(推荐)初中数学学习方法指导-新课标-人教版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学学习方法指导(精)
指导中学生如何学习数学,是数学教师必须完成的重要任务。作为一个数学教师,必须精通上述提到的7个方面的学习方法,广览各种学习方法的精要所在,然后有计划、有步骤、分阶段、分层次、有针对性地指导学生掌握各种学习方法。使我们的学生能够主动地、独立地学习,达到新课程要求标准。
㈠让学生明确学好数学需要抓好哪些学习环节。
在学生开始学习某门数学教材之前,我们老师必须告诉学生,学好数学需要注意抓好下列环节——八环节学习方法:
⑴制订计划,⑵课前预习,⑶认真听讲,⑷及时复习,⑸独立作业,⑹解决疑难,⑺系统小结,⑻课外学习。
本方法是武汉黎世法老师调查全国200名各科学习成绩平均90分以上的优秀中学生、原华中工学院的40名少年大学生及以高分考入武汉大学的60名大学生的学习经验总结出来的,一个学生只要能够按照这八个环节学习,步步落实到位,那么这个学生就将成为学习的主人,并成为班上的优秀学生。
八个环节中的每个学习环节还需要老师作具体的指导,如怎样听课,如何预习,如何小结等,在每一学期的前几周课中老师应逐步介绍给学生。
㈡让学生明确完成一项数学学习任务,需要分步骤逐项完成,才能牢固掌握知识。因为数学学习过程是一个复杂的认识过程,因而完成一项数学学习任务,真正掌握知识,必须全面完成各个步骤。心理学上把认识过程一般分为感知、理解、巩固、应用四个基本阶段。在四轮学习方略中,也把学习一节课分为四轮,第一轮:预习,查出障碍;第二轮:听课,破除障碍;第三轮:复习,扫除障碍;第四轮:作业,学会应用。其实这四轮与上面认识过程的感知、理解、巩固、应用是对应吻合的,虽然所述的角度不同,但都有分阶段的四步,每一步的学习要求非常相似。预习就是为了对一节课初步感知,听课就是为了更好地理解课文,复习是为了巩固,作业就是把所学知识进行应用。四轮学习方略是近几年流行全国的一种学习方法,由于它符合一般认识过程,故严格坚持按这四个步骤学习每一节课,必能取得较好的效果。
还有其它的学习方法,根据不同的学习情境,将学习过程分为四步、五步等,学生可以据自己所学内容的特点进行选择,甚至还可以自己进行创造,提出适合自己的学习步骤:如读、听、写、练四字学习法,再如浏览、发问、阅读、复述、复习五步学习法等。
㈢让学生明确怎样学习才算真正地掌握了知识。把数学知识看成是一个系统,那么数学知识结构具有四大要素,即事实、事理、事用、事体。具体来讲这四大要素据不同层次的知识结构,可对应地罗列如下:
四事事实事理事用事体
问题题目题理题法题路
提问是什么为什么怎么用有何启发
概念名称定义判断关系
定理条件结论证明应用方法
公式表达式推导计算联系
法则法则内容具体化思维方法
我们认为,不论学习任何层次的知识都应掌握相应的四大要素,只知“是什么”,不知“为什么”,是无法理解结论的原理的,只懂得理论知识,不知“怎样用”,便成为无用的知识,各种知识点如果没有清晰的思路,联系不紧密而零零散散,这样的知识不牢固,基础也不扎实,再学习新的知识时很难有创新,并表现出较弱的学习能力。因而四大要素缺一不可,学习者一方面务必要分成四个步骤,有意识地全面掌握每一节知识的四个要素,这四个步骤就是:感知、理解、应用、系统化。具体来讲即就是:
⑴感知(事实):对一般结论有一个初步的了解,对概念、定理、公式等所反映的各种属性有一个整体的反应。感知是数学学习的开始、是基础,一切数学学习活动只有知道了“是什么”,才能进一步地探索“为什么?”从而才能理解和应用知识。
⑵理解(事理):为了对一个数学结论能够理解,必须明确它的原理,它的来龙去脉。理解是人们逐步认识事物的各种联系,弄清其本质规律的一种思维过程。可见,只有通过理解,才会使对事物的感性认识上升到理性认识。数学概念的内涵和外延,定理的证明,公式的推导,结论的解释等,都要弄懂搞明白,才算真正掌握了数学事实的原理。
⑶应用(事用):应用是学习的继续和深入,在感知、理解的基础上,学生已掌握了数学知识,但还应将知识应用在问题的解决和分析当中,才能加深所学知识的理解,使学习更有实效,并且通过实践训练掌握技能技巧,提高思维能力。数学教材当中,对例题的总结,练习题的解答,及课外作业的完成过程,都是“事用”掌握的过程。
⑷系统化(事体):“事体”指的就是“知识体系”。数学学习材料之间具有种种联系,如果学生了解新旧知识间的联系,就能达到由此及彼的作用。掌握“事体”有以下几个作用:知识结构严密化,记忆牢固,思维灵活多样,为学习新知识奠定基础,容易产生新的联想。因此通过总结,使知识系统化是十分重要的。㈣让学生明确学习一个数学概念、定理、公式应从哪几个方面入手。学习数学过程中,总是遇到大量的概念、定理和公式,怎样才算真正地掌握了它们,老师应该明确指出需要怎样的一个过程,应达到什么要求,一般应从哪些方面去理解掌握。
1.数学概念的学习方法。
数学概念是反映数学对象本质属性的思维形式,它的定义方式有描述性的,有指明外延的,有种概念加类差等方式。一个数学概念需要记住名称,叙述出本质属性,体会出所涉及的范围,并应用概念准确进行判断。这些问题老师没有要求,不给出学习方法,学生将很难有规律地进行学习。
下面我们归纳出数学概念的学习方法
⑴阅读概论,记住名称或符号。
⑵背诵定义,掌握特性。
⑶举出正反实例,体会概念反映的范围。
⑷进行练习,准确地判断。
⑤与其它概念进行比较,弄清概念间的关系。
2.数学公式的学习方法。
公式具有抽象性,公式中的字母代表一定范围内的无穷多个数。有的学生在学习公式时,可以在短时间内掌握,而有的学生却要反来复去地体会,才能跳出千变万化的数字关系的泥堆里。教师应明确告诉学生学习公式过程需要的步骤,使学生能够迅速顺利地掌握公式。
我们介绍的数学公式的学习方法是:
⑴书写公式,记住公式中字母间的关系。
⑵懂得公式的来龙去脉,掌握推导过程。
⑶用数字验算公式,在公式具体化过程中体会公式中反映的规律。
⑷将公式进行各种变换,了解其不同的变化形式。
⑤将公式中的字母想象成抽象的框架,达到自如地应用公式。
3.数学定理的学习方法。
一个定理包含条件和结论两部分,定理必须进行证明,证明过程是连接条件和结论的桥梁,而学习定理是为了更好地应用它解决各种问题。
下面我们归纳出数学定理的学习方法:
⑴背诵定理。
⑵分清定理的条件和结论。
⑶理解定理的证明过程。
⑷应用定理证明有关问题。
⑸体会定理与有关定理和概念的内在关系。
有的定理包含公式,如韦达定理、勾股定理、正弦定理,它们的学习还应该同公式的学习方法结合起来进行。
㈤让学生学会自学的方法。
自学是指一个人较少依赖别人的帮助而独立地掌握知识、应用知识以及获取技能的自觉活动。自学是一生