2.4平方根
2023年北京东城区初一(下)期末数学试题及答案
![2023年北京东城区初一(下)期末数学试题及答案](https://img.taocdn.com/s3/m/c70e7eb36394dd88d0d233d4b14e852459fb3967.png)
2023北京东城初一(下)期末数 学一、选择题(本题共30分,每小题3分)1.如图,小手盖住的点的坐标可能为( )A.(﹣2,﹣3)B.(﹣2,3)C.(2,3)D.(2,﹣3)2.4的算术平方根是( )A.2B.±2C.16D.±16 3.下列调查方式,最适合全面调查的是( )A.检测某品牌鲜奶是否符合食品卫生标准B.了解某班学生一分钟跳绳成绩C.了解北京市中学生视力情况D.调查某批次汽车的抗撞击能力4.若21xy=⎧⎨=⎩是关于x,y的二元一次方程x+my=5的解,则m的值为( )A.2B.3C.5D.75.实数a,b对应的位置如图所示,下列式子正确的是( )A.a2<b2B.﹣2a<﹣2b C.a+5<0D.a+4<b+46.如图,直线AB,CD相交于点O,OE⊥AB,垂足为点O.若∠COE=40°,则∠BOD的度数为( )A.140°B.60°C.50°D.40°7的点最接近的点是( )A.点P B.点Q C.点M D.点N8.已知二元一次方程组28,2-5,x yx y+=⎧⎨+=⎩则x+y的值为( )A.﹣1B.﹣3C.1D.39.如图为小丽和小欧依次进入电梯时,电梯因超重而警示音响起的过程,且过程中没有其他人进出.已知当电梯乘载的重量超过400千克时警示音响起,且小丽、小欧的重量分别为50千克、70千克.若小丽进入电梯前,电梯内已乘载的重量为x千克,则x的取值范围是( )A.280<x≤350B.280<x≤400C.330<x≤350D.330<x≤400 10.2023年国家统计局公布了《2022年国民经济和社会发展统计公报》.公报显示了全国2018年至2022年货物进出口额的变化情况,根据国家统计局2022年发布的相关信息,绘制了如下的统计图.根据统计图提供的信息,下列结论正确的是( )①与2018年相比,2019年的进口额的年增长率虽然下降,但进口额仍然上升;②从2018年到2022年,进口额最多的是2022年;③2018﹣2022年进口额年增长率持续下降;④与2021年相比,2022年出口额增加了2.3万亿元.A.①②④B.①②③C.①③④D.①②③④二、填空题(本题共16分,每小题2分11.(2分)“m的2倍与5的和是正数”可以用不等式表示为 .12.(2分)如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向过斑马线更为合理,这一想法体现的数学依据是 .13.(2分)北京中轴线南起永定门,北至钟鼓楼,全长7.8千米.如图是利用平面直角坐标系画出的中轴线及其沿线部分地点分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示天安门的点的坐标为(0,﹣1),表示王府井的点的坐标为(1,﹣1),则表示永定门的点的坐标为 .14.(2分)如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周(不滑动),圆上的一点由原点到达点O′,点O′所对应的数值是 .15.(2分)如图,将含有60°的直角三角板的两个顶点分别放在直尺的一组对边上,如果∠1=20°,那么∠2= °.16.(2分)如图,一块边长为10米的正方形花园,在上面修了一条道路,路的宽都是1米,其余部分种上各种花草,则种植花草的面积是 平方米.17.(2分)《孙子算经》是中国古代重要的数学著作,成书大约在一千五百年前.书中记载了一个数学问题:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”其大意是:“用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,绳子比长木短1尺,问长木多少尺?”设绳长x 尺,木长y 尺,可列方程组为 .18.(2分)在平面直角坐标系xOy 中,若一个多边形的顶点都在格点(点的横、纵坐标均为整数)上,则称该多边形为格点多边形.格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L .如图,△ABC 是格点三角形,对应的S =1,N =0,L =4.(1)图中格点四边形DEFG 对应的S 为 ;(2)已知格点多边形的面积可以表示为S =aN +bL ﹣1,其中a ,b 为常数.若某格点多边形对应的N =71,L =18,则S = .三、解答题(本题共54分,第19-23题每小题5分,第24题4分,第25题5分,第26题6分,第27-28题每小题5分)解答应写出文字说明、证明过程或演算步骤.19.(51+.20.(5分)解方程组321921x y x y +=⎧⎨-=⎩.21.(5分)解不等式组:513(1)1213x x x x ->+⎧⎪+⎨≥-⎪⎩,并求出它的整数解.22.(5分)请将下面的证明过程补充完整:如图,在四边形ABCD 中,AD ∥BC ,∠BCD =40°,∠BAD =80°,∠BAD 的角平分线交BC 于点E ,求证:AE ∥DC .证明:∵AE 平分∠BAD ,∠BAD =80°(已知),∴1402DAE BAD ∠=∠= (理由: ).∵AD ∥BC (已知),∴ =∠DAE =40°(理由: ).∵∠BCD =40°(已知),∴∠BCD = (等量代换).∴AE ∥DC (理由: ).23.(5分)一个数值转换器如图所示:(1)当输入的x 值为16时,输出的y 值是 ;(2)若输入有效的x 值后,始终输不出y 值,则所有满足要求的x 的值为 ;(3)若输出的yx 的值.24.(4分)如图.三角形ABC 的顶点坐标分别为A (﹣1.4),B (﹣4,﹣1),C (1,1).若将三角形ABC 向右平移4个单位长度,再向下平移3个单位长度得到三角形A 'B 'C ',其中点A ',B ',C '分别是点A .B ,C 的对应点.(1)画出三角形A 'B 'C ';(2)若三角形ABC 内有一点P (a ,b )经过上述平移后的对应点为P ',写出点P '的坐标:( , );(3)若点D 在y 轴上且三角形BOD 的面积为4,直接写出点D的坐标.25.(5分)如图为国家节水标志,节水标志各部分的含义为:灰色的圆形代表分像一只手托起一滴水,手又像一条蜿蜒的河流,象征滴水汇成江河.某市在实施居民用水定额管理前,对居民生活用水情况进行了调查,通过简单随机抽样调查获得了50个家庭去年的月均用水量(单位:吨).以下是整理数据后的不完整统计表、统计图.月均用水量频数分布表分组频数2≤x<343≤x<4124≤x<5a5≤x<696≤x<757≤x<848≤x<92合计50请根据图表中提供的信息解答下列问题:(1)表中a的值为 ,请补全频数分布直方图;(2)扇形统计图中,月均用水量为“E :6≤x <7”的扇形的圆心角是 °;(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费.若要使60%的家庭水费支出不受影响,你觉得家庭月均用水量应该定为多少?为什么?26.(6分)已知,直线AB ∥CD ,点E 为直线CD 上一定点,射线EK 交AB 于点F ,FG 平分∠AFK ,∠FED =α.(1)如图1,当α=60°时,∠GFK = °;(2)点P 为线段EF 上一定点,点M 为直线AB 上的一动点,连接PM ,过点P 作PN ⊥PM 交直线CD 于点N .①如图2,当点M 在点F 右侧时,求∠BMP 与∠PNE 的数量关系;②当点M 在直线AB 上运动时,∠MPN 的一边恰好与射线FG 平行,直接写出此时∠PNE 的度数(用含α的式子表示).27.(7分)围棋,起源于中国,古代称为“弈”,是棋类鼻祖,距今已有4000多年的历史.某商家销售A 、B 两种材质的围棋,每套进价分别为200元、170元,下表是近两个月的销售情况:销售数量销售时段A 种材质B 种材质销售收入第一个月3套5套1800元第二个月4套10套3100元(1)求A 、B 两种材质的围棋每套的售价.(2)若商家准备用不多于5400元的金额再采购A 、B 两种材质的围棋共30套,求A 种材质的围棋最多能采购多少套?(3)在(2)的条件下,商店销售完这30套围棋能否实现利润为1300元的目标?请说明理由.28.(7分)在平面直角坐标系xOy 中,对于点P (x 1,y 1),点Q (x 2,y 2),定义|x 1﹣x 2|与|y 1﹣y 2|中的值较大的为点P,Q的“绝对距离”,记为d(P,Q).特别地,当|x1﹣x2|=|y1﹣y2|时,规定d(P,Q)=|x1﹣x2|,例如,点P(1,2),点Q(3,5),因为|1﹣3|<|2﹣5|,所以点P,Q 的“绝对距离”为|2﹣5|=3,记为d(P,Q)=3.(1)已知点A(0,1),点B为x轴上的一个动点.①若d(A,B)=3,求点B的坐标;②d(A,B)的最小值为 ;③动点C(x,y)满足d(A,C)=r,所有动点C组成的图形面积为64,请直接写出r的值.(2)对于点D(﹣1,0),点E(2,5),若有动点M(m,n)使得d(D,M)+d(E,M)=5,请直接写出m的取值范围.参考答案一、选择题(本题共30分,每小题3分)1.【分析】根据第四象限点的坐标特征(+,﹣),即可解答.【解答】解:如图,小手盖住的点的坐标可能为(2,﹣3),故选:D.【点评】本题考查了点的坐标,熟练掌握平面直角坐标系中每一象限点的坐标特征是解题的关键.2.【分析】利用算术平方根的定义计算即可得到结果.【解答】解:∵22=4,∴4的算术平方根是2.故选:A.【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.3.【分析】根据全面调查与抽样调查的特点,逐一判断即可解答.【解答】解:A、检测某品牌鲜奶是否符合食品卫生标准,最适合抽样调查,故A不符合题意;B、了解某班学生一分钟跳绳成绩,最适合全面调查,故B符合题意;C、了解北京市中学生视力情况,最适合抽样调查,故C不符合题意;D、调查某批次汽车的抗撞击能力,最适合抽样调查,故D不符合题意;故选:B.【点评】本题考查了全面调查与抽样调查,熟练掌握全面调查与抽样调查的特点是解题的关键.4.【分析】将21xy=⎧⎨=⎩代入原方程,可得出关于m的一元一次方程,解之即可得出m的值.【解答】解:将21xy=⎧⎨=⎩代入原方程得:2+m=5,解得:m=3,∴m的值为3.故选:B.【点评】本题考查了二元一次方程的解,牢记“把方程的解代入原方程,等式左右两边相等”是解题的关键.5.【分析】根据图示,可得:a<b且﹣5<a<﹣4,3<b<4,据此逐项判断即可.【解答】解:根据图示,可得:a<b且﹣5<a<﹣4,3<b<4,∵﹣5<a<﹣4,3<b<4,∴16<a2<25,9<b2<16,∴a2>b2,∴选项A不符合题意;∵a<b,∴﹣2a>﹣2b,∴选项B不符合题意;∵﹣5<a<﹣4,∴a+5>0,∴选项C不符合题意;∵a<b,∴a+4<b+4,∴选项D符合题意.故选:D.【点评】此题主要考查了实数与数轴上的点的一一对应关系,以及数轴的特征:一般来说,当数轴正方向朝右时,右边的数总比左边的数大.6.【分析】由垂线的定义得出∠AOE=90°,即可求出∠AOC的度数,根据对顶角相等即可得出∠BOD的度数.【解答】解:∵OE⊥AB,∴∠AOE=90°,∵∠COE=40°,∴∠AOC=∠AOE﹣∠COE=90°﹣40°=50°,∴∠BOD=∠AOC=50°,故选:C.【点评】本题考查了垂线的定义,对顶角的性质,熟知对顶角相等的性质.7.进行估算,再根据数轴表示进行求解.【解答】解:∵1<2,的点最接近的点是点Q,故选:B.【点评】此题考查了无理数的估算能力,关键是能准确理解并运用算术平方根知识进行求解.8.【分析】利用整体的思想,进行计算即可解答.【解答】解:2825x yx y+=⎧⎨+=-⎩①②,①+②得:3x+3y=3,解得:x+y=1,故选:C.【点评】本题考查了解二元一次方程组,熟练掌握整体的思想是解题的关键.9.【分析】根据“小丽进入电梯不超重,小欧进入电梯超重”,可列出关于x的一元一次不等式组,解之即可得出x的取值范围.【解答】解:根据题意得:504005070400 xx+≤⎧⎨++>⎩,解得:280<x≤350.故选:A.【点评】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.10.【分析】根据条形统计图与折线统计图所给的信息进行求解即可.【解答】解:①由条形图与折线图可知,2018的进口额为14.1万亿元,进口额的年增长率为12.8%,2019的进口额为14.3万亿元,进口额的年增长率为1.4%,所以与2018年相比,2019年的进口额的年增长率虽然下降,但进口额仍然上升,故①结论正确,符合题意;②由条形图可知,从2018年到2022年,进口额最多的是2022年,为18.1万亿元,故②结论正确,符合题意;③由折线图可知,2018﹣2022年进口额年增长率先下降再上升再下降,故③结论错误,不符合题意;④由条形图可知,与2021年相比,2022年出口额增加了24.0﹣21.7=2.3万亿元,故④结论正确,符合题意;故选:A.【点评】本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,折线统计图表示的是事物的变化情况.二、填空题(本题共16分,每小题2分11.【分析】m的2倍与5的和是正数为5+2m;和是正数,那么前面所得的结果大于0.【解答】解:m的2倍为2m,5与m的2倍的和写为5+2m,和是正数,则5+2m>0,故答案为:5+2m>0.【点评】本题主要考查由实际问题抽象出一元一次不等式的知识点,解决本题的关键是理解正数用数学符号表示是“>0”.12.【分析】根据垂线段最短的性质求解即可.【解答】解:∵垂线段最短,∴行人沿垂直马路的方向过斑马线更为合理.故答案为:垂线段最短.【点评】本题考查垂线的性质,关键是掌握垂线的两条性质,明白垂线段最短.13.【分析】直接利用已知点坐标进而确定原点位置进而得出答案.【解答】解:永定门的点的坐标为(0,﹣7),故答案为:(0,﹣7).【点评】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.14.【分析】求出OO′的长即可确定O′点对应的数.【解答】解:∵圆的周长为=1×π=π,∴圆从原点沿数轴向右滚动一周经过的路径长OO′=π,∴O′点对应的数是π.故答案为:π.【点评】本题主要考查了实数与数轴之间的对应关系,解题的关键是求出OO′的长.15.【分析】利用两直线平行,内错角相等作答.【解答】解:根据题意可知,两直线平行,内错角相等,∵∠1=20°,∠1+∠3=60°,∴∠3=40°,∵∠2=∠3,∴∠2=40°.故答案为:40.【点评】本题主要考查了两直线平行,内错角相等的性质,需要注意隐含条件,直尺的对边平行,等腰直角三角板的锐角是45°的利用.16.【分析】直接利用平移方法,将2条道路平移到图形的一侧,进而求出即可.【解答】解:(10﹣1)×(10﹣1)=9×9=81(平方米).故种植花草的面积是81平方米.故答案为:81.【点评】本题考查了生活中的平移现象,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致错误.17.【分析】根据“用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,绳子比长木短1尺”,即可列出关于x ,y 的二元一次方程组,此题得解.【解答】解:∵用一根绳子去量一根长木,绳子还剩余4.5尺,∴x ﹣y =4.5;∵将绳子对折再量长木,绳子比长木短1尺,∴y ﹣x =1.∴根据题意可列方程组 4.512x y x y -=⎧⎪⎨-=⎪⎩.故答案为: 4.512x y x y -=⎧⎪⎨-=⎪⎩.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.18.【分析】(1)过G 点作MH ⊥ED 延长线于点H ,过E 作NE ⊥DE ,过F 点作MN ∥x 轴,交MH 于点M ,交NE 于点N ,分别求出△GHD ,△MGF ,△FNE ,矩形MNEH 的面积,即可求出四边形DEFG 的面积.(2)通过已知可知1041361a b a b =⨯+-⎧⎨=+-⎩,即可求出a ,b 的值,从而可求所求S的值.【解答】解:(1)过G 点作MH ⊥ED 延长线于点H ,过E 作NE ⊥DE ,过F 点作MN ∥x 轴,交MH 于点M ,交NE 于点N ,则HD =1,GH =1,GM =1,MF =1,FN =2,NE =2,MH =2,HE =3,∴S 矩形MNEH =MH ×MN =2×3=6,S △GHD =12×GH ×HD =12×1×1=12,S △GMF =12×MG ×MF =12×1×1=12,S △FNE =12×FN ×NE =12×2×2=2,∴S 四边形DEFG =S 矩形MNEH ﹣S △GHD ﹣S △GMF ﹣S △FNE=6﹣12﹣12﹣2=3.故答案为:3.(2)对于四边形DEFG ,S =3,N =1,L =6,由题意知,1041361a b a b =⨯+-⎧⎨=+-⎩,解得,112a b =⎧⎪⎨=⎪⎩,∴S =aN +bL ﹣1=1×71+×18﹣1=79,故答案为:79.【点评】本题主要考查了新定义问题、平面直角坐标系中图形面积的求解、二元一次方程组的求解.求平面直角坐标系中图形面积时,常用的方法是间接法,即在图形外补出一个规则图形或者将所求图形分割成若干规则小图形.三、解答题(本题共54分,第19-23题每小题5分,第24题4分,第25题5分,第26题6分,第27-28题每小题5分)解答应写出文字说明、证明过程或演算步骤.19.【分析】先算算式平方根,立方根以及绝对值,二次根式的化简,再算加减法,即可求解.1+=2(4)31+--+-6-.【点评】本题主要考查了实数的混合运算,掌握算式平方根,立方根,二次根式的化简以及绝对值的概念是解题的关键.20.【分析】方程组利用代入消元法求出解即可.【解答】解:321921x yx y+=⎧⎨-=⎩①②,由②得:y=2x﹣1③,把③代入①得:3x+2(2x﹣1)=19,即x=3,把x=3代入③得:y=5,则方程组的解为35xy=⎧⎨=⎩.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.21.【分析】先求出两个不等式的解集,再求其公共解,从而得到它的整数解.【解答】解:解不等式①,得x>2,解不等式②,得x≤4,故原不等式组的解集为2<x≤4.故它的整数解为x=3或4.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).22.【分析】由角平分线求出∠DAE,再由平行的性质求出∠AEB,从而可判断∠AEB和∠BCD的大小关系,从而可证明AE∥DC.【解答】证明:∵AE平分∠BAD,∠BAD=80°(已知),∴1402DAE BAD∠=∠= (理由:角平分线的定义).∵AD∥BC(已知),∴∠AEB=∠DAE=40°(理由:两直线平行,内错角相等).∵∠BCD=40°(已知),∴∠BCD=∠AEB(等量代换).∴AE∥DC(理由:同位角相等,两直线平行).故答案为:角平分线的定义;∠AEB;两直线平行,内错角相等;∠AEB;同位角相等,两直线平行.【点评】本题考查了角平分线的定义、平行线的性质和判定.本题的关键是熟练应用平行的性质和判定.23.【分析】(1)根据算术平方根,即可解答;(2)根据0和1的算术平方根是它们本身,0和1是有理数,所以始终输不出y值;(3)25的算术平方根是5,5,据此解答.【解答】解:(1)∵16的算术平方根是4,4是有理数,4不能输出,∴4的算术平方根是2,2是有理数,2不能输出,∴2,(2)∵0和1的算术平方根是它们本身,0和1是有理数,∴当x=0和1时,始终输不出y的值;故答案为:0和1;(3)25的算术平方根是5,5,∴若输出的y,满足要求的x的值为5和25.【点评】本题考查了算术平方根,解决本题的关键是熟记算术平方根的定义.24.【分析】(1)利用平移变换的性质分别作出A,B,C的对应点A′,B′,C′即可;(2)利用平移变换的性质判断即可;(3)设D(0,m),构建方程求解即可.【解答】解:(1)如图,三角形A'B'C'即为所求;(2)若三角形ABC内有一点P(a,b)经过上述平移后的对应点为P',写出点P'的坐标:(a+4,b﹣3);故答案为:a+4,b﹣3;(3)设点D(0,m).则有12×4×|m|=4,∴m=±2,∴点D的坐标为(0,2)或(0,﹣2).【点评】本题考查作图﹣平移变换,三角形的面积等知识,解题的关键是掌握平移变换的性质,属于中考常考题型.25.【分析】(1)用50乘以C组的百分比即可求出a的值,即可补全频数分布直方图;(2)360°乘以E所占的比例即可求解;(3)由于50×60%=30,所以为了鼓励节约用水,要使60%的家庭收费不受影响,即要使30户的家庭收费不受影响,而7+23=30,故家庭月均用水量应该定为5吨.【解答】解:(1)C的频数为:a=50×28%=14,补全频数分布直方图如下:故答案为:14;(2)扇形统计图中,月均用水量为“E:6≤x<7”的扇形的圆心角是:360°×=36°;故答案为:36;(3)要使60%的家庭水费支出不受影响,家庭月均用水量应该定为5吨,理由如下:因为月平均用水量不超过5吨的百分比为8%+24%+28%=60%.【点评】本题考查读频数分布直方图和频数分布表的能力及利用统计图表获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.26.【分析】(1)由AB ∥CD 得∠KFB =∠FED =α,根据平角的定义及角平分线的性质可得出11(180)22GFK AFK α∠=∠=- ,然后将α=60°代入即可;(2)①延长MP 交CD 于点Q ,由AB ∥CD 得∠BMP +∠PQN =180°,由PN ⊥PM 得∠MPN =90°=∠PQN +∠PNE 可得出结论;②由于∠MPN 的一边恰好与射线FG 平行,因此有以下两种情况,(ⅰ)当PN 与射线FG 平行时,设∠PNE =θ,延长NP ∠AB 于点H ,由AB ∥CD 得∠PHF =∠PNE =θ,∠PFH =∠FED =α,再由PN ∥FG 及(1)的结论得1(180)2GFK HPF α∠=∠=- ,然后由三角形的内角和定理得∠PHF +∠PFH +∠HPF =180°,据此可得出答案;(ⅱ)当PM 与射线FG 平行时,由PM ∥FG 得1(180)2MPF GFK α∠=∠=- 由PN ⊥PM 得∠MPN =90°,进而得∠MPF +∠NPE =90°,据此可得12NPE α∠=,最后再由三角形的外角定理可得出答案.【解答】解:(1)∵AB ∥CD ,∴∠KFB =∠FED =α,∵∠AFK +∠KFB =180°,∴∠AFK =180°﹣∠KFB =180°﹣α,∵FG 平分∠AFK ,∴11(180)22GFK AFK α∠=∠=- ∵α=60°,∴11(180)(18060)6022GFK α∠=-=-= .(2)①∠BMP 与∠PNE 的数量关系是:∠BMP ﹣∠PNE =90°.理由如下:延长MP 交CD 于点Q ,∵AB ∥CD ,∴∠BMP +∠PQN =180°,∵PN ⊥PM ,∴∠MPN =90°,∴∠PQN +∠PNE =∠MPN =90°,∴∠PQN =90°﹣∠PNE ,∴∠BMP +90°﹣∠PNE =180°,∴∠BMP ﹣∠PNE =90°.②∠PNE 的度数为:1902α- 或12α.理由如下:∵∠MPN 的一边恰好与射线FG 平行,∴有以下两种情况,(ⅰ)当PN 与射线FG 平行时,设∠PNE =θ,延长NP ∠AB 于点H ,∵AB ∥CD ,∴∠PHF =∠PNE =θ,∠PFH =∠FED =α,∵PN ∥FG ,∴∠HPF =∠GFK ,由(1)可知:1(180)2GFK α∠=- ,∴1(180)2HPF α∠=-,∵∠PHF +∠PFH +∠HPF =180°,∴1(180)1802θαα++-= ,∴1902θα=- ,∴1902PNE θα∠==- ,(ⅱ)当PM 与射线FG 平行时,∵PM ∥FG ,∴1(180)2MPF GFK α∠=∠=- ,∵PN ⊥PM ,∴∠MPN =90°,∴∠MPF +∠NPE =90°,∴119090(180)22NPE MPF αα∠=-∠=--= ,∵∠FED =∠NPE +∠PNE ,∴1122PNE FPD NPE ααα∠=∠-∠=-=.【点评】此题主要考查了平行线的性质,角平分线的定义,垂直的定义,解答此题的关键是准确识图,熟练掌握两直线平行内错角相等,两直线平行同位角相等,难点是分类讨思想在解题中的应用,这也是解答此题的易错点之一.27.【分析】(1)设A 种材质的围棋每套的售价为x 元,B 种材质的围棋每套的售价为y 元,利用销售收入=销售单价×销售数量,结合近两个月的销售情况,可列出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设采购A 种材质的围棋m 套,则采购B 种材质的围棋(30﹣m )套,利用进货总价=进货单价×进货数量,结合进货总价不多于5400元,可列出关于m 的一元一次不等式,解之取其中的最大值,即可得出结论;(3)在(2)的条件下,商店销售完这30套围棋能实现利润为1300元的目标,利用总利润=每套的销售利润×销售数量,可得出关于m 的一元一次方程,解之可得出m 的值,再结合(2)中m 的取值范围,即可得出在(2)的条件下,商店销售完这30套围棋能实现利润为1300元的目标.【解答】解:(1)设A 种材质的围棋每套的售价为x 元,B 种材质的围棋每套的售价为y 元,根据题意得:3518004103100x y x y +=⎧⎨+=⎩,解得:250210 xy=⎧⎨=⎩.答:A种材质的围棋每套的售价为250元,B种材质的围棋每套的售价为210元;(2)设采购A种材质的围棋m套,则采购B种材质的围棋(30﹣m)套,根据题意得:200m+170(30﹣m)≤5400,解得:m≤10,∴m的最大值为10.答:A种材质的围棋最多能采购10套;采购金额不多余5400元(3)在(2)的条件下,商店销售完这30套围棋能实现利润为1300元的目标,理由如下:根据题意得:(250﹣200)m+(210﹣170)(30﹣m)=1300,解得:m=10,又∵m≤10,∴m=10符合题意,∴在(2)的条件下,商店销售完这30套围棋能实现利润为1300元的目标.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式;(3)找准等量关系,正确列出一元一次方程.28.【分析】(1)①设B(x,0),由题意可得|x﹣0|=3,从而可求出B点的坐标;②分当x<﹣1或x>1和﹣1≤x≤1两种情况求出d(A,B),即可求出最小值;③由已知可得点C在以A点为对称中心,边长为2r的正方形边上,根据面积即可求出r;(2)结合图象,画出符合题意的M点所在的区域,从而可求出m的取值范围.【解答】解:(1)设B(x,0),①∵|0﹣1|=1≠3,∴|x﹣0|=3,∴x=±3,∴B点的坐标为(﹣3,0)或(3,0).②当x<﹣1或x>1时,|x﹣0|>|0﹣1|,∴d(A,B)=|x|>1;当﹣1≤x≤1时,|x﹣0|≤|0﹣1|=1,∴d(A,B)=1,综上所述,d(A,B)的最小值为1.故答案为:1.③r=4.由题意知,点C在以A点为对称中心,边长为2r的正方形边上,∵正方形面积为64,∴正方形的边长为8,即2r=8,∴r=4.(2)由题意知,当M点在矩形DFEG内(含边)内运动时,d(D,M)+d(E,M)=5.∴﹣2≤m≤3.【点评】本题主要考查了平面直角坐标系中点的特征.本题的最后一问的解题关键是结合图象,先求出动点所在的区域,再求取值范围.。
泉州市八年级上册期末数学试卷及答案
![泉州市八年级上册期末数学试卷及答案](https://img.taocdn.com/s3/m/a925d777cf84b9d528ea7a7c.png)
泉州市八年级(上)期末数学试卷一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、3-、0、3.1415、π中,无理数的个数为( ) A .2个B .3个C .4个D .5个2.4的平方根是( )A .2B C .2±D .3.若m n x x x ÷=,那么m 与n 的关系是( ) A .m n =B .m n =-C .1m n -=D .1m n -=-4.边长分别为下列各组长度的三角形,不能构成直角三角形的是( ) A .6,8,10B .7,24,25C .10,24,26D .4,5,65.下列运算正确的是( ) A .222422a a a -=B .235()a a =C .236a a a =D .325a a a +=6.如图,已知12∠=∠,则不一定能使ABD ACD ∆≅∆的条件是( )A .BD CD =B .AB AC =C .B C ∠=∠D .BAD CAD ∠=∠7.等腰三角形的一条边长为6,另一边长为13,则它的周长为( ) A .25B .25或32C .32D .198.记录一天气温的变化情况,选用比较合适的统计图是( ) A .条形统计图B .扇形统计图C .折线统计图D .都不可以9.已知ABC ∆中,90ACB ∠=︒,8AC =,6BC =.在射线BC 上取一点D ,使得ABD ∆为等腰三角形,这样的等腰三角形有几个?( ) A .2个B .3个C .4 个D .5个10.如图1,在长为a 的正方形中挖掉一个边长为b 的小正方形()a b >把余下的部分剪拼成一个矩形(如图2),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( )A .22()()a b a b a b -=+-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .22(2)()2a b a b a ab b +-==+-二、填空题(每题4分,共24分) 11.计算:2(515)5x x x +÷= .12(填” >,=,<” ).13.小明在纸上随手写下一串数字“ 1010010001 ”, 则数字“ 1 ”出现的频率是 .14.已知5a b +=,3ab =,则22a b += . 15.等边ABC ∆中,2BC =,则ABC ∆的面积为 .16.如图所示,四边形ABCD 中,AC BD ⊥于点O ,8AO CO ==,6BO DO ==,点P 为线段AC 上的一个动点. (1)填空:AD CD == .(2)过点P 分别作PM AD ⊥于M 点,作PH DC ⊥于H 点.连结PB ,在点P 运动过程中,PM PH PB ++的最小值为 .三、解答题(本大题共9小题,共86分.解答应写出文字说明,证明过程或演算步骤)17|118.先化简,再求值:2(3)(3)(1)a a a +-+-,其中12a =. 19.把下列多项式分解因式: (1)39x x -;(2)22242a ab b ++20.如图,在ABC ∆中,点D 是BC 边的中点,分别过点B 、C 作BE AD ⊥于点E ,CF AD ⊥交AD 的延长线于点F ,求证:DE DF =.21.某校八年级数学兴趣小组的同学调查了若干名家长对“初中生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图.依据图中信息,解答下列问题:(1)接受这次调查的家长共有 人; (2)补全条形统计图;(3)在扇形统计图中,“很赞同”的家长占被调查家长总数的百分比是 ; (4)在扇形统计图中,“不赞同”的家长部分所对应扇形的圆心角度数是 度. 22.如图,ABC ∆中,90C ∠=︒.(1)用尺规作图作AB 边上的垂直平分线DE ,交AC 于点D ,交AB 于点E (保留作图痕迹,不要求写作法和证明);(2)在(1)条件下,连接BD ,当3BC cm =,5AB cm =时,求BCD ∆的周长.23.在一次“构造勾股数”的探究性学习中,老师给出了下表:其中m 、n 为正整数,且m n >.(1)观察表格,当2m =,1n =时,此时对应的a 、b 、c 的值能否为直角三角形三边的长?说明你的理由.(2)探究a ,b ,c 与m 、n 之间的关系并用含m 、n 的代数式表示:a = ,b = ,c = .(3)以a ,b ,c 为边长的三角形是否一定为直角三角形?如果是,请说明理由;如果不是,请举出反例.24.如图,在ABC ∆外作两个大小不同的等腰直角三角形,其中90DAB CAE ∠=∠=︒,AB AD =,AC AE =.连结DC 、BE 交于F 点.(1)求证:DAC BAE ∆≅∆; (2)求证:DC BE ⊥; (3)求证:DFA EFA ∠=∠;25.一个六边形的花坛被分割成7个部分,其中四边形PRBA ,RQDC ,QPFE 为正方形.记正方形PRBA ,RQDC ,QPFE 的面积分别为1S ,2S ,3S ,RH PQ ⊥,垂足为H .(友情提示:正方形的四个内角都等于90度,四边都相等)(1)若PR QR ⊥,116S =,29S =,则3S = ,RH = ;(2)若四边形PRBA ,RQDC ,QPFE 的面积分别为225m 、213m 、236m ①求PRQ ∆的面积;②请判断PRQ ∆和DEQ ∆的面积的数量关系,并证明你的结论;③六边形花坛ABCDEF 的面积是 2m .泉州市八年级(上)期末数学试卷答案一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)【考点】22:算术平方根;26:无理数 【专题】511:实数;61:数感【分析】根据无理数的概念对各选项进行逐一分析即可.、3-、0、3.1415、π、π共2个. 故选:A .【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001⋯,等有这样规律的数. 【考点】21:平方根 【专题】11:计算题【分析】原式利用平方根定义计算即可得到结果. 【解答】解:2(2)4±=,4∴的平方根是2±,故选:C .【点评】此题考查了平方根,熟练掌握平方根的定义是解本题的关键. 【考点】48:同底数幂的除法 【专题】11:计算题【分析】根据同底数幂的除法,底数不变指数相减进行选择. 【解答】解:m n x x x ÷=,m n x x -∴=, 1m n ∴-=.故选:C .【点评】本题考查同底数幂的除法,一定要与同底数幂的乘法,幂的乘方分开,不要混淆,一定要记准法则才能做题. 【考点】KS :勾股定理的逆定理【专题】554:等腰三角形与直角三角形;66:运算能力【分析】本题可对四个选项分别进行计算,看是否满足勾股定理的逆定理,若不满足则为答案.【解答】解:A 、2226810+=,能构成直角三角形,故不符合题意;B 、22272425+=,能构成直角三角形,故不符合题意;C 、222102426+=,能构成直角三角形,故不符合题意;D 、222456+≠,不能构成直角三角形,故符合题意.故选:D .【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.【考点】35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方 【分析】根据同类项合并法则,可以得到结果. 【解答】解:A 、正确;B 、236()a a =故错误;C 、235a a a =故错误;D 、32a a +不能合并故错误;故选:A .【点评】本题考查整式的加、减、乘、除、乘方的运算法则,记住法则是正确解题的关键.【专题】64:几何直观;67:推理能力【分析】利用全等三角形判定定理ASA ,SAS ,AAS 对各个选项逐一分析即可得出答案. 【解答】解:A 、12∠=∠,AD 为公共边,若BD CD =,则()ABD ACD SAS ∆≅∆;B 、12∠=∠,AD 为公共边,若AB AC =,不符合全等三角形判定定理,不能判定ABD ACD∆≅∆; C 、12∠=∠,AD 为公共边,若B C ∠=∠,则()ABD ACD AAS ∆≅∆;D 、12∠=∠,AD 为公共边,若BAD CAD ∠=∠,则()ABD ACD ASA ∆≅∆;故选:B .【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角. 【考点】KH :等腰三角形的性质;6K :三角形三边关系 【分析】根据等腰三角形的性质、三角形的三边关系解答即可. 【解答】解:三角形的三边长为13、13、6时,它的周长为32, 三角形的三边长为13、6、6时,不能组成三角形,∴三角形的周长为32,故选:C .【点评】本题考查的是等腰三角形的性质、三角形的三边关系,掌握三角形两边之和大于第三边是解题的关键. 【考点】VE :统计图的选择【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【解答】解:记录一天气温的变化情况,选用比较合适的统计图是折线统计图, 故选:C .【点评】本题考查的是统计图的选择,注意条形统计图能看出具体产量的多少,扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;表示的是事物的变化情况.【专题】554:等腰三角形与直角三角形;67:推理能力【分析】分三种情况讨论:①如图1,当10AB AD ==时;如图2,当10AB BD ==时;如图3,当AB 为底时,AD BD =.【解答】解:在Rt ABC ∆中,10AB =, ①如图1,当10AB AD ==时,6CD CB ==时, 6CD CB ==,得ABD ∆的等腰三角形. ②如图2,当10AB BD ==时,ABD ∆是等腰三角形;③如图3,当AB 为底时,AD BD =时,ABD ∆是等腰三角形. 故选:B .【点评】本题考查了等腰三角形的判定,解决本题的关键是正确认识到需要讨论,讨论等腰三角形的边应如何分类.【考点】4G :平方差公式的几何背景【分析】分别表示出两个图形的阴影部分的面积,即可得出选项.【解答】解:根据图形可知:第一个图形阴影部分的面积为22a b -,第二个图形阴影部分的面积为()()a b a b +-, 即22()()a b a b a b -=+-, 故选:A .【点评】本题考查了平方差公式的应用,能正确表示阴影部分的面积是解此题的关键. 二、填空题(每题4分,共24分) 【考点】4H :整式的除法【分析】根据多项式除以单项式,先把多项式的每一项都分别除以这个单项式,然后再把所得的商相加,可得答案. 【解答】解:原式3x =+. 故答案为:3x +.【点评】本题考查多项式除以单项式运算,多项式除以单项式,先把多项式的每一项都分别除以这个单项式,然后再把所得的商相加. 【考点】2A :实数大小比较;22:算术平方根 【专题】67:推理能力;511:实数【分析】本题需先把3 【解答】解:39=,∴∴3>;故答案为:>.【点评】本题主要考查了实数大小关系,在解题时要化成同一形式是解题的关键.【考点】6V :频数与频率【分析】首先计算数字的总数, 以及 1 出现的频数, 根据频率公式: 频率=频数总数即可求解 . 【解答】解: 数字的总数是 10 ,有 4 个 1 , 因而 1 出现的频率是:410100%40%÷⨯=. 故答案是:40%.【点评】本题考查了频数的计算公式, 理解公式是关键 .【考点】4C :完全平方公式【分析】把5a b +=两边完全平方后,再把3ab =整体代入解答即可. 【解答】解:把知5a b +=两边平方, 可得:22225a ab b ++=,把3ab =代入得:2225619a b +=-=, 故答案为:19.【点评】此题考查完全平方公式,关键是把原式完全平方后整体代入计算. 【考点】KK :等边三角形的性质【专题】554:等腰三角形与直角三角形;66:运算能力【分析】过A 作AD BC ⊥于D ,根据等边三角形的性质和三角形的面积公式即可得到结论. 【解答】解:如图,过A 作AD BC ⊥于D , ABC ∆是等边三角形, 60BAC ∴∠=︒,2AB BC ==, AD BC ⊥,90ADB ∴∠=︒,30BAD ∠=︒,AD AB ∴==ABC ∴∆的面积为122⨯=【点评】本题考查了等边三角形的性质,解直角三角形,三角形的面积公式,正确的理解题意是解题的关键.【考点】LA :菱形的判定与性质;PA :轴对称-最短路线问题【专题】558:平移、旋转与对称;67:推理能力;556:矩形 菱形 正方形【分析】(1)在A D O ∆中,由勾股定理可求得10AD =,由A C B D ⊥,AO CO =,可知DO 是AC 的垂直平分线,由线段垂直平分线的性质可知AD DC =;(2)由PM PH +为定值,当PB 最短时,PM PH PB ++有最小值,由垂线的性质可知当点P 与点O 重合时,OB 有最小值.【解答】解:(1)AC BD ⊥于点O ,AOD ∴∆为直角三角形.10AD ∴===.AC BD ⊥于点O ,AO CO =,10CD AD ∴==.故答案为:10;(2)如图1所示:连接PD .ADP CDP ADC S S S ∆∆∆+=, ∴111222AD PM DC PH AC OD +=,即1111010166222PM PH ⨯⨯+⨯⨯=⨯⨯. 10()166PM PH ∴⨯+=⨯.9648105PM PH ∴+==, ∴当PB 最短时,PM PH PB ++有最小值,由垂线段最短可知:当BP AC ⊥时,PB 最短. ∴当点P 与点O 重合时,PM PH PB ++有最小,最小值4878655=+=. 故答案为:10,785.【点评】本题主要考查了勾股定理、垂线段的性质、三角形的面积公式、垂线段的性质,利用面积以及三角形的面公式求得PM PH +的值是解答问题(2)的关键;利用垂线段的性质得到BP 垂直于AC 时,PM PH PB ++有最小值是解答问题(3)的关键.三、解答题(本大题共9小题,共86分.解答应写出文字说明,证明过程或演算步骤)【考点】2C :实数的运算【专题】11:计算题;511:实数【分析】原式利用算术平方根定义,绝对值的代数意义,以及立方根定义计算即可得到结果.【解答】解:原式413=--【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.【考点】4J :整式的混合运算-化简求值【分析】先算乘法,再合并同类项,最后代入求出即可.【解答】解:2(3)(3)(1)a a a +-+-22921a a a =-+-+210a =-+, 当12a =时,原式121092=-⨯+=. 【点评】本题考查了整式的混合运算和求值的应用,能正确根据整式的运算法则进行化简是解此题的关键.【考点】55:提公因式法与公式法的综合运用【专题】512:整式;62:符号意识【分析】(1)首先提取公因式x ,进而利用平方差公式分解因式即可;(2)首先提取公因式2,进而利用完全平方公式分解因式即可.【解答】解:(1)329(9)x x x x -=-(3)(3)x x x =+-;(2)22242a ab b ++222(2)a ab b =++22()a b =+.【点评】此题主要考查了公式法以及提取公因式法分解因式,正确应用公式是解题关键.【考点】KD :全等三角形的判定与性质【专题】14:证明题【分析】根据中线的定义可得BD CD =,然后利用“角角边”证明BDE ∆和CDF ∆全等,根据全等三角形对应边相等即可得证.【解答】证明:AD 是ABC ∆的中线,BD CD ∴=, BE AD ⊥,CF AD ⊥,90BED CFD ∴∠=∠=︒,在BDE ∆和CDF ∆中,BED CFD BDE CDF BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BDE CDF AAS ∴∆≅∆,BE CF ∴=【点评】本题考查了全等三角形的判定与性质,利用三角形全等证明边相等是常用的方法之一,要熟练掌握并灵活运用.【考点】VB :扇形统计图;VC :条形统计图【分析】(1)根据赞同的人数和所占的百分比求出总人数,再乘以无所谓所占的百分比求出无所谓的人数,用总人数减去其它的人数求出很赞同的人数,然后乘以360︒求出“很赞同”初中生带手机上学的家长所对应的圆心角的度数;(2)根据(1)求出无所谓的人数可直接画出条形统计图;(3)根据学生现在正需要好好地学习,不应该带手机,网络这么发达,会影响学习.【解答】解:(1)本次调查的学生家长有5020025%=(名), 无所谓的人数是:20020%40⨯=(人),很赞同的人数是:20050409020---=(人),故答案为200人.(2)根据(1)求出的无所谓的人数是40,补图如下:(3)20100%10%200⨯=. 故答案为10%.(4)“不赞同”的家长部分所对应扇形的圆心角度数90360162200︒⨯=︒, 故答案为162.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.【考点】KG :线段垂直平分线的性质;KQ :勾股定理;3N :作图-复杂作图【专题】13:作图题【分析】(1)作线段AB 的垂直平分线即可;(2)先根据勾股定理计算出4AC =,再利用线段垂直平分线的性质得到DA DB =,则可把BCD ∆的周长转为AC 与BC 的和,从而达到解决问题的目的. 【解答】解:(1)如图;(2)在Rt ABC ∆中,5AB =,3BC =,4AC ∴=, DE 为AB 的中垂线,DA DB ∴=,BCD ∴∆的周长347()BC BD CD BC AD CD BC AC cm =++=++=+=+=.【点评】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段垂直平分线的性质.【考点】KS :勾股定理的逆定理【分析】(1)计算出a 、b 、c 的值,根据勾股定理的逆定理判断即可;(2)根据给出的数据总结即可;(3)分别计算出2a 、2b 、2c ,根据勾股定理的逆定理进行判断.【解答】解:(1)当2m =,1n =时,5a =、4b =、3c =,222345+=,a ∴、b 、c 的值能为直角三角形三边的长;(2)观察得,22a m n =+,2b mn =,22c m n =-;(3)以a ,b ,c 为边长的三角形一定为直角三角形,22224224()2a m n m m n n =+=++,224224224224242b c m m n n m n m m n n +=-++=++,222a b c ∴=+,∴以a ,b ,c 为边长的三角形一定为直角三角形.【点评】本题考查的是勾股定理的逆定理,掌握如果三角形的三边长a ,b ,c 满足222a b c +=,那么这个三角形就是直角三角形是解题的关键.【考点】KD :全等三角形的判定与性质;KW :等腰直角三角形【专题】553:图形的全等;67:推理能力;554:等腰三角形与直角三角形【分析】(1)由题意可得AD AB =,AC AE =,由90DAB CAE ∠=∠=︒,可得到DA C B A E ∠=∠,从而可证DAC BAE ∆≅∆;(2)由(1)可得ACD AEB ∠=∠,再利用直角三角形的性质及等量代换即可得到结论;(3)作A M D C ⊥于M ,AN BE ⊥于N ,利用全等三角形的面积相等及角平分线的判定即可证得结论.【解答】(1)证明:90DAB CAE ∠=∠=︒,DAB BAC CAE BAC ∴∠+∠=∠+∠,即DAC BAE ∠=∠,在DAC ∆与BAE ∆中,AD AB DAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩,()DAC BAE SAS ∴∆≅∆;(2)证明:DAC BAE ∆≅∆ACD AEB ∴∠=∠90AEB ANE ∠+∠=︒ANE FNC ∠=∠90FNC ACD ∴∠+∠=︒90NFC ∴∠=︒DC BE ∴⊥;(3)证明:如图,作AM DC ⊥于M ,AN BE ⊥于N ,DAC BAE ∆≅∆DAC BAE S S ∆∆∴=,DC BE =, ∴1122DC AM BE AN =, AM AN ∴=,AF ∴平分DFE ∠,DFA EFA ∴∠=∠.【点评】本题主要考查全等三角形的判定和性质,及直角三角形的性质,角平分线的判定等知识;熟练掌握全等三角形的判定和性质是解决本题的关键.【考点】LE :正方形的性质;KD :全等三角形的判定与性质【专题】556:矩形 菱形 正方形;67:推理能力;553:图形的全等【分析】(1)根据勾股定理和正方形的面积公式即可得到结论;(2)①设PH a =,则6QH a =-,根据勾股定理列方程得到4a =,根据三角形的面积公式即可得到结论;②延长RQ 到点M ,使QM RQ =,连结PM ,根据全等三角形的性质即可得到结论 ③根据总面积等于各部分的面积之和列式计算即可得解.【解答】解:(1)PR QR ⊥,90PRQ ∴∠=︒,222PR RQ PQ ∴+=,116S =,29S =,316925S ∴=+=,4PR ∴=,3RQ =,5PQ =,RH PQ ⊥, ∴1122PR RQ PQ RH =, 341255RH ⨯∴==, 故答案为:25,2.4;(2)①设PH a =,则6QH a =-,22222RH PR PH RQ HQ =-=-,222513(6)a a ∴-=--,解得:4a =,222RH PR PH ∴=-2516=-9=,3RH ∴=,16392PQR S ∆∴=⨯⨯=;②PRQ DQE S S ∆∆=,证明:延长RQ 到点M ,使QM RQ =,连结PM ,QD QM =,DQE MQP ∠=∠,QE QP =()DQE MQP SAS ∴∆≅∆,DQE MQP S S ∆∆∴=,RQ QM =,PRQ MQP S S ∆∆∴=,PRQ DQE S S ∆∆∴=;③六边形花坛ABCDEF 的面积2251336497436110m =+++⨯=+=.故答案为:110.【点评】本题考查了勾股定理,构图法求三角形的面积,全等三角形的判定与性质,读懂题目信息,理解构图法的操作方法是解题的关键.。
平方根表及算法
![平方根表及算法](https://img.taocdn.com/s3/m/c5494bc0d15abe23482f4de4.png)
i = 0x5f3759df - (i >> 1); // 计算第一个近似根
超级莫名其妙的语句,不是吗?但仔细想一下的话,还是可以理解的。我们知道,IEEE 标准下,float类型的数据在32位系统上是这样表示的(大体来说 31:符号位 30-23:共8位,保存指数(E) 22-0:共23位,保存尾数(M)
x[n+1]=1/2*x[n]*(3-a*x[n]*x[n])
将1/2放到括号里面,就得到了上面那个函数的倒数第二行。
接着,我们要设法估计第一个近似根。这也是上面的函数最神奇的地方。它通过某种
方法算出了一个与真根非常接近的近似根,因此它只需要使用一次迭代过程就获得了较 满意的解。它是怎样做到的呢?所有的奥妙就在于这一行:
值得注意的是,在 Chris Lomont 的演算中,理论上最优秀的常数(精度最高)是0× 5f37642f,并且在实际测试中,如果只使用一次迭代的话,其效果也是最好的。但奇怪 的是,经过两次 NR后,在该常数下解的精度将降低得非常厉害(天知道是怎么回事!)。 经过实际的测试,Chris Lomont 认为,最优秀的常数是 0×5f375a86。如果换成64位 的double版本的话,算法还是一样的,而最优常数则为 0×5fe6ec85e7de30da(又一个 令人冒汗的Magic Number - -b)。
哪么这种计算方法是怎么得来的呢?查找了好久都没有找到答案。静下心来仔细 分平方根的计算过程,后来的步骤都有 20 乘以也有的商再加上预计的商乘上预 计的商。设也有的商为 a 预计的商为 b 就是(20*a+b)*b 即 20ab+b*b。而实质上 预计的商是平方根中已有的商的后一位数字,平方根实际为 10a+b 再乘以 10 的 N 次方(N 为整数),这里我们可以简化为平方根为 10a+b(因为乘 10 的 N 次 方只影响平方的小数点位置,对数字计算没有影响)。
苏科版八年级上册数学期中考试试题附答案
![苏科版八年级上册数学期中考试试题附答案](https://img.taocdn.com/s3/m/0a842d20a36925c52cc58bd63186bceb19e8edc8.png)
苏科版八年级上册数学期中考试试卷一、单选题1.下列四个标志是关于安全警示的标志,在这些标志中,是轴对称图形的是()A.B.C.D.2.4的平方根是()A.±2B.2C.-2D.±83.下列每一组数据中的三个数值分别为三角形的三边长,能构成直角三角形的是()A.3、4、5B.7、8、10C.5、12、14D.2、3、44.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为()A.40°B.100°C.40°或100°D.70°或50°5.一个等腰三角形的两边长分别是2和7,则它的周长是()A.11B.16C.15D.11或166.等边三角形中,两条中线所夹的锐角的度数为A.30°B.40°C.50°D.60°7.在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适 ()当的位置是在ABCA.三边中线的交点B.三边垂直平分线的交点C.三条角平分线的交点D.三边上高的交点8.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB 的长度为()A.5B.6C.7D.259.已知()22x -,求x+y 的值()A .-1B .-3C .1D .310.如图,DE 是△ABC 中AC 边上的垂直平分线,如果BC=5cm ,AB=6cm ,则△EBC 的周长为()A .8cmB .9cmC .10cmD .11cm二、填空题11.9的算术平方根是.12.等腰三角形的一个内角120°,则它的底角是_____.13.直角三角形的两条直角边长为6,8,那么斜边上的中线长是____.14.直角三角形的一直角边长4cm ,斜边长5cm ,则其斜边上的高是__________cm .15.在△ABC 中,∠A =80°,当∠B =_____时,△ABC 是等腰三角形.16.如图,∠1=∠2,要使△ABE ≌△ACE ,需添加一个条件是__________.(填上一个条件即可)17.如图,点E 在正方形ABCD 内,满足90AEB =︒∠,3AE =,4BE =,则阴影部分的面积是________.18.如图所示,已知△ABC 的周长是12,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D,且OD=3,则△ABC的面积是_____________三、解答题19.计算:求出下列x的值.x-=(1)x2=16(2)()316420.已知:如图,AC∥DF,AC=DF,AB=DE.求证:(1)△ABC≌△DEF;(2)BC∥EF.21.如图,△ABC中,∠B=90°,BC上一点D,BD=6,CD=10(1)若AD平分∠BAC,求点D到AC边的距离;(2)若点D恰好在AC边的垂直平分线上,求AB的长.22.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△BDE≌△CEF;(2)当∠A=40°时,求∠B和∠EDF的度数;23.已知△ABC中,AB=AC,CD⊥AB于D.(1)若∠A=40°,求∠B和∠BCD的度数;(2)若AC=5,CD=3,求BD和BC的长.24.钓鱼岛是中国的固有领土.近期我国海监船加大钓鱼岛海域的巡航维权力度.如图,OA OB,OA=90海里,OB=30海里,钓鱼岛位于O点,我国海监船在点B处发现有一不明国籍的渔船自A点出发沿着AO方向匀速驶向钓鱼岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置.(不写作法,保留作图痕迹)(2)求我国海监船行驶的航程BC的长.25.在△ABC和△DEC中,AC=BC,DC=EC,∠ACB=∠ECD=90°,(1)如图1,当点A、C、D在同一条直线上时,AC=4,EC=3,①求证:AF⊥BD;②AF的长度为直接写出答案);(2)如图2,当点A、C、D不在同一条直线上时,求证:AF⊥BD;(3)如图3,在(2)的条件下,连接CF并延长CF交AD于点G,则∠FCD+∠FEC=(直接写出答案)26.如图,长方形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上的E点处,折痕的一端G点在边BC上.(1)如图1,当折痕的另一端F在AB边上且AE=4时,求AF的长(2)如图2,当折痕的另一端F在AD边上且BG=10时,①求证:EF=EG;②求AF的长.(3)如图3,当折痕的另一端F在AD边上,B点的对应点E在长方形内部,E到AD的距离为2cm,且BG=10时,求AF的长.参考答案1.D【解析】【分析】根据轴对称图形的定义,逐一判断选项,即可.【详解】A.不是轴对称图形,不符合题意,B.不是轴对称图形,不符合题意,C.不是轴对称图形,不符合题意,D.是轴对称图形,符合题意,故选D【点睛】本题主要考查轴对称图形的定义,熟练掌握轴对称图形的定义,是解题的关键.2.A【解析】【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的一个平方根.【详解】解:∵(±2)2=4,∴4的平方根是±2,故选:A.【点睛】本题主要考查平方根的定义,熟练掌握平方根的定义是解题的关键.3.A【解析】【分析】判断是否为直角三角形,这里给出三边的长,只要验证两小边的平方和是否等于最长边的平方即可.A、32+42=52,能构成直角三角形,故此选项符合题意;B、72+82≠102,不能构成直角三角形,故此选项不符合题意;C、52+122≠142,不能构成直角三角形,故此选项不符合题意;D、22+32≠42,不能构成直角三角形,故此选项不符合题意.故选:A.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4.C【解析】【分析】根据等腰三角形的性质及三角形的内角和定理即可求得结果.【详解】解:①当等腰三角形的一个底角为40°时,它的顶角为180°-40°×2=100°②当等腰三角形的一个顶角为40°时,它的顶角为40°故选:C.【点睛】本题考查了等腰三角形的性质,三角形的内角和定理,解答本题的关键是熟练掌握等腰三角形的两个底角相等,三角形的内角和为180°.5.B【解析】【分析】题目给出等腰三角形有两条边长为2和7,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:分两种情况:当腰为2时,2+2<7,所以不能构成三角形;当腰为7时,2+7>7,所以能构成三角形,周长是:2+7+7=16.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.6.D【解析】【分析】如图,等边三角形ABC中,根据等边三角形的性质知,底边上的高与底边上的中线,顶角的平分线重合,所以∠1=∠2=12∠ABC=30°,再根据三角形外角的性质即可得出结论.【详解】解:如图,∵等边三角形ABC,AD、BE分别是中线,∴AD、BE分别是角平分线,∴∠1=∠2=12∠ABC=30°,∴∠3=∠1+∠2=60°.故选:D.【点睛】本题考查的是等边三角形的性质,熟知等边三角形三线合一的性质是解答此题的关键.7.B【解析】【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.解:∵三角形的三条边的垂直平分线的交点到中间的凳子的距离相等,∴凳子应放在△ABC的三边中垂线的交点最适当.故选:B.【点睛】本题主要考查了游戏的公平性与线段垂直平分线的性质的应用;利用所学的数学知识解决实际问题是一种能力,要注意培养.想到要使凳子到三个人的距离相等是正确解答本题的关键.8.A【解析】【分析】建立格点三角形,利用勾股定理求解AB的长度即可.【详解】解:如图所示:AB==.5故选:A.【点睛】本题考查了勾股定理的知识,解题的关键是掌握格点三角形中勾股定理的应用.9.C【解析】【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【详解】x-+=0,解:∵()22∴x-2=0,y+1=0,∴x=2,y=-1,∴x+y=2-1=1,故选:C.【点睛】本题考查了代数式的求值,非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.D【解析】【分析】利用线段垂直平分线的性质得AE=CE,再等量代换即可求得三角形的周长.【详解】解:∵DE是△ABC中AC边的垂直平分线,∴AE=CE,∴AE+BE=CE+BE=AB=6cm,∴△EBC的周长=BC+BE+CE=5+6=11(cm).故选:D.【点睛】本题主要考查了线段垂直平分线的性质,利用线段进行等量代换是解答本题的关键.11.3【解析】【分析】根据一个正数的算术平方根就是其正的平方根即可得出.【详解】∵239 ,∴9算术平方根为3.故答案为:3.【点睛】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.12.30°【解析】【分析】因为三角形的内角和为120°,所以120°只能为顶角,从而可求出底角.【详解】∵120°为三角形的顶角,∴底角为:(180°﹣120°)÷2=30°.故答案为30°.【点睛】本题考查等腰三角形的性质,等腰三角形的两个底角相等,从而可求出解.13.5【解析】【分析】先根据勾股定理求出斜边的长,再根据斜边上的中线等于斜边的一半求解即可.【详解】解:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10.∴斜边上的中线长=12×10=5.故答案为:5.【点睛】本题主要考查了勾股定理的应用和直角三角形斜边上的中线等于斜边的一半,关键是能正确求出斜边的长度.14.2.4【解析】【分析】根据勾股定理求出直角三角形另一条一直角边,根据三角形的面积公式计算即可.【详解】解:设斜边上的高为hcm,=3,由三角形的面积公式可得,1 2×3×4=12×h×5,解得,h=12 2.45=,故答案为:2.4.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.15.20°或50°或80°【解析】【分析】分三种情况分析,A ∠是顶角,B Ð是顶角,C ∠是顶角,【详解】∵80A ∠=︒,∴①当C ∠是顶角,80B A ∠=∠=︒时,△ABC 是等腰三角形;②当A ∠是顶角,∠B=(180°﹣80°)÷2=50°时,△ABC 是等腰三角形;③B Ð是顶角,∠B=180°﹣80°×2=20°时,△ABC 是等腰三角形;故答案为:80°或50°或20°16.∠B=∠C (或BE=CE 或∠BAE=∠CAE )【解析】【分析】根据题意,易得∠AEB=∠AEC ,又AE 公共,所以根据全等三角形的判定方法容易寻找添加条件.【详解】解:∵∠1=∠2,∴∠AEB=∠AEC ,又AE 是公共边,∴当∠B=∠C 时,△ABE ≌△ACE (AAS );当BE=CE 时,△ABE ≌△ACE (SAS );当∠BAE=∠CAE 时,△ABE ≌△ACE (ASA ).故答案为:∠B=∠C (或BE=CE 或∠BAE=∠CAE ).【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.17.19【解析】【分析】根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.【详解】解:∵在Rt△AEB中,∠AEB=90°,AE=3,BE=4,由勾股定理得:AB=5,∴正方形的面积是5×5=25,∵△AEB的面积是12AE×BE=12×3×4=6,∴阴影部分的面积是25-6=19,故答案为:19.18.18【分析】过点O作OE⊥AB于E,作OF⊥AC于F,根据角平分线上的点到角的两边的距离相等可得OE=OD=OF,然后根据三角形的面积列式计算即可得解.【详解】解:如图,过点O作OE⊥AB于E,作OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,OD⊥BC,∴OE=OD=OF=3,∴△ABC的面积=12×(AB+BC+CA)×3=12×12×3=18.故答案为:18.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.注意:角平分线上的点到角的两边的距离相等.19.(1)x=±4;(2)x=5【解析】【分析】(1)直接利用平方根的定义计算得出答案;(2)直接利用立方根的定义计算得出答案.【详解】解:(1)x 2=16,解得:x=±4;(2)(x-1)3=64,故x-1=4,解得:x=5.【点睛】本题主要考查了立方根和平方根,正确掌握相关定义是解题关键.20.(1)见解析;(2)见解析【解析】【分析】(1)由平行线的性质可得∠A=∠FDE ,再由已知即可证得结论;(2)由全等三角形的性质可得∠ABC=∠E ,由平行线的判定定理即可得到结论.(1)∵AC ∥DF∴∠A=∠FDE在△ABC 和△DEF 中AC DFA FDE AB DE=⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF(SAS)(2)∵△ABC≌△DEF∴∠ABC=∠E∴BC∥EF【点睛】本题考查了全等三角形的判定与性质、平行线的判定与性质,掌握这两个判定与性质是关键.21.(1)6;(2)8【解析】【分析】(1)过点D作DH⊥AC于点H,根据角平分线的性质可得出结论;(2)根据D恰好在AC边的垂直平分线上得出AD=CD=10,在Rt△ABD中根据勾股定理即可得出AB的长.【详解】(1)过点D作DH⊥AC于点H,∵AD平分∠BAC,∠B=90°,∴DH=BD=6,即点D到AC边的距离是3;(2)∵点D恰好在AC边的垂直平分线上,∴AD=CD=10,在Rt△ABD中,∵AD=10,BD=6,∴8=.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.22.(1)见解析;(2)∠B=70°;∠EDF=55°【解析】【分析】(1)由等腰三角形的性质可知B C ∠=∠,即可直接利用“SAS”证明BDE CEF ≅ .(2)根据三角形内角和定理和等腰三角形的性质可求出B Ð的大小,再根据全等三角形的性质可推出BDE CEF ∠=∠,DE EF =,进而得出EDF EFD ∠=∠.再次根据三角形内角和定理和平角可得出180B BDE BED DEF CEF BED ∠+∠+∠=∠+∠+∠=︒,即得到70B DEF ∠=∠=︒,最后再次利用三角形内角和定理和等腰三角形的性质即可求出答案.【详解】解:(1)∵AB=AC∴B C ∠=∠.在BDE 和CEF △中BE CF B C BD CE =⎧⎪∠=∠⎨⎪=⎩,∴()BDE CEF SAS ≅ .(2)∵40A ∠=︒,∴1(180)702B C A ∠=∠=︒-∠=︒.∵BDE CEF ≅ ,∴BDE CEF ∠=∠,DE EF =,∴EDF EFD ∠=∠.∵180B BDE BED DEF CEF BED ∠+∠+∠=∠+∠+∠=︒∴70B DEF ∠=∠=︒,∴1(180)552EDF EFD DEF ∠=∠=︒-∠=︒.23.(1)∠B=70°,∠BCD=20°;(2)BD=1,【分析】(1)在△ABC 中,AB=AC ,∠A=40°,利用等腰三角形的性质求出∠B 的度数,在Rt △CBD 中,求出∠BCD 的度数;(2)在Rt △CDA 中,利用勾股定理求出AD 的长,然后求出BD 的长,再在Rt △CDB 中,利用勾股定理求出BC 的长即可.【详解】解:(1)∵在△ABC 中,AB=AC ,∠A=40°,∴∠B=12×(180°-40°)=70°,又∵CD ⊥AB 于D ,∴在Rt △CBD 中,∠BCD=90°-∠B=20°;(2)在Rt △CDA 中,∵AC=AB=5,CD=3,∴,∴BD=AB-AD=5-4=1.在Rt △CDB 中,CD=3,BD=1,∴=24.(1)见解析;(2)我国渔政船行驶的航程BC 的长为50海里【分析】(1)利用尺规作图作AB 的垂直平分线即可;(2)设BC 为x 海里,在Rt OBC ∆利用勾股定理列方程即可解题.【详解】解:(1)作AB 的垂直平分线与OA 交于点C ;(2)连接BC ,设BC 为x 海里,则CA 也为x 海里,OC 为(90-x)海里∵∠O=90°,∴在Rt OBC ∆中,222BO OC BC +=,即:302+(90-x)2=x 2解得:x=50,答:我国渔政船行驶的航程BC 的长为50海里【点睛】本题考查了勾股定理的应用以及线段垂直平分线的性质,利用勾股定理不仅仅能求直角三角形的边长,而且它也是直角三角形中一个重要的等量关系.25.(1)①见解析;②AF=5.6;(2)见解析;(3)45°【解析】【分析】(1)①证明△ACE ≌△BCD ,得到∠1=∠2,由对顶角相等得到∠3=∠4,所以∠BFE=∠ACE=90°,即可解答;②根据勾股定理求出BD ,利用△ABD 的面积的两种表示方法,即可解答;(2)证明△ACE ≌△BCD ,得到∠1=∠2,又由∠3=∠4,得到∠BFA=∠BCA=90°,即可解答;(3)∠AFG=45°,如图3,过点C 作CM ⊥BD ,CN ⊥AE ,垂足分别为M 、N ,由△ACE ≌△BCD ,得到S △ACE=S △BCD ,AE=BD ,证明得到CM=CN ,得到CF 平分∠BFE ,由AF ⊥BD ,得到∠BFE=90°,所以∠BFC=45°,根据三角形外角的性质即可得到∠FCD+∠FEC=45°.【详解】(1)①证明:如图1,在△ACE 和△BCD 中,∵90AC BC ACB ECD EC DC =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ACE ≌△BCD ,∴∠1=∠2,∵∠3=∠4,∴∠BFE=∠ACE=90°,∴AF ⊥BD ;②∵∠ECD=90°,BC=AC=4,DC=EC=3,∴=5,∵S △ABD=12AD•BC=12BD•AF ,即12×(4+3)×4=12×5•AF ,∴AF=5.6;(2)证明:如图2,∵∠ACB=∠ECD=90°,∴∠ACB+∠ACD=∠ECD+∠ACD ,∴∠BCD=∠ACE ,在△ACE ≌△BCD 中,AC BCACE BCD EC DC=⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD ,∴∠1=∠2,∵∠3=∠4,∴∠BFA=∠BCA=90°,∴AF ⊥BD ;(3)∠FCD+∠FEC=45°,如图3,过点C 作CM ⊥BD ,CN ⊥AE ,垂足分别为M 、N ,∵△ACE ≌△BCD ,∴S △ACE=S △BCD ,AE=BD ,∠FEC=∠FDC ,∵S △ACE=12AE•CN ,S △BCD=12BD•CM ,∴CM=CN ,∵CM ⊥BD ,CN ⊥AE ,∴CF 平分∠BFE ,∵AF ⊥BD ,∴∠BFE=90°,∴∠BFC=45°,∴∠FCD+∠FEC=∠FCD+∠FDC=∠BFC=45°.【点睛】本题考查了全等三角形的判定定理与性质定理,角平分线的判定和性质,解决本题的关键是证明△ACE ≌△BCD ,得到三角形的面积相等,对应边相等.26.(1)3;(2)①见解析,②6;(3)223【分析】(1)根据翻折的性质可得BF =EF ,然后用AF 表示出EF ,在Rt △AEF 中,利用勾股定理列出方程求解即可;(2)①根据翻折的性质可得∠BGF =∠EGF ,再根据两直线平行,内错角相等可得∠BGF =∠EFG ,从而得到∠EGF =∠EFG ,再根据等角对等边证明即可;②根据翻折的性质可得EG =BG ,HE =AB ,FH =AF ,然后在Rt △EFH 中,利用勾股定理列式计算即可得解;(3)设EH 与AD 相交于点K ,过点E 作MN ∥CD 分别交AD 、BC 于M 、N ,然后求出EM、EN,在Rt△ENG中,利用勾股定理列式求出GN,再根据△GEN和△EKM相似,利用相似三角形对应边成比例列式求出EK、KM,再求出KH,然后根据△FKH和△EKM相似,利用相似三角形对应边成比例列式求解即可.【详解】(1)解:∵纸片折叠后顶点B落在边AD上的E点处,∴BF=EF,∵AB=8,∴EF=8﹣AF,在Rt△AEF中,AE2+AF2=EF2,即42+AF2=(8﹣AF)2,解得AF=3;(2)①证明:∵纸片折叠后顶点B落在边AD上的E点处,∴∠BGF=∠EGF,∵长方形纸片ABCD的边AD∥BC,∴∠BGF=∠EFG,∴∠EGF=∠EFG,∴EF=EG;②解:∵纸片折叠后顶点B落在边AD上的E点处,∴EG=BG=10,HE=AB=8,FH=AF,∴EF=EG=10,在Rt△EFH中,FH6,∴AF=FH=6;(3)解:如图3,设EH与AD相交于点K,过点E作MN∥CD分别交AD、BC于M、N,∵E到AD的距离为2cm,∴EM=2,EN=8﹣2=6,在Rt△ENG中,GN=8,∵∠GEN+∠KEM=180°﹣∠GEH=180°﹣90°=90°,∠GEN+∠NGE=180°﹣90°=90°,∴∠KEM=∠NGE,又∵∠ENG=∠KME=90°,∴△GEN∽△EKM,∴EKEG=KMEN=EMGN,即EK10=KM6=28,解得EK=52,KM=32,∴KH=EH﹣EK=8﹣52=112,∵∠FKH=∠EKM,∠H=∠EMK=90°,∴△FKH∽△EKM,∴FHEM=KHKM,即FH2=11232,解得FH=22 3,∴AF=FH=22 3.。
人教版七年级下册数学《期中考试题》(含答案)
![人教版七年级下册数学《期中考试题》(含答案)](https://img.taocdn.com/s3/m/b8072b04657d27284b73f242336c1eb91a3733eb.png)
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.下列各图中,∠1和∠2是对顶角的是( ) A. B. C. D.2.4的算术平方根是( )A. -2B. 2C. 2±D. 23.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,能用其中一部分平移得到的是() A. B.C. D.4.如图是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段( )的长.A. BCB. BQC. APD. CP5.已知1∠与2∠互为补角,1120∠=︒,则2∠的余角的度数为( )A. 30B. 40︒C. 60︒D. 120︒6.在722,3.33,2π,122-,0.04445555⋯,0.9-1273127,无理数个数有( )A. 2个B. 3个C. 4个D. 5个7.如图,点E 在AD 的延长线上,下列条件中能判断BC ∥AD 的是( )A. ∠3=∠4B. ∠A +∠ADC =180°C. ∠1=∠2D. ∠A =∠58.平面直角坐标系内有一点P(-2020,-2020),则点P 在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限9.如图,三角板的直角顶点放在直线上,已知a b ∥,128∠=︒,则2∠的度数为( )A. 28︒B. 56︒C. 62︒D. 152︒10.如图,E,F 分别是AB,CD 上的点,G 是BC 的延长线上一点,且∠B=∠DCG=∠D ,则下列结论不一定成立的是( )A. ∠AEF=∠EFCB. ∠A=∠BCFC. ∠AEF=∠EBCD. ∠BEF+∠E FC =180°二、填空题11.如图直线AB 、CD 相交于点O ,OE ⊥AB ,O 为垂足,如果∠EOD=38°,则∠COB=_______.12.一个小区大门的栏杆如图所示,BA 垂直地面AE 于,CD 平行于地面AE ,那么ABC BCD ∠+∠=_________.13.把命题“对顶角相等”改写成“如果…那么…”的形式是__________________.14.某宾馆在重新装修后,准备在大厅的楼梯上铺上某种规格的红色地毯,其侧面如图,则至少需要购买地毯____米.15.49的平方根是_______;-125的立方根是_______;81的值是_______. 16.已知 a , b 为两个连续整数,且a<15 <b ,则 a+b 的值为______.17.平面直角坐标系内,点P(3,﹣4)到y 轴的距离是_____.18.已知点A(a ,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是______.三、解答题19.计算:(1)(6+3)-3(2)37+2720.利用平方根(或立方根)的概念解下列方程:(1)9(x-3)2=64;(2)(2x-1)3=-8.21.如图,直线CD 与直线AB 相交于C ,根据下列语句画图、解答.(1)过点P 作PQ ∥CD ,交AB 于点Q ;(2)过点P 作PR ⊥CD ,垂足R ;(3)若∠DCB=120°,猜想∠PQC 是多少度?并说明理由22.已知7a -和24a +是某正数的两个平方根,7b -的立方根是1.(1)求a b 、值;(2)求+a b 的算术平方根.23.如图,AD ⊥BC ,垂足为D ,点E 、F 分别在线段AB 、BC 上,EF ⊥BC ,∠CAD =∠DEF ,(1)求证:EF∥AD;(2)判断ED与AC的位置关系,并证明你的猜想.24.如图是某校的平面示意图,已知图书馆、行政楼的坐标分别为(-3,2),(2,3).完成以下问题:(1)请根据题意在图上建立直角坐标系;(2)写出图上其他四个地点实验楼、校门口、综合楼、信息楼的坐标;(3)在图中用点P表示体育馆(-1,-3)的位置.25.把一张长方形纸片ABCD沿EF折叠后ED与BC交点为G,D、C分别在M、N的位置上,若∠EFG=55°,求∠1和∠2的度数.26.如图AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE.解:∵AB∥CD(已知)∴∠4=∠()∵∠3=∠4(已知)∴∠3=∠()∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(即∠=∠() ∴∠3=∠∴AD∥BE()答案与解析一、选择题1.下列各图中,∠1和∠2是对顶角的是()A. B. C. D.[答案]D[解析][分析]根据对顶角的两边互为反向延长线对各图形分析判断后进行解答.[详解]解:根据对顶角的定义可得,D是对顶角,故选D.[点睛]本题主要考查了对顶角的定义,熟记对顶角的定义是解决本题的关键.2.4的算术平方根是( )± D. 2A. -2B. 2C. 2[答案]B[解析]试题分析:因224=,根据算术平方根的定义即可得4的算术平方根是2.故答案选B.考点:算术平方根的定义.3.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,能用其中一部分平移得到的是( )A. B.C. D.[答案]D[解析][分析]根据图形平移与翻折变换的性质解答即可.[详解]解:由图可知,A 、B 、C 利用图形的翻折变换得到,D 利用图形的平移得到.故选:D .[点睛]此题考查的是翻折和平移的判断,掌握图形平移与翻折变换的性质是解决此题的关键.4.如图是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段( )的长.A. BCB. BQC. APD. CP[答案]C[解析]分析]根据垂线段最短解答. [详解]解:依据垂线段最短,他的跳远成绩是线段起跳线AP 的长,故选:C .[点睛]本题考查了垂线段最短性质的运用,解答此题的关键是熟练掌握由点到直线的距离的定义. 5.已知1∠与2∠互为补角,1120∠=︒,则2∠的余角的度数为( )A. 30B. 40︒C. 60︒D. 120︒ [答案]A[解析][分析]根据互为邻补角的两个角的和等于180°求出∠2,再根据互为余角的两个角的和等于90°列式计算即可得解.[详解]∵∠1与∠2互为邻补角,∠1=120°,∴∠2=180°-∠1=180°-120°=60°,∴∠2的余角的度数为90°-60°=30°.故选:A .[点睛]此题考查邻补角和余角的定义,是基础题,熟记概念是解题的关键.6.在722,3.33,2π,122-,0.04445555⋯,0.9-1273127,无理数的个数有( ) A. 2个B. 3个C. 4个D. 5个[答案]B[解析][分析]根据无理数的定义求解即可.[详解]解:2π,0.04445555⋯,0.9-共3个无理数 故选B.[点睛]此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,2,0.8080080008…(每两个8之间依次多1个0)等形式.7.如图,点E 在AD 的延长线上,下列条件中能判断BC ∥AD 的是( )A. ∠3=∠4B. ∠A +∠ADC =180°C. ∠1=∠2D. ∠A =∠5[答案]C[解析]A. ∵∠3=∠4 ,∴ AB ∥CD (内错角相等,两直线平行),故不正确;B. ∵∠A+∠ADC=180°,∴ AB ∥CD (同旁内角互补,两直线平行),故不正确;C. ∵∠1=∠2,∴ AB ∥CD (内错角相等,两直线平行),故正确;D. ∵∠A=∠5,∴ AB ∥CD (同位角相等,两直线平行),故不正确;故选C.8.平面直角坐标系内有一点P(-2020,-2020),则点P 在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 [答案]C[解析][分析]根据平面直角坐标系内各象限内点的坐标符号特征判定即可.[详解]点P(-2020,-2020)在第三象限内,故选:C .[点睛]本题考查平面直角坐标系内象限及点的坐标符号,熟练掌握各象限内点的坐标符号特征是解答的关键.9.如图,三角板的直角顶点放在直线上,已知a b ∥,128∠=︒,则2∠的度数为( )A. 28︒B. 56︒C. 62︒D. 152︒[答案]C[解析][分析] 根据平行线的性质,可得:∠3=∠1=28°,结合∠4=90°,即可求解.[详解]∵三角板的直角顶点放在直线上,a b ∥,∴∠3=∠1=28°,∵∠4=90°,∴∠5=180°-90°-28°=62°,∴∠2=∠5=62°.故选C .[点睛]本题主要考查平行线的性质定理,掌握两直线平行,同位角相等,是解题的关键.10.如图,E,F 分别是AB,CD 上的点,G 是BC 的延长线上一点,且∠B=∠DCG=∠D ,则下列结论不一定成立的是( )A. ∠AEF=∠EFCB. ∠A=∠BCFC. ∠AEF=∠EBCD. ∠BEF+∠EFC=180° [答案]C[解析][分析]先根据平行线的判定得到AD∥BG,AB∥DC,再利用平行线的性质对各个选项进行判断即可. [详解]解:∵∠B=∠DCG=∠D,∴AB∥DC(同位角相等,两直线平行),AD∥BG(内错角相等,两直线平行),∴∠AEF=∠EFC(两直线平行,内错角相等),∠BEF+∠EFC=180°(两直线平行,同旁内角互补),∠A+∠B=180°,∠B+∠BCF=180°(两直线平行,同旁内角互补),∴∠A=∠BCF(等量代换),∵EF与BC不一定平行,∴无法证明∠AEF=∠EBC.故选C.[点睛]本题主要考查平行线的判定与性质,解此题的关键在于熟练掌握其知识点.二、填空题11.如图直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=38°,则∠COB=_______.[答案]128°[解析][分析]根据垂直的定义得出∠AOE=90°,最后根据∠COB=∠AOD=∠AOE +∠EOD进行求解.[详解]∵OE⊥AB,∠EOD=38°,∴∠AOE=90°,∴∠COB=∠AOD=∠AOE +∠EOD=90°+38°=128°,故答案为:128°.[点睛]本题考查垂直的定义,对顶角的性质,熟练掌握对顶角相等是解题的关键.12.一个小区大门的栏杆如图所示,BA垂直地面AE于,CD平行于地面AE,那么∠+∠=_________.ABC BCD[答案]270[解析][分析]作CH⊥AE于H,如图,根据平行线的性质得∠ABC+∠BCH=180°,∠DCH+∠CHE=180°,则∠DCH=90°,于是可得到∠ABC+∠BCD=270°.[详解]解:作CH⊥AE于H,如图,∵AB⊥AE,CH⊥AE,∴AB∥CH,∴∠ABC+∠BCH=180°,∵CD∥AE,∴∠DCH+∠CHE=180°,而∠CHE=90°,∴∠DCH=90°,∴∠ABC+∠BCD=180°+90°=270°.故答案为270°.点睛]本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.13.把命题“对顶角相等”改写成“如果…那么…”的形式是__________________.[答案]如果两个角是对顶角,那么这两个角相等[解析][分析]命题中的条件是两个角是对顶角,放在“如果”的后面,结论是这两个角相等,应放在“那么”的后面.[详解]解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.[点睛]本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.14.某宾馆在重新装修后,准备在大厅的楼梯上铺上某种规格的红色地毯,其侧面如图,则至少需要购买地毯____米.[答案]8.4[解析][分析]根据题意,结合图形,先把楼梯的横竖向上向右平移,构成一个长方形,据此计算即可.[详解]解:如图,利用平移把楼梯的横竖向上向右平移,构成一个长、宽分别为5.8米、2.6米的长方形,∴地毯的长度为2.6+5.8=8.4(米).故答案为:8.4.[点睛]本题主要考查了平移的性质,掌握基本性质是解题的关键.15.49的平方根是_______;-125的立方根是_______81_______.[答案](1). 23(2). -5 (3). 9[解析][分析]根据平方根、立方根、算术平方根的定义,即可解答.[详解]49的平方根是23,-125的立方根是-5819,故答案为:23;-5;9.[点睛]本题考查了平方根、立方根、算术平方根,熟练掌握它们的定义及运算方法是解答的关键.16.已知 a , b 为两个连续整数,且<b ,则 a+b 的值为______.[答案]7[解析]<<,由此可确定a 和b 的值,进而可得出a+b 的值.本题解析: 根据a b, a 、b 为两个连续整数,又因为34,得a=3,b=4将a=3,b=4代入a+b,得a+b=7.故答案为7.点睛:此题考查的是如何根据无理数的范围确定两个有理数的值,,可以很容易得到其相邻两个整数,再结合已知条件即可确定a 、b 的值.17.平面直角坐标系内,点P(3,﹣4)到y 轴的距离是_____.[答案]3[解析]根据平面直角坐标系的特点,可知到y 轴的距离为横坐标的绝对值,因此可知P 点到y 轴的距离为3. 故答案为3.18.已知点A(a ,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是______.[答案]±4[解析]试题分析:根据坐标与图形得到三角形OAB 的两边分别为|a|与5,然后根据三角形面积公式有:15102a ⋅⋅=, 解得a=4或a=-4,即a 的值为±4. 考点:1.三角形的面积;2.坐标与图形性质. 三、解答题19.计算:(1(2)[答案](1;(2)[解析][分析](1)先去括号,再根据二次根式的加减运算法则即可解答;(2)直接利用二次根式的加法法则合并即可解答.[详解](1)(6+3)-3=6+3-3=6;(2)37+27=(3+2)7=57.[点睛]本题考查了二次根式的加减法运算,熟练掌握二次根式的加减法运算法则是解答的关键.20.利用平方根(或立方根)的概念解下列方程:(1)9(x-3)2=64;(2)(2x-1)3=-8.[答案](1)x=173或x=13;(2)x=-12. [解析][分析](1)先化简,再根据平方根的概念进行计算(2)根据立方根的概念直接开立方,再计算求值. [详解]解:(1)(x-3)2=649,则x-3=±83. ∴x=±83+3,即x=173,或x=13. (2)2x-1=-2,∴x=-12. [点睛]此题重点考察学生对平方根,立方根的理解,掌握平方根,立方根的计算方法是解题的关键.21.如图,直线CD 与直线AB 相交于C ,根据下列语句画图、解答.(1)过点P 作PQ ∥CD ,交AB 于点Q ;(2)过点P 作PR ⊥CD ,垂足为R ;(3)若∠DCB=120°,猜想∠PQC 是多少度?并说明理由[答案](1)见解析;(2)见解析;(3)∠PQC=60°,理由见解析[解析]详解]解:如图所示:(1)画出如图直线PQ(2)画出如图直线PR(3)∠PQC=60°理由是:因为PQ ∥CD所以∠DCB+∠PQC=180°又因为∠DCB=120°所以∠PQC=180°-120°=60° 22.已知7a -和24a +是某正数的两个平方根,7b -的立方根是1.(1)求a b 、的值;(2)求+a b 算术平方根.[答案](1)a=1,b=8;(2)a+b 的算数平方根为3[解析][分析](1)根据平方根的性质一个正数有两个平方根,它们互为相反数列出算式,求出a 的值,再根据立方根的定义求出b 的值即可;(2)求出a+b 的值,根据算数平方根的概念求出答案即可.[详解]解:(1)∵7a -和24a +是某正数的两个平方根,∴7a -+24a + =0,∴a=1,∵7b -的立方根是1,∴71b -=∴b=8;(2)∵a=1,b=8;∴a+b=9,∴a+b 的算数平方根为3[点睛]本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0.23.如图,AD⊥BC,垂足为D,点E、F分别在线段AB、BC上,EF⊥BC,∠CAD=∠DEF,(1)求证:EF∥AD;(2)判断ED与AC的位置关系,并证明你的猜想.[答案](1)见解析;(2)ED与AC平行,见解析[解析]分析](1)先由AD⊥BC,EF⊥BC证得∠ADB=∠EFB=90°,再根据平行线的判定即可证得结论;(2)由EF∥AD得∠DEF=∠EDA,进而证得∠EDA=∠CAD,即可得出结论.[详解](1)∵ AD⊥BC,EF⊥BC,∴∠ADB=∠EFB=90°,∴ EF∥AD(2)ED与AC平行,理由为:∵EF∥AD,∴∠DEF=∠EDA,∵∠CAD=∠DEF,∴∠EDA=∠CAD,∴ED∥AC.即ED与AC平行.[点睛]本题考查了平行线的判定与性质、垂直定义,掌握平行线的判定与性质并能熟练运用是解答的关键.24.如图是某校的平面示意图,已知图书馆、行政楼的坐标分别为(-3,2),(2,3).完成以下问题:(1)请根据题意在图上建立直角坐标系;(2)写出图上其他四个地点实验楼、校门口、综合楼、信息楼的坐标;(3)在图中用点P表示体育馆(-1,-3)的位置.[答案](1)见解析;(2)实验楼(-4,0);校门口(1,0);综合楼(-5,-3);信息楼(1,-2);(3)见解析[解析][分析](1)根据图书馆、行政楼的坐标信息,建立合适的平面直角坐标系;(2)根据上题中建立的平面直角坐标系可以写出其他四个地点的坐标;(3)根据P点坐标可以直接在平面直角坐标系中表示出来.[详解](1)由图书馆、行政楼的坐标分别为(-3,2),(2,3)可找到O(0,0)点,从而建立平面直角坐标系,如下图;(2)根据(1)中的平面直角坐标系,可得其他四个地点的坐标.故实验楼(-4,0);校门口(1,0);综合楼(-5,-3);信息楼(1,-2);(3)根据平面直角坐标系,P(-1,-3)的位置如下图,[点睛]本题主要考查平面直角坐标系,根据题中所给的坐标信息确认O(0,0)的位置,从而建立平面直角坐标系是解答本题的关键.25.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=55°,求∠1和∠2的度数.[答案]∠1=70°,∠2=110°[解析][分析]由平行线的性质知∠DEF=∠EFG=55°,由折叠的性质知∠DEF=∠GEF=55°,则可求得∠2=∠GED=110°,进而可求得∠1的值.[详解]∵AD∥BC,∴∠DEF=∠EFG=55°.由对称性知∠GEF=∠DEF∠GEF=55°,∴∠GED=110°.∵AD∥BC,∴∠2=∠GED=110°.∴∠1=180°-110°=70°,[点睛]本题考查了翻折的性质及平行线的性质,平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.26.如图AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE.解:∵AB∥CD(已知)∴∠4=∠()∵∠3=∠4(已知)∴∠3=∠()∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(即∠=∠()∴∠3=∠∴AD∥BE()[答案]BAF;两直线平行,同位角相等;BAF;等量代换;等式的性质;角的和差;CAD;内错角相等,两直线平行.[解析][详解]解:∵AB∥CD(已知),∴∠4=∠BAE(两直线平行,同位角相等);∵∠3=∠4(已知),∴∠3=∠BAE(等量代换);∵∠1=∠2(已知),∴∠1+∠CAF=∠2+∠CAF(等式的性质),即∠BAE=∠DAC,∴∠3=∠DAC(等量代换),∴AD∥BE(内错角相等,两直线平行).。
苏科版八年级上册数学期中考试试题及答案
![苏科版八年级上册数学期中考试试题及答案](https://img.taocdn.com/s3/m/9d3f4a77cec789eb172ded630b1c59eef8c79acc.png)
苏科版八年级上册数学期中考试试卷一、单选题1.在这四个图形中,轴对称图形的是()A .B .C .D .2.4的平方根是()A .2B .-2C .±2D .±33.下列各组数为勾股数的是()A .9,12,15B .5,6,7C .1,5,5D .1,2,34.如图,在△ABC 和△DEF 中,∠A =∠D ,AF =DC ,添加下列条件中的一个仍无法证明△ABC ≌△DEF 的是()A .BC =EFB .AB =DEC .∠B =∠ED .∠ACB =∠DFE52,72π-)A .1个B .2个C .3个D .4个6.等腰三角形的两条边长分别为3和7,则这个等腰三角形的周长是()A .10B .13C .17D .13或177.到三角形三条边距离相等的点是此三角形()A .三条角平分线的交点B .三条中线的交点C .三条高的交点D .三边中垂线的交点8.如图,在ABC 中,以点A 为圆心,小于AC 长为半径作圆强,分别交AB ,AC 于点E 、F ,再分别以E 、F 为圆心,大于12EF 的同样长为半径作圆弧,两弧交于点P ,作射线AP ,交CB 于点D .90C ∠=︒,9cm BC =,6cm BD =,那么点D 到边AB 的距离是()A .3cmB .4cmC .5cmD .6cm9.如图,在矩形纸片ABCD 中,6AB =,8AD =,点E 是边AD 上的一点,将AEB △沿BE 所在的直线折叠,使点A 落在BD 上的点G 处,则AE 的长是()A .2B .3C .4D .510.如图,ABC 中,90C ∠=︒,D 为AC 上,点E 是AB 上一点,且90BDE ∠=︒,DB DE AE ==,若5BC =,则AD 的长是()A .7B .9.5C .53D .10二、填空题113x +x 的取值范围是________.12.由四舍五入法得到的近似数为38.510⨯精确到______位.1324(6)0x y -++=,则x y +=_____.14.比较大小:12______124+.(用“>”、“=”或“<”填空)151623=______.16.已知一个正数的两个平方根分别是x 和6x -,则这个正数等于______.17.如图,在ABC 中,DM ,EN 分别垂直平分AC 和BC ,交AB 于M ,N 两点.135ACB ∠=︒,则MCN ∠=______度.18.如图,四边形ABFE 、AJKC 、BCIH 分别是以Rt △ABC 的三边为一边的正方形,过点C 作AB 的垂线,交AB 于点D ,交FE 于点G ,连接HA 、CF .欧几里得编纂的《原本》中收录了用该图形证明勾股定理的方法.关于该图形的下面四个结论:①△ABH ≌△FBC ;②正方形BCIH 的面积=2△ABH 的面积;③矩形BFGD 的面积=2△ABH 的面积;④BD 2+AD 2+CD 2=BF 2.正确的有______.(填序号)三、解答题19.求下列各式中的x :(1)()219x +=(2)()32116x +=-20.计算:(2(2)(23--21.已知x+1的平方根是±2,2x+y ﹣2的立方根是2,求x 2+y 2的算术平方根.22.如图,在△ABC 中,∠ACB=90°,AC=20,BC=15,CD ⊥AB 于点D .求:(1)CD 的长;(2)BD 的长.23.如图,已知BE ⊥CD ,BE=DE ,BC=AD .(1)求证:△BEC ≌△DEA ;(2)求∠DFC 的度数.24.如图,在四边形ABCD 中,90ABD ACD ∠=∠=︒,E ,F 分别是BC 、AD 的中点.(1)若10AD =,求BF 的长;(2)求证:EF BC ⊥.25.如图,已知90MON ∠=︒,A 是射线OM 上一点,10cm OA =.动点P 从点A 出发,以1cm/s 的速度沿AO 水平向左运动,与此同时,动点Q 从点O 出发,也以1cm/s 的速度沿ON 竖直向上运动,连接PQ ,以PQ 为斜边向上作等腰直角三角形PQC .设运动时间为()s t ,其中0t 10<<.(1)当OPQ △与PCQ △全等时,求t 的值;(2)点C 是否在MON ∠的平分线上,若在,写出证明过程;若不在,请说明理由;(3)四边形OPCQ 的面积为______.26.【理解概念】当一个凸四边形的一条对角线把原四边形分成两个三角形.若其中有一个三角形是等腰直角三角形,则把这条对角线叫做这个四边形的“等腰直角线”,把这个四边形叫做“等腰直角四边形”,当一个凸四边形的一条对角线把原四边形分成两个三角形.若其中一个三角形是等腰直角三角形,另一个三角形是等腰三角形,则把这条对角线叫做这个四边形的“真等腰直角线”,把这个四边形叫做“真等腰直角四边形”.(1)【巩固新知】如图①,若AD=3,AD=DB=DC ,则四边形ABCD______(填“是”或“否”)真等腰直角四边形.(2)【深度理解】在图①中,如果四边形ABCD 是真等腰直角四边形,且∠BDC=90°,对角线BD 是这个四边形的真等腰直角线,当AD=4,AB=3时,则边BC 的长是______.(3)如图②,四边形ABCD 与四边形ABDE 都是等腰直角四边形,且∠BDC=90°,∠ADE=90°,BD>AD>AB,对角线BD、AD分别是这两个四边形的等腰直角线.求证:AC=BE.(4)【拓展提高】在图3中,已知:四边形ABCD是等腰直角四边形,对角线BD是这个四边形的等腰直角线.若BD正好是分得的等腰直角三角形的一条直角边,且AD=3,AB=4,∠BAD=45°,求AC的长.参考答案1.C【解析】【详解】解:A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项符合题意;D、不是轴对称图形,故本选项不符合题意;故选:C【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.2.C【解析】【分析】直接利用平方根的定义分析得出答案.【详解】解:4的平方根是:=±2.故选:C.【点睛】本题主要考查了平方根的定义,正确掌握相关定义是解题关键.3.A【解析】【分析】根据勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数判定则可.【详解】解:A、92+122=152,能构成直角三角形,是正整数,故是勾股数;B、52+62≠72,不能构成直角三角形,故不是勾股数;C、52+12≠52,不能构成直角三角形,故不是勾股数;D、12+22≠32,不能构成直角三角形,故不是勾股数.故选:A.【点睛】本题考查了勾股数的定义,注意:一组勾股数必须同时满足两个条件:①三个数都是正整数;②两个较小数的平方和等于最大数的平方.4.A【解析】【分析】根据AF=DC求出AC=DF,再根据全等三角形的判定定理逐个判断即可.【详解】解:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,A、BC=EF,AC=DF,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,故本选项符合题意;B、AB=DE,∠A=∠D,AC=DF,符合全等三角形的判定定理SAS,能推出△ABC≌△DEF,故本选项不符合题意;C.∠B=∠E,∠A=∠D,AC=DF,符合全等三角形的判定定理AAS,能推出△ABC≌△DEF,故本选项不符合题意;D .∠ACB=∠DFE ,AC=DF ,∠A=∠D ,符合全等三角形的判定定理ASA ,能推出△ABC ≌△DEF ,故本选项不符合题意;故选:A .【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,两直角三角形全等还有HL .5.B【解析】【分析】根据无理数的定义,即无限不循环小数叫无理数判断即可;【详解】3==∴无理数有2π-,∴无理数有2个;故选B .【点睛】本题主要考查了无理数的判断,准确分析判断是解题的关键.6.C【解析】【分析】因为等腰三角形的两边为3和7,但已知中没有点明底边和腰,所以有两种情况,需要分类讨论,还要注意利用三角形三边关系考虑各情况能否构成三角形.【详解】解:当3为底时,其它两边都为7,3、7、7可以构成三角形,周长为17;当3为腰时,其它两边为3和7,∵3+3=6<7,所以不能构成三角形,故舍去,∴答案只有17.故选:C .【点睛】本题考查了等腰三角形的性质;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.7.A【解析】【分析】根据角平分线的性质进行解答即可.【详解】解: 角平分线上任意一点,到角两边的距离相等,∴到三角形三条边距离相等的点是三角形三个内角的平分线的交点,故选:A .【点睛】本题考查的是角平分线的性质,熟知角平分线上任意一点,到角两边的距离相等是解答此题的关键.8.A【解析】【分析】如图,过D 作DK AB ⊥于,K 由角平分线的性质定理可得:,DC DK =从而可得答案.【详解】解:如图,过D 作DK AB ⊥于,K 由作图可得:AD 是BAC ∠的角平分线,而90,C ∠=︒,DC DK \= 9cm BC =,6cm BD =,3,CD \=3,DK \=所以点D 到边AB 的距离是3cm.故选A【点睛】本题考查的是角平分线的作图,角平分线的性质定理的应用,掌握“角平分线上的点到这个角的两边的距离相等”是解本题的关键.9.B【解析】【分析】根据折叠的性质可得6BG AB AE EG BGE A ===∠=∠,,,再由矩形的性质可得10BD =,从而得到4DG BD BG =-=,然后设AE x =,则,8EG x DE x ==-,在Rt DEG △中,由勾股定理,即可求解.【详解】解:根据题意得:6BG AB AE EG BGE A ===∠=∠,,,在矩形纸片ABCD 中,90BGE A ∠==︒,∴10BD ===,∴4DG BD BG =-=,设AE x =,则,8EG x DE x ==-,在Rt DEG △中,222DG EG DE +=,∴()22248x x +=-,解得:3x =,即3AE =.故选:B【点睛】本题主要考查了矩形与折叠,勾股定理,熟练掌握矩形的性质,折叠图形的性质是解题的关键.10.D【解析】【分析】过点E 作EF ⊥AC 于点F ,可证得△BDC ≌△DEF ,从而得到DF=BC=5,再根据等腰三角形的性质,可得AD=2DF,即可求解.【详解】解:如图,过点E作EF⊥AC于点F,∵∠BDE=90°,∴∠EDF=90°-∠BDC=∠DBC,在△BDC和△DEF中,∵∠C=∠EFD=90°,∠DBC=∠EDF,DB=DE,∴△BDC≌△DEF(AAS),∴DF=BC=5,∵DE=AE,EF⊥AC,∴AD=2DF=10.故选:D【点睛】本题主要考查了全等三角形的判定和性质,等腰三角形的性质,熟练掌握全等三角形的判定和性质定理,等腰三角形的性质定理是解题的关键.x≥-11.3【解析】【分析】x+≥即可求解.根据被开数30【详解】x+≥,解:依题意得:30x≥-;∴3x≥-.故答案为:3【点睛】本题考查二次根式的意义:熟练掌握二次根式中被开方数是非负数的条件是解题的关键.12.百【解析】【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.【详解】解:近似数8.5×103=8500,5位于百位,则该数精确到百位,故答案为:百.【点睛】本题考查了近似数和有效数字,对于用科学记数法表示的数,有效数字的计算方法以及与精确到哪一位是需要识记的内容,经常会出错.13.-2【解析】【详解】∵0,2(6)0y +≥,∴4060x y -=⎧⎨+=⎩,解得:46x y =⎧⎨=-⎩,∴4(6)2x y +=+-=-.点睛:(1)一个代数式的算术平方根、一个代数式的平方都是非负数;(2)两个非负数的和为0,则这两个非负数都为0.14.<【解析】【分析】12-10,>可得10,4>从而可得答案.【详解】解:12=Q10,->10,4\>1,\<24故答案为:<【点睛】本题考查的是实数的大小比较,掌握“作差法比较两个数的大小”是解本题的关键.15.3【解析】【分析】先化简二次根式,同步计算二次根式的除法运算,再合并同类项即可.【详解】=故答案为:316.9【分析】一个正数的平方根有两个,它们互为相反数,根据这个特点列方程求解,x从而可得答案.【详解】x-,解: 一个正数的两个平方根分别是x和6\+-=60,x x∴=x3,∴这个正数等于23=9,故答案为:9.17.90【分析】∠+∠的度数,然根据三角形内角和定理求出A B∠+∠,根据等腰三角形性质得ACM BCN后求解.【详解】解:135ACB︒∠=A B︒45∴∠+∠===AM CM BN CN,,,A ACMB BCN ∴∠=∠∠=∠45ACM BCN ︒∴∠+∠=()1354590MCN ACB ACM BCN ∴∠=∠-∠∠+∠=︒-︒=︒故答案为:90.18.①②③【解析】由“SAS”可证△ABH ≌△FBC ,故①正确;由平行线间的距离处处相等,可得S △ABH=S △BCH=12S 正方形BCIH ,故②正确;同理可证矩形BFGD 的面积=2△ABH 的面积,故③正确;由勾股定理可得BD 2+AD 2+2CD 2=BF 2,故④错误,即可求解.【详解】解:∵四边形ABFE 和四边形CBHI 是正方形,∴AB=FB ,HB=CB ,∠ABF=∠CBH=90°,∴∠CBF=∠HBA ,∴△ABH ≌△FBC (SAS ),故①正确;如图,连接HC ,∵AI ∥BH ,∴S △ABH=S △BCH=12S 正方形BCIH ,∴正方形BCIH 的面积=2△ABH 的面积,故②正确;∵CG ∥BF ,∴S △CBF=12×BF×BD=12S 矩形BDGF ,∴矩形BFGD的面积=2△ABH的面积,故③正确;∵BC2=CD2+DB2,AC2=CD2+AD2,BC2+AC2=AB2,∴BD2+CD2+CD2+AD2=AB2=BF2,∴BD2+AD2+2CD2=BF2,故④错误,故答案为:①②③.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,平行线的性质,勾股定理等知识,灵活运用这些性质解决问题是解题的关键.19.(1)x=2或x=-4;(2)x=-3.【解析】【分析】(1)利用平方根的定义求得x+1的值,然后再解关于x的方程即可;(2)先求得(x+1)3的值,然后依据立方根的定义列方程求解即可.(1)解:∵(x+1)2=9;∴x+1=±3,解得:x=2或x=-4;(2)解:∵2(x+1)3=-16,∴(x+1)3=-8.∴x+1=-2,解得x=-3.【点睛】本题主要考查的是立方根、平方根,熟记立方根及平方根的定义是解题的关键.20.(1)-2;【解析】【分析】(1)直接根据实数的运算法则计算即可;(2)先根据平方差公式和完全平方公式进行计算,再合并同类二次根式即可.(1)(2+=3-3+(-2)=-2;(2)3--解:(2(5-2)【点睛】本题考查的是二次根式的混合运算及实数的运算,掌握它们的运算法则是解决此题关键.21.5【解析】【分析】根据平方根、立方根的定义即可得到x、y的值,最后代入代数式求解即可.【详解】解:∵x+1的平方根是±2,∴x+1=4,∴x=3,∵2x+y﹣2的立方根是2,∴2x+y﹣2=8,把x的值代入解得:y=4,∴x2+y2=25,∴x2+y2的算术平方根为5.【点睛】本题主要考查了平方根、立方根的概念,求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.22.(1)CD 的长是12;(2)BD 的长为9.【解析】【分析】(1)根据勾股定理求出AB 的长,根据三角形的面积公式,代入计算即可求出CD 的长;(2)在Rt △BCD 中,直接根据勾股定理可求出BD 的长.(1)解:在Rt △ABC 中,∠ACB=90°,BC=15,AC=20,由勾股定理可得,AB=AC 2+BC 2=202+152=25,∵S △ABC=12AC•BC=12AB•CD ,∴AC•BC=AB•CD ,∵AC=20,BC=15,AB=25,∴20×15=25CD ,∴CD=12,∴CD 的长是12;(2)解:∵CD ⊥AB 于点D ,∴∠CDB=90°,在Rt △BCD 中,∠CDB=90°,BC=15,CD=12,由勾股定理可得,==9,∴BD 的长为9.【点睛】本题考查了勾股定理和三角形的面积公式,掌握直角三角形面积的不同表示方法及勾股定理的综合应用是本题的关键.23.(1)见解析(2)∠DFC=90°.【解析】【分析】(1)由“HL”可证Rt △BEC ≌Rt △DEA ;(2)由全等三角形的性质可得∠B=∠D ,由三角形内角和定理可求∠DFC=90°.(1)证明:∵BE ⊥CD ,∴∠BEC=∠DEA=90°,在Rt △BEC 和Rt △DEA 中:BE DE BC DA=⎧⎨=⎩,∴Rt △BEC ≌Rt △DEA (HL );(2)解:∵Rt △BEC ≌Rt △DEA ,∴∠B=∠D ,∵∠DAE=∠BAF ,∴∠BFA=∠DEA=90°,∴∠DFC=90°.【点睛】本题考查了全等三角形的判定和性质,证明三角形全等是解题的关键.24.(1)5(2)证明见解析【解析】【分析】(1)直接利用直角三角形斜边上的中线等于斜边的一半可得答案;(2)利用直角三角形斜边上的中线等于斜边的一半证明,BF CF =再利用等腰三角形的性质可得结论.(1)解: 90ABD ∠=︒,F 为AD 的中点,10,AD =1 5.2BF AD \==(2)证明:如图,连接,CF 90ABD ACD ∠=∠=︒,F 是AD 的中点,11,,22CF AD BF AD \==,CF BF ∴=E 是BC 的中点,.EF BC \^【点睛】本题考查的是直角三角形斜边上的中线等于斜边的一半,等腰三角形的三线合一的性质,掌握“直角三角形斜边上的中线的性质”是解本题的关键.25.(1)5(2)点C 是在MON ∠的平分线上,理由见解析(3)225cm 【解析】【分析】(1)根据题意可得当OPQ △与PCQ △全等时,OPQ △为等腰直角三角形,从而得到OQ=OP ,再由cm OQ t =,()10cm OP t =-,即可求解;(2)过点C 作CD ⊥ON 于点D ,CE ⊥OA 于点E ,可证得△DCQ ≌△ECP ,从而得到CD=CE ,即可求解;(3)过点C 作CF ⊥PQ 于点F ,可得12CF PQ =,根据题意可得cm AP OQ t ==,()10cm OP t =-,利用勾股定理可得22220100PQ t t =-+,从而得到2215cm 2OPQ S t ⎛⎫=-+ ⎪⎝⎭ ,221525cm 2PQC S t t ⎛⎫=-+ ⎪⎝⎭,再由四边形OPCQ 的面积为OPQ PQC S S + ,即可求解.(1)解:根据题意得:当OPQ △与PCQ △全等时,OPQ △为等腰直角三角形,即OQ=OP ,∵点P 从点A 出发,以1cm/s 的速度沿AO 水平向左运动,与此同时,动点Q 从点O 出发,也以1cm/s 的速度沿ON 竖直向上运动,∴cm,cm AP t OQ t ==,∵10cm OA =.∴()10cm OP t =-,∴10t t =-,解得:5t =,即当OPQ △与PCQ △全等时,t 的值为5;(2)解:点C 是在MON ∠的平分线上,理由如下:如图,过点C 作CD ⊥ON 于点D ,CE ⊥OA 于点E ,∵CD ⊥ON ,CE ⊥OA ,90MON ∠=︒,∴∠CDO=∠CEO=∠CEP=∠MON=90°,∴∠DCE=90°,∵PQC △是等腰直角三角形,∴CQ=CP ,∠PCQ=∠DCE=90°,∴∠DCQ=∠PCE ,∴△DCQ ≌△ECP ,∴CD=CE ,∵CD ⊥ON ,CE ⊥OA ,∴点C 是在MON ∠的平分线上;(3)解:如图,过点C 作CF ⊥PQ 于点F ,根据题意得:cm AP OQ t ==,∴()10cm OP t =-,∴()22222210220100PQ OQ OP t t t t =+=+-=-+,∵CF ⊥PQ ,PQC △是等腰直角三角形,∴12CF PQ =,∴()22111105cm 222OPQ S OQ OP t t t t ⎛⎫=⋅=-=-+ ⎪⎝⎭ ,22211111525cm 22242PQC S PQ CF PQ PQ PQ t t ⎛⎫=⋅=⋅==-+ ⎪⎝⎭,∴四边形OPCQ 的面积为22211525525cm 22OPQ PQC S S t t t t ⎛⎫+=-++-+= ⎪⎝⎭.【点睛】本题主要考查了全等三角形的判定和性质,等腰直角三角形的性质,角平分线的判定,动点问题,熟练掌握全等三角形的判定和性质,等腰直角三角形的性质,角平分线的判定定理是解题的关键.26.(1)是(3)见解析【解析】【分析】(1)利用勾股定理的逆定理证明∠BDC=90°,从而△BDC 是等腰直角三角形,又因为△ABD 是等腰三角形,即可得出结论;(2)由题意知△ABD 是等腰三角形,当AD=BD=4时,由勾股定理得:当BD=AB=3时,由勾股定理得:;(3)利用SAS 证明△ADC ≌△EDB ,得AC=BE ;(4)分∠BDC=90°和∠DBC=90°,分别构造等腰直角三角形,利用(3)中全等进行转化,从而解决问题.(1)解:∵AD=3,AD=DB=DC ,∴BD=CD=3,∵BD 2+CD 2=18,BC 2=()2=18,∴BD 2+CD 2=BC 2,∴△BDC 是等腰直角三角形,∵△ABD 是等腰三角形,∴四边形ABCD 是真等腰直角四边形,故答案为:是;(2)解:∵对角线BD是这个四边形的真等腰直角线,∴△ABD是等腰三角形,当AD=BD=4时,由勾股定理得:当BD=AB=3时,由勾股定理得:,综上:,故答案为:或(3)解:由题意知:△BDC和△ADE都是等腰直角三角形,∴BD=CD,AD=DE,∠BDC=∠ADE=90°,∴∠ADC=∠EDB,∴△ADC≌△EDB(SAS),∴AC=BE;(4)解:由题意知:△BDC是等腰直角三角形,当∠BDC=90°时,如图,作DE⊥AD,取DE=AD,连接AE,BE,由(3)同理得△ADC≌△EDB(SAS),∴AC=BE,∵AD=3,△ADE是等腰直角三角形,∴,∠EAD=45°,∵∠DAB=45°,∴∠EAB=90°,由勾股定理得∴当∠DBC=90°时,如图,同理可得综上:。
1到100的开平方根表
![1到100的开平方根表](https://img.taocdn.com/s3/m/d18091d16aec0975f46527d3240c844768eaa056.png)
1到100的开平方根表1. 1的开平方根是12. 2的开平方根是1.4143. 3的开平方根是1.7324. 4的开平方根是25. 5的开平方根是2.2366. 6的开平方根是2.4497. 7的开平方根是2.6468. 8的开平方根是2.8289. 9的开平方根是310. 10的开平方根是3.162在1到10之间的数的开平方根大致可以保留三位小数。
11. 11的开平方根是3.31712. 12的开平方根是3.46413. 13的开平方根是3.60614. 14的开平方根是3.74215. 15的开平方根是3.87316. 16的开平方根是417. 17的开平方根是4.12318. 18的开平方根是4.24319. 19的开平方根是4.35920. 20的开平方根是4.472在11到20之间的数的开平方根可以保留三位小数。
21. 21的开平方根是4.58222. 22的开平方根是4.69023. 23的开平方根是4.79624. 24的开平方根是4.89925. 25的开平方根是526. 26的开平方根是5.09927. 27的开平方根是5.19628. 28的开平方根是5.29229. 29的开平方根是5.38530. 30的开平方根是5.477在21到30之间的数的开平方根可以保留三位小数。
32. 32的开平方根是5.65733. 33的开平方根是5.74534. 34的开平方根是5.83135. 35的开平方根是5.91636. 36的开平方根是637. 37的开平方根是6.08338. 38的开平方根是6.16439. 39的开平方根是6.24540. 40的开平方根是6.325在31到40之间的数的开平方根可以保留三位小数。
41. 41的开平方根是6.40342. 42的开平方根是6.48143. 43的开平方根是6.55744. 44的开平方根是6.63345. 45的开平方根是6.70846. 46的开平方根是6.78248. 48的开平方根是6.92849. 49的开平方根是750. 50的开平方根是7.071在41到50之间的数的开平方根可以保留三位小数。
2020-2021学年河南省焦作市七年级(下)期末数学试卷(人教版)(解析版)
![2020-2021学年河南省焦作市七年级(下)期末数学试卷(人教版)(解析版)](https://img.taocdn.com/s3/m/3b87d7287f1922791788e88b.png)
2020-2021学年河南省焦作市七年级(下)期末数学试卷(人教版)一、选择题(共10小题).1.在下列图形中,线段PQ的长度表示点P到直线L的距离的是()A.B.C.D.2.4的算术平方根是()A.2B.±2C.4D.﹣43.如图,俄罗斯方块游戏中,图形A经过平移使其填补空位,则正确的平移方式是()A.先向右平移5格,再向下平移3格B.先向右平移4格,再向下平移5格C.先向右平移4格,再向下平移4格D.先向右平移3格,再向下平移5格4.既是方程x﹣y=1,又是方程2x+y=5的解是()A.B.C.D.5.若a,b是正整数,且a+b≤6,则以(a,b)为坐标的点共有()个.A.12B.15C.21D.286.为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,某班实践活动小组的同学给出了以下几种调查方案:方案一:在多家旅游公司随机调查400名导游;方案二:在恭王府景区随机调查400名游客;方案三:在北京动物园景区随机调查400名游客;方案四:在上述四个景区各随机调查400名游客.在这四种调查方案中,最合理的是()A.方案一B.方案二C.方案三D.方案四7.如果m是任意实数,则点P(m﹣4,m﹣1)一定不在第()象限.A.一B.二C.三D.四8.如果不等式组无解,那么m的取值范围是()A.m>8B.m≥8C.m<8D.m≤89.如图,△OAB的边OB在x轴的正半轴上,点B的坐标为(3,0),把△OAB沿x轴向右平移2个单位长度,得到△CDE,连接AC,DB,若△DBE的面积为3,则图中阴影部分的面积为()A.B.1C.2D.10.已知AB∥CD,∠EAF=∠EAB,∠ECF=∠ECD,若∠E=66°,则∠F为()A.23°B.33°C.44°D.46°二、填空题(每小题3分,共15分)11.请写出一个大于1且小于2的无理数.12.在平面直角坐标系中,若点P(2x+6,5x)在第四象限,则x的取值范围是.13.王老师对本班40个学生所穿校服尺码的数据统计如下:尺码S M L XL XXL XXXL频率0.050.10.20.3250.30.025则该班学生所穿校服尺码为“L”的人数有个.14.一种苹果的进价是每千克1.9元,销售中估计有5%的苹果正常损耗,商家把售价至少定为元,才能避免亏本.15.如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F=.三、解答题(本大题8个小题,共75分)16.如图,已知∠EDC=∠GFD,∠DEF+∠AGF=180°.(1)请判断AB与EF的位置关系,并说明理由;(2)请过点G作线段GH⊥EF,垂足为H,若∠DEF=30°,求∠FGH的度数.17.解不等式组.18.解方程组:.19.在平面直角坐标系中,O为原点,点A(0,2),B(﹣2,0),C(4,0).(Ⅰ)如图①,则三角形ABC的面积为;(Ⅱ)如图②,将点B向右平移7个单位长度,再向上平移4个单位长度,得到对应点D.①求三角形ACD的面积;②点P(m,3)是一动点,若三角形PAO的面积等于三角形CAO的面积.请直接写出点P坐标.20.某学校在疫情期间的复学准备工作中,为了贯彻落实“生命重于泰山,安全至关重要”的思想计划购买室内、室外两种型号的消毒液.已知每桶室外消毒液的价格比每桶室内消毒液的价格多30元,买2桶室内消毒液和3桶室外消毒液共需340元.(1)求室内、室外两种型号消毒液每桶的价格;(2)根据学校实际情况,需购买室内、室外两种型号的消毒液共200桶,总费用不高于1.4万元,问室内消毒液至少要购买多少桶?21.已知19683的立方根是一个整数,请求出这个整数.22.我市为加强学生的安全意识,组织了全市学生参加安全知识竞赛,为了解此次知识竞赛成绩的情况,随机抽取了部分参赛学生的成绩,整理并制作出如下的不完整的统计表和统计图,如图所示,请根据图表信息解答以下问题.组别成绩x/分频数A组60≤x<70aB组70≤x<808C组80≤x<9012D组90≤x<10014(1)一共抽取了个参赛学生的成绩;表中a=;(2)补全频数分布直方图;(3)计算扇形统计图中“B”对应的圆心角度数;(4)若成绩在80分以上(包括80分)的为“优”等,则所抽取学生成绩为“优”的占所抽取学生的百分比是多少?23.一项调查显示,全世界每天平均有13000人死于与吸烟有关的疾病,我国吸烟者约3.56亿人,占世界吸烟人数的四分之一,比较一年中死于与吸烟有关的疾病的人数占吸烟者总数的百分比,我国比世界其他国家约高0.1%.根据上述资料,试用二元一次方程组解决以下问题:我国及世界其他国家一年(按365天计算)中死于与吸烟有关的疾病的人数分别是多少?(只需设出未知数,列出方程组即可)参考答案一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,请将正确答案前的代号字母填涂在答题卷上指定位置。
人教版七年级数学下册课件第六章《实数》单元复习
![人教版七年级数学下册课件第六章《实数》单元复习](https://img.taocdn.com/s3/m/c2d0f7fc48649b6648d7c1c708a1284ac85005d0.png)
②按正负分类:
正实数
正有理数
正无理数
实数 0
负实数
负有理数
负无理数
(3)实数与数轴上的点是一一对应的.
6.把下列各数填入相应的大括号中(只填序号):
①-3,②
·
,③ ,④0,⑤0.7,⑥ ,⑦π,⑧-1..
(1)整数:{ ②③④ …};
(2)负分数:{ ①⑧ …};
(3)无理数:{ ⑥⑦ …}.
所示:
化简:2 (b-a)2 +|b+c|- (a-c)2 -2|a|.
解:原式=2(b-a)+b+c+a-c+2a
=2b-2a+b+c+a-c+2a
=3b+a.
A.0.09 的平方根是 0.3
B. 16=±4
C.0 的立方根是 0
D.1 的立方根是±1
3
5.计算: -8= -2
.
知识点三:实数
(1)实数的概念:有理数和 无理
数统称为实数.
(2)实数的分类
①按定义分类:
实数
正有理数
有理数 0
有限小数或无限循环小数
负有理数
无理数
正无理数
负无理数
无限不循环小数
第六章
实数
单元复习
知识要点
知识点一:算术平方根与平方根
(1)算术平方根:a 的算术平方根记为 a.
①正数有 1
②负数 没有
个算术平方根;
算术平方根;
③0的算术平方根是 0 .
(2)平方根:正数 a 的平方根记为± a.
①一个正数有 2
②负数 没有
个平方根,它们互为 相反
平方根;
③0的平方根是 0 .
(1)实数之间不仅可以进行加、减、乘、除(除数不为0)、乘
算术平方根的求解方法
![算术平方根的求解方法](https://img.taocdn.com/s3/m/05b66fcd9f3143323968011ca300a6c30d22f152.png)
算术平方根的求解方法在数学中,平方根是一个重要的概念,它是指一个数的平方等于另一个数的情况。
而算术平方根则是指一个数的平方根是一个整数的情况。
本文将介绍一些常见的算术平方根的求解方法,帮助中学生和他们的父母更好地理解和应用这一概念。
一、完全平方数的算术平方根完全平方数是指一个数的平方根是一个整数的情况。
例如,4、9、16等都是完全平方数。
求解完全平方数的算术平方根非常简单,只需要将这个数开方即可。
例如,√4=2,√9=3,√16=4。
因此,对于完全平方数,我们可以直接得到它的算术平方根。
二、非完全平方数的算术平方根非完全平方数是指一个数的平方根不是一个整数的情况。
例如,2、3、5等都是非完全平方数。
对于非完全平方数的算术平方根的求解,我们可以采用逼近法。
逼近法的基本思想是从一个初始的猜测值开始,通过不断逼近的方法,找到一个足够接近的解。
具体步骤如下:1. 选择一个初始的猜测值,例如对于数a,我们可以选择一个与a相近的整数作为初始猜测值。
2. 计算猜测值的平方,与待求解的数a进行比较。
3. 如果猜测值的平方与a相等,那么这个猜测值就是a的算术平方根。
4. 如果猜测值的平方大于a,那么我们需要减小猜测值。
5. 如果猜测值的平方小于a,那么我们需要增大猜测值。
6. 根据上述情况,反复进行步骤2-5,直到找到一个足够接近的解。
例如,我们要求解数5的算术平方根。
我们可以选择初始猜测值为2,计算2的平方为4,小于5。
因此,我们需要增大猜测值。
我们可以选择3作为新的猜测值,计算3的平方为9,大于5。
因此,我们需要减小猜测值。
我们可以选择2.5作为新的猜测值,计算2.5的平方为6.25,仍然大于5。
我们继续减小猜测值,选择2.4作为新的猜测值,计算2.4的平方为5.76,仍然大于5。
我们继续减小猜测值,选择2.3作为新的猜测值,计算2.3的平方为5.29,接近于5。
因此,我们可以得出结论,5的算术平方根约等于2.3。
人教版七年级下册数学期中考试卷(含答案)
![人教版七年级下册数学期中考试卷(含答案)](https://img.taocdn.com/s3/m/f577b01f69dc5022abea0039.png)
人教版七年级(下)期中数学试卷一.选择题(共10小题)1.如图,A、B、C、D中的图案()可以通过如图平移得到A.B.C.D.2.4的平方根是()A.2B.C.±2D.±3.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A.x<4B.x<2C.2<x<4D.x>24.已知x>2,则下列变形正确的是()A.mx>2m B.﹣x+2<1C.若y>2,则x﹣y>0D.若m<0,则x﹣m<2﹣m5.如图,若AB,CD相交于点O,过点O作OE⊥AB,则下列结论不正确的是()A.∠1与∠2互为余角B.∠3与∠2互为余角C.∠2与∠AOE互为补角D.∠AOC与∠BOD是对顶角6.已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是()A.B.C.D.7.表格中上下每对x、y的值都是同一个二元一次方程的解,则这个方程为()x﹣1012y852﹣1 A.5x+y=3B.x+y=5C.2x﹣y=0D.3x+y=58.一张方桌由1个桌面,4个桌腿组成.如果1立方米木料可以做方桌的桌面50个或桌腿300条,现有5立方米木料.那么用多少立方米木料做桌面,多少立方米木料做桌腿做出的桌面和桌腿能恰好配成方桌?设生产桌面、桌腿的木料分别是x、y立方米,则符合题意的方程是()A.50x+300y=1B.50x+300 y=5C.50x=1200y D.200x=300y9.已知x,y满足方程组,则无论m取何值,x,y恒有关系式是()A.x+y=1B.x﹣y=9C.x+y=9D.x﹣y=﹣9 10.关于x的不等式组的整数解共有4个,则a的取值范围是()A.7<a<8B.﹣7<a≤8C.7≤a<8D.以上答案都不对二.填空题(共6小题)11.已知4x﹣y=6,用含x的代数式表示y,则y=.12.把命题“同位角相等”改写成“如果…那么…”的形式是,它是命题.(填“真”或“假”)13.如图,点A,B,C,D,E在直线l上,点P在直线l外,PC⊥l于点C,在线段P A,PB,PC,PD,PE中,最短的一条线段是,理由是14.如图,已知三角形ABC的面积为28,将三角形ABC沿BC向右平移得到三角形A′B′C′,使点B′和点C重合,连接AC′交A′C于点D,点D恰为AC′的中点,则三角形CDC′的面积为.15.已知,若是整数,则a=.16.若方程组的解是,那么的解为.三.解答题17.解方程组:.18.解不等式组,并求出非负整数解:.19..20.已知:如图,∠B=∠D,∠1=∠E.求证:AB∥CD.证明∵∠1=∠E(已知),∴∥(),∴∠2+∠=180°().∵∠B=∠D(已知),∴∠2+∠=180°(),∴AB∥CD().21.如图,点O在直线AB上,OC⊥OD,∠D与∠1互余.(1)求证:ED∥AB;(2)OF平分∠AOD交DE于点F,若∠OFD=58°,补全图形,并求∠1的度数.22.某书店计划购进甲,乙两种书共1200本,这两种书的进价,售价如下;进价(元/本)售价(元/本)甲2530乙4560(1)若要使进货款恰好为38000元,书店应如何进货?(2)若书店销售完全部的书后获利不超过进货价的30%,至少购进甲种书多少本?23.定义一种新运算“a*b”的含义为:当a≥b时,a*b=a+b;当a<b时,a*b=a﹣b.(1)填空:(﹣4)*8=;(x2﹣2x+3)*(﹣x2﹣2x﹣3)=;(2)如果(3x﹣7)*(3﹣2x)=2,求x的值.24.在方程y=kx+b(k,b为常数)中,当x=2时,y=1;当x=﹣1时,y=4.(1)求k、b的值;(2)若和是该方程的两组解,且b1>b2,请比较a1与a2大小,并说明理由.(3)若x<5,y<6,若m=x﹣y,求m的取值范围.25.已知:直线AB∥CD,点M、N分别在直线AB,CD上,点E为平面内一点.(1)如图1,求∠AME,∠E,∠ENC的数量关系.(2)利用(1)的结论解决以下问题:如图2所示,已知:AB∥CD,∠BED=75°,∠BFD=35°,若∠EBF=x°,∠EDF=y°且x>y,求3x﹣2y的范围.(3)如图3,点G为CD上一点,∠EMN=∠AMN,∠GEM=∠GEK,EH∥MN交AB于点H,直接写出∠GEK,∠BMN,∠GEH之间的数量关系.(用含m式子表示)人教版七年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题)1.如图,A、B、C、D中的图案()可以通过如图平移得到A.B.C.D.【分析】根据平移昰图形沿某一方向移动一定的距离,平移不改变图形的形状和大小,可得答案.【解答】解:观察图形可知图案D通过平移后可以得到.故选:D.2.4的平方根是()A.2B.C.±2D.±【分析】原式利用平方根定义计算即可得到结果.【解答】解:∵(±2)2=4,∴4的平方根是±2,故选:C.3.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A.x<4B.x<2C.2<x<4D.x>2【分析】根据不等式组解集在数轴上的表示方法可知,不等式组的解集是指它们的公共部分,公共部分是2左边的部分.【解答】解:不等式组的解集是指它们的公共部分,公共部分是2左边的部分.因而解集是x<2.故选:B.4.已知x>2,则下列变形正确的是()A.mx>2m B.﹣x+2<1C.若y>2,则x﹣y>0D.若m<0,则x﹣m<2﹣m【分析】根据不等式的性质对A、B、D进行判断;利用反例对C进行判断.【解答】解:A、若x>2,当m>0时,mx>2m,所以A选项变形错误;B、若x>2,则﹣x<﹣1,所以﹣x+2<1,所以B选项的变形正确;C、当x=3,y=3,则x﹣y=0,所以C选项的变形错误;D、若x>2,则x﹣m>2﹣m,所以D选项的变形错误.故选:B.5.如图,若AB,CD相交于点O,过点O作OE⊥AB,则下列结论不正确的是()A.∠1与∠2互为余角B.∠3与∠2互为余角C.∠2与∠AOE互为补角D.∠AOC与∠BOD是对顶角【分析】根据OE⊥AB可得∠EOB=90°,再根据对顶角相等可得∠1=∠3,然后根据余角定义和补角定义进行分析即可.【解答】解:A、∠1与∠2互余,说法正确;B、∠2与∠3互余,说法正确;C、∠DOE与∠1互补,说法错误,∠DOE与∠2互补;D、∠AOC与∠BOD是对顶角,说法正确;故选:C.6.已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是()A.B.C.D.【分析】根据题意画出图形即可.【解答】解:根据题意可得图形,故选:C.7.表格中上下每对x、y的值都是同一个二元一次方程的解,则这个方程为()x﹣1012y852﹣1 A.5x+y=3B.x+y=5C.2x﹣y=0D.3x+y=5【分析】设方程为y=kx+b,把x与y的两对值代入求出k与b的值,即可确定出方程.【解答】解:设方程为y=kx+b,把(0,5)与(1,2)代入得:,解得:,∴这个方程为y=﹣3x+5,即3x+y=5,故选:D.8.一张方桌由1个桌面,4个桌腿组成.如果1立方米木料可以做方桌的桌面50个或桌腿300条,现有5立方米木料.那么用多少立方米木料做桌面,多少立方米木料做桌腿做出的桌面和桌腿能恰好配成方桌?设生产桌面、桌腿的木料分别是x、y立方米,则符合题意的方程是()A.50x+300y=1B.50x+300 y=5C.50x=1200y D.200x=300y【分析】根据“桌面数量×4=桌腿数量”可列方程.【解答】解:设生产桌面、桌腿的木料分别是x、y立方米,则符合题意得方程为50x•4=300y,即200x=300y,故选:D.9.已知x,y满足方程组,则无论m取何值,x,y恒有关系式是()A.x+y=1B.x﹣y=9C.x+y=9D.x﹣y=﹣9【分析】由方程组消去m,得到一个关于x,y的方程,化简这个方程即可.【解答】解:,②﹣①得:x﹣y+5=﹣4,∴x﹣y=﹣9,故选:D.10.关于x的不等式组的整数解共有4个,则a的取值范围是()A.7<a<8B.﹣7<a≤8C.7≤a<8D.以上答案都不对【分析】首先解不等式组确定不等式组的解集,然后根据不等式组有四个整数解即可得到关于a的不等式组,求得a的值.【解答】解:,解①得:x≤a,解②得:x>3,则不等式组的解集是:3<x≤a.不等式组有四个整数解,则是4,5,6,7.则7≤a<8.故选:C.二.填空题(共6小题)11.已知4x﹣y=6,用含x的代数式表示y,则y=4x﹣6.【分析】把x看做已知数求出y即可.【解答】解:方程4x﹣y=6,解得:y=4x﹣6.故答案为:4x﹣6.12.把命题“同位角相等”改写成“如果…那么…”的形式是如果有两个角是同位角,那么这两个角相等,它是假命题.(填“真”或“假”)【分析】命题可以写成“如果…那么…”的形式,“如果”的后接部分是题设,“那么”的后接部分是结论.分析是否为真命题,需要分别分析各题设是否能推出结论,能推出结论的即真命题,反之就是假命题.【解答】解:把命题“同位角相等”改写成“如果…那么…”的形式是“如果有两个角是同位角,那么这两个角相等”,它是假命题.故空中填:如果有两个角是同位角,那么这两个角相等,假.13.如图,点A,B,C,D,E在直线l上,点P在直线l外,PC⊥l于点C,在线段P A,PB,PC,PD,PE中,最短的一条线段是PC,理由是垂线段最短【分析】点到直线的距离是指该点到直线的垂线段的长,根据定义即可选出答案.【解答】解:根据点到直线的距离的定义得出线段PC的长是点P到直线l的距离,从直线外一点到这条直线所作的垂线段最短.故答案是:PC;垂线段最短.14.如图,已知三角形ABC的面积为28,将三角形ABC沿BC向右平移得到三角形A′B′C′,使点B′和点C重合,连接AC′交A′C于点D,点D恰为AC′的中点,则三角形CDC′的面积为14.【分析】根据平移变换只改变图形的位置,不改变图形的形状与大小,可得∠B=∠A′CC′,BC=B′C′,再根据同位角相等,两直线平行可得CD∥AB,然后求出CD=AB,点C′到A′C的距离等于点C到AB的距离,根据等高的三角形的面积的比等于底边的比即可求解.【解答】解:根据题意得,∠B=∠A′CC′,BC=B′C′,∴CD∥AB,CD=AB(三角形的中位线),∵点C′到A′C的距离等于点C到AB的距离,∴△C′DC的面积=△ABC的面积=×28=14.故答案为:14.15.已知,若是整数,则a=2或﹣2或﹣1.【分析】利用是整数可判断a为整数且a≥﹣2,则利用a2≤得到﹣7<a<7且a为整数,然后找出满足条件的整数a的值即可.【解答】解:∵是整数,∴a为整数且a≥﹣2,∵a2≤,∴﹣7<a<7且a为整数,∴当a=﹣2或﹣1或2时,是整数.故答案为2或﹣2或﹣1.16.若方程组的解是,那么的解为或.【分析】运用换元思想列出方程组,求出方程组的解即可.【解答】解:将方程组中的两个方程同除以3,整理得,∵方程组的解是,∴,解得或.故答案为或.三.解答题17.解方程组:.【分析】根据观察看出①中x的系数为1,故用代入法消元较好,把①变形成含y的代数式表示x,再把其代入②便可消去x,解出y的值,再把y的值代入变形后的式子,即可得到x的值.【解答】解:,由①得:x=2y+3③,把③代入②中得:3(2y+3)﹣8y=13,6y+9﹣8y=13,∴y=﹣2,把y=﹣2代入③中,得x=﹣1,∴原方程的解为.18.解不等式组,并求出非负整数解:.【考点】CB:解一元一次不等式组;CC:一元一次不等式组的整数解.【专题】524:一元一次不等式(组)及应用;66:运算能力.【答案】0,1,2,3.【分析】分别求出每个不等式的解集,再确定出不等式组的解集,继而可得答案.【解答】解:,解不等式①,得:x≥﹣2,解不等式②,得:x<4,则不等式组的解集为﹣2≤x<4,所以不等式组的非负整数解有0,1,2,3.19..【考点】2C:实数的运算.【专题】514:二次根式;66:运算能力.【答案】﹣0.4.【分析】直接利用二次根式的性质分别化简得出答案.【解答】解:原式=0.6﹣2+1﹣0=﹣0.4.20.已知:如图,∠B=∠D,∠1=∠E.求证:AB∥CD.证明∵∠1=∠E(已知),∴∥(),∴∠2+∠=180°().∵∠B=∠D(已知),∴∠2+∠=180°(),∴AB∥CD().【考点】JB:平行线的判定与性质.【专题】551:线段、角、相交线与平行线;67:推理能力.【答案】AD;BC;内错角相等,两直线平行;D;两直线平行,同旁内角互补;B;等量代换;同旁内角互补,两直线平行.【分析】利用平行线的判定定理和性质定理解答即可.【解答】证明:∵∠1=∠E(已知),∴AD∥BC(内错角相等,两直线平行),∴∠2+∠D=180°(两直线平行,同旁内角互补),∵∠B=∠D(已知),∴∠2+∠B=180°(等量代换),∴AB∥CD(同旁内角互补,两直线平行).故答案为:AD;BC;内错角相等,两直线平行;D;两直线平行,同旁内角互补;B;等量代换;同旁内角互补,两直线平行.21.如图,点O在直线AB上,OC⊥OD,∠D与∠1互余.(1)求证:ED∥AB;(2)OF平分∠AOD交DE于点F,若∠OFD=58°,补全图形,并求∠1的度数.【考点】IL:余角和补角;JB:平行线的判定与性质.【专题】551:线段、角、相交线与平行线;67:推理能力.【答案】(1)证明过程见解答;(2)图形见解答,13°.【分析】(1)利用已知得出∠D+∠AOD=180°,进而得出答案;(2)利用角平分线的定义结合已知得出∠COF=∠COD=45°,进而得出答案.【解答】(1)证明:∵∠D与∠1互余,∴∠D+∠1=90°,∵OC⊥OD,∴∠COD=90°,∴∠D+∠1+∠COD=180°,∴∠D+∠AOD=180°,∴ED∥AB;(2)解:如图所示:∵ED∥AB,∴∠AOF=∠OFD=58°,∵OF平分∠COD,∴∠COF=∠COD=45°,∴∠1=∠AOF﹣∠COF=58°﹣45°=13°.22.某书店计划购进甲,乙两种书共1200本,这两种书的进价,售价如下;进价(元/本)售价(元/本)甲2530乙4560(1)若要使进货款恰好为38000元,书店应如何进货?(2)若书店销售完全部的书后获利不超过进货价的30%,至少购进甲种书多少本?【考点】9A:二元一次方程组的应用;C9:一元一次不等式的应用.【专题】12:应用题;521:一次方程(组)及应用;524:一元一次不等式(组)及应用;66:运算能力;69:应用意识.【答案】(1)800,400;(2)450.【分析】(1)设书店购进甲种书x本,购进乙种书y本,根据题意列出二元一次方程组,则可得出答案;(2)设书店购进甲种书a本,列出不等式,解不等式可得出答案.【解答】解:(1)设书店购进甲种书x本,购进乙种书y本,根据题意得,,解得,答:书店应购进甲种书800本,购进乙种书400本.(2)设书店购进甲种书a本,由题意,得:(30﹣25)a+(60﹣45)(1200﹣a)≤[25a+45(1200﹣a)]×30%,解得:a≥450.答:至少购进甲种书450本.23.定义一种新运算“a*b”的含义为:当a≥b时,a*b=a+b;当a<b时,a*b=a﹣b.(1)填空:(﹣4)*8=;(x2﹣2x+3)*(﹣x2﹣2x﹣3)=;(2)如果(3x﹣7)*(3﹣2x)=2,求x的值.【考点】1G:有理数的混合运算;44:整式的加减;86:解一元一次方程.【专题】521:一次方程(组)及应用;66:运算能力.【答案】(1)﹣12,﹣4x;(2)6.【分析】(1)原式利用题中的新定义计算即可求出值;先利用作差法判断出x2﹣2x+3>﹣x2﹣2x﹣3,再新运算化简即可;(2)分3x﹣7≥3﹣2x和3x﹣7<3﹣2x两种情况,依据新定义列出方程求解可得.【解答】解:(1)根据题中的新定义得:(﹣4)⊗8=(﹣4)﹣8=﹣12;∵(x2﹣2x+3)﹣(﹣x2﹣2x﹣3)=2m2+6>0,∴(x2﹣2x+3)*(﹣x2﹣2x﹣3)=(x2﹣2x+3)+(﹣x2﹣2x﹣3)=﹣4x;故答案为﹣12,﹣4x;(2)当3x﹣7≥3﹣2x,即x≥2时,由题意得:(3x﹣7)+(3﹣2x)=2,解得x=6;当3x﹣7<3﹣2x,即x<2时,由题意得:(3x﹣7)﹣(3﹣2x)=2,解得x=(舍).∴x的值为6.24.在方程y=kx+b(k,b为常数)中,当x=2时,y=1;当x=﹣1时,y=4.(1)求k、b的值;(2)若和是该方程的两组解,且b1>b2,请比较a1与a2大小,并说明理由.(3)若x<5,y<6,若m=x﹣y,求m的取值范围.【考点】92:二元一次方程的解;98:解二元一次方程组;CB:解一元一次不等式组.【专题】11:计算题;521:一次方程(组)及应用;524:一元一次不等式(组)及应用;66:运算能力.【答案】(1)k=﹣1,b=3;(2)a1<a2;(3)﹣9<m<7.【分析】(1)根据二元一次方程组的求解方法,求出k、b的值各是多少即可.(2)由题意得出b1=﹣a1+3,b2=﹣a2+3,则可得出答案;(3)解方程组可得出x,y,根据题意列出不等式组,则可得出答案.【解答】解:(1)由题意得,解得,即k=﹣1,b=3.(2)∵和是该方程的两组解,∴b1=﹣a1+3,b2=﹣a2+3,∵b1>b2,∴﹣a1+3>﹣a2+3,∴a1<a2.(3)∵,∴,∵x<5,y<6,∴,解得﹣9<m<7.∴m的取值范围是﹣9<m<7.25.已知:直线AB∥CD,点M、N分别在直线AB,CD上,点E为平面内一点.(1)如图1,求∠AME,∠E,∠ENC的数量关系.(2)利用(1)的结论解决以下问题:如图2所示,已知:AB∥CD,∠BED=75°,∠BFD=35°,若∠EBF=x°,∠EDF=y°且x>y,求3x﹣2y的范围.(3)如图3,点G为CD上一点,∠EMN=∠AMN,∠GEM=∠GEK,EH∥MN交AB于点H,直接写出∠GEK,∠BMN,∠GEH之间的数量关系.(用含m式子表示)【考点】JA:平行线的性质.【专题】551:线段、角、相交线与平行线;67:推理能力.【答案】(1)∠MEN=∠BME+∠END;(2)20<3x﹣2y<120;(3)∠BMN+∠KEG﹣m∠GEH=180°.【分析】(1)过点E作EL∥AB,利用平行线的性质可得∠1=∠BME,∠2=∠DNE,由∠MEN=∠1+∠2,等量代换可得结论;(2)根据(1)中的关系得出x与y的关系式,再根据已知条件x∥y列出y的不等式求得y的取值范围;(3)由已知∠EMN=∠BMN,∠GEN=∠GEK,EH∥MN,可得∠HEM=∠ENM =∠BMN,因为∠GEH=∠GEM﹣∠HEM,等量代换得出结论.【解答】解:(1)如图1,过点E作EL∥AB,∵AB∥CD,∴EL∥AB∥CD,∴∠1=∠AME,∠2=∠CNE,∵∠MEN=∠1+∠2,∴∠MEN=∠BME+∠END;(2)由(1)的结论得:∠BFD=∠ABF+∠CFD=35°,∠BED=∠ABE+∠CDE=∠ABF+∠EBF+∠CDF+∠EDF=75°,即x°+y°+35°=75°,∴x°=40°﹣y°,∴3x﹣2y=120﹣5y,∵x>y,∴40﹣y>y,∴y<20,∴0<y<20,当y=0时,120﹣5y=120,当y=20时,120﹣5y=20,∴3x﹣2y的范围为:20<3x﹣2y<120;(3)∵∠AMN=∠EMN,∠GEK=∠GEM∴m∠AMN=∠EMN,m∠GEK=∠GEM,∵EH∥MN,∴∠HEM=∠EMN=m∠AMN,∵∠GEH=∠GEM﹣∠HEM=m∠GEK﹣m∠AMN,∴∠GEK=∠GEM=(∠GEH+∠HEM),∴m∠GEK=∠GEH+∠HEM,∵∠BMN=180°﹣∠AMN,∴∠BMN+∠KEG﹣m∠GEH=180°.。
1到100的开平方根表
![1到100的开平方根表](https://img.taocdn.com/s3/m/f0856e42ba68a98271fe910ef12d2af90242a893.png)
1到100的开平方根表 1的平方根是1。
2的平方根是1.414。
3的平方根是1.732。
4的平方根是2。
5的平方根是2.236。
6的平方根是2.449。
7的平方根是2.646。
8的平方根是2.828。
9的平方根是3。
10的平方根是3.162。
11的平方根是3.317。
12的平方根是3.464。
13的平方根是3.606。
14的平方根是3.742。
15的平方根是3.873。
16的平方根是4。
17的平方根是4.123。
18的平方根是4.243。
19的平方根是4.359。
20的平方根是4.472。
21的平方根是4.583。
22的平方根是4.69。
23的平方根是4.796。
24的平方根是4.899。
25的平方根是5。
26的平方根是5.099。
27的平方根是5.196。
28的平方根是5.292。
29的平方根是5.385。
30的平方根是5.477。
31的平方根是5.568。
32的平方根是5.657。
33的平方根是5.745。
34的平方根是5.831。
35的平方根是5.916。
36的平方根是6。
37的平方根是6.083。
38的平方根是6.164。
39的平方根是6.245。
40的平方根是6.325。
41的平方根是6.403。
42的平方根是6.481。
43的平方根是6.557。
44的平方根是6.633。
45的平方根是6.708。
46的平方根是6.782。
47的平方根是6.855。
48的平方根是6.928。
49的平方根是7。
50的平方根是7.071。
51的平方根是7.141。
52的平方根是7.211。
53的平方根是7.28。
54的平方根是7.348。
55的平方根是7.416。
56的平方根是7.483。
57的平方根是7.549。
58的平方根是7.615。
59的平方根是7.681。
60的平方根是7.746。
61的平方根是7.81。
62的平方根是7.874。
2.4平方根
![2.4平方根](https://img.taocdn.com/s3/m/07658307fc4ffe473368ab23.png)
(
36 )2=
.
5、- 12是 144 0.64
的平方根 的平方根是±0.8
6、若2a-1的平方根是±3,
则a=
5
.
7、若x2 = 17 ,则 x=
17 .
8、下列说法正确的是( D A、9的平方根是3 B、- 9的平方根是- 3 B、 0 的平方根是±0 D、 - 3是9的平方根
)
求
x
x 1
9 (4) 25 9 3 解: 25 5
1、一个正数有
2 个平方根, ,
.
它们是 互为相反数
平方根等于它本身的数是 0 负数 没有平方根 2、25的平方根是 ±5
.
(-9)2的平方根是 ±9
.
3、-7是
49
的平方根,
0.3是
0.09
5
的平方根
的平方根 7 .
5
4、 (
是
7
) 2= 36
36
的平方根是
6
.
4、若x2=5 , 且x>0 , 则x=
5
.
5、面积是10平方米的正方形的边长 是 10 平方米 .
6、若一个数的算术平方根是n,
则比它大2的数的算术平方根是 n 2 .
2
7、 (
a)
2
a
,a ≥
2
0
8、当a>0时, 当a<0时,
a = a . a = -a .
2
根号
a
(a是非负数)
被开方数
求一个数a的平方根的运算,叫做开平方. ( a叫做被开方数)
a
a
a
+1 -1 +2 -2 +3 -3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n2 2 .
8、当a>0时, a2 = a . 当a<0时, a2 = - a .
为相反数.
0的平方根有几个?
一个,0的平方根是0.
负数有平方根吗?负数没有平方根.
学以致用
计算:
(1) 196
解:196 14
(3) 0.81 解:0.81 0.9
(2) 121
解: 121 11
(4) 9 25
解:- 9 3 25 5
1、一个正数有 2 个平方根,
它们是 互为相反数
,
平方根等于它本身的数是 0 .
负数
没有平方根
2、25的平方根是 ±5
.
(-9)2的平方根是 ±9
.
3、-7是 49 的平方根, 0.3是 0.09 的平方根
5 是 5 的平方根
4、 7
7
(
)2=
.
( 36 )2= 36
.
5、- 12是 144 的平方根 0.64 的平方根是±0.8
6、若2a-1的平方根是±3, 则a= 5 .
根号
a
(a是非负数)
被开方数
求一个数a的平方根的运算,叫做开平方. ( a叫做被开方数)
a a
a
平方
+1 -1
1
+2 -2
4
+3 -3
9
开平方
1
+1 -1
4
+2 -2
9
+3 -3
平方与开平方互逆运算.
9的平方根: 9 3
9的正的平方根: 9 3
9的负的平方根: 9 3
25 表示25的正的平方根。
x 10 或
x 12 .
1、25的平方根是 ±5 ,算术平方根是 5 .
2、2 的平方根是 2,算术平方根是 2 .
3、 36 的平方根是 6 .
4、若x2=5 , 且x>0 , 则x= 5 .
5、面积是10平方米的正方形的边长
是 10 平方米 .
6、若一个数的算术平方根是n, 则比它大2的数的算术平方根是
2.4 平方根
3 2=( 9 ) (-3 )2 = ( 9 )
( ±3 )2 = 9
(
1 2
)2= (
(- 1 )2 = (
2
1)
4
1 4
)
( ± 1 )2 = 1
2
4
如果一个数的平方等于a,那么这个数
叫做a的平方根,也叫做a的二次方根。
2
X
=
a
x是a的平方根。
X= a
平方根的表示方法、读法
7 表示7的平方根。
0的平方根:0 0
1.求下列各数的平方根:
(1)64
解: (8)2 64
64 8
即64的平方根为 8
1.求下列各数的平方根:
(1)64
49
(2) 121
(3) 0.0004 (4) (25)2
(5) 11
议一议 一个正数有几个平方根?它们是
什么关系? 一个正数有两个平方根,它们是互
7、若x2 = 17 ,则 x= 17 .
8、下列说法正确的是( D )
A、9的平方根是3 B、- 9的平方根是- 3 B、 0 的平方根是±0 D、 - 3是9的平方根
求 x 的值3 x 12 363
解: 3 x 12 363 , x 12 121 ,
x 1 121 ,
x 1 11 或 x 1 11 ,