:由矩形的对角线互相平分且相等;可导出BE=OE,进而得出AB=AO,即得出BE=OF=3 cm,求出BD的长,即AC的长.解:∵四边形ABCD是矩形.∴AC=BD,OB=OD=OA=OC又∵BE∶ED=1∶3∴BE∶BO=1∶2∴BE=EO又∵AE⊥BO∴△ABE≌△ADE∴AB=OA即AB=AO=OB∴∠BAE=∠EAO=30°,∠FAO=30°∴△ABE≌△AOF∴BE=OF=3 cm,∴BD=12 cm∴AC=BD=12 cm二、参考练习1.如图,有一矩形纸片ABCD,AB=6 cm,BC=8 cm,将纸片沿EF折叠,使点B与D重合,求折痕EF的长.解:连结BD、BE、DF由折叠的意义可知:EF⊥BD,EF平分BD.∴BE=ED,BF=FD∵四边形ABCD为矩形∴AB=CD,AD=BC,∠C=90°,AD∥BC∴∠EDO=∠FBO∵点B和D重合∴BO=DO,∠BOF=∠DOE∴△BOF≌△DOE∴ED=BF,∴ED=BF=FD=BE∴四边形BFDE是菱形S菱形=×BD×EF=BF×CD∵BF=DF,∴可设BF=DF=x则FC=8-x在Rt△FCD中,根据勾股定理得:x2=(8-x)2+62x=∴EF=7.5因此,折痕EF的长为7.5 cm.2.当平行四边形ABCD满足条件_________时,它成为矩形(填上你认为正确的一个条件即可).答案:∠BAC=90°或AC=BD或OA=OB或∠ABC+∠ADC=180°或∠BAD+∠BCD= 180°等条件中的任一个即可.典型例题 例1 如图,在菱形ABCD中,E是AB的中点,且,求: (1)的度数;(2)对角线AC的长;(3)菱形ABCD的面积. 分析 (1)由E为AB的中点,,可知DE是AB的垂直平分线,从而,且,则是等边三角形,从而菱形中各角都可以求出.(2)而,利用勾股定理可以求出AC.(3)由菱形的对角线互相垂直,可知 解 (1)连结BD,∵四边形ABCD是菱形,∴是AB的中点,且,∴ ∴是等边三角形,∴也是等边三角形. ∴ (2)∵四边形ABCD是菱形,∴AC与BD互相垂直平分, ∴ ∴,∴ (3)菱形ABCD的面积 说明:本题中的菱形有一个内角是60°的特殊的菱形,这个菱形有许多特点,通过解题应该逐步认识这些特点. 例2 已知:如图,在菱形ABCD中,于于 F. 求证: 分析 要证明,可以先证明,而根据菱形的有关性质不难证明,从而可以证得本题的结论. 证明 ∵四边形ABCD是菱形,∴,且,∴,∴,, ∴, ∴ 例3 已知:如图,菱形ABCD中,E,F分别是BC,CD上的一点,,,求的度数. 解答:连结AC. ∵四边形ABCD为菱形, ∴,. ∴与为等边三角形. ∴ ∵, ∴ ∴ ∴ ∵, ∴为等边三角形. ∴ ∵, ∴ ∴ 说明 本题综合考查菱形和等边三角形的 性质,解题关键是连AC,证. 例4 如图,已知四边形和四边形都是矩形,且. 求证:垂直平分. 分析 由已知条件可证明四边形是菱形,再根据菱形的对角线平分对角以及等腰三角形的“三线合一”可证明垂直平分. 证明:∵四边形、都是矩形 ∴,,, ∴四边形是平行四边形 ∵,∴ 在△和△中 ∴△≌△∴, ∵四边形是平行四边形 ∴四边形是菱形 ∴平分∴平分∵ ∴垂直平分. 例5 如图,中,,、在直线上,且. 求证:. 分析 要证,关键是要证明四边形是菱形,然后利用菱形的性质证明结论. 证明 ∵四边形是平行四边形 ∴,,,∴ ∵,∴ 在△和△中 ∴△≌△∴ ∵∴ 同理:∴ ∵ ∴四边形是平行四边形 ∵∴四边形是菱形 ∴.典型例题 例1 一个平行四边形的一个内角是它邻角的3倍,那么这个平行四边形的四个内角各是多少度? 分析 根据平行四边形的对角相等,邻角互补可以求出四个内角的度数. 解 设平行四边形的一个内角的度数为x,则它的邻角的度数为3x,根据题意,得,解得,∴ ∴这个平行四边形的四个内角的度数分别为45°,135°,45°,135°. 例2 已知:如图,的周长为60cm,对角线AC、BD相交于点O,的周长比的周长多8cm,求这个平行四边形各边的长. 分析 由平行四边形对边相等,可知平行四边形周长的一半=30cm,又由的周长比的周长多8cm,可知cm,由此两式,可求得各边的长. 解 ∵四边形为平行四边形,∴,∴,∴ ∴ 答:这个平行四边形各边长分别为19cm,11cm,19cm,11cm. 说明:学习本题可以得出两个结论:(1)平行四边形两邻边之和等于平行四边形周长的一半.(2)平行四边形被对角线分成四个小三角形,相邻两个三角形周长之差等于邻边之差. 例 3 已知:如图,在中,交于点O,过O点作EF交AB、CD于E、F,那么OE、OF是否相等,说明理由. 分析 观察图形,,从而可说明 证明 在中,交于O,∴,∴, ∴,∴ 例4 已知:如图,点E在矩形ABCD的边BC上,且,垂足为F。

求证: 分析 观察图形,与都是直角三角形,且锐角,斜边,因此这两个直角三角形全等。

在这个图形中,若连结AE,则与全等,因此可以确定图中许多有用的相等关系。

证明 ∵四边形ABCD是矩形,∴,∴,∴, 又,∴。

∴ 例5 O是ABCD对角线的交点,的周长为59,,,则________,若与的周长之差为15,则______,ABCD的周长=______. 解答:ABCD中,,. ∴的周长 ∴. 在ABCD中,. ∴的周长-的周长 ∴ ∴ABCD的周长 说明:本题考查平行四边形的性质,解题关键是将与的周长的差转化为两条线段的差. 例6 已知:如图,ABCD的周长是,由钝角顶点D向AB,BC引两条高DE,DF,且,. 求这个平行四边形的面积. 解答:设. ∵ 四边形ABCD为平行四边形, ∴. 又∵四边形ABCD的周长为36,∴① ∵, ∴ ∴② 解由①,②组成的方程组,得. ∴. 说明:本题考查平行四边形的性质及面积公式,解题关键是把几何问题转化为方程组的问题.。

相关文档
最新文档