近世代数(抽象代数)课件

合集下载

《近世代数》PPT课件

《近世代数》PPT课件
– 剩余类的加法和乘法运算
a b a b ,(m m )o a b d a b(m m )o
10.01.2021
编辑ppt
18
2.2 多项式剩余类环和域
1.域上多项式的定义
– 多项式与码字的关系:桥梁;
• 多项式的系数表示

• x的幂次表示

– 域上的多项式
• 针对系数定义;
• 例如二进制系数多项式,称为二元域GF(2)上的 多项式。
编辑ppt
28
(1) 常数总是多项式的因子。
(2) 一个多项式 f(x) 是否为既约多项式 与所定义的域有关。
(3) 一个多项式既约的充要条件:多项 式Pl(x) 不能分解成两个次数低于Pl(x) 的多项式的乘积。
(4) 完全分解:n次多项式最多能分解成 n个一次多项式的乘积,被称为完全分 解。
(5) 一次多项式一定是既约的。
(3)加法和乘法之间满足如下分配率 (distributive) :
a(bc) abac
(bc)a baca
则称F是一个域。
10.01.2021
编辑ppt
6
(1)域的阶(针对群中元素的个数),记 为q。
(2)有限域或伽逻华(Galois)域,表示为:
GF(q)。
–域将
10.01.2021

编辑ppt
联系在一起?
7
例2-3
– F1:有理数全体、实数全体对加法和乘法都 分别构成域,分别称为有理数域和实数域。
– F2:0、1两个元素模2加构成域;由于该域 中只有两个元素,记为GF(2)。
10.01.2021
编辑ppt
8
• 定理:
– 设p为质数,则整数全体关于p模的剩余类: 0,1,2,…,p-1,在模p的运算下(p模相 加和相乘),构成p阶有限域GF(p)。

《近世代数》课件

《近世代数》课件

近世代数的重要性
近世代数是数学领域中的基础学科之 一,是学习其它数学分支的重要基础 。
它对于理解数学的抽象本质和掌握数 学的基本思想方法具有重要意义,有 助于培养学生的逻辑思维和抽象思维 能力。
课程大纲简介
本课程将介绍近世代数的基本概念和性质,包括集合、群、环、域等代数系统的 定义、性质和关系。
1.1 答案
对。因为$a^2$的定义是两个整数相乘,结果仍为整数。
第1章习题及解答
1.2 答案:(略)
1.3 答案:群的基本性质包括封闭性、结合律和存在单位元。
第2章习题及解答
2.1 判断题:若$a$是整数,则$a^3$也是整数。 2.2 选择题:下列哪个是环?
第2章习题及解答
要点一
2.3 简答题
编码理论中的应用
线性码
线性码是一类重要的纠错码,其生成矩阵和校验矩阵都是线性方程组的解。这 些矩阵的构造和性质都与代数理论紧密相关。
高斯-若尔当消元法
在编码理论中,经常使用高斯-若尔当消元法来求解线性方程组,这种方法在代 数中也有广泛的应用。
物理学中的应用
量子力学中的态空间
在量子力学中,态空间是一个复的向量空间,其基底对应于可观测物理量。这与代数学中的向量空间 概念非常相似。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个多项式,那么E在F上形成一个 子域。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个不可约多项式,那么E在F上形 成一个有限子域。
有限域
有限域的性质
有限域中的元素个数一定是某个素数的幂。
理想与商环
理想的定义与性质
介绍理想的定义,包括左理想、右理想、双边理想等 ,并讨论理想的封闭性、运算性质等。

近世代数基础课件

近世代数基础课件
37
第3讲 特殊的唯一分解环 1 主理想环 2 欧氏环 3 唯一分解环上的一元多项式环 4 因子分解与多项式的根
38
第六章 群论补充
39
第1讲 共轭元与共轭子群 1 第2讲 群的直积 第3讲 群在集合上的作用 第4讲 西罗定理
40
第1讲 共轭元与共轭子群
研究群内一些特殊类型的元素和子群
1 中心和中心化子 2 共轭元和共轭子群 3 共轭子群与正规化子
53
四 代数学发展的四个阶段
代数学经历了漫长的发展过程,抽象代 数(近世代数)是19世纪最后20年直到20世 纪前30年才发展起来的现代数学分支. 1 最初的文字叙述阶段 2 代数的简化文字阶段 3 符号代数阶段 4 结构代数阶段
54
1 最初的文字叙述阶段
古希腊之前直到丢番图(Diophantine,公元250年)时 代,代数学处于最初的文字叙述阶段,这一阶段除古希腊 数学之外还包括古巴比伦、古埃及与古代中国的数学. 此时算术或代数尚未形成任何简化的符号表达法,代数 运算则都采用通常的语言叙述方式表达,因而代数推理 也都采用直观的方法.在中国古代则有著名的筹算法,而 在古希腊则借助于几何图形的变换方法.最典型的代表 是毕达哥拉斯(Pythagoras,公元前585-497)几何数论方 法.例如通过图形的组合可以得到
}
} }
映射相关概念及举例
映射的运算 映射及其相关概念的推广
}
特殊映射
6
第3讲 基本概念之代数运算适应的规则 ——运算律 运算律
1 与一种代数运算发生关系的运算律 (1)结合律 (2)交换律 (3)消去律 2 与两种代数运算发生关系的运算律 (1)第一分配律 (2)第二分配律
7
第4讲 基本概念之与代数运算发生关系的映射 ——同态映射 同态映射 1 同态映射 2 同态满射 3 同构映射 4 自同构映射 5 举例

近世代数学习课件

近世代数学习课件
注:X上的一元和二元代数运算均满足 运算的封闭性。
定义4 结合律:设“”是X上的一个
二元代数运算。如果a,b, c X
有:(a b) c a (b c)
则称此二元代数运算适合结合律。
交换律:若对a,b X 有: ab ba
则称此二元代数运算适合交换律。
定义5 设“”是非空集合S上的一个
近世代数 课件
教材:离散数学引论 王义和,哈工大出版社
参考教材: 1)近世代数, 熊全淹,武大
2)近世代数基础习题指导,北师大
3)离散数学及其在计算机中的应用
4)代数结构与组合数学
引言
一、近世代数的研究对象
代数最初主要研究的是数,以及由数所衍 生出来的对象,如代数方程的求根。数的 基本特征是可以进行加法、乘法等运算, 其共同点是对任两个数,通过相应法则可 唯一求得第三个数。而对于很多抽象的对 象也都具有类似数的这一特征,因此对于 它们的结构和性质的研究就导致了近世代 数的产生和发展。
同理:A为 M , , e 的非空子集,则
包含A的所有子幺半群的交成为由A生 成的子幺半群。
注:根据集合交的性质知道 由A生成的子(幺)半群 (A) 是包含A的所有子(幺)半群 中最小的,即对任意包含A的
子(幺)半群 A 有:A A
定义4 左(右)理想:半群 S ,
的一个非空子集A为S的一个左(右)
定义乘法“”:N N N
a b a b 1, a,b N,
其中*为普通乘法
定义6 设(S,,) 是具有两个二元
代数运算“”和“+”的代数系。
如果a,b, c S 有:
a (b+c) (a b) (a c)
则称“”对“+”满足左分配律。
如果a,b, c S 有:

近世代数教学PPT(精品)

近世代数教学PPT(精品)

两个集的并与交的概念可以推广到任意n个集合上去, 设 是给定的集合 .由 A1 , A2 ,, A n
A1 , A2 ,, 的一切元素 An
所成的集合叫做
A1 , A2 ,, 的并; An
由 A1 , A2 ,, An的一切公共元素所成的集合叫做
A1 , A2 ,, An 的交. A1 , A2 ,, An 的并和交分别记为:
诺特, 1882年3月23日生于德国埃尔朗根,1900年入埃朗 根大学,1907年在数学家哥尔丹指导下获博士学位。1916年 后,她开始由古典代数学向抽象代数学过渡。1920年,她已 引入「左模」、「右模」的概念。1921年写出的<<整环的理 想理论>>是交换代数发展的里程碑。建立了交换诺特环理论, 证明了准素分解定理。1926年发表<<代数数域及代数函数域 的理想理论的抽象构造>>,给戴德金环一个公理刻画,指出 素理想因子唯一分解定理的充分必要条件。诺特的这套理论也 就是现代数学中的“环”和“理想”的系统理论,一般认为抽 象代数形式的时间就是1926年,从此代数学研究对象从研究代 数方程根的计算与分布,进入到研究数字、文字和更一般元素 的代数运算规律和各种代数结构,完成了古典代数到抽象代数 的本质的转变。诺特当之无愧地被人们誉为抽象代数的奠基人 之一。
近世代数是在19世纪末至20世纪初发展起来的 数学分支。 1930年荷兰数学家范德瓦尔登(B.Lvan der Wearden 1930-1996) 根据该学科领域几位创始 人的演讲报告,综合了当时近世代数的研究成果, 编 著了《近世代数学》(Moderne Algebra)一书,这 是该学科领域第一本学术专著,也是第一本近世代 数的教科书。
近世代数理论的三个来源

近世代数精品课程25页PPT

近世代数精品课程25页PPT
近世代数精品课程

6、黄金时代是在我们的前面,而不在 我们的 后面。

7、心急吃不了热汤圆。

8、你可以很有个性,但某些时候请收 敛。

9、只为成功找方法,不为失败找借口 (蹩脚 的工人 总是说 工具不 好)。

10、只要下定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 卡耐基 。
6பைடு நூலகம்最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
Thank you

近世代数引论PPT课件

近世代数引论PPT课件
域是近世代数中的一个基本概念,它是一个加法群和 一个乘法半群的组合,具有一些重要的性质。
详细描述
域是一个非空集合,其中定义了两种运算:加法和乘法 ,满足一定的性质。在域中,加法和乘法都是可逆的, 即每个元素都有唯一的加法逆元和乘法逆元。此外,域 中的乘法满足结合律,且每个元素都有乘法单位元。
子域与扩域
环论在几何学中的应用
环论也是近世代数的一个重要分支,它在几何学中也有着广泛的应用。例如,在代数几 何中,环论被用于描述多项式环的结构;在解析几何中,环论也被用于描述函数的性质。
数论中的应用
域论在数论中的应用
域论是近世代数中一个重要的分支,它在数论中有着广泛的应用。例如,在代数数论中,域论被用于描述代数数 的性质;在数论中,域论也被用于研究整数的性质和结构。
分式域与函数域
总结词
分式域和函数域是两种特殊的域,它们在数学和物理 中有广泛的应用。分式域是由其整环的分式组成的域 ,而函数域则是基于函数的定义域和值域形成的域。
详细描述
分式域是由一个整环的分式组成的域。整环是一个只含 有限除数的环,也就是说,如果一个元素在整环中不能 被其他元素整除,则该元素被称为不可约元素。分式环 是由整环中所有分式组成的集合,它构成一个域。函数 域是基于函数的定义域和值域形成的域。具体来说,给 定一个函数f和一个集合D,函数域是由集合D中所有可 能的函数值组成的集合,它也构成一个域。
交叉学科的研究
近世代数与其他学科的交叉研究也是未来的一个重要方向,如 代数几何、代数数论、计算机科学等学科的交叉研究,可以促
进近世代数的发展和应用。
THANKS
感谢观看
环论
环的定义和性质
要点一
总结词
环是具有加法和乘法两种运算的代数系统,满足一定的性 质。

近世代数ppt

近世代数ppt
8
第4讲 基本概念之与代数运算发生关系的映射 ——同态映射
1 同态映射 2 同态满射 3 同构映射 4 自同构映射 5 举例
9
第5讲 基本概念之等价关系与集合的分类 ——商集
1 商集 2 等价关系 3 集合的分类 4 集合A上的等价关系与 集合A的分类之间的联系
10
第三章 群
11
第1讲 代数系统
0下载券文档一键搜索 VIP用户可在搜索时使用专有高级功能:一键搜索0下载券文档,下载券不够用不再有压力!
内容特 无限次复制特权 权 文档格式转换
VIP有效期内可以无限次复制文档内容,不用下载即可获取文档内容 VIP有效期内可以将PDF文档转换成word或ppt格式,一键转换,轻松编辑!
阅读页去广告
第一章 绪 论
1
第1讲 绪 论
一 关于代数的观念 二 数学史的发展阶段 三 代数发展的阶段(数学发展史) 四 代数学发展的四个阶段 五 几类与近世代数的应用有关的实际
问题
2
第二章 基本概念
3
特权福利
特权说明
VIP用户有效期内可使用VIP专享文档下载特权下载或阅读完成VIP专享文档(部分VIP专享文档由于上传者设置不可下载只能 阅读全文),每下载/读完一篇VIP专享文档消耗一个VIP专享文档下载特权。
集合与元素的相关概念
集合的相关概念
集合的运算及运算律
集合的补充及说明
6
第2讲 基本概念之集合及其之间的关系 —对应关系(映射)(人造关系)
1 映射概念回忆
2 映射及相关定义 3 映射的充要条件
4 映射举例
5 符号说明
6 映射的合成及相关结论
7 映射及其映射相等概念的推广
8 集合及其之间的关系——特殊

近世代数教学 ppt课件

近世代数教学  ppt课件

PPT课件
5
(1) 代数方程的解
两千多年之前古希腊时代数学家就能够利用开 ax2+bx+c=0 方法解二次方程 。16世纪初欧洲 文艺复兴时期之后,求解高次方程成为欧洲代 数学研究的一个中心问题。1545年意大利数学 家 G.Cardano(1501-1576)在他的著作《大术》 (Ars Magna)中给出了三、四次多项式的求根 公式,此后的将近三个世纪中人们力图发现五 次方程的一般求解方法,但是都失败了。
产生了巨大影响。同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构
主义哲学的产生和发展都发生了巨大P的PT影课响件。
8
(2)Hamilton四元数的发现
长期以来人们对于虚数的意义存在不同的看法,后来发现 可以把复数看成二元数(a,b)=a+bi,其中i2= -1。二元数按 (a,b)±(c,d)=(a±c,b±d),(a,b)(c,d)=(ad+bc,ac-bd)的法则进行代 数运算,二元数具有直观的几何意义;与平面上的点一一对应。 这是数学家高斯提出的复数几何理论。二元数理论产生的一个 直接问题是:是否存在三元数?经过长时间探索,力图寻求三 元数的努力失败了。但是爱尔兰数学家W.Hamilton(1805-1865) 于1843年成功地发现了四元数。四元数系与实数系、复数系一 样可以作加减乘除四则运算,但与以前的数系相比,四元数是 一个乘法不交换的数系。从这点来说四元数的发现使人们对于 数系的代数性质的认识提高了一大步。四元数代数也成为抽象 代数研究的一个新的起点,它是近世代数的另一个重要理论来 源。
彻的解答,解决了困扰数学家们长达数百年之久的问题。伽罗瓦群论还给出了判断
几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方

近世代数课件(全)--近世代数1-0 基本概念

近世代数课件(全)--近世代数1-0 基本概念
2019/1/20
2 3
1 8
4 5
7 6
例1 用黑白两种颜色的珠子做成有5颗珠子的项链
利用枚举法,得到一共8种不同类型的项链。 随着n、m的增加,用枚举法解决越来越难, 采用群论方法解决是最简单、有效的方法。
2019/1/20
2.分子结构的计数问题 在化学中研究由某几种元素可合成多少种 不同物质的问题,由此可以指导人们在大自 然中寻找或人工合成这些物质。 例2 在一个苯环上结合H原子或CH3原子团, 问可能形成多少种不同的化合物? 如果假定苯环上相邻C原子 之间的键是互相等价的,则 此问题就是两种颜色6颗珠 子的项链问题。
2019/1/20
数学上的确切描述
设由m颗珠子做成一个项链,可用一个正m边形 来代表它,它的每个顶点代表一颗珠子。
沿逆时针方向给珠子标号, 由于每一颗珠子的颜色有n种选 择,因而用乘法原理,这些有标 号的项链共有nm种。
但其中有一些可以通过旋转一个角 度或翻转180度使它们完全重合, 我们称为是本质相同的,我们要考 虑的是无论怎么旋转、翻转都不能 使它们重合的项链类型数。
2019/1/20
8. 代数方程根式求解问题 我们知道,任何一个一元二次代数方程 可用根式表示它的两个解。对于一元三次和 四次代数方程,古人们经过长期的努力也巧 妙地做到了这一点。于是人们自然要问:是 否任何次代数方程的根均可用根式表示?许 多努力都失败了,但这些努力促使了近世代 数的产生,并最终解决了这个问题:五次以 上代数方程没有根式解。
2019/1/20
f的定义域A×A×…×A中的元素个数为 2n,f在每个元素上的取值有两种可能,所以 n 2 全部开关函数的数目为2 ,这也就是n个开 关的开关线路的数目。 如果不考虑开关的标号,则若开关线路结 构完全相同,称这些开关线路是本质相同的 。要进一步解决本质上不同的开关线路的数目 问题,必须用群论的方法。

《近世代数》PPT课件

《近世代数》PPT课件

例2 设 A 1 { 东} , A 2 { 西 南 } , B { 高} ,低
则 1 :A 1 A 2 B ; ( 西 , 南 ) 高 不是映射.
因为映射要满足每一个元 (a1,a2) 都要有一个像.
而 2 : A 1 A 2 B ; ( 西 , 南 ) 高 ; ( 东 , 南 ) 低 是一个映射. 7
A 1A 2 A n{a1 (,a2, an)ai A i}.
即由一切从 A1,A2, ,An 里顺序取出元素组成的元素 组 (a1,a2, an),ai Ai 组成的集合.
例 A={1,2,3}, B={4,5}, 则
AB={(1,4), (1,5), (2,4), (2,5), (3,4), (3,5)},
A称为 的定义域,B称为 的值域.
注: (1) 映射定义中 “b”的唯一性:映射不能“一对多”,
但可以“多对一”.
(2) 记法: :A B ;ab (a ),aA .
(3) 一般情形,将A换成集合 A 1A 2.. .A n 的积,则
对 ( a 1 ,a 2 ,.a n .) .A ,1 A 2 . .A .n有 : A 1 A 2 . . . A n B ; ( a 1 , a 2 , . . . , a n ) b ( a 1 , a 2 , . . . , a n ) . 6
2. 元素(或元): 组成一个集合的事物.
如果a是集合A中的元素,记作a A ; 如果a不是集合A的元 素,记作 a A 或a A .
2
3.空集:没有元素的集合,记作 .
4.子集:设A,B是集合,则
B A (B是A的子集)是指 b B b A . 真子集:B是A的真子集是指 B A 且 aA,但aB .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 2 令 P nn 表示某个数域 P 上的全体 n 阶方阵 组成的集合.则矩阵的加法、减法和乘法都是 P nn 上 的二元运算.数与矩阵的乘法是 P , P nn 到 P nn 的代 数运算,不是 P nn 上的二元运算.

7
CHENLI
§1 代数运算
例 3 设V 是实数域 R 上的三维欧几里得 空间.于是,向量的加法“”,减法“-”以及向 量与向量的叉乘“”都是V 上的二元运算;实数 与向量乘法“ ”是 R ,V 到V 的代数运算,不是 V 上 的 二 元 运 算 ; 向 量 与 向 量 的 点 乘“ ”是 V ,V 到 R 的代数运算,不是V 上的二元运算.
{(a1, a2 , , an ) | ai Ai , i 1, 2, n} 称为 A1, A2 , , An 的直积或笛卡儿积,记作
A1 A2 An . 特别地,当 A1 A2 An A 时, A1 A 2 A n 可 以简记作 An (读作 A 的 n 次方).这里约定,当 n 1 时, A1 A 2 A n 就是 A1 .
例 4 设 K4 {e, a, b, c} ,我们可以利用 下表来定义 K4 上的乘法“ ”:
· eabc e eabc aaecb bb c e a c cba e

11
CHENLI
§1 代数运算
定义 1.2 设“ ”是非空集合 A 上的一个代数 运算.
(1)若对于任意的 a, b, c A 总有 (ab)c a(bc) ,
则称“ ”适合结合律. (2)若对于任意的 a, b A 总有 ab ba ,
则称“ ”适合交换律.

12
CHENLI
§1 代数运算
(3)若对于任意的 a, b, c A ,由 ab ac 可以推得 b c ,则称“ ”适合左消去律;若对 于任意的 a, b, c A ,由 ba ca 可以推得 b c , 则称“ ”适合右消去律;若“ ”既适合左消去 律,又适合右消去律,则称“ ”适合消去律.

3
CHENLI
§1 代数运算
定义 1.1 设 A1, A2 , , An ( n 为正整数)和 A 都是非空集合. A1 A2 An 到 A 的映射 又 称 为 A1, A2 , , A n 到 A 的 代 数 运 算 ; 特 别 地, An 到 A 的映射又称为 A 上的 n 元运算.

15
CHENLI
§1 代数运算
例 7 向量空间上的加法适合结合律、交换律和 消去律;向量空间上的减法不适合结合律和交换律,适 合消去律.

13
CHENLI
§1 代数运算
例 5 设 R 是实数集.则 R 上的加法“”适合 结合律、交换律和消去律; R 上的乘法“”适合结 合律和交换律,不适合消去律; R 上减法“-”不适 合结合律和交换律,但适合消去律.
注意: R \{0}上的乘法“”适合结合律、交换 律和消去律.
意一个二元运算,并将其称为乘法.当 ab c

时, c 称为 a 与 b 的乘积;甚至还将等式 ab c
简写成 ab c .

6
CHENLI
§1 代数运算
例 1 设 R 是实数集.于是,平常的加法“”,减 法“-”和乘法“”都是 R 上的二元运算;除法“”是 R , R \{0}到 R 的代数运算,不是 R 上的二元运算.

14
CHENLI
§1 代数运算
例 6 令 P nn 表示某个数域 P 上的全体 n 阶方 阵构成的集合.则 P nn 上的加法适合结合律、交换 律和消去律; P nn 上的减法不适合结合律和交换律, 适合消去律; P nn 上的乘法适合结合律,不适合消去 律,当 n 1时不适合交换律.

8
CHENLI
§1 代数运算
以下,如无特别声明,凡是提到代数运算 都是指二元运算.
有限集 A 上的每一个代数运算“ ”都可 以用一张表(称为乘法表)来定义.
设 A {a1, a2 , , an} ,“ ”A 是上的乘法 “ ”,则相应的乘法表如下:

第一章 群 论
CHENLI
LOGO
1
目录
§1 代数运算 §2 群的概念 §3 子 群 §4 循环群 §5 正规子群与商群 §6 群的同构与同态 §7 有限群

2
CHENLI
§1 代数运算
设 A1, A2 , , An ( n 为正整数)都是集合.我们将 集合
本课程只介绍最基本的一些近世代数知 识,主要讨论二元运算.

5
CHENLI
§1 代数运算
在讨论二元运算时,一般不用字母 f 或 g
等 表 示 二 元 运 算 , 而 是 用“”,“” ,
“ ” ,“-”,“”,“”或“”等记号表示二
元运算.特别地,我们常常用记号“ ”来表示任
设 A 是一个非空集合. f 是 A 上的一个二
元运算.于是,对于任意的 a, b A ,存在唯
一的 c A ,使得 f (a, b) c .我们约定,将等
式 f (a, b) c 改写成 afb c .

4
CHENLI
§1 代数运算
近世代数又称为抽象代数,主要研究各式 各样的代数运算,是现代数学的一个内容丰富 有趣的分支.它不仅渗透到其它所有的数学分 支,而且在许多自然科学领域都有重要的应用.
9
CHENLI
§1 代数运算
· a1 a2 … an a1 a11 a12 … a1n a2 a21 a22 … a2n an an1 an2 … ann
其中, aia j aij A , i, j 1, 2, , n .

10
CHENLI
§1 代数运算
相关文档
最新文档