平方根经典题型

合集下载

平方根练习题及答案

平方根练习题及答案

平方根练习题及答案平方根练习题及答案数学作为一门基础学科,对于培养学生的逻辑思维和解决问题的能力起着至关重要的作用。

而在数学中,平方根是一个重要的概念,掌握平方根的计算方法和应用能力对于解决各种实际问题至关重要。

下面我们来看一些关于平方根的练习题及其答案。

1. 计算下列各数的平方根:a) 4b) 9c) 16d) 25答案:a) √4 = 2b) √9 = 3c) √16 = 4d) √25 = 52. 计算下列各数的平方根:a) 36b) 49c) 64d) 81答案:a) √36 = 6b) √49 = 7c) √64 = 8d) √81 = 93. 计算下列各数的平方根:a) 100b) 121c) 144d) 169答案:a) √100 = 10b) √121 = 11c) √144 = 12d) √169 = 13通过以上练习题,我们可以看到计算平方根的方法其实非常简单。

对于一个正数n,它的平方根就是使得x² = n成立的正数x。

我们可以通过试探法或者使用计算器来计算平方根。

当然,在实际问题中,我们通常会使用计算器或者数学软件来计算平方根,但是对于基础的练习题,我们还是应该掌握手算的方法。

除了计算平方根,我们还可以通过平方根的性质来解决一些实际问题。

比如,在几何学中,我们可以利用平方根来计算直角三角形的斜边长。

根据勾股定理,直角三角形的两条直角边的平方和等于斜边的平方。

如果我们已知两条直角边的长度,我们就可以通过平方根来计算斜边的长度。

另外,在物理学中,平方根也经常被用来计算速度、加速度等物理量。

例如,当我们已知一个物体匀加速运动的加速度和时间时,我们可以通过平方根来计算物体的位移。

这些实际问题的解决离不开对平方根的理解和应用。

总之,平方根作为数学中的一个重要概念,不仅仅是一种计算方法,更是一种解决实际问题的工具。

通过练习题的训练,我们可以提高对平方根的计算能力和应用能力,为解决更加复杂的问题打下坚实的基础。

平方根专项练习60题(有答案)

平方根专项练习60题(有答案)

平方根专项练习60题(有答案)本文档包含了60道关于平方根的专项练题,每道题后附有答案供参考。

第一部分:基础练题1. 计算下列数的平方根:- 16- 25- 36- 49- 642. 下列数中,哪个数的平方根是8?- 64- 81- 100- 121- 1443. 判断下列等式是否正确:- √9 = 3- √16 = 4- √25 = 6- √36 = 6- √49 = 74. 计算下列数的平方根,并将结果四舍五入到最接近的整数:- 19- 37- 55- 73- 915. 计算下列平方根的值,并将结果保留两位小数:- √20- √32- √45- √58- √72第二部分:复杂练题1. 计算下列数的平方根,并将结果保留三位有效数字:- 1000----2. 判断下列等式是否成立:- (√4)^2 = 4- (√9)^2 = 9- (√16)^2 = 16- (√25)^2 = 25- (√36)^2 = 363. 解方程:√(x-7) = 54. 解方程:2√x = 105. 计算下列表达式的值:- √(64 + 36)- √(100 - 25)- √(144 - 9)- √(81 + 16)- √(121 + 25)以上为平方根的专项练题,答案请参考附后,希望对你的研究有所帮助。

答案:1.- √16 = 4- √25 = 5- √36 = 6- √49 = 7- √64 = 82. 643.- 正确- 正确- 错误(正确答案是5)- 正确- 正确4.- 19 ≈ 4- 37 ≈ 6- 55 ≈ 7- 73 ≈ 9- 91 ≈ 105.- √20 ≈ 4.47- √32 ≈ 5.66- √45 ≈ 6.71- √58 ≈ 7.62 - √72 ≈ 8.49。

七年级数学《平方根》典型例题及练习

七年级数学《平方根》典型例题及练习

七年级数学《平方根》典型例题及练习【知识要点】1、平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根(也叫做二次方根式),2、算术平方根:3、平方根的性质:(1)一个正数有 个平方根,它们 ;(2)0 平方根,它是 ;(3) 没有平方根.4、重要公式:(1)=2)(a (2){==a a 25、平方表:1.正数有_____________个立方根, 0有__________个立方根,负数有__________个立方根,立方根也叫做_______________.2.一个正方体的棱长扩大3倍,则它的体积扩大_____________.3.若一个数的立方根等于数的算术平方根,则这个数是_____________.4. 0的立方根是___________.(-1)2005的立方根是______________.182726的立方根是________. 5. 312726-=____________. 【典型例题】例1、判断下列说法正确的个数为( )① -5是-25的算术平方根;② 6是()26-的算术平方根;③ 0的算术平方根是0;④ 0.01是0.1的算术平方根;⑤ 一个正方形的边长就是这个正方形的面积的算术平方根.A .0 个B .1个C .2个D .3个例2、36的平方根是( )A 、6B 、6±C 、 6D 、 6±例3、下列各式中,哪些有意义?(1)5 (2)2- (3)4- (4)2)3(- (5)310-例4、一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( )A .()1+aB .()1+±aC .12+aD .12+±a例5、求下列各式中的x :(1)0252=-x (2)4(x+1)2-169=0【巩固练习】一、选择题1. 9的算术平方根是( )A .-3B .3C .±3D .812.下列计算正确的是( )A±2 B636=± D.992-=-3.下列说法中正确的是( )A .9的平方根是3 B24. 64的平方根是( )A .±8B .±4C .±2D 5. 4的平方的倒数的算术平方根是( )A .4B .18C .-14D .146.下列结论正确的是( ) A 6)6(2-=-- B 9)3(2=- C 16)16(2±=- D 251625162=⎪⎪⎭⎫ ⎝⎛--7.以下语句及写成式子正确的是( )A 、7是49的算术平方根,即749±=B 、7是2)7(-的平方根,即7)7(2=-C 、7±是49的平方根,即749=±D 、7±是49的平方根,即749±=8.下列语句中正确的是( )A 、9-的平方根是3-B 、9的平方根是3C 、 9的算术平方根是3±D 、9的算术平方根是39.下列说法:(1)3±是9的平方根;(2)9的平方根是3±;(3)3是9的平方根;(4)9的平方根是3,其中正确的有( )A .3个B .2个C .1个D .4个10.下列语句中正确的是( )A 、任意算术平方根是正数B 、只有正数才有算术平方根C 、∵3的平方是9,∴9的平方根是3D 、1-是1的平方根11.下列说法正确的是( )A .任何数的平方根都有两个B .只有正数才有平方根C .一个正数的平方根的平方仍是这个数D .2a 的平方根是a ±12.下列叙述中正确的是( )A .(-11)2的算术平方根是±11B .大于零而小于1的数的算术平方根比原数大C .大于零而小于1的数的平方根比原数大D .任何一个非负数的平方根都是非负数13.25的平方根是( )A 、5B 、5-C 、5±D 、5±14.36的平方根是( )A 、6B 、6±C 、 6D 、 6±15.当≥m 0时,m 表示( )A .m 的平方根B .一个有理数C .m 的算术平方根D .一个正数 16.用数学式子表示“169的平方根是43±”应是( )A .43169±=B .43169±=±C .43169=D .43169-=-17.算术平方根等于它本身的数是( )A 、 1和0B 、0C 、1D 、 1±和0.如果一个数的平方根与立方根是同一个数,那么这个偶数是( )A. 8B. 4C. 0D. 1618.0196.0的算术平方根是( )A 、14.0B 、014.0C 、14.0±D 、014.0±19.2)6(-的平方根是( )A 、-6B 、36C 、±6D 、±6 20.下列各数有平方根的个数是( )(1)5; (2)(-4)2; (3)-22; (4)0; (5)-a 2; (6)π; (7)-a 2-1A .3个B .4个C .5个D .6个 21.2)5(-的平方根是( )A 、 5±B 、 5C 、5-D 、5±22.下列说法错误的是( )A. 1的平方根是1B. –1的立方根是-1C.2是2的平方根 D. –3是2)3(-的平方根 23.下列命题正确的是( )A .49.0的平方根是0.7B .0.7是49.0的平方根C .0.7是49.0的算术平方根D .0.7是49.0的运算结果24.若数a 在数轴上对应的点的位置在原点的左侧,则下列各式中有意义的是( )A .aB .a -C .2a -D .3a26.下列各式中,正确的是( ) A. 2)2(2-=- B. 9)3(2=- C. 39±=± D. 393-=-27.下列各式中正确的是( )A .12)12(2-=-B .6218=⨯C .12)12(2±=-D .12)12(2=-±28.若a 、b 为实数,且471122++-+-=a a a b ,则b a +的值为( ) (A) 1± (B) 4 (C) 3或5 (D) 529.若9,422==b a ,且0<ab ,则b a -的值为 ( )(A) 2- (B) 5± (C) 5 (D) 5-30.已知一个正方形的边长为a ,面积为S ,则( ) A.a S = B.S 的平方根是a C.a 是S 的算术平方根 D.S a ±=31. 若a 和a -都有意义,则a 的值是( )A.0≥aB.0≤aC.0=aD.0≠a 32.22)4(+x 的算术平方根是( )A 、 42)4(+xB 、22)4(+xC 、42+xD 、42+x33.2)5(-的平方根是( )A 、 5±B 、 5C 、5-D 、5±34.下列各式中,正确的是( ) A. 2)2(2-=- B. 9)3(2=- C. 39±=± D. 393-=-35.下列各式中正确的是( )A .12)12(2-=-B .6218=⨯C .12)12(2±=-D .12)12(2=-±36.下列各组数中互为相反数的是( )A 、2)2(2--与B 、382--与C 、2)2(2-与D 、22与- 二、填空题:1.如果x 的平方等于a ,那么x 就是a 的 ,所以的平方根是2.非负数a 的平方根表示为3.因为没有什么数的平方会等于 ,所以负数没有平方根,因此被开方数一定是4_______;9的平方根是_______.5的平方根是 ,25的平方根记作 ,结果是6.非负的平方根叫 平方根7.2)8(-= , 2)8(= 。

(完整版)七年级数学《平方根》典型例题及练习

(完整版)七年级数学《平方根》典型例题及练习

七年级数学《平方根》典型例题及练习【知识要点】1、平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根(也叫做二次方根式),2、算术平方根:3、平方根的性质:(1)一个正数有 个平方根,它们 ;(2)0 平方根,它是 ;(3) 没有平方根.4、重要公式:(1)=2)(a (2){==a a 25、平方表:1.正数有_____________个立方根, 0有__________个立方根,负数有__________个立方根,立方根也叫做_______________.2.一个正方体的棱长扩大3倍,则它的体积扩大_____________.3.若一个数的立方根等于数的算术平方根,则这个数是_____________.4. 0的立方根是___________.(-1)2005的立方根是______________.182726的立方根是________. 5. 312726-=____________. 【典型例题】例1、判断下列说法正确的个数为( )① -5是-25的算术平方根;② 6是()26-的算术平方根;③ 0的算术平方根是0;④ 0.01是0.1的算术平方根;⑤ 一个正方形的边长就是这个正方形的面积的算术平方根.A .0 个B .1个C .2个D .3个例2、36的平方根是( )A 、6B 、6±C 、 6D 、 6±例3、下列各式中,哪些有意义?(1)5 (2)2- (3)4- (4)2)3(- (5)310-例4、一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( )A .()1+aB .()1+±aC .12+aD .12+±a例5、求下列各式中的x :(1)0252=-x (2)4(x+1)2-169=0【巩固练习】一、选择题1. 9的算术平方根是( )A .-3B .3C .±3D .812.下列计算正确的是( )A±2 B636=± D.992-=-3.下列说法中正确的是( )A .9的平方根是3 B24. 64的平方根是( )A .±8B .±4C .±2D 5. 4的平方的倒数的算术平方根是( )A .4B .18C .-14D .146.下列结论正确的是( ) A 6)6(2-=-- B 9)3(2=- C 16)16(2±=- D 251625162=⎪⎪⎭⎫ ⎝⎛--7.以下语句及写成式子正确的是( )A 、7是49的算术平方根,即749±=B 、7是2)7(-的平方根,即7)7(2=-C 、7±是49的平方根,即749=±D 、7±是49的平方根,即749±=8.下列语句中正确的是( )A 、9-的平方根是3-B 、9的平方根是3C 、 9的算术平方根是3±D 、9的算术平方根是39.下列说法:(1)3±是9的平方根;(2)9的平方根是3±;(3)3是9的平方根;(4)9的平方根是3,其中正确的有( )A .3个B .2个C .1个D .4个10.下列语句中正确的是( )A 、任意算术平方根是正数B 、只有正数才有算术平方根C 、∵3的平方是9,∴9的平方根是3D 、1-是1的平方根11.下列说法正确的是( )A .任何数的平方根都有两个B .只有正数才有平方根C .一个正数的平方根的平方仍是这个数D .2a 的平方根是a ±12.下列叙述中正确的是( )A .(-11)2的算术平方根是±11B .大于零而小于1的数的算术平方根比原数大C .大于零而小于1的数的平方根比原数大D .任何一个非负数的平方根都是非负数13.25的平方根是( )A 、5B 、5-C 、5±D 、5±14.36的平方根是( )A 、6B 、6±C 、 6D 、 6±15.当≥m 0时,m 表示( )A .m 的平方根B .一个有理数C .m 的算术平方根D .一个正数 16.用数学式子表示“169的平方根是43±”应是( )A .43169±=B .43169±=±C .43169=D .43169-=-17.算术平方根等于它本身的数是( )A 、 1和0B 、0C 、1D 、 1±和0.如果一个数的平方根与立方根是同一个数,那么这个偶数是( )A. 8B. 4C. 0D. 1618.0196.0的算术平方根是( )A 、14.0B 、014.0C 、14.0±D 、014.0±19.2)6(-的平方根是( )A 、-6B 、36C 、±6D 、±6 20.下列各数有平方根的个数是( )(1)5; (2)(-4)2; (3)-22; (4)0; (5)-a 2; (6)π; (7)-a 2-1A .3个B .4个C .5个D .6个 21.2)5(-的平方根是( )A 、 5±B 、 5C 、5-D 、5±22.下列说法错误的是( )A. 1的平方根是1B. –1的立方根是-1C.2是2的平方根 D. –3是2)3(-的平方根 23.下列命题正确的是( )A .49.0的平方根是0.7B .0.7是49.0的平方根C .0.7是49.0的算术平方根D .0.7是49.0的运算结果24.若数a 在数轴上对应的点的位置在原点的左侧,则下列各式中有意义的是( )A .aB .a -C .2a -D .3a26.下列各式中,正确的是( ) A. 2)2(2-=- B. 9)3(2=- C. 39±=± D. 393-=-27.下列各式中正确的是( )A .12)12(2-=-B .6218=⨯C .12)12(2±=-D .12)12(2=-±28.若a 、b 为实数,且471122++-+-=a a a b ,则b a +的值为( ) (A) 1± (B) 4 (C) 3或5 (D) 529.若9,422==b a ,且0<ab ,则b a -的值为 ( )(A) 2- (B) 5± (C) 5 (D) 5-30.已知一个正方形的边长为a ,面积为S ,则( ) A.a S = B.S 的平方根是a C.a 是S 的算术平方根 D.S a ±=31. 若a 和a -都有意义,则a 的值是( )A.0≥aB.0≤aC.0=aD.0≠a 32.22)4(+x 的算术平方根是( )A 、 42)4(+xB 、22)4(+xC 、42+xD 、42+x33.2)5(-的平方根是( )A 、 5±B 、 5C 、5-D 、5±34.下列各式中,正确的是( ) A. 2)2(2-=- B. 9)3(2=- C. 39±=± D. 393-=-35.下列各式中正确的是( )A .12)12(2-=-B .6218=⨯C .12)12(2±=-D .12)12(2=-±36.下列各组数中互为相反数的是( )A 、2)2(2--与B 、382--与C 、2)2(2-与D 、22与- 二、填空题:1.如果x 的平方等于a ,那么x 就是a 的 ,所以的平方根是2.非负数a 的平方根表示为3.因为没有什么数的平方会等于 ,所以负数没有平方根,因此被开方数一定是4_______;9的平方根是_______.5的平方根是 ,25的平方根记作 ,结果是6.非负的平方根叫 平方根7.2)8(-= , 2)8(= 。

关于平方根的计算题

关于平方根的计算题

关于平方根的计算题平方根计算题 30 题一、基础篇(一)求平方根1. 求 25 的平方根。

解析:因为(\pm 5)^2 = 25,所以 25 的平方根是\pm 5。

2. 求 169 的平方根。

解析:因为(\pm 13)^2 = 169,所以 169 的平方根是\pm 13。

3. 求 0.09 的平方根。

解析:因为(\pm 0.3)^2 = 0.09,所以 0.09 的平方根是\pm 0.3。

(二)化简平方根4. 化简\sqrt{49}。

解析:因为7^2 = 49,所以\sqrt{49} = 7。

5. 化简\sqrt{121}。

解析:因为11^2 = 121,所以\sqrt{121} = 11。

6. 化简\sqrt{0.64}。

解析:因为0.8^2 = 0.64,所以\sqrt{0.64} = 0.8。

(三)平方根的计算7. 计算\sqrt{25} + \sqrt{16}。

解析:\sqrt{25} = 5,\sqrt{16} = 4,所以\sqrt{25} +\sqrt{16} = 5 + 4 = 9。

8. 计算\sqrt{81} \sqrt{49}。

解析:\sqrt{81} = 9,\sqrt{49} = 7,所以\sqrt{81}\sqrt{49} = 9 7 = 2。

9. 计算\sqrt{144} \div \sqrt{16}。

解析:\sqrt{144} = 12,\sqrt{16} = 4,所以\sqrt{144} \div \sqrt{16} = 12 \div 4 = 3。

二、提高篇(一)含小数的平方根计算10. 计算\sqrt{0.01} \times \sqrt{100}。

解析:\sqrt{0.01} = 0.1,\sqrt{100} = 10,所以\sqrt{0.01} \times \sqrt{100} = 0.1 \times 10 = 1。

11. 计算\sqrt{0.25} + \sqrt{0.09}。

平方根立方根练习题及答案

平方根立方根练习题及答案

平方根立方根练习题及答案1. 计算下列各数的平方根:- √9- √16- √252. 计算下列各数的立方根:- ∛8- ∛27- ∛643. 判断下列说法是否正确,并给出理由:- √144 = 12- ∛-8 = -24. 计算下列表达式的值:- √(2^2)- ∛(3^3)5. 解下列方程:- √x = 4- ∛y = 56. 一个数的平方根是2,求这个数。

7. 一个数的立方根是3,求这个数。

8. 一个数的平方根是它本身,求这个数。

9. 一个数的立方根是它本身,求这个数。

10. 计算下列表达式的值:- √(√81)- ∛(∛125)答案1. √9 = 3√16 = 4√25 = 52. ∛8 = 2∛27 = 3∛64 = 43. √144 = 12 是错误的,因为√144 = 12 的平方根是√12,而不是 12。

∛-8 = -2 是错误的,因为负数没有实数立方根。

4. √(2^2) = √4 = 2∛(3^3) = ∛27 = 35. √x = 4 时,x = 4^2 = 16∛y = 5 时,y = 5^3 = 1256. 一个数的平方根是2,这个数是 2^2 = 4。

7. 一个数的立方根是3,这个数是 3^3 = 27。

8. 一个数的平方根是它本身,这个数是0或1。

9. 一个数的立方根是它本身,这个数是0,1,或-1。

10. √(√81) = √9 = 3∛(∛125) = ∛ 5 = 5请注意,这些练习题和答案仅供学习和练习之用,实际应用中可能需要更复杂的计算和理解。

平方根算术平方根经典题型

平方根算术平方根经典题型

平方根算术平方根经典题型
平方根算术平方根经典题型是指涉及平方根和算术平方根(平方根的平方)的经典问题。

下面列举几个常见的题型:
1. 求平方根:给定一个数x,求其平方根。

比如,求2的平方根。

2. 求算术平方根:给定一个数y,求其算术平方根。

比如,求
4的算术平方根。

3. 平方根的运算性质:给定数a和b,若已知a的平方根为x,b的平方根为y,问a+b的平方根等于多少。

比如,已知2的
平方根为√2,3的平方根为√3,求(2+3)的平方根。

4. 平方根的不等式问题:给定一个不等式,要求找到满足不等式的平方根范围。

比如,求解不等式x^2>4的平方根。

5. 平方根的近似值:给定一个数x,要求求出其近似的平方根。

比如,求根号2的近似值。

以上只是平方根算术平方根经典题型的一部分,实际上,根据题目的难度不同,还可以有更多的题型。

在解题时,可以运用平方根的性质和运算规则,结合数学知识解决问题。

平方根的经典题型

平方根的经典题型

平方根的经典题型一、引言平方根作为数学中的一个基本概念,广泛应用于各个领域。

在学习数学的过程中,平方根的求解成为了一个经典题型。

本文将介绍平方根的定义、性质和常见的题型,帮助读者更好地理解和应用平方根。

二、平方根的定义和性质1. 定义:对于非负实数a,平方根表示为√a,即√a = b,其中b是满足b^2 = a的非负实数。

2. 符号:平方根的符号为√,读作“根号”,表示对下方的数取平方根。

3. 性质:a) 非负数的平方根是实数,如果一个数的平方根是负数,那么它本身也必然是负数。

b) 平方根的运算是可逆的,即若b^2 = a,则√a = ±b。

c) 平方根的运算满足乘法和除法法则,即√(ab) = √a * √b,√(a/b) = √a / √b。

三、平方根的求解方法1. 分解法:将一个数的平方根分解成两个因数的平方根的积,利用乘法法则求解。

2. 递归法:通过逐步逼近的方式求解平方根,直到满足一定的精度要求。

3. 迭代法:通过迭代的方式逼近平方根,利用函数的不动点求得平方根的近似值。

四、常见的平方根题型1. 计算平方根:已知一个数,求其平方根的值。

示例题:计算√25。

解答:根据平方根的定义,√25 = ±5,因此√25的值为正负5。

2. 平方根的性质运算:利用平方根的性质进行运算,求解表达式的值。

示例题:计算√(16*49)。

解答:根据平方根的性质,√(16*49) = √16 * √49 = 4 * 7 = 28。

3. 求解方程:利用平方根的性质求解方程。

示例题:求解方程x^2 = 36。

解答:根据平方根的性质,x = ±√36 = ±6,因此方程的解为±6。

4. 近似求解:通过递归法或迭代法求解平方根的近似值。

示例题:求解√2的近似值,精确到小数点后两位。

解答:利用迭代法,可以得到√2的近似值为1.41,四舍五入精确到小数点后两位为1.41。

五、总结平方根作为数学中的基本概念,具有广泛的应用价值。

平方根计算题50道题

平方根计算题50道题

平方根计算题50道题一、简单整数的平方根计算(1 - 10题)1. √(4)- 解析:因为2^2 = 4,所以√(4)=2。

2. √(9)- 解析:3^2 = 9,所以√(9)=3。

3. √(16)- 解析:4^2 = 16,所以√(16)=4。

4. √(25)- 解析:5^2 = 25,所以√(25)=5。

5. √(36)- 解析:6^2 = 36,所以√(36)=6。

6. √(49)- 解析:7^2 = 49,所以√(49)=7。

7. √(64)- 解析:8^2 = 64,所以√(64)=8。

8. √(81)- 解析:9^2 = 81,所以√(81)=9。

9. √(100)- 解析:10^2 = 100,所以√(100)=10。

10. √(121)- 解析:11^2 = 121,所以√(121)=11。

二、含小数的平方根计算(11 - 20题)11. √(0.04)- 解析:因为0.2^2 = 0.04,所以√(0.04)=0.2。

12. √(0.09)- 解析:0.3^2 = 0.09,所以√(0.09)=0.3。

13. √(0.16)- 解析:0.4^2 = 0.16,所以√(0.16)=0.4。

14. √(0.25)- 解析:0.5^2 = 0.25,所以√(0.25)=0.5。

15. √(0.36)- 解析:0.6^2 = 0.36,所以√(0.36)=0.6。

16. √(0.49)- 解析:0.7^2 = 0.49,所以√(0.49)=0.7。

17. √(0.64)- 解析:0.8^2 = 0.64,所以√(0.64)=0.8。

18. √(0.81)- 解析:0.9^2 = 0.81,所以√(0.81)=0.9。

19. √(1.21)- 解析:1.1^2 = 1.21,所以√(1.21)=1.1。

20. √(1.44)- 解析:1.2^2 = 1.44,所以√(1.44)=1.2。

《平方根》典型例题及练习

《平方根》典型例题及练习

七年级数学《平方根》典型例题及练习【知识要点】1、平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根(也叫做二次方根式),2、算术平方根:3、平方根的性质:(1)一个正数有 个平方根,它们 ;(2)0 平方根,它是 ;(3) 没有平方根.4、重要公式: (1)=2)(a (2){==a a 25、平方表: 【典型例题】 例1、判断下列说法正确的个数为()① -5是-25的算术平方根;② 6是()26-的算术平方根;③ 0的算术平方根是0;④ 0.01是0.1的算术平方根;⑤ 一个正方形的边长就是这个正方形的面积的算术平方根.A.0 个 B.1个 C .2个 D .3个例2、36的平方根是( )A、6 B 、6± C 、 6 D 、 6±例3、下列各式中,哪些有意义?(1)5 (2)2- (3)4- (4)2)3(- (5)310-例4、一个自然数的算术平方根是a,则下一个自然数的算术平方根是( )A.()1+a B .()1+±a C .12+a D .12+±a例5、求下列各式中的x :(1)0252=-x (2)4(x+1)2-169=0【巩固练习】一、选择题1. 9的算术平方根是( )A.-3 B .3 C.±3 D.812.下列计算正确的是( )A±2 B 9 C.636=± D.992-=-3.下列说法中正确的是( )A.9的平方根是3 B2 C. 4 D 24. 64的平方根是( )A.±8 B.±4 C.±2 D 5. 4的平方的倒数的算术平方根是( )A .4B .18C .-14 D.146.下列结论正确的是( ) A 6)6(2-=-- B9)3(2=- C16)16(2±=- D251625162=⎪⎪⎭⎫ ⎝⎛--7.以下语句及写成式子正确的是( )A、7是49的算术平方根,即749±= B、7是2)7(-的平方根,即7)7(2=-C 、7±是49的平方根,即749=±D 、7±是49的平方根,即749±=8.下列语句中正确的是( )A、9-的平方根是3- B 、9的平方根是3 C 、 9的算术平方根是3± D 、9的算术平方根是39.下列说法:(1)3±是9的平方根;(2)9的平方根是3±;(3)3是9的平方根;(4)9的平方根是3,其中正确的有( )A.3个 B.2个ﻩC .1个 D .4个10.下列语句中正确的是( )A、任意算术平方根是正数 B 、只有正数才有算术平方根C 、∵3的平方是9,∴9的平方根是3 D、1-是1的平方根11.下列说法正确的是( )A .任何数的平方根都有两个B .只有正数才有平方根C.一个正数的平方根的平方仍是这个数ﻩ D .2a 的平方根是a ±12.下列叙述中正确的是( )A.(-11)2的算术平方根是±11 B.大于零而小于1的数的算术平方根比原数大C.大于零而小于1的数的平方根比原数大 D .任何一个非负数的平方根都是非负数13.25的平方根是( )A 、5B 、5-C 、5± D、5±14.36的平方根是( )A 、6 B、6± C 、 6 D、 6±15.当≥m 0时,m 表示( )A.m 的平方根ﻩB.一个有理数 ﻩC.m 的算术平方根D.一个正数 16.用数学式子表示“169的平方根是43±”应是( )A .43169±= B.43169±=± C.43169= D.43169-=-17.算术平方根等于它本身的数是( )A 、 1和0B 、0 C、1 D 、 1±和018.0196.0的算术平方根是( )A、14.0 B 、014.0 C 、14.0± D 、014.0±19.2)6(-的平方根是( )A 、-6B 、36C 、±6D 、±6 20.下列各数有平方根的个数是( )(1)5; (2)(-4)2; (3)-22; (4)0; (5)-a2; (6)π; (7)-a 2-1A.3个 B.4个 C.5个 D.6个21.2)5(-的平方根是( )A 、 5±B 、 5C 、5- D、5±22.下列说法错误的是( )A. 1的平方根是1 B . –1的立方根是-1 C.2是2的平方根 D. –3是2)3(-的平方根 23.下列命题正确的是( )A.49.0的平方根是0.7 B.0.7是49.0的平方根 C .0.7是49.0的算术平方根 D.0.7是49.0的运算结果24.若数a 在数轴上对应的点的位置在原点的左侧,则下列各式中有意义的是( ) A.a B.a -C .2a - D.3a 25.3612892=x ,那么x 的值为( ) A .1917±=x B.1917=xC .1817=x D.1817±=x 26.下列各式中,正确的是( ) A. 2)2(2-=- B. 9)3(2=- C. 39±=± D. 393-=-27.下列各式中正确的是( )A.12)12(2-=- B.6218=⨯ C .12)12(2±=-ﻩ D.12)12(2=-±28.若a 、b 为实数,且471122++-+-=a a a b ,则b a +的值为( ) (A) 1± (B) 4 (C) 3或5 (D) 529.若9,422==b a ,且0<ab ,则b a -的值为 ( )(A ) 2- (B) 5± (C) 5 (D ) 5-30.已知一个正方形的边长为a ,面积为S ,则( ) A.a S = B.S 的平方根是a C .a 是S 的算术平方根 D .S a ±=31. 若a 和a -都有意义,则a 的值是( )A.0≥a B .0≤a C .0=a D.0≠a32.22)4(+x 的算术平方根是( )A、 42)4(+x B 、22)4(+x C 、42+x D 、42+x 33.2)5(-的平方根是( )A 、 5± B、 5 C 、5- D 、5±34.下列各式中,正确的是( )A. 2)2(2-=- B . 9)3(2=- C. 39±=± D. 393-=-35.下列各式中正确的是( )A .12)12(2-=-B .6218=⨯ﻩ C.12)12(2±=- D .12)12(2=-±36.下列各组数中互为相反数的是( )A 、2)2(2--与B 、382--与C 、2)2(2-与D 、22与-二、填空题:1.如果x 的平方等于a,那么x 就是a 的 ,所以的平方根是2.非负数a 的平方根表示为3.因为没有什么数的平方会等于 ,所以负数没有平方根,因此被开方数一定是_______;9的平方根是_______.的平方根是 ,25的平方根记作 ,结果是6.非负的平方根叫 平方根7.2)8(-= , 2)8(= 。

平方根经典题型10道

平方根经典题型10道

平方根经典题型10道一、基础概念理解题1. 什么数的平方根是它本身?- 这就像在找一个超级特别的数呢。

我们知道正数有两个平方根,一正一负,0的平方根就只有一个,就是0本身。

所以这个数就是0呀,它是独一无二的,平方根就是自己,就像照镜子,镜子里还是自己一样有趣。

2. 若x^2=16,求x的值。

- 这就相当于在问,哪个数的平方等于16呢?我们知道4×4 = 16,但是别忘了,( - 4)×( - 4)=16。

所以x = 4或者x=-4,就像一个数有两个“分身”,一个正的一个负的,都满足这个平方的关系。

二、计算求值题3. 计算√(25)的值。

- 这就好比在找一个数,这个数自己乘以自己等于25。

那我们一下子就能想到5啦,因为5的平方就是25。

不过要注意哦,平方根有正负两个,这里求的是算术平方根,所以√(25)=5,就像找到了那个正数的代表。

4. 计算√(121)。

- 这题就是要找到一个数,它的平方等于121。

我们可以从1开始试,试到11的时候就发现11×11 = 121,所以√(121)=11,就像解开了一个小密码一样。

5. 计算√(0.09)。

- 想一下,哪个数自己乘以自己等于0.09呢?我们知道0.3×0.3 = 0.09,所以√(0.09)=0.3,虽然这个数是个小数,但平方根的规则还是一样的哦。

三、化简题6. 化简√(18)。

- 这就有点像给√(18)“减肥”啦。

我们先把18分解因数,18 = 2×9,而9 = 3×3,所以√(18)=√(2×9)=√(2)×√(9)=3√(2),就像把一个复杂的东西拆分成简单的部分再组合起来。

7. 化简√(75)。

- 对于√(75),我们把75分解因数,75 = 3×25,25 = 5×5。

那么√(75)=√(3×25)=√(3)×√(25)=5√(3),就像把一个大包裹拆成小包裹一样,让它看起来更简洁。

4.1平方根(八大题型)(解析版)

4.1平方根(八大题型)(解析版)

(苏科版)八年级上册数学《第4章 实数》4.1 平 方 根◆1、平方根的定义: 一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根. 这就是说,如果x 2=a ,那么x 叫做a 的平方根.◆2、开平方:求一个数a 的平方根的运算,叫做开平方.开平方与平方互为逆运算,运用这种关系可以求一个数的平方根.◆3、平方根的表示方法:正数a 正的平方根可以表示为a ,正数a 的负的平方根,可以表示为-a .正数a 的平方根可以用±a 表示,读作“正、负根号a ”.◆4、平方根的性质:①正数有两个平方根,它们互为相反数;②0的平方根是0;③负数没有平方根.◆1、算术平方根的定义:我们把正数a 的正的平方根叫做a 的算术平方根.a 的算术平方根记作:a ,读作:“根号a ”.规定:0的算术平方根是0. 记作: 0=0.◆2、算术平方根的性质:算术平方根具有双重非负性.①被开方数一定是非负数,即a ≥0.②一个非负数的算术平方根也是非负数,即a ≥0.◆3、求一个正数的算术平方根与求一个正数的平方恰好是互逆的两种运算,因而,求一个数的算术平方根实际上可以转化为求一个正数的平方运算,但是,只有正数和0有算术平方根,负数没有算术平方根.◆4、被开方数越大,对应的算术平方根也越大.【注意】a根指数2,不要误认为根指数是1或没有,因此a也读作:“二次根号a”.◆5、算术平方根与平方根的联系和区别:联系:(1)包含关系:平方根包含算术平方根,算术平方根是平方根的一种.(2)只有非负数才有平方根和算术平方根.(3) 0的平方根是0,算术平方根也是0.区别:(1)个数不同:一个正数有两个平方根,但正数算术平方根只有一个.;(2)表示方法不同:正数a的算术平方根表示为a,正数a的平方根表示为a【例题1】下列说法正确的是( )A .25的平方根是5B .(﹣3)2的平方根是﹣3C .925的算术平方根是35D .0.16的算术平方根是±0.4【分析】依据平方根、算术平方根的定义和性质求解即可.【解答】解:A 、25的平方根是±5,故A 错误;B 、(﹣3)2的平方根是±3,故B 错误;C 、925的算术平方根是35,故C 正确;D 、0.16的算术平方根是+0.4,故D 错误.故选:C .【点评】本题主要考查的是算术平方根和平方根的定义和性质,熟练掌握相关知识是解题的关键.【变式1-1】(2022秋•莱州市期末)144的平方根是±12的数学表达式是( )A=12B =±12C .12D .12【分析】根据平方根的定义进行计算即可.【解答】解:144的平方根是±12的数学表达式是±±12,故选:C .【点评】本题考查平方根,理解平方根的定义以及表示方法是正确解答的前提.【变式1-2】下列说法中,正确的是( )A .任何数的平方根都有两个B .一个数的平方根是它本身C .只有正数才有平方根D .负数没有平方根【分析】根据平方根的定义进行解答即可.【解答】解:A 、0的平方根是0,只有一个,故错误,不符合题意;B 、一个数的平方根不一定是它本身,故错误,不符合题意;C 、0也有平方根,故错误,不符合题意;D 、负数没有平方根,正确,符合题意.故选:D .【点评】本题考查的是平方根,熟知正数和0有平方根,负数没有平方根,且正数的平方根有两个,0的平方根还是0是解题的关键.【变式1-3】(2022秋•陈仓区期中)下列语句中,错误的是( )A .14的平方根是±12B 3C .−12是14的一个平方根D .9的平方根是±3【分析】如果一个数的平方等于a ,这个数就叫做a 的平方根,也叫做a 的二次方根,根据平方根的意义解题即可.【解答】解:A .14的平方根是±12,该选项正确,故本选项不符合题意;B ±C .−12是14的一个平方根,该选项正确,故本选项不符合题意;D .9的平方根是±3,该选项正确,故本选项不符合题意.故选:B.【点评】本题考查了平方根,正确理解平方根的意义是解题的关键.【变式1-4】(2022秋•鄞州区校级月考)平方根是±13的数是( )A.13B.16C.19D.±19【分析】根据平方根的定义即可求解.【解答】解:∵(±13)2=19,∴平方根是±13的数是19,故选:C.【点评】本题主要考查了平方根,掌握平方根的定义是解题的关键.【变式1-5】(2022春•澄迈县期末)(﹣6)2的平方根是( )A.6B.±6C.D.36【分析】根据平方根的定义解答即可.【解答】解:(﹣6)2=36,36的平方根是±6,故选:B.【点评】本题考查平方根的定义,熟练掌握平方根的定义是解题关键.【变式1-6】(2022秋•城阳区期中)若x+4是4的一个平方根,则x的值为( )A.﹣2B.﹣2或﹣6C.﹣3D.±2【分析】依据平方根的定义得到x+4=2或x+4=﹣2,从而可求得x的值.【解答】解:∵x+4是4的一个平方根,∴x+4=2或x+4=﹣2,∴解得:x=﹣2或x=﹣6.故选:B.【点评】本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.【变式1-7】(2022秋•薛城区校级月考)一个自然数的一个平方根是a,则与它相邻的上一个自然数的平方根是( )A.B.a﹣1C.a2﹣1D.【分析】由一个自然数的一个平方根是a,可得出这个自然数是a2,进而得到与这个自然数相邻的上一个自然数是a2﹣1,再根据平方根的定义得出答案即可.【解答】解:∵一个自然数的一个平方根是a,∴这个自然数是a2,∴与这个自然数相邻的上一个自然数是a2﹣1,故选:D.【点评】本题考查平方根,理解平方根的定义是正确解答的前提.【例题2】求下列各数的平方根:(1)2549(2)0.36 (3)(﹣9)2 (4【分析】(1)(2)根据一个正数有两个平方根,这两个平方根互为相反数计算结果;(3)先求出(﹣9)2=81,再根据一个正数有两个平方根,这两个平方根互为相反数计算结果;(4=7,再根据一个正数有两个平方根,这两个平方根互为相反数计算结果.【解答】解:(1)2549的平方根是±57;(2)0.36的平方根是±0.6;(3)∵(﹣9)2=81,∴(﹣9)2的平方根是±9;(4)=7,【点评】本题考查了算术平方根和平方根,掌握算术平方根和平方根的定义,根据定义计算是解题关键.【变式2-1】1649的平方根是( )A.47B.±47C.−47D.27【分析】直接根据平方根的概念解答即可.【解答】解:∵(±47)2=1649,∴1649的平方根是±47,故选:B.【点评】此题考查的是平方根,掌握其概念是解决此题关键.【变式2-2】(2023•A.4B.±4C.±2D.2【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.=4,4的平方根是±2.故选:C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.【变式2-3】(2023•西乡塘区校级开学)已知实数a的一个平方根是2,则它的另一个平方根是( )A.﹣2B.C.4D.﹣4【分析】一个正数的平方根有2个,它们互为相反数,据此即可得出答案.【解答】解:∵实数a的一个平方根是2,∴它的另一个平方根是﹣2,故选:A.【点评】本题考查平方根的性质,熟练掌握其性质是解题的关键.【变式2-4】(2022秋•二道区校级期中)在﹣2,0,117,23,1.44中,有平方根的数有( )A.4个B.3个C.2个D.1个【分析】根据平方根的性质即可求得答案.【解答】解:0,117,23,1.44都有平方根,﹣2没有平方根,则有平方根的数有4个,故选:A.【点评】本题考查平方根的性质,此为基础且重要知识点,必须熟练掌握.【变式2-5】(﹣8)2的平方根是( )A.﹣8B.8C.±8D.±64【分析】根据平方根的概念即可求出答案.【解答】解:由于(﹣8)2=64,∴64的平方根是±8,故选:C.【点评】本题考查平方根,解题的关键是熟练运用平方根的概念,本题属于基础题型.【变式2-6】(2022秋•雁塔区校级月考)求下列各数的平方根:(1)49;(2)1625;(3)279;(4)0.36;(5)(−38)2.【分析】(1)根据平方根的定义求一个数的平方根;(2)根据平方根的定义求一个数的平方根;(3)根据平方根的定义求一个数的平方根;(4)根据平方根的定义求一个数的平方根;(5)根据平方根的定义求一个数的平方根.【解答】解:(1)∵(±7)2=49,∴49的平方根是±7;(2)∵(±45)2=1625,∴1625的平方根是±45;(3)∵279=259,(±53)2=259∴279的平方根是±53;(4)∵(±0.6)2=0.36∴0.36的平方根是±0.6;(5)∵(−38)2=964=(38)2,∴(−38)2的平方根是±38.【点评】本题考查的是平方根,掌握平方根的定义是解题的关键.平方根:如果一个数的平方等于a ,那么这个数就叫a 的平方根,一个整数的平方根有2个,它们互为相反数.【变式2-7】求下列各式的值:(1)(2)(3 (4)【分析】(1)根据算术平方根定义计算;(2)根据平方根定义计算;(3)根据算术平方根定义计算;(4)根据平方根定义计算.【解答】解:(1)原式=﹣14;(2)原式=±52;(3)原式=0.5;(4)原式=±8.【点评】本题考查了算术平方根和平方根,掌握算术平方根和平方根定义,根据定义计算是解题关键.【例题3】求下列各数的算术平方根:(1)144; (2)0.49; (3)614; (4)(−32)2.【分析】根据开方运算,可得算术平方根.【解答】解:(112;(2==0.7;(3=5 2;(4|−32|=32.【点评】本题考查了算术平方根,开方运算是解题关键.【变式3-1】(2022秋•A.3B.﹣3C.±3D.5【分析】根据算术平方根定义解答.【解答】解:∵32=9,3,故选:A.【点评】此题考查了算术平方根的定义:若一个正数x的平方等于a,则x是a的算术平方根,熟记定义是解题的关键.【变式3-2】(2023春• .=9,再根据平方根的定义求出9的平方根即可.9,9±3,故答案为:±3.【点评】本题考查平方根、算术平方根,理解平方根、算术平方根的定义是正确解答的前提.【变式3-3】(2023春• .【分析】根据算术平方根的运算法则,直接计算即可.=4,4的算术平方根是2,2.故答案为:2.【点评】此题考查了求一个数的算术平方根,这里需注意16的算术平方根是完全不一样的;因此求一个式子的平方根、立方根和算术平方根时,通常需先将式子化简,然后再去求,避免出错.【变式3-4】(2022•=5,则a的值为( )A.10B C.25D.±25【分析】根据算术平方根的定义即可求出答案.【解答】解:∵52=25,5,则a的值为25.故选:C.【点评】本题考查算术平方根的定义.解题的关键是掌握算术平方根的定义.【变式3-5】(2022春•老河口市月考)设x=﹣22,y xy等于( )A.12B.﹣12C.6D.﹣6【分析】根据算术平方根以及有理数乘方的定义求出x、y的值,再代入计算即可.【解答】解:∵x=﹣22,y∴x=﹣4,y=3,∴xy=﹣4×3=﹣12,故选:B.【点评】本题考查算术平方根,有理数的乘方,理解算术平方根的定义以及有理数乘方的计算方法是正确解答的前提.【变式3-6】求下列各式的值:(1(2(3(4|a|.【解答】解:(1)原式12;(2)原式==57;(3)原式==100;(4)原式==0.07.【点评】本题主要考查了算术平方根,熟记定义是解答本题的关键.【例题4】(2022秋•崇川区校级月考)已知a,b满足(a﹣1)2+0,则a+b的值是( )A.﹣2B.2C.﹣1D.0【分析】先根据平方和算术平方根的非负性求出a,b的值,再将a,b的值代入a+b中即可求解.【解答】解:∵(a﹣1)2=0,(a﹣1)2≥00,∴a﹣1=0,b+2=0,∴a=1,b=﹣2,则a+b=1+(﹣2)=﹣1.故选:C.【点评】本题主要考查了平方和算术平方根的非负性以及有理数的加法,掌握平方和算术平方根的非负性以及有理数的加法法则是解题的关键.【变式4-1】(2022秋•(n−3)2=0,则m n的值是 .【分析】根据算术平方根、偶次方的非负性求出m、n的值,再代入计算即可.+(n﹣3)2=00,(n﹣3)2≥0,∴m+2=0,n﹣3=0,解得m=﹣2,n=3,∴m n=(﹣2)3=﹣8,故答案为:﹣8.【点评】本题考查算术平方根、偶次方的非负性,掌握算术平方根、偶次方的非负性是正确解答的前提.【变式4-2】(2023•濠江区模拟)若a,b为实数,且|a−1|=0,则(a+b)2023= .【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:∵|a﹣1|+=0,∴a﹣1=0,b+2=0,∴a=1,b=﹣2,∴(a+b)2023=(1﹣2)2023=﹣1,故答案为:﹣1.【点评】此题主要考查了非负数的性质,能够根据非负数的性质正确得出a,b的值是解题关键.非负数的性质:几个非负数的和为0时,这几个非负数都为0.【变式4-3】已知a,b0,则a2022﹣b2023= .【分析】依据非负数的性质可求得a、b的值,然后再利用有理数的运算法则进行计算即可.0,∴1+a=0,1﹣b=0,解得a=﹣1,b=1,∴a2022﹣b2023=(﹣1)2018﹣12019=1﹣1=0.故答案为:0.【点评】本题主要考查的是算术平方根的性质,依据非负数的性质求得a、b的值是解题的关键.【变式4-4】(2023春•江源区期末)已知(a﹣1)2+|b+1|=0,则a+b+c= .【分析】先依据非负数的性质求得a、b、c的值,然后再代入计算即可.【解答】解:(a﹣1)2+|b+1|=0,∴a=1,b=﹣1,c=2.∴a+b+c=1+(﹣1)+2=2.故答案为:2.【点评】本题主要考查的是非负数的性质,依据非负数的性质求得a、b、c的值是解题的关键.【变式4-5】(2022春•|b a+b的绝对值为( )A.1B1C1D+|b+0,从而可得a﹣1=0,b+=0,然后求出a,b的值,再根据绝对值的意义进行计算即可解答.【解答】解:由题意得:|b0,∴a﹣1=0,b+=0,∴a=1,b=∴|a+b|=|11,故选:B.【点评】本题考查了绝对值,算术平方根和绝对值的非负性,熟练掌握算术平方根和绝对值的非负性是解题的关键.【变式4-6】(2022秋•迎泽区校级月考)若x,y满足(x−5)2=0,则x y的算术平方根为 .【分析】直接利用非负数的性质得出x ,y 的值,再利用负整数指数幂的性质、算术平方根的定义分析得出答案.【解答】解:∵(x−5)2=0,∴x ﹣5=0,y +2=0,解得:x =5,y =﹣2,故x y =5﹣2=125,则x y 的算术平方根为:15.故答案为:15.【点评】此题主要考查了非负数的性质以及负整数指数幂的性质,正确得出x ,y 的值是解题关键.【变式4-7】(2022秋•靖江市校级期中)已知a ,b ,c 都是实数,且满足(2﹣a )2|c +8|=0,且ax 2+bx +c =0,求代数式3x 2+6x +200的值.【分析】根据偶次方的非负性、算术平方根的非负性、绝对值的非负性解决此题.【解答】解:∵(2﹣a )2≥00,|c +8|≥0,∴当(2﹣a )2++|c +8|=0,则2﹣a =0,a 2+b +c =0,c +8=0.∴a =2,c =﹣8,b =4.∵ax 2+bx +c =0,∴2x 2+4x ﹣8=0.∴x 2+2x =4.∴3x 2+6x +200=3(x 2+2x )+200=12+200=212.【点评】本题主要考查偶次方的非负性、算术平方根、绝对值,熟练掌握偶次方的非负性、算术平方根的非负性、绝对值的非负性是解决本题的关键.【变式4-8】已知a ,b+b 2﹣6b +9=0.(1)求a ,b 的值;(2)若a ,b 为△ABC 的两边,第三边c =ABC 的面积.【分析】(1)利用完全平方公式整理,再根据非负数的性质列方程求解即可;(2)利用勾股定理逆定理判断出△ABC是直角三角形,再根据直角三角形的面积等于两直角边的乘积的一半列式计算即可得解.【解答】解:(1(b﹣3)2=0,所以,a﹣2=0,b﹣3=0,解得a=2,b=3;(2)∵a2+b2=22+32=13,c22=13,∴a2+b2=c2,∴△ABC是直角三角形,∠C=90°,∴△ABC的面积=12ab=12×2×3=3.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,还考查了勾股定理逆定理.【例题5】(2022春•建安区期中)若a是(﹣4)2的平方根,b的一个平方根是2,则代数式a+b的值为( )A.8B.0C.8或0D.4或﹣4【分析】先依据平方根的定义和性质求得a、b的值,然后依据有理数的加法法则求解即可.【解答】解:∵a是(﹣4)2的平方根,∴a=±4.∵b的一个平方根是2,∴b=4.∴当a=4,b=4时,a+b=8;当a=﹣4,b=4时,a+b=0.故选:C.【点评】本题主要考查的是平方根的定义,依据平方根的定义求得a、b的值是解题的关键.【变式5-1】(2023春•长顺县期末)若2m﹣5与4m﹣9是某一个正数的平方根,则m的值是( )A.73B.﹣1C.73或2D.2【分析】依据平方根的性质列出关于m的方程,可求得m的值.【解答】解:∵2m﹣5与4m﹣9是某一个正数的平方根,∴2m﹣5=4m﹣9或2m﹣5+4m﹣9=0.解得:m=2或m=7 3.故选:C.【点评】本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.【变式5-2】(2022•游仙区校级二模)若﹣3x m y和5x3y n的和是单项式,则(m+n)3的平方根是( )A.8B.﹣8C.±4D.±8【分析】根据单项式的和是单项式,可得同类项,根据同类项是字母项相同且相同字母的指数也相同,可得m、n的值,再代入计算可得答案.【解答】解:∵﹣3x m y和5x3y n的和是单项式,∴﹣3x m y和5x3y n是同类项,∴m=3,n=1,∴(m+n)3=(3+1)3=64,64的平方根为±8.故选:D.【点评】本题考查了平方根,同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.【变式5-3】(2022秋•高新区校级月考)已知2a﹣1的平方根是±3,b,c满足|b﹣1|+=0,求a+3b+c的算术平方根.【分析】根据算术平方根的概念列方程确定a的值,利用绝对值和算术平方根的非负性确定b和c的值,然后代入代数式,最后利用算术平方根的概念求解.【解答】解:∵2a﹣1的平方根是±3,∴2a﹣1=9,解得:a=5,∵|b﹣1|+=0,且|b﹣1|≥00,∴b﹣1=0,c+4=0,解得:b=1,c=﹣4,∴a+3b+c=5+3×1+(﹣4)=5+3﹣4=4,=2,∴a+3b+c的算术平方根是2.【点评】本题考查平方根,算术平方根,理解平方根,算术平方根的概念以及绝对值和算术平方根的非负性是解题关键.【变式5-4】(2021春•饶平县校级期中)若x,y+2y﹣1=0的平方根.【分析】根据被开方数是非负数且它们互为相反数,可得被开方数为0,据此可求x,进一步求出y,再代入计算即可求出答案.【解答】解:2y﹣1=0,∴x﹣1≥0,1﹣x≥0,解得x=1,∴2y﹣1=0,∴y=1 2,==4,±2.【点评】本题考查了算术平方根以及平方根,解题时注意:一个正数的两个平方根互为相反数.【变式5-5】(2022春•横县期中)已知3b+3的平方根为±3,3a+b的算术平方根为5.(1)求a,b的值;(2)求4a﹣6b的平方根.【分析】(1)根据平方根的定义列出方程求出b,再根据算术平方根的定义求出a,然后相加求出a+b,再根据平方根的定义解答.(2)根据平方根的定义计算即可.【解答】解:(1)∵3b+3的平方根为±3,∴3b+3=9,解得b=2,∵3a+b的算术平方根为5,∴3a+b=25,∵b=2,∴a=23 3,(2)∵a=233,b=2,∴4a﹣6b=56 3,∴4a﹣6b的平方根为±【点评】本题考查了平方根和算术平方根的定义,熟记概念是解题的关键.【变式5-6】(2022春•芜湖期末)已知a+b﹣2的平方根是±3a+b﹣1的算术平方根是6,求a+4b的平方根.【分析】先根据平方根和算术平方根的定义得出a+b﹣2=17,3a+b﹣1=36,解出a和b的值,代入a+4b 值求值,再求平方根即可.【解答】解:根据题意,得a+b﹣2=17,3a+b﹣1=36,解得a=9,b=10,∴a+4b=9+4×10=9+40=49,∴a+4b的平方根是±7.【点评】本题考查了算术平方根和平方根的定义,能够熟记概念并列式求出a、b的值是解题的关键.如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.【变式5-7】(2023春•恩施州期中)(1)已知2a﹣1的平方根是±3,3a+b﹣1的平方根是±4,求a+2b 的平方根;(2)若2a﹣4与3a+1是同一个正数的平方根,求a的值.【分析】(1)直接利用平方根的定义得出a,b的值,进而得出答案;(2)直接利用平方根的定义得出a的值.【解答】解:(1)依题意,得2a﹣1=9且3a+b﹣1=16,∴a=5,b=2.∴a+2b=5+4=9.∴a+2b的平方根为±3,±3;(2)∵2a﹣4与3a+1是同一个正数的平方根,∴2a﹣4+3a+1=0或2a﹣4=3a+1,∴解得:a=35或a=﹣5.【点评】此题主要考查了平方根,正确把握平方根的定义是解题关键.【例题6】(2022春•岳麓区校级月考)求下列各式中x的值.(1)169x2=100;(2)(x+1)2=81.【分析】(1)两边都除以169,再根据平方根的定义求解可得;(2)先根据平方根的定义得出x+1的值,再解方程可得.【解答】解:(1)169x2=100,x2=100 169,x∴x=±10 13;(2)(x+1)2=81,x+1=±x+1=±9,x=8或﹣10.【点评】本题主要考查的是平方根的定义,熟练掌握相关概念是解题的关键.【变式6-1】(2022秋•新城区校级期中)求下列式子中的x:(1)25(x−35)2=49;(2)12(x+1)2=32.【分析】(1)根据平方根的概念解方程;(2)根据平方根的概念解方程.【解答】解:(1)25(x−35)2=49,(x−35)2=4925,x−35=±75,x−35=75或x−35=−75,解得:x1=2,x2=−4 5;(2)12(x+1)2=32,(x+1)2=32÷1 2,(x+1)2=32×2,(x+1)2=64,x+1=±8,x+1=8或x+1=﹣8,解得:x1=7,x2=﹣9.【点评】本题考查平方根,注意一个正数有两个平方根,且它们互为相反数是解题关键.【变式6-2】(2022秋•滕州市校级月考)求满足下列各式x的值(1)169x2﹣100=0 (2)(2x﹣1)2=(﹣5)2.【分析】(1)先求出x2的值,然后根据平方根的定义解答;(2)先求出(2x﹣1)2的值,然后根据平方根的定义解答.【解答】解:(1)由169x2﹣100=0,可得:x=±10 13;(2)由(2x﹣1)2=(﹣5)2.可得:2x﹣1=±5,解得:x=3或x=﹣2.【点评】本题考查了利用平方根的定义求未知数的值,是基础题,熟记概念是解题的关键.【变式6-3】(2022春•武侯区月考)求下列各式中的x的值:(1)9x2﹣25=0;(2)(x﹣1)2+8=72;(3)3(x+2)2﹣27=0;(4)12(x﹣5)2=8.【分析】根据等式的性质和平方根的定义进行计算即可.【解答】解:(1)移项得,9x2=25,两边都除以9得,x2=25 9,由平方根的定义得,x =±53;(2)(x ﹣1)2+8=72,移项得,(x ﹣1)2=72﹣8,合并同类项得,(x ﹣1)2=64,由平方根的定义得,x ﹣1=±8,即x =9或x =﹣7;(3)移项得,3(x +2)2=27,两边都除以3得,(x +2)2=9,由平方根的定义得,x +2=±3,即x =1或x =﹣5;(4)两边都乘以2得,(x ﹣5)2=16,由平方根的定义得,x ﹣5=±4,即x =9或x =1.【点评】本题考查平方根,理解平方根的定义,掌握等式的性质是正确解答的前提.【变式6-4】已知a ,b 满足|a ﹣4|+0,解关于x 的方程(a ﹣3)x 2﹣1=5b .【分析】直接利用绝对值和二次根式的性质得出a ,b 的值,进而代入解方程即可.【解答】解:由题意得:a ﹣4=0,b ﹣7=0,∴a =4,b =7,将a =4,b =7代入(a ﹣3)x 2﹣1=5b ,得(4﹣3)x 2﹣1=5×7∴x 2=36,解得:x =±6.【点评】此题主要考查了算术平方根以及绝对值,正确得出a ,b 的值是解题关键.【变式6-5】(2023春•澄海区期末)已知|2a +b ﹣4|(1)求5a ﹣4b 的平方根;(2)解关于x 的方程ax 2+5b ﹣5=0.【分析】(1)依据非负数的性质可求得a 、b 的值,然后再求得5a ﹣4b 的值,最后依据平方根的定义求解即可;(2)将a、b的值代入得到关于x的方程,然后解方程即可.【解答】解:(1)由题意,得|2a+b−4|+=0,∴2a+b﹣4=0,3b+12=0,解得:a=4,b=﹣4,∴5a﹣4b=5×4﹣4×(﹣4)=36,∴5a﹣4b的平方根为±6;(2)将a=4,b=﹣4代入ax2+5b﹣5=0,得4x2﹣25=0,解得:x=±5 2.【点评】本题主要考查的是平方根的定义、非负数的性质,熟练掌握平方根的定义、非负数的性质是解题的关键.【例题7】(2022春•渝中区校级月考)≈7.149≈22.608,( )A.71.49B.226.08C.714.9D.2260.8×100即可.==×100≈7.149×100=714.9,故选:C.【点评】本题考查算术平方根,理解“一个数扩大(或缩小)100倍,10000倍,其算术平方根就随着扩大(或缩小)10倍,100倍”是解决问题的关键.【变式7-1】(2023•宁津县校级开学)若≈5.036,15.906,则≈ .【分析】根据算术平方根的定义,被开方数的小数点向左或向右移动两位,它的算术平方根的小数点就相应地向左或向右移动1位,进行解答即可.5.036,≈503.6.故答案为503.6:【点评】此题考查了算术平方根的定义,掌握算术平方根的定义是本题的关键.【变式7-2】(2022春•13 130 .×13,=×=13×10=130,故答案为:130.【点评】本题考查算术平方根,掌握“被开方数扩大100倍,其算术平方根就随着扩大10倍”是解决问题的关键.【变式7-3】(2021春•44.9614.22≈( )A.4.496B.1.422C.449.6D.142.2【分析】直接利用算术平方根的性质化简得出答案.44.96,≈4.496.故选:A.【点评】此题主要考查了算术平方根,正确理解算术平方根的定义是解题的关键.算术平方根的定义:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.【变式7-4】(2022秋•≈2.0736≈6.5574,下列运算正确的是( )A≈0.65574B65.574C≈20.736D≈2073.6【分析】根据题目意思,找出题中规律即可求解.【解答】解: 2.0736 6.5574,A≈≈× 6.5574×110≈0.65574,选项A符合题意;B× 2.0736×10≈20.736,选项B不符合题意;C≈× 6.5574×10≈65.574,选项C不符合题意;D=×≈2.0736×100≈207.36,选项D不符合题意;故选:A.【点评】本题主要考查了算术平方根,掌握算术平方根的性质是解题的关键.【变式7-5】(2022春•潍坊期中)(10.1732≈1.732≈17.32…发现规律:被开方数的小数点每向右移动 位,其算术平方根的小数点向 移动 位;(2≈2.236≈ ,≈ ;(3≈2.4497.746【分析】(1)观察规律即可得出答案;(2)根据(1)中的规律进行计算即可得出答案;(3==1)中的规律代入计算即可得答案.【解答】解:(1≈0.1732 1.732≈17.32…发现规律:被开方数的小数点每向右移动2位,其算术平方根的小数点向右移动1位;故答案为:2,右,1;(2≈2.236≈0.2236≈22.36;故答案为:0.2236,22.36;(32×7.746≈15.492,=3×0.2449≈0.7347.【点评】本题主要考查了算术平方根,熟练掌握算术平方根的定义进行求解是解决本题的关键.【变式7-6】根据下表回答下列问题:x1616.116.216.316.416.516.616.716.816.917 x2256259.21262.44265.69268.96272.25275.56278.89282.24285.61289(1)289的算术平方根是 ,= ;(2) ,275.56的平方根是 ;(3 , ;(4a(x>0 (用含a的式子表示).【分析】(1)根据图表和算术平方根的定义即可得出答案;(2)根据图表和平方根的定义即可得出答案;(3)根据被开方数与算术平方根的关系可得答案;(4)根据被开方数扩大100倍,算术平方根随之扩大10倍可得答案.【解答】解:(1)由表中的数据可得,289的算术平方根是1716.4,故答案为:17,16.4;(2)由表中的数据可得,±=±16,275.56的平方根是±16.6,故答案为:±16,±16.6;(3)由表中的数据可得,159.21的算术平方根是16.1,282.24的算术平方根是16.8,=1.61=168,故答案为:1.61,168;(4)由(3)可得被开方数扩大100倍,算术平方根随之扩大10倍,a(x>0=10a(用含a的式子表示).故答案为:10a.【点评】本题考查算术平方根和平方根,熟练掌握算术平方根和平方根的定义是解题关键.【例题8】(2022春•连江县期末)某学校有一块长、宽分别为38m和16m的长方形空地,计划沿边建造一个长宽之比为5:3且面积为540m2的长方形标准篮球场,请判断该学校能否用这块长方形空地建造符合要求的篮球场?并说明理由.【分析】通过用同一未知数表示出篮球场的长和宽,列方程进行求解.【解答】解:不能,理由如下:设长方形标准篮球场的长为5xm.宽为3xm,由题意得:5x×3x=540,解得:x=﹣6(舍去)或6,即长方形标准篮球场的长为30m,宽为18m,∵18m>16m,∴该学校不能用这块长方形空地建造符合要求的篮球场.【点评】此题主要考查了算术平方根,正确得出x的值是解题的关键.【变式8-1】(2023春•桥西区期末)射击时,子弹射出枪口时的速度可用公式v= Array a为子弹的加速度,s为枪筒的长.如果a=5×105米/秒2,s=0.81米,那么子弹射出枪口时的速度(用科学记数法表示)为( )A.0.9×103米/秒B.0.8×103米/秒C.8×102米/秒D.9×102米/秒【分析】首先根据题意求出速度,然后根据科学记数法的表示方法求解即可.【解答】解:∵a=5×105米/秒2,s=0.81米,∴v=900=9×102米/秒.故选:D.【点评】本题主要考查算术平方根和科学记数法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.解题关键是正确确定a的值以及n的值.【变式8-2】(2023春•巩义市期末)电流通过导线时会产生热量,满足Q=I2Rt,其中Q为产生的热量(单位:J),I为电流(单位:A),R为导线电阻(单位:Ω),t为通电时间(单位:s).若导线电阻为5Ω,1s时间导线产生30J的热量,则通过的电流I为( )A.2.4A B C.4.8A D.【分析】通过分析题目列出正确的方程式,结合实际情况求出正确的解.【解答】解:由题意可得R=5Ω,t=1s,Q=30J,∴30=I2×5×1,∴I2=6,∵I>0,∴I=∴通过的电流I.故选:B.【点评】本题考查了算术平方根,解题关键在于能够分析题目列出方程式.【变式8-3】(2022秋•鄄城县期末)交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,他们总结了一个经验公式:v=v表示车速(单位:千米/时),d表示刹车后车轮滑过的距离(单位:米),f表示摩擦因数,在某次交通事故调查中,测得d=25米,f=1.44,而该路段的限速为80千米/时,肇事汽车当时的车速大约是多少?此车是否超速行驶?【分析】此题只需把d=25米=0.025千米,f=1.44,代入v=v的值后,再进一步和80千米比较,作出判断即可.【解答】解:v=16×=×1.2=80,答:肇事汽车当时的速度是/时,此车没有超速行驶.【点评】此题主要考查了算术平方根在实际中的应用,正确理解题意是解题的关键.【变式8-4】(2022春•景县月考)球从空中落到地面所用的时间t(秒)和球的起始高度h(米)之间有关系式,t=120米,则球落地所用时间与下列最接近的是( )A.3秒B.4秒C.5秒D.6秒【分析】将h=120代入计算得到t的值,再利用无理数的估算即可得出结论.【解答】解:∵h=120米,∴t=5最接近,∴球落地所用时间t与5秒最接近,故选:C.【点评】本题主要考查了实数的运算,算术平方根的意义,正确利用无理数的估算解答是解题的关键.【变式8-5】(2022秋•阜城县期末)将尺寸如图的4块完全相同的长方形薄木块(厚度忽略不计)进行拼摆,恰好可以不重叠地摆放在如图的甲、乙两个方框内.已知小木块的宽为2,图甲中阴影部分面积为19,则图乙中AD的长为( )A.+2B C.D+2【分析】设木块的长为x,结合图形知阴影部分的边长为x﹣2,根据其面积为19得出(x﹣2)2=19,利用平方根的定义求出符合题意的x的值,由BC=2x可得答案.【解答】解:设木块的长为x,根据题意,知:(x﹣2)2=19,则x﹣2=∴x=2+x=22(舍去),则BC=2x=4,故选:C.。

(完整版)七年级数学《平方根》典型例题及练习

(完整版)七年级数学《平方根》典型例题及练习

七年级数学《平方根》典型例题及练习【知识要点】1、平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根(也叫做二次方根式),2、算术平方根:3、平方根的性质:(1)一个正数有 个平方根,它们 ;(2)0 平方根,它是 ;(3) 没有平方根.4、重要公式:(1)=2)(a (2){==a a 25、平方表:1.正数有_____________个立方根, 0有__________个立方根,负数有__________个立方根,立方根也叫做_______________.2.一个正方体的棱长扩大3倍,则它的体积扩大_____________.3.若一个数的立方根等于数的算术平方根,则这个数是_____________.4. 0的立方根是___________.(-1)2005的立方根是______________.182726的立方根是________. 5. 312726-=____________. 【典型例题】例1、判断下列说法正确的个数为( )① -5是-25的算术平方根;② 6是()26-的算术平方根;③ 0的算术平方根是0;④ 0.01是0.1的算术平方根;⑤ 一个正方形的边长就是这个正方形的面积的算术平方根.A .0 个B .1个C .2个D .3个例2、36的平方根是( )A 、6B 、6±C 、 6D 、 6±例3、下列各式中,哪些有意义?(1)5 (2)2- (3)4- (4)2)3(- (5)310-例4、一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( )A .()1+aB .()1+±aC .12+aD .12+±a例5、求下列各式中的x :(1)0252=-x (2)4(x+1)2-169=0【巩固练习】一、选择题1. 9的算术平方根是( )A .-3B .3C .±3D .812.下列计算正确的是( )A±2 B636=± D.992-=-3.下列说法中正确的是( )A .9的平方根是3 B24. 64的平方根是( )A .±8B .±4C .±2D 5. 4的平方的倒数的算术平方根是( )A .4B .18C .-14D .146.下列结论正确的是( ) A 6)6(2-=-- B 9)3(2=- C 16)16(2±=- D 251625162=⎪⎪⎭⎫ ⎝⎛--7.以下语句及写成式子正确的是( )A 、7是49的算术平方根,即749±=B 、7是2)7(-的平方根,即7)7(2=-C 、7±是49的平方根,即749=±D 、7±是49的平方根,即749±=8.下列语句中正确的是( )A 、9-的平方根是3-B 、9的平方根是3C 、 9的算术平方根是3±D 、9的算术平方根是39.下列说法:(1)3±是9的平方根;(2)9的平方根是3±;(3)3是9的平方根;(4)9的平方根是3,其中正确的有( )A .3个B .2个C .1个D .4个10.下列语句中正确的是( )A 、任意算术平方根是正数B 、只有正数才有算术平方根C 、∵3的平方是9,∴9的平方根是3D 、1-是1的平方根11.下列说法正确的是( )A .任何数的平方根都有两个B .只有正数才有平方根C .一个正数的平方根的平方仍是这个数D .2a 的平方根是a ±12.下列叙述中正确的是( )A .(-11)2的算术平方根是±11B .大于零而小于1的数的算术平方根比原数大C .大于零而小于1的数的平方根比原数大D .任何一个非负数的平方根都是非负数13.25的平方根是( )A 、5B 、5-C 、5±D 、5±14.36的平方根是( )A 、6B 、6±C 、 6D 、 6±15.当≥m 0时,m 表示( )A .m 的平方根B .一个有理数C .m 的算术平方根D .一个正数 16.用数学式子表示“169的平方根是43±”应是( )A .43169±=B .43169±=±C .43169=D .43169-=-17.算术平方根等于它本身的数是( )A 、 1和0B 、0C 、1D 、 1±和0.如果一个数的平方根与立方根是同一个数,那么这个偶数是( )A. 8B. 4C. 0D. 1618.0196.0的算术平方根是( )A 、14.0B 、014.0C 、14.0±D 、014.0±19.2)6(-的平方根是( )A 、-6B 、36C 、±6D 、±6 20.下列各数有平方根的个数是( )(1)5; (2)(-4)2; (3)-22; (4)0; (5)-a 2; (6)π; (7)-a 2-1A .3个B .4个C .5个D .6个 21.2)5(-的平方根是( )A 、 5±B 、 5C 、5-D 、5±22.下列说法错误的是( )A. 1的平方根是1B. –1的立方根是-1C.2是2的平方根 D. –3是2)3(-的平方根 23.下列命题正确的是( )A .49.0的平方根是0.7B .0.7是49.0的平方根C .0.7是49.0的算术平方根D .0.7是49.0的运算结果24.若数a 在数轴上对应的点的位置在原点的左侧,则下列各式中有意义的是( )A .aB .a -C .2a -D .3a26.下列各式中,正确的是( ) A. 2)2(2-=- B. 9)3(2=- C. 39±=± D. 393-=-27.下列各式中正确的是( )A .12)12(2-=-B .6218=⨯C .12)12(2±=-D .12)12(2=-±28.若a 、b 为实数,且471122++-+-=a a a b ,则b a +的值为( ) (A) 1± (B) 4 (C) 3或5 (D) 529.若9,422==b a ,且0<ab ,则b a -的值为 ( )(A) 2- (B) 5± (C) 5 (D) 5-30.已知一个正方形的边长为a ,面积为S ,则( ) A.a S = B.S 的平方根是a C.a 是S 的算术平方根 D.S a ±=31. 若a 和a -都有意义,则a 的值是( )A.0≥aB.0≤aC.0=aD.0≠a 32.22)4(+x 的算术平方根是( )A 、 42)4(+xB 、22)4(+xC 、42+xD 、42+x33.2)5(-的平方根是( )A 、 5±B 、 5C 、5-D 、5±34.下列各式中,正确的是( ) A. 2)2(2-=- B. 9)3(2=- C. 39±=± D. 393-=-35.下列各式中正确的是( )A .12)12(2-=-B .6218=⨯C .12)12(2±=-D .12)12(2=-±36.下列各组数中互为相反数的是( )A 、2)2(2--与B 、382--与C 、2)2(2-与D 、22与- 二、填空题:1.如果x 的平方等于a ,那么x 就是a 的 ,所以的平方根是2.非负数a 的平方根表示为3.因为没有什么数的平方会等于 ,所以负数没有平方根,因此被开方数一定是4_______;9的平方根是_______.5的平方根是 ,25的平方根记作 ,结果是6.非负的平方根叫 平方根7.2)8(-= , 2)8(= 。

完整版)平方根与立方根典型题大全

完整版)平方根与立方根典型题大全

完整版)平方根与立方根典型题大全平方根与立方根典型题大全一、填空题1.如果$x=9$,那么$x=$ 3;如果$x^2=9$,那么$x=$ 3 或$-3$。

2.若一个实数的算术平方根等于它的立方根,则这个数是1.3.算术平方根等于它本身的数有 1,立方根等于本身的数有 1.4.若$x=3\sqrt{x}$,则$x=0$ 或 $x=9$;若$x^2=-x$,则$x=0$ 或 $x=-1$。

5.当$m3$时,$3m-3$有意义。

6.若一个正数的平方根是$2a-1$和$-a+2$,则$a=2$,这个正数是 3.7.$a+1+2$的最小值是 2,此时$a$的取值是 $-1$。

二、选择题8.若$x^2=a$,则 $|x|\geq 0$,即$x$可以是正数或零,选项B。

8.$(-3)^2=9$,选项D。

9.$y=4+5-x+x-5=-1$,$x-y=x+1$,选项A。

10.当$3x-5>0$时,$x>\frac{5}{3}$,最小整数为2,选项C。

11.一个等腰三角形的周长是 $2\times 5+3\sqrt{2}$,选项D。

12.若$x-5$能开偶次方,则$x\geq 5$,选项C。

13.$2n+1-1=2n$,选项D。

14.正数$a$的算术平方根比它本身大,即$\sqrt{a}>a$,移项得$\sqrt{a}-a>0$,两边平方得$a>1$,选项D。

三、解方程12.$(2x-1)=-8$,解得$x=-\frac{7}{2}$。

13.$4(x+1)^2=8$,解得$x=\pm\sqrt{2}-1$。

14.$(2x-3)^2=25$,解得$x=2$ 或 $x=-\frac{1}{2}$。

四、解答题15.已知:实数$a$、$b$满足条件$a-1+(ab-2)^2=$试求$$\frac{1}{ab(a+1)(b+1)}+\frac{1}{ab(a+2)(b+2)}+\cdots+\frac{ 1}{ab(a+2004)(b+2004)}$$解:将$a-1$移到等式右边,得$$(ab-2)^2=-a+1+(ab-2)^2$$两边同时除以$(ab-2)^2$,得$$1=\frac{-a+1}{(ab-2)^2}+1$$移项得$$\frac{1}{ab-2}=\frac{-a+1}{(ab-2)^2}$$两边同时乘以$\frac{1}{ab}$,得$$\frac{1}{ab(ab-2)}=\frac{-1}{ab-2}+\frac{1}{ab}$$移项得$$\frac{1}{ab}=\frac{1}{ab-2}+\frac{1}{ab(ab-2)}$$将右边的式子通分,得$$\frac{1}{ab}=\frac{ab-2+1}{ab(ab-2)}+\frac{1}{ab(ab-2)}$$化简得$$\frac{1}{ab}=\frac{ab-1}{ab(ab-2)}$$两边同时乘以$\frac{1}{a+1}$,得$$\frac{1}{ab(a+1)}=\frac{b}{a+1}\cdot\frac{ab-1}{ab(ab-2)}$$将右边的式子通分,得$$\frac{1}{ab(a+1)}=\frac{b}{a+1}\cdot\frac{ab-1}{ab(a+2)(ab-2)}$$化简得$$\frac{1}{ab(a+1)(a+2)}=\frac{b(ab-1)}{ab(a+2)(ab-2)(a+1)}$$同理,将左边的式子乘以$\frac{1}{a+2}$,得$$\frac{1}{ab(a+1)(a+2)}=\frac{b}{a+2}\cdot\frac{ab-1}{ab(a+1)(ab-2)}$$将两个式子相加,得$$\frac{2}{ab(a+1)(a+2)}=\frac{b}{a+1}\cdot\frac{ab-1}{ab(ab-2)(a+2)}+\frac{b}{a+2}\cdot\frac{ab-1}{ab(a+1)(ab-2)}$$通分并化简得$$\frac{2}{ab(a+1)(a+2)}=\frac{(ab-1)(a+b+3)}{ab(a+1)(a+2)(ab-2)}$$移项得$$\frac{1}{ab(a+1)(a+2)}=\frac{(ab-1)(a+b+3)}{2ab(a+1)(a+2)(ab-2)}$$所以$$\frac{1}{ab(a+1)(b+1)}+\frac{1}{ab(a+2)(b+2)}+\cdots+\frac{ 1}{ab(a+2004)(b+2004)}=\frac{1}{ab}\left(\frac{1}{a+1}+\frac{ 1}{a+2}+\cdots+\frac{1}{a+2004}\right)\left(\frac{1}{b+1}+\frac {1}{b+2}+\cdots+\frac{1}{b+2004}\right)$$$$=\frac{1}{ab(a+1) (a+2)}\left(\frac{1}{b+1}+\frac{1}{b+2}+\cdots+\frac{1}{b+200 4}\right)$$$$=\frac{(ab-1)(a+b+3)}{2ab(a+1)(a+2)(ab-2)}\left(\frac{1}{b+1}+\frac{1}{b+2}+\cdots+\frac{1}{b+2004}\r ight)$$。

平方根习题精选含答案

平方根习题精选含答案

平方根习题精选1.正数a的平方根是( )A. B.±C.−D.±a2.下列五个命题:①只有正数才有平方根;②−2是4的平方根;③5的平方根是;④±都是3的平方根;⑤(−2)2的平方根是−2;其中正确的命题是( )A.①②③ B.③④⑤ C.③④ D.②④3.若= 2.291,= 7.246,那么= ( )A.22.91 B. 72.46 C.229.1 D.724.64.一个自然数的算术平方根是a,则下一个自然数的算术平方根是( )A.a+1 B.a2+1 C.+1 D.5.下列命题中,正确的个数有( )①1的平方根是1 ;②1是1的算术平方根;③(−1)2的平方根是−1;④0的算术平方根是它本身A.1个 B.2个 C.3个 D.4个6.若= 2.449,= 7.746,= 244.9,= 0.7746,则x、y的值分别为( )A.x = 60000,y = 0.6 B.x = 600,y = 0.6C.x = 6000,y = 0.06 D.x = 60000,y = 0.06二、填空题1.①若m的平方根是±3,则m =______;②若5x+4的平方根是±1,则x =______2.要做一个面积为π米2的圆形桌面,那么它的半径应该是______3.在下列各数中,−2,(−3)2,−32,,−(−1),有平方根的数的个数为:______4.在−和之间的整数是____________5.若的算术平方根是3,则a =________三、求解题1.求下列各式中x 的值①x 2= 361; ②81x 2−49 = 0; ③49(x 2+1) = 50; ④(3x −1)2= (−5)22.小刚同学的房间地板面积为16米2,恰好由64块正方形的地板砖铺成,求每块地板砖的边长是多少?第十二章:数 的 开 方 (一)1、如果一个数的 等于a ,那么这个数叫做a 的平方根,正数的平方根有 个,它们的关系是 ,0的平方根是 ,负数 。

平方根立方根计算题50道

平方根立方根计算题50道

平方根立方根计算题50道一、平方根计算题(25道)1. 计算√(4)- 解析:因为2^2 = 4,所以√(4)=2。

2. 计算√(9)- 解析:由于3^2 = 9,所以√(9)=3。

3. 计算√(16)- 解析:因为4^2 = 16,所以√(16)=4。

4. 计算√(25)- 解析:由于5^2 = 25,所以√(25)=5。

5. 计算√(36)- 解析:因为6^2 = 36,所以√(36)=6。

6. 计算√(49)- 解析:由于7^2 = 49,所以√(49)=7。

7. 计算√(64)- 解析:因为8^2 = 64,所以√(64)=8。

8. 计算√(81)- 解析:由于9^2 = 81,所以√(81)=9。

9. 计算√(100)- 解析:因为10^2 = 100,所以√(100)=10。

10. 计算√(121)- 解析:由于11^2 = 121,所以√(121)=11。

11. 计算√(144)- 解析:因为12^2 = 144,所以√(144)=12。

12. 计算√(169)- 解析:由于13^2 = 169,所以√(169)=13。

13. 计算√(196)- 解析:因为14^2 = 196,所以√(196)=14。

14. 计算√(225)- 解析:由于15^2 = 225,所以√(225)=15。

15. 计算√(0.04)- 解析:因为0.2^2 = 0.04,所以√(0.04)=0.2。

16. 计算√(0.09)- 解析:由于0.3^2 = 0.09,所以√(0.09)=0.3。

17. 计算√(0.16)- 解析:因为0.4^2 = 0.16,所以√(0.16)=0.4。

18. 计算√(0.25)- 解析:由于0.5^2 = 0.25,所以√(0.25)=0.5。

19. 计算√(1frac{9){16}}- 解析:先将带分数化为假分数,1(9)/(16)=(25)/(16),因为((5)/(4))^2=(25)/(16),所以√(1frac{9){16}}=(5)/(4)。

50道平方根练习题.doc

50道平方根练习题.doc

50道平方根练习题一、填空题1•如果X的平方等于a,那么X就是a的,所以a的平方根是2.非负数a的平方根表示为3.因为没有什么数的平方会等于,所以负数没有平方根,因此被开方数一定是或者4的平方根是5.非负的平方根叫平方根二、选择题6.9的算术平方根是A. -B.C. +D. 817.下列计算不正确的是A- + 2B?.下列说法中不正确的是A. 9的算术平方根是B29.4的平方根是A. +B. ±C. ± D10.的平方的倒数的算术平方根是A. B.三计算题11.计算:100;0; 159; 1; 1; 0. 092513______ ; 9的平方根是_______ .四、能力训练14.一个自然数的算术平方根是x,则它后面一个数的算术平方根是A. x+1B. x2+l C+1 D-1 -15.若2m-4与3m-1是同一个数的平方根,则m的值是A. -B. 1C. -3 或1D. -116.已知x, y2=0,则xy的值是A. 4B. -C.五、综合训练17.利用平方根、立方根来解下列方程.2-169=0; 42-1=0;99D. -42731x-2=0; 3=4. 2六、提咼题18、x?3??y?5??0,求?x?y?的平方根219、4a2?b2?4a?10b?26?0,求ba 的平方根20、a2?b2?2a?8b?17?0, a、b 为实数,求ab?的平方根ba平方根算术平方根的定义:一般地,如果一个正数x的平方等于a,即x2二a,那么这个正数x叫做a的算术平方根.a的算术平方根记为a,读作“根号a”,a叫做被开方数.规定:0的算术平方根是0.也就是,在等式x2二a中,规定x =a, x就是a的算术平方根。

平方根的定义:一般地,如果一个数的平方等于a, 那么这个数叫做a的平方根,负1、24、56783、估计20的算术平分根的大小在A、2与3之间E、3与4之间C、4与5之间D、5和6之间42的值A.在1到2之间氏在2到3之间C.在3到4之间D.在4到5之间巩固练习三:1、下列各式中,有意义的是22a?3?3aA> E、C、D、13A. x?B. x?C. 2?x?D.以上都不对3、x为何值时下列各式有意义:12、-a~l345x2?16??x2?96>已知x, y满足y?,求xy的平方根.?2x7、如果x?l?y?3?x?y?z?0,求x, y, z 的值.已知a?x?yx?y?3是x?y?3的算术立方根,b?x?2y?3x?2y的立方根,试求b?a的立方根。

平方根经典题型

平方根经典题型

平方根1练习一概念练习:1判断下列说法正确的是____(1)-5是-25的算术平方根;(2)6是()26-的算术平方根;(3)0的算术平方根是0;(4)0.01是0.1的算术平方根;(5)一个正方形的边长就是这个正方形的面积的算术平方根.1.下列计算正确的是()A±2 BC.636=± D.992-=-2.以下语句及写成式子正确的是()A、7是49的算术平方根,即749±=B、7是2)7(-的平方根,即7)7(2=-C、7±是49的平方根,即749=±D、7±是49的平方根,即749±=3、下列叙述错误的是()A、-4是16的平根B、17是2(17)-的算术平方根C、164的算术平方根是18D、0.4的算术平方根是0.0242=,则2(2)m+的平方根为()A、16B、16±C、4±D、2±5)A、4B、4±C、2D、2±6、36的算术平方根是___的算术平方根是_____;7、若2x=3,则x=____;aa-=-11,则a=_____8、36的平方根是____;(-3)2的平方根是_________2)2(-的平方根是__;9的平方根是__化简=-2)3(π9、若数a的平方根只有一个,那么a=____;10、如果一个数的算术平方根等于它的平方根,那么这个数是___第1 页1、一个数的算术平方根是9,则这个数的平方根是12、若a是2(2)-的平方根,b是求2a+2b的值13的平方根等于±2,那么a=练习二估算比较:1、比较大小:(1)12与4 (2)213-与212、估计20的算术平分根的大小在()A、2与3之间B、3与4之间C、4与5之间D、5与6之间32的值在( )A.1到2之间B.2到3之间C.3到4之间D.在4到5之间练习三有意义:1、下列各式中,有意义的是()A、3-B、aC、23-D、2a2、若式子33112xx-+-有意义,则x得取值范围是()A.2≥x B.3≤x C.32≤≤x D.以上都不对3、x为何值时下列各式有意义:(1)3+x(2(3)11-x xx+-1)1(4、则x的取值范围是_____,若a≥0,则5、.一个正数的两个平方根的与是______,商是________.6、. 若a与a-都有意义,则a的值是()A.0≥aB.0≤aC.0=aD.0≠a7、.若2x a=,则()A.0x> B. 0x≥ C. 0a> D. 0a≥第2 页第 3 页8、.当≥m 0时,m 表示( )A .m 的平方根B .一个有理数C .m 的算术平方根D .一个正数 9、如果53-x 有意义,则x 可以取的最小整数为_____10、若14+a 有意义,则a 能取的最小整数为_____11、如果53-x 有意义,则x 可以取的最小整数为____练习四非负性:1.21++a 的最小值是________,此时a 的取值是________ 22(4)y +=0,则x y =3、若22-a 与|b +2|是互为相反数,则(a -b )2=______.(10)已知22b a ++|b 2-10|=0,求a +b 的值.4、若y=x x -+-22+5,求x+y 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可编辑
平方根1
练习一概念练习:1判断下列说法正确的是____ (1)-5是-25的算术平方根;(2)6是()26-的算术平方根; (3)0的算术平方根是0;(4)0.01是0.1的算术平方根; (5)一个正方形的边长就是这个正方形的面积的算术平方根. 1.下列计算正确的是( ) A
±2 B
C.636=±
D.992-=-
2.以下语句及写成式子正确的是( ) A 、7是49的算术平方根,即749±= B 、
7是2)7(-的平方根,即7)7(2=-
C 、7±是49的平方根,即749=±
D 、7±是49的平方根,即
749±=
3、下列叙述错误的是( )A 、-4是16的平根 B 、17是2(17)-的算术
平方根C 、1
64
的算术平方根是18 D 、0.4的算术平方根是0.02
4
2=,则2(2)m +的平方根为( )
A 、16
B 、16±
C 、4±
D 、2± 5
、 )
A 、4
B 、4±
C 、2
D 、2±
6、36的算术平方根是___
的算术平方根是_____;
7、若2x =3,则x=____;a a -=-11,则a=_____
8、36的平方根是____;(-3)2的平方根是_________
2
)2(-的平方根是__;9的平方根是__化简=-2)3(π
9、若数a 的平方根只有一个,那么a=____;10、如果一个数的算术平方根等于它的平方根,那么这个数是___
1、一个数的算术平方根是9,则这个数的平方根是
12、若a是2
(2)
-的平方根,b
2
a+2b的值
13
的平方根等于±2,那么a=
练习二估算比较:1、比较大小:(1)12和4 (2)2
1
3-
和2
1
2、估计20的算术平分根的大小在()
A、2与3之间
B、3与4之间
C、4与5之间
D、5和6之间
32的值在( )
A.1到2之间B.2到3之间C.3到4之间D.在4到5之间
练习三有意义:1、下列各式中,有意义的是()
A、3-
B、a
C、23-
D、2a
2、若式子
3
3
1
1
2x
x-
+
-
有意义,则x得取值范围是()
A.2≥x B.3≤x C.3
2≤
≤x D.以上都不对
3、x为何值时下列各式有意义:
(1)3+x(2)(3)1
1
-
x x
x+
-
1
)1(
4x的取值范围是_____,若a≥00
5、.一个正数的两个平方根的和是______,商是________.
6、. 若a和a-都有意义,则a的值是()
A.0

a B.0

a C.0
=
a D.0

a
7、.若2x a=,则()A.0
x> B. 0
x≥ C. 0
a> D. 0
a≥
8、.当≥
m0时,m表示()
A.m的平方根B.一个有理数C.m的算术平方根D.一个正数
9、如果5
3-x有意义,则x可以取的最小整数为_____
可编辑
可编辑
10、若14+a 有意义,则a 能取的最小整数为_____ 11、如果53-x 有意义,则x 可以取的最小整数为____
练习四非负性:1.21++a 的最小值是________,此时a 的取值是________ 2
2(4)y +=0,则x y = 3、若
22-a 与|b +2|是互为相反数,则(a -b )
2=______.
(10)已知
2
2b a ++|b 2-10|=0,求a +b 的值.
4、若y=x x -+-22+5,求x+y 的值。

若12112--+-=x x y ,求xy 的值。

5、已知a 、b 是实数,且0|2|62=-++b a ,解方程(a+2)x+b 2
=a-1
6、已知411+=-+-y x x ,求x 与y 的值
7、已知a 、b 满足
0|13|)1(2
=--++a b a ,求b 2-5a 的平方根 8、△ABC 的三边为a 、b 、c
|4|0b -=,求c 的取值范围 9、12-a 的平方根是3±,13-+b a 的算术平方根是4,求b a 2+的平方根.
10、已知x ,y 满足
x x x y 289
161622---+-=
,求xy 的平方根.
11如果031=+++-++z y x y x ,求z y x ,,的值.
练习五综合:
1、一个自然数的算术平方根为,这个自然数相邻的下一个自然数是( ) A .
B . C
2的整数部分是 ;若<b ,(a 、b 为连续整数)则a=__,b=__ 3、若
= 2.291,= 7.246,那么=___________
的立方根。

试求的立方根,
的算术立方根,是已知a b y x b y x y x a y x y x -+=++++=+--32233a 1a +21a +1
可编辑
4、若43+x 的平方根是5±,则15+x 的算术平方根是____;
5、若一个正数的平方根是和,则,这个正数是 ;
6、一个数的平方根是2和-2,则这个数为________;
7、一个数的平方根是a+1和a-3,则这个数为_________;
8、x -2的平方根是2,2x +y +7的立方根是3,求x 2+y 2的算术平方根.
9、已知a
b-1是400的算术平方根,
练习五拔高训练:1、已知:实数a 、b 满足条件 试求
的值
12-a 2+-a ____=a ±0)2(12=-+-ab a )
2004)(2004(1)2)(2(1)1)(1(11++++++++++b a b a b a ab ΛΛ。

相关文档
最新文档