matlab数值分析-插值与曲线拟合

合集下载

Matlab中数据处理和多项式插值与曲线拟合

Matlab中数据处理和多项式插值与曲线拟合

Matlab中数据处理和多项式插值与曲线拟合⼀、基本统计处理1、查取最⼤值MAX函数的命令格式有:[Y,I]= max (X):将max(X)返回矩阵X的各列中的最⼤元素值及其该元素的位置赋予⾏向量Y与I;当X为向量时,则Y与I为单变量。

[Y,I]=max(X,[],DIM):当DIM=1时按数组X的各列查取其最⼤的元素值及其该元素的位置赋予向量Y与I;当DIM=2时按数组X的各⾏查取其最⼤的元素值及其该元素的位置赋予向量Y与I.max(A,B):返回⼀个与A,B同维的数组,其每⼀个元素是由A,B同位置上的元素的最⼤值组成。

【例1】查找下⾯数列x的最⼤值。

x=[3 5 9 6 1 8] % 产⽣数列xx = 3 5 9 6 1 8y=max(x) % 查出数列x中的最⼤值赋予yy = 9[y,l]=max(x) % 查出数列x中的最⼤值及其该元素的位置赋予y,ly = 9l = 3【例2】分别查找下⾯3×4的⼆维数组x中各列和各⾏元素中的最⼤值。

x=[1 8 4 2;9 6 2 5;3 6 7 1] % 产⽣⼆维数组xx = 1 8 4 29 6 2 53 6 7 1y=max(x) % 查出⼆维数组x中各列元素的最⼤值产⽣赋予⾏向量yy = 9 8 7 5[y,l]=max(x) % 查出⼆维数组x中各列元素的最⼤值及其这些% 元素的⾏下标赋予y,ly = 9 8 7 5l = 2 1 3 2[y,l]=max(x,[ ],1) % 本命令的执⾏结果与上⾯命令完全相同y = 9 8 7 5l = 2 1 3 2[y,l]=max(x,[ ],2) % 由于本命令中DIM=2,故查找操作在各⾏中进⾏y = 897l = 213[y,l]=max(x) % 查出⼆维数组x中各列元素的最⼤值及其这些% 元素的⾏下标赋予y,ly = 9 8 7 5l = 2 1 3 2[y,l]=max(x,[ ],1) % 本命令的执⾏结果与上⾯命令完全相同y = 9 8 7 5l = 2 1 3 2[y,l]=max(x,[ ],2) % 由于本命令中DIM=2,故查找操作在各⾏中进⾏y = 897l = 2132、查取最⼩值MIN函数⽤来查取数据序列的最⼩值。

Matlab曲线拟合与插值运算

Matlab曲线拟合与插值运算

第五次课Matlab曲线拟合与插值运算一、本次课学习要点1、Matlab曲线拟合与插值运算2、符号表达式二、本次课教学重点利用M文件的Matlab曲线拟合与插值运算三、教学基本内容1、曲线拟合在许多应用领域中,人们经常需要从一系列已知离散点上的数据集[(x1,y1),(x2,y2)],…(x n,y n)]得到一个解析函数y=f (x)。

得到的解析函数f(x)应当在原离散点x i上尽可能接近给定的y i的值。

这一过程称为曲线拟合。

最常用的曲线拟合是最小二乘法曲线拟合。

似合结果可使误差的平方和最小,MATLAB提供的函数polyfit,根据给定的自变量数组x和函数数组y,按照拟合的阶数要求自动求解满足最小二乘意义的一阶或高阶解析函数f(x),使用很方便。

为了说明这个问题,我们取以下函数为例:2-=y⨯25.0xx=0:0.1:1;for i=1:length(x);y(i)=0.5-2*x(i)^2;end显示为:将y值进行一定的修改,输入如下的程序y=[0.52 0.45 0.4 0.35 0.18 0.02 -0.25 -0.4 -0.81 -1.1 -1.5]m=1;fxy1=polyfit(x,y,m)m=2;fxy2=polyfit(x,y,m)y1=polyval(fxy1,x) %多项式求值,x为输入值,fx1为一次拟合出来的多项式y2=polyval(fxy2,x)plot(x,y,'o',x,y1,'k:',x,y2,'k')显示为:2、插值运算与曲线拟合不同,插值运算不是试图找出适合于所有自变量数组x的全局最优拟合函数Y=f(x〕,而是要找到一个解析函数连接自变量相邻的两个点(xi,xi十1),由此还可以找到两点间的数值。

根据自变量的维数不同,插值方法可以分为一维插值y=f(x)和二维插值z=f(x,y)等。

在许多工程问题上,我们只能获得无规律的离散点上的数值,插值可以帮助我们得到近似的连续过程,便于用数学的解析方法对已有数据进行处理和运算,因此是一个很有用的工具。

matlab插值法拟合曲线

matlab插值法拟合曲线

matlab插值法拟合曲线
在MATLAB中,一维插值函数为interp1(),其调用格式为:
Y1=interp1(X,Y,X1,method)。

其中,X、Y是两个等长的已知向量,分别表示采样点和采样值;X1是一个向量或标量,表示要插值的点;method参数用于指定插值方法,常用的取值有以下四种:
1. linear:线性插值,默认方法。

将与插值点靠近的两个数据点用直线连接,然后在直线上选取对应插值点的数据。

2. nearest:最近点插值。

选择最近样本点的值作为插值数据。

3. pchip:分段3次埃尔米特插值。

采用分段三次多项式,除满足插值条件,还需满足在若干节点处相邻段插值函数的一阶导数相等,使得曲线光滑的同时,还具有保形性。

4. spline:3次样条插值。

每个分段内构造一个三次多项式,使其插值函数除满足插值条件外,还要求在各节点处具有连续的一阶和二阶导数。

曲线拟合可以使用cftool工具,首先导入X和Y的数据,然后可以选择残差图和置信区间分布图。

数据插值、拟合方法的MATLAB实现

数据插值、拟合方法的MATLAB实现
2.2用6阶多项式拟合的命令
hours=0:1:23;
temps=[12 12 12 11 10 10 10 10 11 13 15 18 19 20 22 21 20 19 18 16 15 15 15 15]
n=6;
p=polyfit(hours,temps,n)
t=linspace(0,23,100);
z=polyval(p,t); %多项式求值
plot(hours,temps,'o',t,z,'k:',hours,temps,'b',’r’,'linewidth',1.5)
legend('原始数据','6阶曲线')
2.3用8阶多项式拟合的命令
hours=0:1:23;
temps=[12 12 12 11 10 10 10 10 11 13 15 18 19 20 22 21 20 19 18 16 15 15 15 15]
实验结果:
1.一元插值图像
图1.1一元插值图
经分析三次样条插值法效果最好,以三次样条插值法得出每个0.5小时的温度值:
时间
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
温度
12
11.9
12
12.0
12
11.6
11
10.4
10
9.9
10
10.0
时间
6
6.5
7
7.5
8
8.5
9
9.5
10
10.5
11
11.5

(最新整理)matlab实现插值法和曲线拟合

(最新整理)matlab实现插值法和曲线拟合

matlab实现插值法和曲线拟合编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(matlab实现插值法和曲线拟合)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为matlab实现插值法和曲线拟合的全部内容。

插值法和曲线拟合电子科技大学摘要:理解拉格朗日多项式插值、分段线性插值、牛顿前插,曲线拟合,用matlab编程求解函数,用插值法和分段线性插值求解同一函数,比较插值余项;用牛顿前插公式计算函数,计算函数值;对于曲线拟合,用不同曲线拟合数据。

关键字:拉格朗日插值多项式;分段线性插值;牛顿前插;曲线拟合引言:在数学物理方程中,当给定数据是不同散点时,无法确定函数表达式,求解函数就需要很大的计算量,我们有多种方法对给定的表格函数进行求解,我们这里,利用插值法和曲线拟合对函数进行求解,进一步了解函数性质,两种方法各有利弊,适合我们进行不同的散点函数求解。

正文:一、插值法和分段线性插值1拉格朗日多项式原理对某个多项式函数,已知有给定的k + 1个取值点:其中对应着自变量的位置,而对应着函数在这个位置的取值。

假设任意两个不同的x j都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为:其中每个为拉格朗日基本多项式(或称插值基函数),其表达式为:[3]拉格朗日基本多项式的特点是在上取值为1,在其它的点上取值为0。

2分段线性插值原理给定区间[a,b], 将其分割成a=x 0 <x 1 <…<x n =b , 已知函数y= f (x ) 在这些插值结点的函数值为y k =f (x k )(k=0,1,…,n)求一个分段函数I h (x), 使其满足:(1) I h (x k )=y k ,(k=0,1,…,n) ;(2) 在每个区间[x k ,x k+1 ] 上,I h (x )是个一次函数.易知,I h (x)是个折线函数, 在每个区间[x k ,x k+1 ]上,(k=0,1,…,n )k 1k k1k 1k k 1k k k ,1)()()(x x x x x f x x x x x f x L --+--=++++,于是, I h (x)在[a,b]上是连续的,但其一阶导数是不连续的。

Matlab中的数据拟合与曲线拟合技巧

Matlab中的数据拟合与曲线拟合技巧

Matlab中的数据拟合与曲线拟合技巧在科学研究和工程应用中,数据拟合和曲线拟合是常见的任务。

Matlab作为一种强大的数值计算和数据分析工具,提供了丰富的函数和工具箱来进行数据拟合和曲线拟合。

本文将介绍一些常用的数据拟合和曲线拟合技巧,让读者能够更好地利用Matlab来处理自己的数据。

首先,我们来看一下最常用的数据拟合技术之一——多项式拟合。

Matlab提供了polyfit函数来进行多项式拟合。

这个函数接受两个输入参数:x和y,分别为要拟合的数据点的横坐标和纵坐标。

我们可以根据实际需求选择合适的多项式阶数,然后调用polyfit函数,即可得到拟合后的多项式系数。

可以使用polyval函数来根据多项式系数计算拟合后的y值。

这样,我们就可以在Matlab中方便地进行数据拟合和预测了。

除了多项式拟合,Matlab还提供了其他常见的数据拟合方法,如指数拟合、对数拟合和幂函数拟合等。

这些方法在Matlab中的实现也非常简单,大部分都可以通过调用相关函数实现。

对于指数拟合,可以使用fit函数和exp2fit函数来进行拟合。

对于对数拟合,可以使用fit函数和log2fit函数来进行拟合。

对于幂函数拟合,可以使用fit函数和powerfit函数来进行拟合。

这些函数的使用方法大体相同,都需要提供拟合的数据点x和y,然后调用相应的函数即可得到拟合后的结果。

另外,Matlab还提供了一些高级的数据拟合和曲线拟合方法,如非线性最小二乘拟合和样条插值拟合。

非线性最小二乘拟合是一种非常灵活的拟合方法,可以拟合各种非线性函数。

Matlab提供了lsqcurvefit函数来实现非线性最小二乘拟合。

这个函数需要提供一个函数句柄,表示要拟合的函数模型,然后根据拟合的数据点进行拟合。

通过修改函数模型和参数的初始值,可以得到不同的拟合结果。

样条插值拟合是一种光滑曲线的拟合方法,可以更好地拟合离散数据点。

Matlab提供了spline函数来进行样条插值拟合。

用MATLAB解插值和曲线拟合问题

用MATLAB解插值和曲线拟合问题
functionf=curvefun4(x,t)
f=10-(10-x(1))*exp(-t/x(2));
t=[0.5 1 2 3 4 5 7 9];
v=[6.36 6.48 7.26 8.22 8.66 8.99 9.43 9.63];
x0=[0,0.05];
x=lsqcurvefit('curvefun4',x0,t,v)
Interp1(x,y,cx,’method’)
在MATLAB的线性最小二乘拟合中,用得较多的是多项式拟合,其命令为:
A=polyfit(x,y,m)
二.上机内容
1、在飞机的机翼加工时,由于机翼尺寸很大,通常在图纸上只能标出部分关键点的数据.某型号飞机的机翼上缘轮廓线的部分数据如下。用插值法求x每改变0.1时的y值,画出图形表示。
x 0 4.74 9.05 19 38 57 76 95 114 133152 171 190
y 0 5.23 8.1 11.97 16.15 17.1 16.34 14.63 12.16 6.697.03 3.99 0
2、已知观测数据点如表所示:
用3次多项式函数拟合这些数据点,画出图形。
3、教材习题1,用griddata插值函数,三次插值。
注:上机作业文件夹以自己的班级姓名学号命名,文件夹包括如下上机报告和Matlab程序。
上机报告模板如下:
佛山科学技术学院
上 机报 告
课程名称数学应用软件
上机项目用MATLAB解插值和曲线拟合问题
专业班级
一.上机目的
熟练掌握多种插值方法:线性插值,三次样条插值,三次插值和最近邻点插值(linear、spline、cubic、nearest)
f=curvefun4(x,t)

MATLAB中的曲线拟合与插值

MATLAB中的曲线拟合与插值

MATLAB 中的曲线拟合和插值在大量的使用领域中,人们经常面临用一个分析函数描述数据(通常是测量值)的任务。

对这个问题有两种方法。

在插值法里,数据假定是正确的,要求以某种方法描述数据点之间所发生的情况。

这种方法在下一节讨论。

这里讨论的方法是曲线拟合或回归。

人们设法找出某条光滑曲线,它最佳地拟合数据,但不必要经过任何数据点。

图11.1说明了这两种方法。

标有'o'的是数据点;连接数据点的实线描绘了线性内插,虚线是数据的最佳拟合。

11.1 曲线拟合曲线拟合涉及回答两个基本问题:最佳拟合意味着什么?应该用什么样的曲线?可用许多不同的方法定义最佳拟合,并存在无穷数目的曲线。

所以,从这里开始,我们走向何方?正如它证实的那样,当最佳拟合被解释为在数据点的最小误差平方和,且所用的曲线限定为多项式时,那么曲线拟合是相当简捷的。

数学上,称为多项式的最小二乘曲线拟合。

如果这种描述使你混淆,再研究图11.1。

虚线和标志的数据点之间的垂直距离是在该点的误差。

对各数据点距离求平方,并把平方距离全加起来,就是误差平方和。

这条虚线是使误差平方和尽可能小的曲线,即是最佳拟合。

最小二乘这个术语仅仅是使误差平方和最小00.20.40.60.81-2024681012xy =f (x )Second O rder C urv e Fitting图11.1 2阶曲线拟合在MATLAB 中,函数polyfit 求解最小二乘曲线拟合问题。

为了阐述这个函数的用法,让我们以上面图11.1中的数据开始。

» x=[0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1]; » y=[-.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2];为了用polyfit ,我们必须给函数赋予上面的数据和我们希望最佳拟合数据的多项式的阶次或度。

如果我们选择n=1作为阶次,得到最简单的线性近似。

Matlab数据插值与拟合

Matlab数据插值与拟合

分段线性插值方法在速度和误差之间取得 了比较好的均衡,其插值函数具有连续性, 但在已知数据点处的斜率一般不会改变, 因此不是光滑的。分段线性插值方法是 MATLAB一维插值默认的方法。 MATLAB一维插值默认的方法。
2.Spline(样条插值) 2.Spline(样条插值)
样条插值是用分段低次多项式去逼近函数。样条函 样条插值是用分段低次多项式去逼近函数。样条函 数可以给出光滑 的插值曲线,只要在插值区间端 点提供某些导数信息,样条插值可以适应不同光滑 需求。三次样条是使用最为广泛的样条插值,它在 需求。三次样条是使用最为广泛的样条插值,它在 每个子区间[x 每个子区间[xi,xi+1]上都是有二阶连续导数的三次多 项式,即
4.1.1 一元插值函数
MATLAB中的一元插值函数为interp1( ),它的功能是一维 MATLAB中的一元插值函数为interp1( ),它的功能是一维 数据插值(表格查找)。该命令对数据点之间进行计算内 插值,它出一元函数f(x)在中间点的数值,其中函数f(x)由 插值,它出一元函数f(x)在中间点的数值,其中函数f(x)由 所给数据决定。 一元插值函数interp1( )的几种调用格式如表4 一元插值函数interp1( )的几种调用格式如表4-1所示。 表4-1 一维插值插值函数interp1的语法格式 一维插值插值函数interp1的语法格式
例4-1 用interp1对sin函数进行分段线性插值。 interp1对sin函数进行分段线性插值 函数进行分段线性插值。
解:在MATLAB命令窗口中输入以下命令: 解:在MATLAB命令窗口中输入以下命令: >> x=0:2*pi; >> y=sin(x); >> xx=0:0.5:2*pi >> yy=interp1(x,y,xx); >> plot(x,y,'s',xx,yy) 注:例 注:例4-1中用默认的 (分段线性插值的linear) 分段线性插值的linear) 对已知的7 sin函数的 对已知的7个sin函数的 数据点进行插值,用 plot画出插值结果。从图中可以看出分段线性就是联结两个 plot画出插值结果。从图中可以看出分段线性就是联结两个 邻近的已知点的线性函数插值计算该区间内插值点上的函数 值。

在Matlab中如何进行数据插值与拟合

在Matlab中如何进行数据插值与拟合

在Matlab中如何进行数据插值与拟合引言:数据处理是科学研究与工程开发中不可或缺的环节之一。

而数据插值和拟合则是数据处理中常用的技术手段。

在Matlab这一强大的数值分析工具中,提供了丰富的函数与工具箱,使得数据插值与拟合变得更加便捷高效。

本文将详细阐述在Matlab中如何进行数据插值与拟合,并介绍几个常用的插值与拟合方法。

一、数据插值数据插值是通过已知的有限个数据点,推导出数据点之间未知位置上的数值。

在Matlab中,可以利用interp1函数进行数据插值。

假设我们有一组离散的数据点,存储为两个向量x和y。

那么,可以通过以下步骤进行数据插值:1. 调用interp1函数,并传入x和y作为输入参数。

```matlabxi = linspace(min(x), max(x), n);yi = interp1(x, y, xi, '方法');```其中,xi是插值点的位置,min和max分别是x向量的最小值和最大值,n是插值点的数量。

'方法'是要使用的插值方法,可以选择线性插值(method='linear')、样条插值(method='spline')等。

2. 绘制插值结果曲线。

```matlabplot(x, y, 'o', xi, yi)legend('原始数据','插值结果')```使用plot函数可以绘制原始数据点和插值结果的曲线。

通过设置不同的插值方法和插值点的数量,可以探索不同的插值效果。

二、数据拟合数据拟合是通过已知的一组数据点,找到一个符合数据趋势的函数模型。

在Matlab中,可以利用polyfit函数进行多项式拟合。

假设我们有一组离散的数据点,存储为两个向量x和y。

那么,可以通过以下步骤进行数据拟合:1. 调用polyfit函数,并传入x和y作为输入参数。

```matlabp = polyfit(x, y, n);```其中,n是多项式的次数,p是拟合多项式的系数。

Matlab中的曲线拟合与插值技巧

Matlab中的曲线拟合与插值技巧

Matlab中的曲线拟合与插值技巧在数据科学和工程领域中,曲线拟合和插值技术是常用的数学方法。

在Matlab 中,有许多工具和函数可用于处理这些技术。

本文将讨论Matlab中的曲线拟合和插值技巧,并介绍一些实际应用案例。

一、曲线拟合技术曲线拟合是根据已知数据点来构造一个与这些点最匹配的曲线模型。

在Matlab 中,常用的曲线拟合函数包括polyfit和lsqcurvefit。

1. polyfit函数polyfit函数是Matlab中一个功能强大的多项式拟合函数。

它可以拟合多项式曲线模型,并通过最小二乘法找到最佳拟合系数。

例如,我们有一组数据点(x,y),我们想要拟合一个二次多项式曲线来描述这些数据。

可以使用polyfit函数:```matlabx = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];degree = 2;coefficients = polyfit(x, y, degree);```在上述例子中,degree参数设置为2,表示拟合一个二次多项式曲线。

polyfit 函数将返回一个包含拟合系数的向量,可以用来构造拟合曲线。

2. lsqcurvefit函数lsqcurvefit函数是Matlab中一个用于非线性最小二乘拟合的函数。

与polyfit函数不同,lsqcurvefit函数可以用于拟合任意曲线模型,不局限于多项式。

例如,我们想要拟合一个指数函数曲线来拟合数据:```matlabx = [1, 2, 3, 4, 5];y = [1.1, 2.2, 3.7, 6.5, 12.3];model = @(params, x) params(1)*exp(params(2)*x);params0 = [1, 0];estimated_params = lsqcurvefit(model, params0, x, y);```在上述例子中,model是一个函数句柄,表示要拟合的曲线模型。

插值与拟合的MATLAB实现

插值与拟合的MATLAB实现

插值与拟合的MATLAB实现插值和拟合是MATLAB中常用的数据处理方法。

插值是通过已知数据点之间的数值来估计未知位置的数值。

而拟合则是通过已知数据点来拟合一个曲线或者函数,以便于进行预测和分析。

插值方法:1.线性插值:使用MATLAB中的interp1函数可以进行线性插值。

interp1函数的基本语法为:yinterp = interp1(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。

函数将根据已知数据点的线性关系,在xinterp位置返回相应的yinterp值。

2.拉格朗日插值:MATLAB中的lagrangepoly函数可以使用拉格朗日插值方法。

lagrangepoly的基本语法为:yinterp = lagrangepoly(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。

函数将根据拉格朗日插值公式,在xinterp位置返回相应的yinterp值。

3.三次样条插值:使用MATLAB中的spline函数可以进行三次样条插值。

spline函数的基本语法为:yinterp = spline(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。

函数将根据已知数据点之间的曲线关系,在xinterp位置返回相应的yinterp值。

拟合方法:1.多项式拟合:MATLAB中的polyfit函数可以进行多项式拟合。

polyfit的基本语法为:p = polyfit(x, y, n),其中x和y为已知数据点的向量,n为要拟合的多项式的次数。

函数返回一个多项式的系数向量p,从高次到低次排列。

通过使用polyval函数,我们可以将系数向量p应用于其他数据点,得到拟合曲线的y值。

2.曲线拟合:MATLAB中的fit函数可以进行曲线拟合。

fit函数的基本语法为:[f, goodness] = fit(x, y, 'poly2'),其中x和y为已知数据点的向量,'poly2'表示要拟合的曲线类型为二次多项式。

MATLAB中的数据插值与拟合方法介绍

MATLAB中的数据插值与拟合方法介绍

MATLAB中的数据插值与拟合方法介绍概述数据处理是科学研究和工程实践中的重要环节之一。

对于实验或观测数据,我们常常需要通过插值和拟合方法来获取更加精确和连续的函数或曲线。

在MATLAB中,有多种方法和函数可以用于实现数据插值和拟合,本文将介绍其中的一些常用方法。

一、数据插值数据插值是指利用有限个数据点,通过某种方法构建一个连续的函数,以实现在这些点之间任意位置的数值估计。

在MATLAB中,常用的数据插值方法有线性插值、多项式插值、三次样条插值等。

1. 线性插值线性插值是最简单的插值方法之一,假设我们有两个数据点 (x1, y1) 和 (x2, y2),要在这两个点之间插值一个新的点 (x, y),线性插值即为连接 (x1, y1) 和 (x2, y2) 这两个点的直线上的点(x, y)。

在MATLAB中,可以通过interp1函数进行线性插值。

2. 多项式插值多项式插值是使用一个低次数的多项式函数来拟合数据的方法。

在MATLAB 中,可以通过polyfit函数进行多项式拟合,然后利用polyval函数来进行插值。

具体的插值效果与所选用的多项式阶数有关。

3. 三次样条插值三次样条插值算法利用相邻数据点之间的三次多项式来拟合数据,从而构成一条光滑的曲线。

在MATLAB中,可以通过spline函数进行三次样条插值。

二、数据拟合除了插值方法外,数据拟合也是处理实验或观测数据的常见方法之一。

数据拟合是指通过选择一个特定的数学模型,使该模型与给定的数据点集最好地拟合。

在MATLAB中,常用的数据拟合方法有多项式拟合、指数拟合、非线性最小二乘拟合等。

1. 多项式拟合在MATLAB中,可以使用polyfit函数进行多项式拟合。

该函数通过最小二乘法来拟合给定数据点集,并得到一个多项式函数。

根据所选用的多项式阶数,拟合效果也会有所不同。

2. 指数拟合指数拟合常用于具有指数关系的数据。

在MATLAB中,可以通过拟合幂函数的对数来实现指数拟合。

Matlab中的插值与拟合方法介绍

Matlab中的插值与拟合方法介绍

Matlab中的插值与拟合方法介绍在数据分析与处理的过程中,插值与拟合是非常重要的工具。

Matlab作为一种常用的数据处理与分析工具,提供了许多插值与拟合函数,方便用户进行数据处理和分析。

本文将介绍Matlab中的插值和拟合方法,并提供相应的示例和应用场景。

一、插值方法1. 线性插值线性插值是最简单的插值方法之一,通过连接已知数据点的直线进行插值。

在Matlab中,可以使用interp1函数进行一维线性插值。

下面以一个简单的例子来说明线性插值的应用:```x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];xi = 2.5;yi = interp1(x, y, xi)```在这个例子中,已知一组数据点(x, y),要求在x=2.5处的插值结果。

通过interp1函数,可以得到插值结果yi=5。

线性插值适用于数据点较少且近邻点的变化趋势比较明显的情况。

2. 三次样条插值三次样条插值是一种更精确的插值方法,它利用多个小区间的三次多项式进行插值。

在Matlab中,可以使用interp1函数的'spline'选项进行三次样条插值。

以下是一个示例:```x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];xi = 2.5;yi = interp1(x, y, xi, 'spline')```通过设置'spline'选项,可以得到插值结果yi=5.125。

三次样条插值适用于数据点较多且变化较为复杂的情况。

3. 二维插值除了一维插值,Matlab还提供了二维插值函数interp2,用于处理二维数据的插值问题。

以下是一个简单的二维插值示例:```x = 1:4;y = 1:4;[X, Y] = meshgrid(x, y);Z = X.^2 + Y.^2;xi = 2.5;yi = 2.5;zi = interp2(X, Y, Z, xi, yi)```在这个例子中,首先生成一个二维数据矩阵Z,然后利用interp2函数在给定的坐标(xi, yi)处进行插值,得到插值结果zi=12.25。

matlab插值曲线拟合解析

matlab插值曲线拟合解析

四种插值方法比较
函数
格式
zi=interp2(x,y,z,xi,yi)
功能
二维插值。Z为由已知点的值组成的 矩阵,参量x与y是与z同维的已知点 的矩阵,且必须是单调的。xi与yi为 需要插值的点。若xi与yi中有在x与y 范围之外的点,则相应地返回NaN。
zi=interp2(z,xi,yi) Interp2
包角系 数
0.91
0.92
0.93
0.95
0.96
0.98
0.99
1
>>a1=[90,100,110,120,125,130,135,140,145,150,155,160,165,170,175,180]; >>a2=[0.69,0.74,0.78,0.82,0.84,0.86,0.88,0.89,0.91,0.92,0.93,0.95,0.96,0.98,0.99 ,1]; >>ka=interp1(a1,a2,133.5) >>ka=0.8740
例4

y
1
1 x2
在[-5,
5]上,
用n=11个等距分点作分段线
性插值和三次样条插值, 用m=21个插值点作图,比较结果.
xy
y1
y2
0 0.5000 1.0000 1.5000 2.0000 2.5000 3.0000 3.5000 4.0000 4.5000 5.0000
例3. 已知实验数据如表。
x
0
0.25 0.50 0.75 1.00
y
0.9162 0.8109 0.6931 0.5596 0.4055
计算插值点x0=0.6处的函数值y0。

MATLAB拟合和插值

MATLAB拟合和插值

MATLAB拟合和插值定义插值和拟合:曲线拟合是指您拥有散点数据集并找到最适合数据⼀般形状的线(或曲线)。

插值是指您有两个数据点并想知道两者之间的值是什么。

中间的⼀半是他们的平均值,但如果你只想知道两者之间的四分之⼀,你必须插值。

拟合我们着⼿写⼀个线性⽅程图的拟合:y=3x^3+2x^2+x+2⾸先我们⽣成⼀组数据来分析:x=-5:0.5:5;e=50*rand(1,length(x))-25;%制造[-25,25]的随机数作为误差y=3*x.^3+2*x.^2+x+2+e;%得到y值plot(x,y,'.')x =Columns 1 through 6-5.0000 -4.5000 -4.0000 -3.5000 -3.0000 -2.5000Columns 7 through 12-2.0000 -1.5000 -1.0000 -0.5000 0 0.5000Columns 13 through 181.0000 1.50002.0000 2.50003.0000 3.5000Columns 19 through 214.0000 4.50005.0000y =Columns 1 through 6-350.0110 -248.6360 -169.3421 -89.5653 -88.2298 -57.7238Columns 7 through 12-32.5505 2.3308 11.5861 9.0123 -0.4538 5.7254Columns 13 through 18-2.1840 30.3596 20.4478 73.2138 88.1756 152.0492Columns 19 through 21236.2809 334.3864 411.0563这时候x,y作为已知数据存在,要求我们拟合x,y的散点图,这时候会⽤到这个函数。

语法p = polyfit(x,y,n)[p,S] = polyfit(x,y,n)[p,S,mu] = polyfit(x,y,n)说明p = polyfit(x,y,n) 返回阶数为 n 的多项式 p(x) 的系数,该阶数是 y 中数据的最佳拟合(在最⼩⼆乘⽅式中)。

Matlab插值与拟合教程

Matlab插值与拟合教程

也可由函数给出数据。 例 3:x=1:20,y=x+3*sin(x) 程序: x=1:20; y=x+3*sin(x); p=polyfit(x,y,6) xi=1inspace(1,20,100); z=poyval(p,xi); %多项式求值函数 plot(x,y,’o’,xi,z,’k:’,x,y,’b’) legend(‘原始数据’,’6 阶曲线’) 结果: p= 0.0000 -0.0021 0.0505 -0.5971 3.6472 -9.7295 11.3304
分析:稳健拟合(实线)对数据的拟合程度好些,忽略了异常值。最小二乘拟合(点线)则
受到异常值的影响,向异常值偏移。 6. 6. 向自定义函数拟合 对于给定的数据,根据经验拟合为带有待定常数的自定义函数。 所用函数:nlinfit( ) 调用格式: [beta,r,J]=nlinfit(X,y,’fun’,betao) 说明:beta 返回函数’fun’中的待定常数;r 表示残差;J 表示雅可比矩阵。X,y 为数据; ‘fun’自定义函数;beta0 待定常数初值。 例 6:在化工生产中获得的氯气的级分 y 随生产时间 x 下降,假定在 x≥8 时,y 与 x 之间有如下形式的非线性模型:
MATLAB插值与拟合
§1 曲线拟合
实例:温度曲线问题 气象部门观测到一天某些时刻的温度变化数据为: t 0 1 2 3 4 5 6
7
8
9
10
T 13 15 17 14 16 19 26 24 26 27 29 试描绘出温度变化曲线。 曲线拟合就是计算出两组数据之间的一种函数关系, 由此可描绘其变化曲线及估计非采 集数据对应的变量信息。 曲线拟合有多种方式,下面是一元函数采用最小二乘法对给定数据进行多项式曲线拟 合,最后给出拟合的多项式系数。 1. 1. 线性拟合函数:regress() 调用格式: b=regress(y,X) [b,bint,r,rint,stats]= regress(y,X) [b,bint,r,rint,stats]= regress(y,X,alpha) 说明:b=regress(y,X)返回 X 处 y 的最小二乘拟合值。该函数求解线性模型: y=Xβ+ε β是 p1 的参数向量;ε是服从标准正态分布的随机干扰的 n1 的向量;y 为 n1 的向 量;X 为 np 矩阵。 bint返回β的 95%的置信区间。 r中为形状残差, rint中返回每一个残差的 95%置信区间。 2 Stats向量包含R 统计量、回归的F值和p值。 例 1:设 y 的值为给定的 x 的线性函数加服从标准正态分布的随机干扰值得到。即 y=10+x+ε ;求线性拟合方程系数。 程序: x=[ones(10,1) (1:10)’] y=x*[10;1]+normrnd(0,0.1,10,1) [b,bint]=regress(y,x,0.05) 结果: x = 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 y = 10.9567 11.8334

matlab数据分析与插值函数和曲线拟合

matlab数据分析与插值函数和曲线拟合
yi=
5.4000 7.0500 7.5000
2021/4/9
24
x=[1 2 4 6 8 9 10 13 15 16]; y=[5 7 8 10 13 14 15 17 19 20]; x1=[1.2 2.1 3]; y1=interp1(x,y,x1,'linear')
y1 =
5.4000 7.0500 7.5000
A=[8 1 6;3 5 7;4 6 2],B=[4 5 3;8 1 6;8 3 7],
U=max(A,B),
U=max(A,5)
2021/4/9
7
1.1.2 求和与求积
数据序列求和与求积的函数是sum和prod, 其使用方法类似。设X是一个向量,A是一个 矩阵,函数的调用格式为:
sum(X):返回向量X各元素的和。
2021/4/9
20
1.2 数据插值
1.2.1 一维数据插值
yi=interp1(x,y,xi)返回在插值向量xi处的函数 向量yi,它是根据向量x和y插值而来。若y是 矩阵,则对y每一列进行插值,如xi中元素不 在x内,返回NaN。
yi=interp1(y,xi)省略x,表示x=1:N,此时N为 向量y的长度或为矩阵y的行数。
MATLAB数据分析
2021/4/9
1
数据统计处理 数据插值 曲线拟1.1.1 最大值和最小值 MATLAB提供的求数据序列的最大值和最 小值的函数分别为max和min,两个函数的 调用格式和操作过程类似。 1. 求向量的最大值和最小值 求一个向量X的最大值的函数有两种调用 格式,分别是: (1) y=max(X):返回向量X的最大值存入y, 如果X中包含复数元素,则按模取最大值。

曲线的插值与拟合matlab

曲线的插值与拟合matlab

在数学和统计学领域中,曲线的插值与拟合是一项重要的技术,它在数据分析、图像处理、工程计算等领域都有着广泛的应用。

曲线的插值与拟合可以帮助我们从有限的数据点中还原出连续的曲线,以便更好地理解数据的规律和特性。

1. 插值与拟合的概念在开始深入探讨曲线的插值与拟合之前,让我们先来了解一下这两个概念的含义。

插值是指通过已知数据点之间的连续函数,以得到介于已知数据点之间的数据点的值。

而拟合则是指通过已知数据点,找到拟合曲线以最好地逼近这些数据点。

2. 曲线插值的方法在实际操作中,我们可以使用不同的方法进行曲线的插值。

常见的方法包括线性插值、多项式插值、样条插值等。

在Matlab中,有丰富的函数库可以用来进行不同类型的曲线插值,例如interp1, interp2, interpn等,这些函数可以很方便地实现曲线的插值操作。

(1)线性插值线性插值是一种简单直接的插值方法,它通过已知的两个数据点之间的直线来逼近新的数据点。

虽然线性插值操作简单,但在一些情况下并不能很好地逼近数据的真实规律。

(2)多项式插值多项式插值是一种常用的插值方法,它通过已知数据点构造一个多项式函数来逼近数据。

在Matlab中,可以使用polyfit和polyval函数来实现多项式插值操作,通过调整多项式的阶数可以得到不同精度的逼近结果。

(3)样条插值样条插值是一种更加复杂但精确度更高的插值方法,它通过已知的数据点构造出一系列的局部插值函数来逼近数据。

在Matlab中,可以使用spline函数来进行样条插值操作,通过调整插值节点的数量和类型可以得到不同精度的逼近结果。

3. 曲线拟合的方法除了插值方法之外,曲线的拟合也是一种常用的数据处理方法。

在实际操作中,我们可以使用不同的方法来进行曲线的拟合。

常见的方法包括最小二乘法拟合、多项式拟合、非线性拟合等。

在Matlab中,有丰富的函数库可以用来进行不同类型的曲线拟合,例如polyfit, lsqcurvefit, nlinfit等,这些函数可以很方便地实现曲线拟合操作。

MATLAB中的数据插值与曲线拟合技术

MATLAB中的数据插值与曲线拟合技术

MATLAB中的数据插值与曲线拟合技术概述:数据插值和曲线拟合是在科学研究和工程实践中常用的技术手段。

在MATLAB中,有丰富的函数库和工具箱可用于实现各种插值和拟合算法。

本文将介绍MATLAB中的一些常见的数据插值和曲线拟合技术,并分析它们的原理和适用场景。

一、数据插值技术:1. 线性插值:线性插值是最简单且常用的数据插值技术之一,它通过在已知数据点之间的直线上进行插值。

MATLAB中的interp1函数可以实现线性插值,其基本原理是根据已知数据点的横纵坐标值,计算出待插值点的纵坐标值。

2. 拉格朗日插值:在拉格朗日插值中,我们通过一个多项式函数来描述已知数据点之间的曲线。

MATLAB中的polyfit和polyval函数可以帮助我们实现拉格朗日插值。

首先,polyfit函数用于拟合一个多项式函数,然后polyval函数可以根据拟合得到的多项式计算插值点的纵坐标值。

3. 样条插值:样条插值是一种光滑插值技术,通过使用多个低次多项式来拟合数据点之间的曲线。

MATLAB中的spline函数可以实现样条插值。

该函数将已知数据点的横纵坐标传入,然后自动计算出曲线段之间的控制点,并进行插值操作。

二、曲线拟合技术:1. 多项式拟合:多项式拟合是一种常用的曲线拟合技术,它通过拟合一个多项式函数来逼近已知数据点。

MATLAB中的polyfit和polyval函数同样可以应用于多项式拟合,我们可以选择合适的多项式阶次进行拟合。

2. 非线性拟合:有些数据集并不能用简单的多项式函数进行拟合,可能需要更复杂的非线性函数来逼近。

在MATLAB中,我们可以使用curve fitting工具箱中的fit函数来实现非线性拟合。

该函数可以根据给定的模型类型和数据集,自动拟合出最优的曲线。

3. 递归最小二乘拟合:递归最小二乘拟合是一种高级的数据拟合算法,可以有效地处理大型数据集。

MATLAB中的regress函数可以进行递归最小二乘拟合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
插值过程中认为数据是准确的,求取描述点之间的数 据 曲线拟合中,假定已知曲线的规律,做曲线的最佳逼 近,不需要经过所有数据点
3
西南交通大学摩擦学研究所
Tribology Research Institute SOUTHWEST JIAOTONG UNIVERSITY
MATLAB插值与曲线拟合
插值计算
其中a,c为已知数据,而b为要插值的数据点,method 为预先设定的插值方法,分别为线性(linear)、三次多 项式(cubic)和spline
如果数据的变化较大,以spline插值所形成的曲线最为 平滑,效果最好
三次多项式所得的曲线平滑度介于linear和spline之间
西南交通大学摩擦学研究所
假设试验得到一组数据形态为:
f(xk);其中k=1,2,…,n;且x1=a<xn=c 如果某些点{xi}不属于上述的{xi} ,但是a=<xi<=c, 要估计这些点的函数值f(xi)就需要做插值运算 根据原始数据所描述的函数的复杂程度,存在有:
一维插值
二维插值 Spline插值
西南交通大学摩擦学研究所
西南交通大学摩擦学研究所
18
Tribology Research Institute SOUTHWEST JIAOTONG UNIVERSITY
MATLAB插值与曲线拟合
西南交通大学摩擦学研究所
19
Tribology Research Institute SOUTHWEST JIAOTONG UNIVERSITY
西南交通大学摩擦学研究所
7
Tribology Research Institute SOUTHWEST JIAOTONG UNIVERSITY
MATLAB插值与曲线拟合
一维插值—举例
画出插值后的时间与温度变化曲线图。
t=[0 1 2 2.6 3 4 4.9 5]; y1=[0 20 60 64.8 68 77 106.7 110]; y2=[0 20 60 65.2 68 77 105.6 110]; y3=[0 20 60 67.3 68 77 105.2 110]; plot(t,y1,t,y2,t,y3)
《MATLAB数据处理与应用》2011-2012学年选修课
第八讲
MATLAB的插值与曲线拟合
Tribology Research Institute SOUTHWEST JIAOTONG UNIVERSITY
主要内容
插值运算
曲线拟合
分段函数 拉格拉日插值 牛顿插值 Hermite插值
西南交通大学摩擦学研究所
MATLAB插值与曲线拟合
曲线拟合
曲线拟合(curve-fitting)顾名思义就是用近似的曲线方程 来代表一组离散的数据
曲线拟合与插值有许多相似之处,二者最大区别再于 曲线拟合要找出一个曲线函数式,而插值仅求出与数 据点对应的函数值而已 曲线拟合运用最小二乘法原理 如果拟合的曲线限定为多项式就称为多项式最小二乘 法曲线拟合 MATLAB提供的曲线拟合有多项式最小二乘拟合、普通 最小二乘拟合等
MATLAB插值与曲线拟合
西南交通大学摩擦学研究所
17
Tribology Research Institute SOUTHWEST JIAOTONG UNIVERSITY
MATLAB插值与曲线拟合
spline插值
采用一维三次多项式插值运算
x=0:10; y=sin(x); xx=0:0.25:10; yy=interp1(x,y,xx,'cubic'); plot(x,y,'o',xx,yy,xx,sin(xx));
西南交通大学摩擦学研究所
8
Tribology Research Institute SOUTHWEST JIAOTONG UNIVERSITY
MATLAB插值与曲线拟合
西南交通大学摩擦学研究所
9
Tribology Research Institute SOUTHWEST JIAOTONG UNIVERSITY
MATLAB插值与曲线拟合
二维插值—举例 假设汽车的引擎转速、温度与时间的测量值关系 如下表,估计时间为2.6s和速度为2500r时的温度。
T/℃ Time/s 0 2000r 0 Speed 3000r 0 4000r 0
1
2 3
20
60 68
110
180 240
176
220 349
4
5
西南交通大学摩擦学研究所
xi,yi为要插值的数据点,x,y,z为已知数据
通过设定interp2(x,y,z,xi,yi,method)也可以设定不同的 插值方法,有linear、cubic和spline三种
西南交通大学摩擦学研究所
10
Tribology Research Institute SOUTHWEST JIAOTONG UNIVERSITY
MATLAB插值与曲线拟合
二维插值
假设试验所得到的一组数据形态为z=f(xk,yk),期中 k=1,2,,,n;如果某些点(xi,yi)不属于上述点,要 估计这些点的函数值f(xi,yi)就需要进行二维擦绘制运算, 二维插值相当于二元函数运算
MATLAB中二维插值函数是interp2(x,y,z,xi,yi),期中
4
Tribology Research Institute SOUTHWEST JIAOTONG UNIVERSITY
MATLAB插值与曲线拟合
一维插值
一维插值可以是线性的,也可以是三次多项式或spline 插值
一维线性插值是假设两个数据中的变化为线性关系, 因此可由已知点的坐标(f(a),a)和(f(c),c)计算b点的函数 值f(b) ba f (b) f (a) [ f (c) f (a )] ca
MATLAB插值与曲线拟合
spline插值
画一个圆并在数据点y(:,2),…,y(:,6)处标上字母o。
x=pi*[0:0.5:2]; y=[0 1 0 -1 0 1 0;1 0 1 0 -1 0 1]; pp=spline(x,y); yy=ppval(pp,linspace(0,2*pi,101));%计算分算函数的值
西南交通大学摩擦学研究所
20
Tribology Research Institute SOUTHWEST JIAOTONG UNIVERSITY
MATLAB插值与曲线拟合
西南交通大学摩擦学研究所
21
Tribology Research Institute SOUTHWEST JIAOTONG UNIVERSITY
plot(yy(1,:),yy(2,:),'-b',y(1,2:5),y(2,2:5),'or')
西南交通大学摩擦学研究所
22
Tribology Research Institute SOUTHWEST JIAOTONG UNIVERSITY
MATLAB插值与曲线拟合
西南交通大学摩擦学研究所
23
Tribology Research Institute SOUTHWEST JIAOTONG UNIVERSITY
6
Tribology Research Institute SOUTHWEST JIAOTONG UNIVERSITY
MATLAB插值与曲线拟合
一维插值—举例
假设汽车引擎在额定转速下温度与时间的测量值关系 如下0—0; 1—20; 2—60; 3—68; 4—77; 5— 110;用一维插值法估计时间为2.6s和4.9s时的温度值。
77
110
310
405
450
503
11
Tribology Research Institute SOUTHWEST JIAOTONG UNIVERSITY
MATLAB插值与曲线拟合
二维插值—举例
应用函数interp2函数分别用linear、cubic、spline来估 计时间2.6s和转速2500r的温度值。
MATLAB插值与曲线拟合
spline插值
向量t=1900:10:1990,p=[75.995 91.972 105.711 123.203
131.669 150.697 179.323 203.212 226.505 249.633]表示 从1900年到1990年人口普查的数字,利用spline插值法预测
MATLAB插值与曲线拟合
spline插值
采用一维线性插值运算
x=0:10; y=sin(x); xx=0:0.25:10; yy=interp1(x,y,xx); plot(x,y,'o',xx,yy,xx,sin(xx));
西南交通大学摩擦学研究所
16
Tribology Research Institute SOUTHWEST JIAOTONG UNIVERSITY
西南交通大学摩擦学研究所
12
Tribology Research Institute SOUTHWEST JIAOTONG UNIVERSITY
MATLAB插值与曲线拟合
spline插值
函数spline有两种应用形式,spline(x,y,xi)和spline(x,y)
spline(x,y,xi)与interp1(x,y,xi,spline)效果一样
MATLAB插值与曲线拟合
spline插值
举例:在[0,10]区间上按正弦规律y=sin(x)取10个点yi, 再在区间[0,10]上取41个点,以yi为已知数据,对这41 个点做spline插值运算,得到函数值并绘图,比较其值 与正弦波偏离程度。
x=0:10; y=sin(x); xx=0:0.25:10; yy=spline(x,y,xx); plot(x,y,'o',xx,yy,xx,sin(xx));
相关文档
最新文档