统计及统计案例
综合统计案例
综合统计案例在现代社会中,统计学作为一门重要的学科,被广泛应用于各个领域。
统计分析可以帮助我们更好地了解事物的规律和特点,为决策提供科学依据。
下面,我们将通过一个综合统计案例来展示统计分析的应用。
首先,我们选取了一个关于消费者购物偏好的调查案例。
通过对1000名消费者进行问卷调查,我们得到了他们对不同商品的购买意愿和偏好。
在这份调查中,我们涉及了服装、食品、电子产品等多个领域的商品。
接下来,我们将对这些数据进行统计分析。
首先,我们计算了每个商品的购买意愿指数,通过对每个被调查者的回答进行加权平均,得出了不同商品的受欢迎程度。
然后,我们利用统计软件绘制了各商品购买意愿的柱状图,直观地展现了消费者的购物偏好。
在进一步分析中,我们发现了一些有趣的现象。
比如,虽然食品类商品的购买意愿指数最高,但在具体的购买行为中,消费者更倾向于购买电子产品。
这一发现为商家提供了重要的市场信息,可以帮助他们更好地制定营销策略。
除此之外,我们还对不同年龄段和性别的消费者进行了分组分析。
通过比较不同群体的购物偏好,我们发现了一些明显的差异。
比如,年轻人更喜欢购买时尚的服装,而中老年人更倾向于购买保健品和家居用品。
这些发现为商家提供了更具针对性的营销建议。
最后,我们对调查结果进行了可靠性分析。
通过统计学方法,我们验证了调查结果的可靠性和代表性。
我们采用了抽样调查的方法,保证了样本的代表性;同时,我们还进行了数据的重复测量,确保了数据的准确性。
综合以上分析,我们得出了一些重要的结论。
消费者的购物偏好受到多种因素的影响,包括商品类型、年龄段、性别等。
商家可以根据这些因素,制定更具针对性的营销策略,提高商品的销售量和市场占有率。
综合统计案例分析结束。
通过这个案例,我们展示了统计分析在市场调研和营销策略制定中的重要作用。
希望这个案例能够为大家对统计学的应用提供一些启发和帮助。
统计案例分析大赛优秀案例
统计案例分析大赛优秀案例一、案例一:校园食堂就餐偏好调查。
1. 背景。
咱学校食堂那可是同学们每天都要光顾的地方,但是食堂师傅们总是很头疼,不知道同学们到底爱吃啥。
于是有个超机智的团队就开展了这个统计案例分析。
2. 数据收集方法。
这个团队可没偷懒,他们采用了多种方式收集数据。
首先在食堂门口设置了问卷调查点,逢人就发问卷,那热情,就像食堂打饭不要钱似的。
问卷上的问题可详细了,从“你最喜欢食堂的哪个菜系”到“你觉得食堂的菜量怎么样”。
除了问卷,他们还在食堂里随机找同学进行简短的访谈,就像电视里的记者一样。
另外,还查看了食堂的消费记录,看看哪些菜品的销量高。
3. 分析过程。
他们把收集到的数据整理得井井有条。
对于问卷调查的数据,用了一些简单又实用的统计方法,像计算百分比啊,画柱状图啊。
比如说,发现有40%的同学最爱吃川菜系,那柱状图里川菜系那根柱子就高高地立在那儿。
对于访谈内容呢,他们就像侦探一样,从同学们的回答里找关键词,总结出大家对于食堂环境、服务等方面的看法。
消费记录就更厉害了,通过分析不同菜品在不同时间段的销量变化,发现了一些有趣的规律。
周一到周三中午,盖浇饭的销量特别高,因为很多同学在这几天中午都有课,盖浇饭方便快捷。
4. 结论与建议。
最后得出结论啦,同学们对食堂的口味要求比较多样化,但是更倾向于重口味的菜。
而且食堂的菜量对于大部分男生来说有点少,对于女生来说又有点多。
于是他们给食堂提出了建议:可以增加川菜等热门菜系的菜品,把菜量分成大小份,还可以根据不同时间段的销量调整菜品供应。
食堂师傅们听了这些建议,就像得到了武功秘籍一样,按照建议调整后,同学们的满意度提高了不少呢。
二、案例二:城市共享单车使用情况分析。
1. 背景。
现在共享单车在城市里到处都是,五颜六色的,像一道亮丽的风景线。
但是共享单车公司也面临很多问题,比如说车辆投放量应该怎么确定,哪些地方需求大,哪些地方需求小呢?这时候,一个超酷的团队就站了出来,要通过统计分析来解决这些问题。
临床统计 经典案例
临床统计经典案例案例一:阿司匹林与心血管疾病预防。
你知道吗?以前大家对心血管疾病的预防一直摸不着头脑。
后来就有这么个超牛的临床统计研究。
研究人员找了一大堆人,就像从各个角落把人都搜罗过来一样。
一部分人每天吃阿司匹林,另一部分人吃安慰剂(就是那种看着像药但其实没什么药效的东西,就跟吃糖豆似的)。
然后就一直观察啊,看他们谁更容易得心血管疾病。
结果发现,长期服用阿司匹林的那组人,患心血管疾病的比例明显低很多呢!这就好比给心脏穿上了一层防护甲。
这个统计结果一出来,全世界的医生都开始重视阿司匹林在心血管疾病预防方面的作用了。
就这么个小小的白色药片,可能就改变了很多人的命运。
不过呢,阿司匹林也不是对所有人都没副作用,所以还得医生根据每个人的情况来判断是不是适合吃。
案例二:吸烟与肺癌的关联。
很早以前啊,大家觉得肺癌这事儿有点神秘。
后来就有人想研究一下到底为啥这么多人得肺癌。
这时候就盯上了吸烟这个事儿。
那些搞临床统计的人啊,又开始他们的“找人之旅”了。
找了一堆吸烟者和一堆不吸烟者,然后就像跟踪明星一样,跟踪他们的健康状况。
这一跟踪可不得了,发现吸烟者得肺癌的概率那是蹭蹭往上升啊,比不吸烟者高了好多倍呢。
就好像吸烟是给肺癌发了一张邀请函一样。
这个统计结果出来后,全世界都震惊了。
那些烟盒上开始印上吓人的警示语,就是想让大家知道吸烟和肺癌之间的关系可不是闹着玩的。
这也让很多人开始考虑戒烟,毕竟谁也不想跟肺癌交朋友呀。
案例三:疫苗对传染病的控制。
就拿小儿麻痹症来说吧。
以前这病可把家长们吓得不轻,孩子要是得了,那可就遭大罪了。
后来有了疫苗。
那些聪明的医学家们就开始做临床统计啦。
他们找了一些地方,给一部分孩子接种疫苗,另外一些地方的孩子暂时不接种。
然后就看这两个地方小儿麻痹症的发病情况。
哇塞,接种疫苗的地方,小儿麻痹症的病例就像潮水退去一样,越来越少,而没接种的地方呢,还是有不少孩子得病。
这个统计结果就像给全世界打了一针强心剂,让大家知道疫苗的威力可大了。
生活中的统计学案例
生活中的统计学案例生活中的统计学案例无处不在,统计学作为一门应用广泛的学科,其实际应用涵盖了生活的方方面面。
从日常生活中的消费数据到医疗领域的疾病统计,从教育领域的学生成绩分析到经济领域的市场调查,统计学都扮演着不可或缺的角色。
下面,我们将通过几个生活中的具体案例,来展示统计学在实际生活中的应用。
首先,我们来看一个关于市场调查的案例。
某公司推出了一款新产品,想要了解消费者对该产品的满意度。
他们进行了一次市场调查,通过问卷调查的方式收集了大量数据。
在统计学的帮助下,他们可以对这些数据进行分析,得出消费者对产品的整体满意度,以及不同年龄、性别、地域等因素对满意度的影响。
通过统计学的分析,公司可以更好地了解消费者的需求,为产品的改进提供依据。
其次,我们来看一个关于医疗领域的案例。
某医院统计了一段时间内的疾病发病率数据,发现某种疾病的发病率呈上升趋势。
统计学的方法可以帮助医院分析这些数据,找出可能的病因和影响因素。
通过统计学的分析,医院可以及时采取相应的预防措施,有效控制疾病的传播。
再次,我们来看一个关于教育领域的案例。
某学校对学生的期末考试成绩进行了统计分析,发现数学成绩普遍较低。
通过统计学的方法,学校可以对学生的学习情况进行分析,找出存在的问题和不足之处。
同时,还可以通过统计学的方法,找出学习成绩较好的学生的学习方法和习惯,为其他学生提供学习的借鉴和指导。
最后,我们来看一个关于日常生活消费数据的案例。
某家庭通过统计每个月的生活消费数据,发现了一些意想不到的情况。
通过统计学的方法,他们可以对不同方面的消费进行分析,找出存在的问题和改进的空间。
通过统计学的分析,他们可以更好地理财,合理安排生活消费,提高生活质量。
通过以上几个生活中的统计学案例,我们可以看到统计学在实际生活中的重要作用。
无论是在市场调查、医疗领域、教育领域,还是在日常生活中的消费数据分析,统计学都可以为我们提供有力的支持和帮助。
因此,学习统计学,掌握统计学的方法和技巧,对我们的生活和工作都是非常有益的。
统计案例(精讲)(提升版)(原卷版)
8.5 统计案例(精讲)(提升版)思维导图考点一独立性检验【例1】(2022·吉林·梅河口市第五中学高三开学考试)某中学准备组建“文科”兴趣特长社团,由课外活动小组对高一学生进行了问卷调查,问卷共100道题,每题1分,总分100分,该课外活动小组随机抽取了100名学生的问卷成绩(单位:分)进行统计,将数据按照[0,20),[20,40),[40,60),[60,80),[80,100]分成5组,绘制的频率分布直方图如图所示,若将不低于60分的称为“文科方向”学生,低于60分的称为“理科方向”学生.(1)根据已知条件完成下面2×2列联表,并据此判断是否有99.5%的把握认为“文科方向”与性别有关?理科方向文科方向总计男40女45考点呈现例题剖析总计 1001人,共抽取4次,记被抽取的4人中“文科方向”的人数为X ,若每次抽取的结果是相互独立的,求X 的分布列和数学期望.参考公式:()()()()22()n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.参考临界值:()2P k αχ=0.10 0.05 0.025 0.010 0.005 0.001k2.7063.841 5.024 6.635 7.879 10.828【一隅三反】1.(2022·白山模拟)十三届全国人大四次会议表决通过了关于国民经济和社会发展第十四个五年规划和2035年远景目标纲要的决议,决定批准这个规划纲要,纲要指出:“加强原创性引领性科技攻关”.某企业集中科研骨干,攻克系列“卡脖子”技术,已成功实现离子注入机全谱系产品国产化,包括中束流、大束流、高能、特种应用及第三代半导体等离子注入机,工艺段覆盖至28nm,为我国芯片制造产业链补上重要一环,为全球芯片制造企业提供离子注入机一站式解决方案.此次技术的突破可以说为国产芯片的制造做出了重大贡献.该企业使用新技术对某款芯片进行试生产,在试产初期,生产一件该款芯片有三道工序,每道工序的生产互不影响,这三道工序的次品率分别为118,119,120.附:()()()()()22n ad bcKa b c d a c b d-=++++,n a b c d=+++.()2P K k≥0.0500.0100.0050.001 k 3.841 6.6357.87910.828(①P①100X(2)某手机生产厂商将该款芯片投入到某新款手机上使用,并对部分芯片做了技术改良,推出了两种型号的手机,甲型号手机采用没有改良的芯片,乙型号手机采用改良了的芯片,现对使用这两种型号的手机用户进行回访,就他们对开机速度进行满意度调查.据统计,回访的100名用户中,使用甲型号手机的有30人,其中对开机速度满意的有15人;使用乙型号手机的有70人,其中对开机速度满意的有55人.完成下列22⨯列联表,并判断是否有99.5%的把握认为该项技术改良与用户对开机速度的满意度有关.甲型号乙型号合计满意不满意合计2.(2022·陕西咸阳·三模(理))2022年北京冬奥组委发布的《北京2022年冬奥会和冬残奥会经济遗产报告(2022)》显示,北京冬奥会已签约45家赞助企业,冬奥会赞助成为一项跨度时间较长的营销方式.为了解该45家赞助企业每天销售额与每天线上销售时间之间的相关关系,某平台对45家赞助企业进行跟踪调查,其中每天线上销售时间不少于8小时的企业有20家,余下的企业中,每天的销售额不足30万元的企业占35,统计后得到如下22⨯列联表:销售额不少于30万元销售额不足30万元合计线上销售时间不少于8小时 17 20 线上销售时间不足8小时合计45售时间有关?(2)按销售额在上述赞助企业中采用分层抽样方法抽取5家企业.在销售额不足30万元的企业中抽取时,记“抽到线上销售时间不少于8小时的企业数”为X ,求X 的分布列和数学期望. 附: ()20P K k ≥0.050 0.010 0.001 0k3.841 6.635 10.828参考公式:()()()()2 n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.考点二 线性回归方程【例2-1】(2022·齐齐哈尔模拟)某单位为了解夏季用电量与月份的关系,对本单位2021年5月份到8月份的日平均用电量y (单位:千度)进行了统计分析,得出下表数据:月份(x )5 6 7 8 日平均用电量(y )1.93.4t7.11.7877ˆ.0y x =-t 的值为( )A .5.8B .5.6C .5.4D .5.2【例2-2】(2022·湖南模拟)《中共中央国务院关于全面推进乡村振兴加快农业农村现代化的意见》,这是21世纪以来第18个指导“三农”工作的中央一号文件.文件指出,民族要复兴,乡村必振兴.为助力乡村振兴,某电商平台为某地的农副特色产品开设直播带货专场.为了对该产品进行合理定价,用不同的单价在平台试销,得到如下数据:单价x (元/件) 8 8.2 8.4 8.6 8.8 9 销量y (万件)908483807568附:参考公式:回归方程ˆˆˆybx a =+,其中()()()iii ii 1i 1222iii 1i 1ˆnnx x y y x y nxyb x x xnx ====---==--∑∑∑∑,ˆˆay bx =-. 参考数据:614066i ii x y==∑,621434.2i i x ==∑.(1)(i )根据以上数据,求y 关于x 的线性回归方程;(ii )若该产品成本是7元/件,假设该产品全部卖出,预测把单价定为多少时,工厂获得最大利润.(2)为了解该产品的价格是否合理,在试销平台上购买了该产品的顾客中随机抽了400人,阅读“购买后的评价”得知:对价格满意的有300人,基本满意的有50人,不满意的有50人.为进一步了解顾客对该产品价格满意度形成的原因,在购买该产品的顾客中随机抽取4人进行电话回访,记抽取的4人中对价格满意的人数为随机变量X ,求随机变量X 的分布列和数学期望.(视频率为相应事件发生的概率)【一隅三反】1.(2022·安徽三模)对某位同学5次体育测试的成绩(单位:分)进行统计得到如下表格:第x 次 1 2 3 4 5 测试成绩y3940484850根据上表,可得关于的线性回归方程为ˆ3ˆy x a =+,下列结论不正确的是( )A .ˆ36a= B .这5次测试成绩的方差为20.8 C .y 与x 的线性相关系数0r < D .预测第6次体育测试的成绩约为542.(2022·安徽模拟)新冠疫情期间,口罩的消耗量日益增加,某药店出于口罩进货量的考虑,连续9天统计了第i (i 1239)x =,,,,天的口罩的销售量i y (百件),得到的数据如下:99i i i=1i=145171x y ==∑∑,,()99922ii i i i=1i=1i=1312528510953x x y y y ==-=∑∑∑,,. 参考公式:相关系数()()()()iii=122iii=1i=1nnnx x y y r x x y y --=--∑∑∑数据()i i ()i 123x y n =,,,,,,其回归直线ˆˆˆy bx a =+的斜率和截距的最小二乘估计分别为()()()iii i1222i i11ˆˆˆnn i inni i x x y y x y nxybay bx x x xnx ===---===---∑∑∑∑, (1)若用线性回归模型ˆˆˆybx a =+拟合y 与x 之间的关系,求该回归直线的方程; (2)统计学家甲认为用(1)中的线性回归模型(下面简称模型1)进行拟合,不够精确,于是尝试使用非线性模型(下面简称模型2)得到i x 与i y 之间的关系,且模型2的相关系数20989r =.,试通过计算说明模型1,2中,哪一个模型的拟合效果更好. 3.(2022·湖南模拟)《中共中央国务院关于全面推进乡村振兴加快农业农村现代化的意见》,这是21世纪以来第18个指导“三农”工作的中央一号文件.文件指出,民族要复兴,乡村必振兴.为助力乡村振兴,某电商平台为某地的农副特色产品开设直播带货专场.为了对该产品进行合理定价,用不同的单价在平台试销,得到如下数据:单价x (元/件) 8 8.2 8.4 8.6 8.8 9 销量y (万件)908483807568附:参考公式:回归方程ˆˆˆybx a =+,其中()()()iiiii 1i 1222iii 1i 1ˆnnx x y y x y nxyb x x xnx ====---==--∑∑∑∑,ˆˆay bx =-. 参考数据:614066i ii x y==∑,621434.2i i x ==∑.(1)(i )根据以上数据,求y 关于x 的线性回归方程;(ii )若该产品成本是7元/件,假设该产品全部卖出,预测把单价定为多少时,工厂获得最大利润.(2)为了解该产品的价格是否合理,在试销平台上购买了该产品的顾客中随机抽了400人,阅读“购买后的评价”得知:对价格满意的有300人,基本满意的有50人,不满意的有50人.为进一步了解顾客对该产品价格满意度形成的原因,在购买该产品的顾客中随机抽取4人进行电话回访,记抽取的4人中对价格满意的人数为随机变量X,求随机变量X的分布列和数学期望.(视频率为相应事件发生的概率)考点三非线性回归方程【例3】(2022·福建·三明一中模拟预测)当前,新一轮科技革命和产业变革蓬勃兴起,以区块链为代表的新一代信息技术迅猛发展,现收集某地近5年区块链企业总数量相关数据,如下表年份20172018201920202021编号x12345企业总数量y(单位:千个) 2.156 3.7278.30524.27936.224(1)根据表中数据判断,y a bx=+与e dxy c=(其中 2.71828e=…为自然对数的底数),哪一个回归方程类型适宜预测未来几年我国区块链企业总数量?(给出结果即可,不必说明理由),并根据你的判断结果求y关于x的回归方程;(2)为了促进公司间的合作与发展,区块链联合总部决定进行一次信息化技术比赛,邀请甲、乙、丙三家区块链公司参赛.比赛规则如下:①每场比赛有两个公司参加,并决出胜负;①每场比赛获胜的公司与未参加此场比赛的公司进行下一场的比赛;①在比赛中,若有一个公司首先获胜两场,则本次比赛结束,该公司获得此次信息化比赛的“优胜公司”.已知在每场比赛中,甲胜乙的概率为12,甲胜丙的概率为13,乙胜丙的概率为35,若首场由甲乙比赛,求甲公司获得“优胜公司”的概率.参考数据:5174.691i i y ==∑,51312.761i i i x y ==∑,5110.980i i z ==∑,5140.457i i i x z ==∑(其中ln z y =). 附:样本(),(1,2,,)i i x y i n =的最小二乘法估计公式为1221ˆni ii nii x y nx ybxnx==-=-∑∑,ˆa y bx=-.【一隅三反】1.(2022·山西二模)数据显示,中国在线直播用户规模及在线直播购物规模近几年都保持高速增长态势,下表为2017-2021年中国在线直播用户规模(单位:亿人),其中2017年-2021年对应的代码依次为1-5.年份代码x 1 2 3 4 5 市场规模y3.984.565.045.866.36参考数据: 5.16y =, 1.68v =,145.10i ii v y==∑,其中i i v x =.参考公式:对于一组数据()11v y ,,()22v y ,,…,()n n v y ,,其回归直线ˆˆˆybv a =+的斜率和截距的最小二乘估计公式分别为1221ˆni ii ni i v y nvybv nv ==-=-∑∑,ˆˆay bv =-. (1)由上表数据可知,可用函数模型ˆˆyx a =拟合y 与x 的关系,请建立y 关于x 的回归方程(ˆa ,ˆb 的值精确到0.01);(2)已知中国在线直播购物用户选择在品牌官方直播间购物的概率为p ,现从中国在线直播购物用户中随机抽取4人,记这4人中选择在品牌官方直播间购物的人数为X ,若()()34P X P X ===,求X 的分布列与期望.2.(2022·广东广州·一模)人们用大数据来描述和定义信息时代产生的海量数据,并利用这些数据处理事务和做出决策,某公司通过大数据收集到该公司销售的某电子产品1月至5月的销售量如下表. 月份x1 2 3 4 5 销售量y (万件)4.95.86.88.310.2该公司为了预测未来几个月的销售量,建立了y 关于x 的回归模型:ˆv . (1)根据所给数据与回归模型,求y 关于x 的回归方程(ˆu 的值精确到0.1);(2)已知该公司的月利润z (单位:万元)与x ,y 的关系为z x x=,根据(1)的结果,问该公司哪一个月的月利润预报值最大? 参考公式:对于一组数据()()()1122,,,,,,n n x y x y x y ,其回归直线ˆˆˆy bx a =+的斜率和截距的最小二乘估计公式分别为()()()121ˆniii nii x x y y bx x ==--=-∑∑,ˆˆay bx =-.11 / 113.(2022·广东肇庆·二模)下表是我国从2016年到2020年能源消费总量近似值y (单位:千万吨标准煤)的数据表格: 年份2016 2017 2018 2019 2020 年份代号x1 2 3 4 5 能源消费总量近似值y (单位:千万吨标准煤) 442 456 472 488 498以x 为解释变量,y 为预报变量,若以11为回归方程,则相关指数210.9946R ≈,若以22ˆln ya b x =+为回归方程,则相关指数220.9568R ≈. (1)判断11ˆyb x a =+与22ˆln y a b x =+哪一个更适宜作为能源消费总量近似值y 关于年份代号x 的回归方程,并说明理由;(2)根据(1)的判断结果及表中数据,求出y 关于年份代号x 的回归方程.参考数据:512356i i y ==∑,517212i i i x y ==∑.参考公式:回归方程ˆˆˆybx a =+中斜率和截距的最小二乘估计公式分别为:()()()1122211ˆn ni i i ii i n n ii i i x x y y x y nxy b x x x nx ====---==--∑∑∑∑,ˆˆa y bx =-.。
统计案例分析报告及典型例题
统计案例分析及典型例题§11.1 抽样方法1.为了了解所加工的一批零件的长度,抽取其中200个零件并测量了其长度,在这个问题中,总体的一个样本是 . 答案 200个零件的长度2.某城区有农民、工人、知识分子家庭共计2 004户,其中农民家庭1 600户,工人家庭303户,现要从中抽取容量为40的样本,则在整个抽样过程中,可以用到下列抽样方法:①简单随机抽样,②系统抽样,③分层抽样中的 . 答案 ①②③3.某企业共有职工150人,其中高级职称15人,中级职称45人,初级职称90人.现采用分层抽样抽取容量为30的样本,则抽取的各职称的人数分别为 . 答案 3,9,184.某工厂生产A 、B 、C 三种不同型号的产品,其相应产品数量之比为2∶3∶5,现用分层抽样方法抽出一个容量为n 的样本,样本中A 型号产品有16件,那么此样本的容量n= . 答案 80例1 某大学为了支援我国西部教育事业,决定从2007应届毕业生报名的18名志愿者中,选取6人组成志愿小组.请用抽签法和随机数表法设计抽样方案. 解 抽签法:第一步:将18名志愿者编号,编号为1,2,3, (18)第二步:将18个号码分别写在18张外形完全相同的纸条上,并揉成团,制成号签; 第三步:将18个号签放入一个不透明的盒子里,充分搅匀; 第四步:从盒子中逐个抽取6个号签,并记录上面的编号;基础自测第五步:所得号码对应的志愿者,就是志愿小组的成员. 随机数表法:第一步:将18名志愿者编号,编号为01,02,03, (18)第二步:在随机数表中任选一数作为开始,按任意方向读数,比如第8行第29列的数7开始,向右读;第三步:从数7开始,向右读,每次取两位,凡不在01—18中的数,或已读过的数,都跳过去不作记录,依次可得到12,07,15,13,02,09.第四步:找出以上号码对应的志愿者,就是志愿小组的成员.例2 某工厂有1 003名工人,从中抽取10人参加体检,试用系统抽样进行具体实施. 解 (1)将每个人随机编一个号由0001至1003. (2)利用随机数法找到3个号将这3名工人剔除. (3)将剩余的1 000名工人重新随机编号由0001至1000. (4)分段,取间隔k=100001=100将总体均分为10段,每段含100个工人.(5)从第一段即为0001号到0100号中随机抽取一个号l.(6)按编号将l ,100+l ,200+l,…,900+l 共10个号码选出,这10个号码所对应的工人组成样本. 例3 (14分)某一个地区共有5个乡镇,人口3万人,其中人口比例为3∶2∶5∶2∶3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程.解 应采取分层抽样的方法.3分过程如下:(1)将3万人分为五层,其中一个乡镇为一层.5分(2)按照样本容量的比例随机抽取各乡镇应抽取的样本. 300×153=60(人);300×152=40(人); 300×155=100(人);300×152=40(人); 300×153=60(人),10分因此各乡镇抽取人数分别为60人,40人,100人,40人,60人.12分(3)将300人组到一起即得到一个样本.14分练习:一、填空题1.(安庆模拟)某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现分层抽取容量为45的样本,那么高一、高二、高三年级抽取的人数分别为 .答案15,10,202.某牛奶生产线上每隔30分钟抽取一袋进行检验,则该抽样方法为①;从某中学的30名数学爱好者中抽取3人了解学习负担情况,则该抽样方法为②.那么①,②分别为 .答案系统抽样,简单随机抽样3.下列抽样实验中,最适宜用系统抽样的是(填序号).①某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样②某厂生产的2 000个电子元件中随机抽取5个入样③从某厂生产的2 000个电子元件中随机抽取200个入样④从某厂生产的20个电子元件中随机抽取5个入样答案③4.(2013·重庆文)某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是 .答案分层抽样法5.某中学有高一学生400人,高二学生300人,高三学生200人,学校团委欲用分层抽样的方法抽取18名学生进行问卷调查,则下列判断不正确的是(填序号).①高一学生被抽到的概率最大②高三学生被抽到的概率最大③高三学生被抽到的概率最小④每名学生被抽到的概率相等答案①②③6.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测,若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是 .答案 67.(天津文,11)一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工 人. 答案 108.将参加数学竞赛的1 000名学生编号如下0001,0002,0003,…,1000,打算从中抽取一个容量为50的样本,按系统抽样的方法分成50个部分,如果第一部分编号为0001,0002,…,0020,从第一部分随机抽取一个号码为0015,则第40个号码为 . 答案 07959.某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人,上级机关为了了解政府机构改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,如何抽取? 解 用分层抽样抽取. (1)∵20∶100=1∶5, ∴510=2,570=14,520=4∴从副处级以上干部中抽取2人,一般干部中抽取14人,从工人中抽取4人.(2)因副处级以上干部与工人人数较少,可用抽签法从中分别抽取2人和4人;对一般干部可用随机数表法抽取14人.(3)将2人、4人、14人编号汇合在一起就得到了容量为20的样本.10.某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为n 的样本.如果采用系统抽样法和分层抽样法抽取,不用剔除个体;如果样本容量增加一个,则在采用系统抽样时,需要在总体中先剔除1个个体,求样本容量n.解 总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为n36,分层抽样的比例是36n ,抽取工程师36n ×6=6n (人),抽取技术人员36n ×12=3n (人),抽取技工36n×18=2n (人).所以n 应是6的倍数,36的约数即n=6,12,18,36.当样本容量为(n+1)时,在总体中剔除1人后还剩35人,系统抽样的间隔为135+n ,因为135+n 必须是整数,所以n 只能取6,即样本容量为6.总体分布的估计与总体特征数的估计1.一个容量为20的样本,已知某组的频率为0.25,则该组的频数为 . 答案 52.(2008·山东理)右图是根据《山东统计年鉴2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字.从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为 . 答案 303.63.在抽查产品的尺寸过程中,将其尺寸分成若干组,[a ,b )是其中的一组,抽查出的个体在该组上的频率为m,该组在频率分布直方图的高为h ,则|a-b|= . 答案 hm4.(2008·山东文,9)从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为 .答案 51025.为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁~18岁的男生体重(kg ),得到频率分布直方图如下:根据上图可得这100名学生中体重在[56.5,64.5)的学生人数是 . 答案 40基础自测典型例题:例1 在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交 作品的件数按5天一组分组统计,绘制了频率分布直方图(如图所示),已知从左到右各长方形高的比为2∶3∶4∶6∶4∶1,第三组的频数为12,请解答下列问题: (1)本次活动共有多少件作品参加评比? (2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率高? 解 (1)第三组的频率为1464324+++++=51又因为第三组的频数为12,∴参评作品数为5112=60.(2)根据频率分布直方图,可以看出第四组上交的作品数量最多,共有60×1464326+++++=18(件).(3)第四组的获奖率是1810=95,第六组上交的作品数量为60×1464321+++++=3(件),∴第六组的获奖率为32=96,显然第六组的获奖率高.例4(14分)某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30 min 抽取一包产品,称其重量,分别 记录抽查数据如下: 甲:102, 101, 99, 98, 103, 98,99;乙:110, 115, 90,85,75,115, 110.(1)这种抽样方法是哪一种? (2)将这两组数据用茎叶图表示;(3)将两组数据比较,说明哪个车间产品较稳定. 解 (1)因为间隔时间相同,故是系统抽样. 2分(2)茎叶图如下:5分(3)甲车间: 平均值:1x =71(102+101+99+98+103+98+99)=100,7分方差:s 12=71[(102-100)2+(101-100)2+…+(99-100)2]≈3.428 6.9分乙车间:平均值:2x =71(110+115+90+85+75+115+110)=100,11分方差:s 22=71[(110-100)2+(115-100)2+…+(110-100)2]≈228.571 4.13分∵1x =2x ,s 12<s 22,∴甲车间产品稳定.14分练习:1.为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得数据整理后,画出频率分布直方图如图所示,已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为5.(1)求第四小组的频率;(2)参加这次测试的学生人数是多少?(3)在这次测试中,学生跳绳次数的中位数落在第几小组内? 解 (1)第四小组的频率=1-(0.1+0.3+0.4)=0.2. (2)设参加这次测试的学生人数是n, 则有n=第一小组频率第一小组频数=5÷0.1=50(人).(3)因为0.1×50=5,0.3×50=15,0.4×50=20,0.2×50=10,即第一、第二、第三、第四小组的频数分别为5、15、20、10,所以学生跳绳次数的中位数落在第三小组内. 练习:一、填空题1.下列关于频率分布直方图的说法中不正确的是 . ①直方图的高表示取某数的频率②直方图的高表示该组上的个体在样本中出现的频率 ③直方图的高表示该组上的个体数与组距的比值④直方图的高表示该组上的个体在样本中出现的频率与组距的比值 答案 ①②③2.甲、乙两名新兵在同样条件下进行射击练习,每人打5发子弹,命中环数如下:甲:6,8,9,9,8;乙:10,7,7,7,9.则这两人的射击成绩 比 稳定. 答案 甲 乙4.某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果分成六组:右图是得到的频率分布直方图.设成绩小于17秒的学生人数占全班总人数的百分比为x,成绩大于等于15秒且小于17秒的学生人数为y ,则从频率分布直方图中可分析出x 和y 分别为 . 答案 0.9, 356.甲、乙两名同学在5次体育测试中的成绩统计的茎叶图如图所示,若甲、乙两人的平均成绩分别是x 甲、x 乙,则x 甲 x 乙, 比 稳定. 答案 < 乙 甲7.(上海,9)已知总体的各个体的值由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a 、b 的取值分别是 . 答案 10.5、10.5二、解答题10.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少? (3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由. 解 (1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小, 因此第二小组的频率为:391517424+++++=0.08.又因为频率=样本容量第二小组频数, 所以样本容量=第二小组频率第二小组频数=08.012=150. (2)由图可估计该学校高一学生的达标率约为39151742391517++++++++×100%=88%.(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.线性回归方程1.下列关系中,是相关关系的为 (填序号). ①学生的学习态度与学习成绩之间的关系;基础自测②教师的执教水平与学生的学习成绩之间的关系;③学生的身高与学生的学习成绩之间的关系;④家庭的经济条件与学生的学习成绩之间的关系.答案①②2.为了考察两个变量x、y之间的线性相关关系,甲、乙两同学各自独立地做10次和15次试验,并利用最小二乘法求得回归直线分别为l1和l2.已知在两人的试验中发现变量x的观测数据的平均值恰好相等,都为s,变量y的观测数据的平均值也恰好相等,都为t,那么下列说法中正确的是(填序号).①直线l1,l2有交点(s,t)②直线l1,l2相交,但是交点未必是(s,t)③直线l1,l2由于斜率相等,所以必定平行④直线l1,l2必定重合答案①3.下列有关线性回归的说法,正确的是(填序号).①相关关系的两个变量不一定是因果关系②散点图能直观地反映数据的相关程度③回归直线最能代表线性相关的两个变量之间的关系④任一组数据都有回归直线方程答案①②③4.下列命题:①线性回归方法就是由样本点去寻找一条贴近这些样本点的直线的数学方法;②利用样本点的散点图可以直观判断两个变量的关系是否可以用线性关系表示;③通过回归直线yˆ=bˆx+aˆ及回归系数bˆ,可以估计和预测变量的取值和变化趋势. 其中正确命题的序号是 .答案①②③5.已知回归方程为yˆ=0.50x-0.81,则x=25时,yˆ的估计值为 .答案11.69例1下面是水稻产量与施化肥量的一组观测数据:施化肥量15 20 25 30 35 40 45水稻产量320 330 360 410 460 470 480(1)将上述数据制成散点图;(2)你能从散点图中发现施化肥量与水稻产量近似成什么关系吗?水稻产量会一直随施化肥量的增加而增长吗?解(1)散点图如下:(2)从图中可以发现施化肥量与水稻产量具有线性相关关系,当施化肥量由小到大变化时,水稻产量由小变大,图中的数据点大致分布在一条直线的附近,因此施化肥量和水稻产量近似成线性相关关系,但水稻产量只是在一定范围内随着化肥施用量的增加而增长.例2(14分)随着我国经济的快速发展,城乡居民的生活水平不断提高,为研究某市家庭平均收入与月平均生活支出的关系,该市统计部门随机调查了10个家庭,得数据如下:(1)判断家庭平均收入与月平均生活支出是否相关?(2)若二者线性相关,求回归直线方程.解(1)作出散点图:5分观察发现各个数据对应的点都在一条直线附近,所以二者呈线性相关关系. 7分(2)x =101 (0.8+1.1+1.3+1.5+1.5+1.8+2.0+2.2+2.4+2.8)=1.74,y=101(0.7+1.0+1.2+1.0+1.3+1.5+1.3+1.7+2.0+2.5)=1.42,9分bˆ=∑∑==-∙-ni ini i i x n xyx n y x 1221≈0.813 6,aˆ=1.42-1.74×0.813 6≈0.004 3,13分 ∴回归方程yˆ=0.813 6x+0.004 3.14分例3 下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y (吨)标准煤的几组对照数据.(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程yˆ=b ˆx+a ˆ; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3×2.5+4×3+5×4+6×4.5=66.5) 解 (1)散点图如下图:(2)x =46543+++=4.5,y =45.4435.2+++=3.5∑=41i ii yx =3×2.5+4×3+4×5+6×4.5=66.5.∑=412i ix=32+42+52+62=86∴bˆ=24124144x x yx yx i i i ii -∙-∑∑===25.44865.45.345.66⨯-⨯⨯-=0.7aˆ =y -bˆx =3.5-0.7×4.5=0.35. ∴所求的线性回归方程为yˆ=0.7x+0.35. (3)现在生产100吨甲产品用煤 y=0.7×100+0.35=70.35,∴降低90-70.35=19.65(吨)标准煤.1.科研人员为了全面掌握棉花新品种的生产情况,查看了气象局对该地区年降雨量与年平均气温的统计数据(单位分别是mm,℃),并作了统计.(1)试画出散点图;(2)判断两个变量是否具有相关关系. 解 (1)作出散点图如图所示,(2)由散点图可知,各点并不在一条直线附近,所以两个变量是非线性相关关系.2.在研究硝酸钠的可溶性程度时,对于不同的温度观测它在水中的溶解度,得观测结果如下:由资料看y 与x 呈线性相关,试求回归方程. 解 x =30,y =50.1283.1120.850.767.66++++=93.6.bˆ=25125155x xyx yx i ii ii -∙-∑∑==≈0.880 9.aˆ=y -bˆx =93.6-0.880 9×30=67.173. ∴回归方程为yˆ=0.880 9x+67.173.3.某企业上半年产品产量与单位成本资料如下:(1)求出线性回归方程;(2)指出产量每增加1 000件时,单位成本平均变动多少? (3)假定产量为6 000件时,单位成本为多少元? 解 (1)n=6,∑=61i i x =21,∑=61i i y =426,x =3.5,y =71,∑=612i i x =79,∑=61i i i y x =1 481,bˆ=26126166x xyx yx i ii ii -∙-∑∑===25.3679715.364811⨯-⨯⨯-=-1.82.aˆ=y-bˆx=71+1.82×3.5=77.37.回归方程为yˆ=aˆ+bˆx=77.37-1.82x.(2)因为单位成本平均变动bˆ=-1.82<0,且产量x的计量单位是千件,所以根据回归系数b的意义有: 产量每增加一个单位即1 000件时,单位成本平均减少1.82元.(3)当产量为6 000件时,即x=6,代入回归方程:yˆ=77.37-1.82×6=66.45(元)当产量为6 000件时,单位成本为66.45元.一、填空题1.观察下列散点图,则①正相关;②负相关;③不相关.它们的排列顺序与图形对应顺序是 .答案a,c,b2.回归方程yˆ=1.5x-15,则下列说法正确的有个.①y=1.5x-15②15是回归系数a③1.5是回归系数a④x=10时,y=0答案 13.(2009.湛江模拟)某地区调查了2~9岁儿童的身高,由此建立的身高y(cm)与年龄x(岁)的回归模型为yˆ=8.25x+60.13,下列叙述正确的是 .①该地区一个10岁儿童的身高为142.63 cm②该地区2~9岁的儿童每年身高约增加8.25 cm③该地区9岁儿童的平均身高是134.38 cm④利用这个模型可以准确地预算该地区每个2~9岁儿童的身高答案 ②4.三点(3,10),(7,20),(11,24)的回归方程是 .答案 yˆ=1.75x+5.75 5.某人对一地区人均工资x(千元)与该地区人均消费y(千元)进行统计调查,y 与x 有相关关系,得到回归直线方程yˆ=0.66x+1.562.若该地区的人均消费水平为7.675千元,估计该地区的人均消费额占人均工资收入的百分比约为 . 答案 83%6.某化工厂为预测产品的回收率y,需要研究它和原料有效成分含量x 之间的相关关系,现取8对观测值,计算,得∑=81i i x =52, ∑=81i i y =228, ∑=812i i x =478, ∑=81i i i y x =1 849,则其线性回归方程为 .答案 yˆ=11.47+2.62x 7.有下列关系:①人的年龄与他(她)拥有的财富之间的关系;②曲线上的点与该点的坐标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一种树木,其断面直径与高度之间的关系.其中,具有相关关系的是 . 答案 ①③④8.已知关于某设备的使用年限x 与所支出的维修费用y(万元),有如下统计资料:若y 对x 呈线性相关关系,则回归直线方程yˆ=b ˆx+a ˆ表示的直线一定过定点 . 答案 (4,5) 二、解答题9.期中考试结束后,记录了5名同学的数学和物理成绩,如下表:(1)数学成绩和物理成绩具有相关关系吗?(2)请你画出两科成绩的散点图,结合散点图,认识(1)的结论的特点. 解 (1)数学成绩和物理成绩具有相关关系.(2)以x 轴表示数学成绩,y 轴表示物理成绩,可得相应的散点图如下:由散点图可以看出,物理成绩和数学成绩对应的点不分散,大致分布在一条直线附近. 10.以下是某地搜集到的新房屋的销售价格y 和房屋的面积x 的数据:(1)画出数据对应的散点图;(2)求线性回归方程,并在散点图中加上回归直线. 解 (1)数据对应的散点图如图所示:(2)x =109,y =23.2,∑=512i i x =60 975,∑=51i iiy x=12 952,bˆ=25125155x xyx yx i ii ii -∙-∑∑==≈0.196 2aˆ=y -bˆx ≈1.814 2 ∴所求回归直线方程为yˆ=0.196 2x+1.814 2.11.某公司利润y 与销售总额x(单位:千万元)之间有如下对应数据:(1)画出散点图; (2)求回归直线方程;(3)估计销售总额为24千万元时的利润. 解 (1)散点图如图所示:(2)x =71(10+15+17+20+25+28+32)=21,y=71(1+1.3+1.8+2+2.6+2.7+3.3)=2.1,∑=712i ix=102+152+172+202+252+282+322=3 447,∑=71i iiy x=10×1+15×1.3+17×1.8+20×2+25×2.6+28×2.7+32×3.3=346.3,bˆ=27127177x x yx yx i i i ii -∙-∑∑===221744731.22173.346⨯-⨯⨯-≈0.104, aˆ=y -bˆx =2.1-0.104×21=-0.084, ∴yˆ=0.104x-0.084. (3)把x=24(千万元)代入方程得,yˆ=2.412(千万元).∴估计销售总额为24千万元时,利润为2.412千万元.12.某种产品的广告费支出x 与销售额y(单位:百万元)之间有如下对应数据:(1)画出散点图;(2)求回归直线方程;(3)试预测广告费支出为10百万元时,销售额多大? 解 (1)根据表中所列数据可得散点图如下:(2)列出下表,并用科学计算器进行有关计算:因此,x =525=5,y =5250 =50,∑=512i i x =145, ∑=512i i y =13 500, ∑=51i i i y x =1 380.于是可得:bˆ=25125155x xyx yx i ii ii -∙-∑∑===55514550553801⨯⨯-⨯⨯-=6.5;aˆ=y -bˆx =50-6.5×5=17.5. 因此,所求回归直线方程为:yˆ=6.5x+17.5. (3)根据上面求得的回归直线方程,当广告费支出为10百万元时,yˆ=6.5×10+17.5=82.5(百万元),即这种产品的销售收入大约为82.5百万元.§11.4 统计案例1.对有线性相关关系的两个变量建立的回归直线方程y ˆ=a ˆ+b ˆx 中,回归系数bˆ与0的大小关系为 .(填序号) ①大于或小于 ②大于 ③小于 ④不小于答案 ①2.如果有90%的把握说事件A 和B 有关系,那么具体计算出的数据 2 2.706.(用“>”,“<”,“=”填空) 答案 >3.对两个变量y 与x 进行回归分析,分别选择不同的模型,它们的相关系数r 如下,其中拟合效果最好的模型是 .①模型Ⅰ的相关系数r 为0.98 ②模型Ⅱ的相关系数r 为0.80 ③模型Ⅲ的相关系数r 为0.50 ④模型Ⅳ的相关系数r 为0.25 答案 ①4.下列说法中正确的有:①若r >0,则x 增大时,y 也相应增大;②若r <0,则x 增大时,y 也相应增大;③若r=1或r=-1,则x 与y 的关系完全对应(有函数关系),在散点图上各个点均在一条直线上 . 答案 ①③基础自测例1 (14分)调查339名50岁以上人的吸烟习惯与患慢性气管炎的情况,获数据如下:试问:(1)吸烟习惯与患慢性气管炎是否有关? (2)用假设检验的思想给予证明. (1)解 根据列联表的数据,得到χ2=))()()(()(2c d b d c a b a bc ad n ++++-2分 =13428356205)1316212143(3392⨯⨯⨯⨯-⨯⨯=7.469>6.6356分 所以有99%的把握认为“吸烟与患慢性气管炎有关”.9分(2)证明 假设“吸烟与患慢性气管炎之间没有关系”,由于事件A={χ2≥6.635}≈0.01,即A 为小概率事件,而小概率事件发生了,进而得假设错误,这种推断出错的可能性约有1%.14分例2 一台机器使用时间较长,但还可以使用.它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有 缺点零件的多少,随机器运转的速度而变化,下表为抽样试验结果:(1)对变量y 与x 进行相关性检验;(2)如果y 与x 有线性相关关系,求回归直线方程;(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么,机器的运转速度应控制在什么范围内?解 (1)x =12.5,y =8.25,∑=41i iiy x=438,4x y =412.5,∑=412i i x =660,∑=412i i y =291,所以r=)4)(4(42412241241y yx xyx yx i ii ii ii --∙-∑∑∑====)25.272291()625660(5.412438-⨯--=25.6565.25≈62.2550.25≈0.995 4.因为r >r 0.05,所以y 与x 有很强的线性相关关系.(2)yˆ=0.728 6x-0.857 1. (3)要使yˆ≤10⇒0.728 6x-0.857 1≤10, 所以x ≤14.901 3.所以机器的转速应控制在14.901 3转/秒以下.例3 下表是某年美国旧轿车价格的调查资料,今以x 表示轿车的使用年数,y 表示相应的年均价格,求y 关于x 的回归 方程.解 作出散点图如图所示.可以发现,各点并不是基本处于一条直线附近,因此,y 与x 之间应是非线性相关关系.与已学函数图象比较,用y ˆ=e a x b ˆˆ来刻画题中模型更为合理,令zˆ=ln y ˆ,则z ˆ=b ˆx+a ˆ,题中数据变成如下表所示:相应的散点图如图所示,从图中可以看出,变换的样本点分布在一条直线附近,因此可以用线性回归方程拟合.由表中数据可得r ≈-0.996.|r|>r 0.05.认为x 与z之间具有线性相关关系,由表中数据得bˆ≈-0.298,a ˆ≈8.165,所以z ˆ=-0.298x+8.165,最后回代z ˆ=ln y ˆ,即y ˆ=e -0.298x+8.165为所求.1.某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关系?说明理由.解 (1)随机抽查这个班的一名学生,有50种不同的抽查方法,由于积极参加班级工作的学生有18+6=24人,所以有24种不同的抽法,因此由古典概型的计算公式可得抽到积极参加班级工作的学生的概率是P 1=5024=2512,又因为不太主动 参加班级工作且学习积极性一般的学生有19人,所以抽到不太主动参加班级工作且学习积极性一般的学生的概率是P 2=5019.(2)由2χ统计量的计算公式得2χ=25252624)761918(502⨯⨯⨯⨯-⨯⨯≈11.538,由于11.538>10.828,所以可以有99.9%的把握认为“学生的学习积极性与对待班级工作的态度有关系”.2.某个体服装店经营某种服装,一周内获纯利y (元)与该周每天销售这种服装的件数x 之间的一组数据如下:已知∑=712i i x =280, ∑=712i i y =45 309, ∑=71i i i y x =3 487,此时r 0.05=0.754.(1)求x ,y ;(2)判断一周内获纯利润y 与该周每天销售件数x 之间是否线性相关,如果线性相关,求出回归直线方程.解 (1)x =71(3+4+5+6+7+8+9)=6,y=71 (66+69+73+81+89+90+91)≈79.86.(2)根据已知∑=712i i x =280, ∑=712i i y =45 309, ∑=71i i i y x =3 487,得相关系数 r=)86.79730945)(67280(86.7967487322⨯-⨯-⨯⨯-≈0.973.由于0.973>0.754,所以纯利润y与每天销售件数x 之间具有显著线性相关关系. 利用已知数据可求得回归直线方程为yˆ=4.746x+51.386.3.某种书每册的成本费y (元)与印刷册数x (千册)有关,经统计得到数据如下:检验每册书的成本费y 与印刷册数的倒数x1之间是否具有线性相关关系,如有,求出y 对x 的回归方程.解 首先作变量置换,令u=x1,题目所给数据变成如下表所示的10对数据:然后作相关性检验.经计算得r ≈0.999 8>0.75,从而认为u 与y 之间具有线性相关关系.由公式得aˆ≈1.125,b ˆ≈8.973, 所以yˆ=1.125+8.973u, 最后回代u=x1,可得y ˆ=1.125+x973.8,这就是题目要求的y 对x 的回归曲线方程.回归曲线的图形如图所示,它是经过平移的反比例函数图象的一个分支.一、填空题1.对于独立性检验,下列说法中正确的是 . ①2χ的值越大,说明两事件相关程度越大 ②2χ的值越小,说明两事件相关程度越小 ③2χ≤2.706时,有90%的把握说事件A 与B 无关 ④2χ>6.635时,有99%的把握说事件A 与B 有关 答案 ①②④2.工人月工资y (元)依劳动生产率x(千元)变化的回归方程为y ˆ=50+80x ,下列判断正确的是 .①劳动生产率为1 000元时,工资为130元。
应用统计案例大赛优秀案例
应用统计案例大赛优秀案例今天就给大家分享一个超有趣的应用统计案例大赛的优秀案例。
一、案例背景。
这个案例聚焦在校园里,你也知道,校园可是个充满活力和各种消费潜力的小社会呢。
现在奶茶在校园里那可是相当火爆,所以有个团队就盯上了这个现象,想要通过统计分析来搞清楚校园奶茶消费背后的门道。
二、数据收集。
他们可没少费功夫。
首先是问卷调查,在校园各个角落“逮”同学来填问卷。
问题设计得也很巧妙,像“你一周喝几次奶茶?”“你通常会选择什么价位的奶茶?”“你是因为什么原因选择某一家奶茶店(口味、品牌、距离还是促销活动)?”等等。
除了问卷调查,他们还跑到奶茶店门口去做实地观察,统计不同时间段的进店人数、购买奶茶的种类,甚至还记录了顾客等待的时间。
这就像在奶茶店周围安了好多双小眼睛,把各种数据都抓得死死的。
三、数据分析过程。
1. 描述性统计。
把收集来的数据进行初步整理,发现了一些很有意思的东西。
比如说,通过对问卷中“一周喝奶茶次数”的统计,发现大部分同学一周会喝2 3次奶茶。
这就像找到了校园奶茶消费的一个基本节奏。
而且,在价位选择上,10 15元这个区间的奶茶是最受欢迎的,这可能和同学们的零花钱预算有关呢。
2. 相关性分析。
然后他们就开始玩更高级的了。
做相关性分析的时候,发现离教学楼或者宿舍近的奶茶店,即使品牌不是那么知名,生意也还不错。
这说明距离对同学们选择奶茶店有着不小的影响。
而且,他们还发现,当一家奶茶店推出新口味的时候,如果能配合一些促销活动,销售量就会有明显的上升。
这就像是找到了打开奶茶销售更多的两把小钥匙——新口味和促销。
3. 聚类分析。
这个就更酷了。
他们根据同学们的消费习惯,把同学们分成了不同的类。
比如说,有“奶茶狂热型”,这类同学不管什么情况,每天都要喝奶茶,而且对价格不是特别敏感,只要好喝就行;还有“性价比追求者”,他们会在不同奶茶店之间比较价格和分量,总是选择最划算的那一款;还有“偶尔尝鲜型”,平时不怎么喝奶茶,但是看到新口味或者特别的包装就会忍不住去试试。
有趣的统计学案例
有趣的统计学案例
第一个案例是有关“猜猜看”的游戏。
在这个游戏中,一个人会想一个数字,然后其他人可以猜这个数字是多少。
我们可以用统计学的方法来分析这个游戏。
比如,我们可以计算所有猜测的平均值,然后和真实的数字进行比较,看看平均值是否接近真实值。
通过这个案例,我们可以了解到平均值在统计学中的重要性,以及如何利用平均值来估计未知的数值。
第二个案例是有关“点菜”的餐厅统计。
假设我们去一家餐厅吃饭,我们可以观察到不同菜品被点的频率。
通过统计每道菜被点的次数,我们可以得出哪些菜是最受欢迎的,哪些菜是不受欢迎的。
这个案例可以帮助我们了解如何利用统计学来分析消费者的偏好,以及如何根据统计结果来调整菜单和经营策略。
第三个案例是有关“天气预报”的统计分析。
天气预报是我们日常生活中经常关注的事情,而天气预报的准确性也是大家关心的问题。
我们可以通过统计方法来分析天气预报的准确性,比如计算实际天气和预报天气的差异,然后得出准确率和误差范围。
通过这个案例,我们可以了解到如何利用统计学的方法来评估和改进天气预报的准确性。
通过以上几个案例,我们可以看到统计学在日常生活中的应用和意义。
无论是游戏、餐厅还是天气预报,统计学都可以帮助我们理解和解释现象,从而更好地应对各种问题。
希望这些有趣的统计学案例能够激发你对统计学的兴趣,让你在日常生活中也能够运用统计学的知识来思考和解决问题。
统计与统计案例PPT课件
走向高考 ·二轮专题复习 ·新课标版 ·数学
用样本估计总体
专题七 第一讲
走向高考 ·二轮专题复习 ·新课标版 ·数学
用样本估计总体 (文)某学校为了调查学生平均每周的上网时间(单 位:h)对学习产生的影响,从高三年级随机抽取了 100 名学生, 将所得数据整理后,画出频率分布直方图(如图),其中频率分 布直方图从左到右前 3 个小矩形的面积之比为 1:3:5,试估 计:
专题七 第一讲
走向高考 ·二轮专题复习 ·新课标版 ·数学
疑难误区警示 1.当总体数 N 不能被样本容量整除,用系统抽样法剔除 多余个体时,必须随机抽样. 2.注意中位数与平均数的区别,中位数可能不在样本数 据中.
专题七 第一讲
走向高考 ·二轮专题复习 ·新课工厂甲、乙、丙三个车
间生产了同一种产品,数量分别为 120 件,80 件,60 件,为
了解它们的产品质量是否存在显著差异,用分层抽样方法抽
取了一个容量为 n 的样本进行调查,其中从丙车间的产品中
抽取了 3 件,则 n=( )
A.9
B.10
C.12
D.13
[答案] D
专题七 第一讲
走向高考 ·二轮专题复习 ·新课标版 ·数学
某市有大型超市 200 家、中型超市 400 家、小型超市 1400 家.为掌握各类超市的营业情况,现按分层抽样方法抽取一个 容量为 100 的样本,应抽取中型超市________家.
[答案] 20
专题七 第一讲
走向高考 ·二轮专题复习 ·新课标版 ·数学
[解析] 属简单题,关键是清楚每一层的抽取比例都一样 是Nn .
专题七 第一讲
走向高考 ·二轮专题复习 ·新课标版 ·数学
趣味统计学经典案例
趣味统计学经典案例1. 生日悖论生日悖论是指在一个房间里,只需要23个人,就有50%以上的概率至少有两个人生日相同。
这个案例经典的体现了概率论中的鸽巢原理和生日悖论的概率计算。
2. 蒙提霍尔问题蒙提霍尔问题是指一个选手会面对三扇门,其中一扇门后面有奖品,另外两扇门后面是空的。
选手先选择一扇门,然后主持人会打开剩下两扇门中的一扇门,露出一扇空门。
选手是否应该换门以增加获奖的概率,这个问题引发了很多争议和讨论。
3. 红绿灯问题红绿灯问题是指在一个红绿灯路口,红灯亮的时间为60秒,绿灯亮的时间为90秒。
假设一个人随机到达这个路口,他等待的时间有多长?这个问题可以用概率统计的方法来解答,并且可以拓展到更复杂的情况。
4. 奇偶校验奇偶校验是一种常用的错误检测方法,常用于计算机数据传输中。
它利用二进制数中1的个数的奇偶性来检测错误。
比如,一个字节中有奇数个1,则奇偶校验位为1,否则为0。
这个案例可以帮助我们理解错误检测的原理和应用。
5. 投掷硬币投掷硬币是统计学中最基础的实验之一。
通过投掷硬币的结果,我们可以计算出正面和反面出现的概率,进而进行概率分布的推断和假设检验。
6. 高尔夫球洞问题高尔夫球洞问题是指在一个高尔夫球场上,有一个球洞和一个标杆。
如果球员将球随机击打,求平均击打到球洞的距离。
这个问题可以通过统计模拟和概率分布计算来解答。
7. 疾病筛查疾病筛查是统计学在医学领域的重要应用之一。
通过对人群进行检测和筛查,可以计算出疾病的发病率、敏感性、特异性等指标,对疾病的预防和控制起到重要作用。
8. 艾滋病传播模型艾滋病传播模型是指通过数学模型和统计方法,研究艾滋病在人群中的传播规律和预测。
通过对不同人群的感染率、传播速度等指标的估计,可以制定有效的防控措施。
9. 电影评分电影评分是一种常见的统计学应用,通过对观众的评分和评论进行统计分析,可以计算出电影的平均评分、评分分布、观众对电影的满意度等指标,对电影的推广和市场研究具有重要意义。
统计学数据分析案例
统计学数据分析案例在统计学中,数据分析是一项重要的工作。
通过对数据的收集、整理、分析和解释,我们可以发现数据背后的规律和趋势,为决策提供支持和参考。
下面,我们将通过几个实际案例来展示统计学数据分析的应用。
案例一,销售数据分析。
某公司在过去一年的销售数据显示,不同产品的销售额有所不同。
为了更好地了解产品销售情况,我们对销售额进行了统计分析。
通过对比不同产品销售额的均值、中位数和标准差,我们发现其中一款产品的销售额波动较大,而另一款产品的销售额相对稳定。
结合市场情况和产品特点,我们提出了针对性的销售策略建议,以优化产品组合和提高销售效益。
案例二,用户行为数据分析。
某互联网平台收集了大量用户的行为数据,包括浏览量、点击量、购买量等。
我们通过对用户行为数据的分析,发现了不同用户群体的行为特点。
通过构建用户行为模型,我们可以预测用户的行为偏好和购买意向,为平台运营和营销活动提供了有力的数据支持。
案例三,医疗数据分析。
在医疗领域,数据分析对于疾病预测、诊断和治疗具有重要意义。
通过对患者的临床数据进行统计分析,我们可以发现不同疾病的发病规律和影响因素。
同时,结合医学知识和统计模型,我们可以建立疾病预测和诊断模型,为临床决策提供科学依据。
通过以上案例,我们可以看到统计学数据分析在不同领域的广泛应用。
通过对数据的深入挖掘和分析,我们可以发现隐藏在数据背后的规律和价值,为决策和实践提供有力支持。
因此,数据分析不仅是统计学的重要内容,也是现代社会决策和管理的重要工具。
希望通过本文的案例分析,能够加深对统计学数据分析的理解,提高数据分析能力,为工作和生活带来更多的价值和意义。
生活中的统计数据案例
生活中的统计数据案例生活中,我们经常会接触到各种各样的统计数据,这些数据不仅可以帮助我们了解事物的发展趋势,还可以指导我们的决策和行为。
下面,我将结合生活中的实际案例,介绍一些有趣的统计数据。
首先,我们来看一个关于健康的统计数据案例。
据统计,全球范围内每年因吸烟导致的死亡人数高达700万人。
这一数据让人深感震惊,也让我们意识到吸烟对健康的危害有多么严重。
因此,吸烟控制成为了全球各国政府和卫生组织的重要工作之一。
通过加大宣传教育力度,提高烟草税收,禁止吸烟的公共场所等措施,各国已经取得了一些成效。
这个案例告诉我们,统计数据可以帮助我们认识到问题的严重性,引起我们的重视和行动。
其次,让我们看一个关于教育的统计数据案例。
根据统计数据显示,全球范围内有超过2.6亿儿童和青少年处于失学状态,而且这一数字仍在不断增加。
这个数据背后反映了全球教育资源分配不均衡的现状,也提醒我们教育公平的重要性。
为了解决这一问题,各国政府和国际组织纷纷出台了一系列的政策和措施,如提高教育投入、加强教育基础设施建设、实施义务教育等。
这个案例告诉我们,统计数据可以帮助我们发现问题,引起社会的关注,促使各方共同努力解决问题。
再来一个关于环境的统计数据案例。
据统计,全球每年因环境污染导致的死亡人数高达数百万人。
这个数据让人们意识到环境污染对人类健康的危害有多么严重。
因此,各国政府和国际组织纷纷出台了一系列的环保政策和措施,如加强环境监测、控制工业排放、推广清洁能源等。
这个案例告诉我们,统计数据可以帮助我们认识到环境问题的紧迫性,引起我们的环保意识,促使我们采取行动保护环境。
最后,让我们看一个关于经济发展的统计数据案例。
根据统计数据显示,全球范围内有超过10亿人生活在极度贫困之中。
这个数据反映了全球经济发展不平衡的现状,也提醒我们减贫扶贫的紧迫性。
为了解决这一问题,各国政府和国际组织纷纷出台了一系列的减贫扶贫政策和措施,如扶贫资金投入、发展产业扶贫、实施社会保障政策等。
分段统计案例
分段统计案例在日常工作和学习中,我们经常需要对数据进行统计分析,以便更好地了解问题的本质和规律。
分段统计是一种常见的统计方法,它可以帮助我们更清晰地了解数据的分布特征和变化趋势。
下面,我将通过几个实际案例,来介绍分段统计的应用和分析过程。
案例一,销售额分段统计。
假设某公司在过去一年的销售额数据如下,100万元、150万元、200万元、250万元、300万元、350万元、400万元、450万元、500万元。
我们可以通过分段统计的方法,将这些数据分成不同的区间,比如0-100万元、100-200万元、200-300万元、300-400万元、400-500万元。
然后,我们可以统计每个区间内的销售额占比,以及各个区间的销售额分布情况。
通过分段统计,我们可以清晰地看到销售额的分布情况,以及不同区间的销售情况,为公司制定销售策略和目标提供参考依据。
案例二,学生成绩分段统计。
某班级的学生成绩数据如下,60分、70分、80分、90分、100分。
我们可以将这些数据分成不同的区间,比如0-60分、60-70分、70-80分、80-90分、90-100分。
然后,我们可以统计每个区间内的学生人数占比,以及各个区间的成绩分布情况。
通过分段统计,我们可以清晰地了解学生成绩的分布情况,找出学习成绩较差和较好的学生群体,为老师制定个性化教学计划提供参考依据。
案例三,市场份额分段统计。
某产品在市场上的份额数据如下,10%、15%、20%、25%、30%。
我们可以将这些数据分成不同的区间,比如0-10%、10-20%、20-30%。
然后,我们可以统计每个区间内的市场份额占比,以及各个区间的市场份额分布情况。
通过分段统计,我们可以清晰地了解产品在市场上的份额分布情况,找出市场份额较大和较小的区域,为企业制定营销策略和市场拓展计划提供参考依据。
总结:通过以上几个案例的介绍,我们可以看到分段统计在实际工作和学习中的重要性和应用价值。
通过对数据进行分段统计,我们可以更清晰地了解数据的分布情况和变化趋势,为决策和规划提供科学依据。
统计案例分析---大学生月平均生活费的估计和检验
统计案例分析案例2.1 大学生月平均生活费的估计和检验姓名:覃玉冰学号:班级:16应用统计一、数据为了了解大学生日常生活费支出及生活费来源状况,对中国人民大学在校本科生的月生活费支出问题进行了抽样调查。
该问卷随机抽取中国人民大学大一、大二、大三、大四在校本科生男女各30多人作为样本。
调查采取分层抽样,对在校本科生各个年级男生、女生各发放问卷30多份,共发放问卷300份,回收问卷291份,其中有效问卷共272份。
其中,男生的有效问卷为127份,女生为145份。
调查得到的部分数据见表一。
表一大学生月平均生活费支出的调查数据(仅截取部分)二、生活费支出的区间估计和假设检验(一)平均月生活费的描述统计量为了更好地研究全校本科学生平均月生活费支出,我们先来看一下样本数据中平均月生活费支出的一些描述统计量。
在spss中,点分析→描述统计→描述→变量选择“平均月生活费”,选项选择“均值、标准差、均值的标准误”,得到的样本数据中平均月生活费的描述统计量见表二。
表二平均月生活费的描述统计量从表二可以看到,样本数据中平均月生活费支出的均值为595.04,标准差为243.444,均值的标准误为14.761.(二)平均月生活费的假设检验从表二中我们已经知道了样本数据中平均月生活费支出的均值为595.04,现在我们来检验一下全校本科学生即总体的月平均生活费支出是否等于500。
1.检验统计量的确定样本数据的样本量n为272,其大于30,可以认为该数据是一个大样本。
现在我们并不知道总体的月平均生活费支出是否服从正态分布,但是在样本量大的条件下,如果总体为正态分布,样本统计量服从正态分布:如果总体为非正态分布,样本统计量也是渐进服从正态分布的。
所以在这种情况下,我们都可以把样本统计量视为正态分布,这时可以使用z 统计量(z 分布)。
即在总体标准差δ已知时,有nx /z 0δμ-=而我们这里总体标准差δ是未知的,此时可以用样本标准差s 代替,上式可以写为:ns x /z 0μ-=2. 提出假设原假设0H 为:全校本科学生月平均生活费支出u=500 备择假设1H 为:全校本科学生月平均生活费支出u=500 3. spss 操作及结果分析在spss 中点分析→比较均值→单样本T 检验→检验变量选“平均月生活费”→检验值填“500”,得到的平均月生活费的假设检验的结果见表三。
趣味统计学经典案例
趣味统计学经典案例1. 投掷硬币的概率问题假设有一枚公平的硬币,我们想知道连续投掷10次硬币,出现正面和反面的概率分别是多少。
通过使用二项分布,我们可以计算出正面和反面出现的可能性,并绘制成柱状图,从而更直观地理解硬币投掷的概率分布。
2. 骰子的均值问题假设有一个有100个面的骰子,每个面上的数字从1到100。
我们想知道连续投掷100次骰子,投掷结果的均值是多少。
通过模拟投掷骰子并计算均值,我们可以得出投掷100次骰子的均值接近于50.5的结论。
3. 蒙特卡洛模拟与洗牌问题蒙特卡洛模拟是一种基于概率的计算方法,可以用于模拟和估计各种随机事件的概率。
例如,我们可以使用蒙特卡洛模拟来估计一副牌经过洗牌后,每张牌在牌堆中的位置的概率分布。
通过多次模拟洗牌过程,并统计牌堆中每张牌出现在不同位置的次数,我们可以得出这个概率分布。
4. 高尔夫比赛中的标准差问题假设有一场高尔夫比赛,我们想知道参赛选手的成绩的标准差是多少。
通过收集参赛选手的成绩数据,并计算标准差,我们可以评估选手之间成绩的差异程度,从而判断比赛的竞争水平。
5. 电影评分与票房的关系问题假设我们想研究电影评分和票房之间的关系。
通过收集一定数量的电影的评分和票房数据,并进行相关性分析,我们可以得出评分和票房之间的相关程度,从而评估电影评分对票房的影响。
6. 赌博策略的期望值问题假设我们想知道在赌博中使用不同的策略,能否提高我们的期望收益。
通过使用概率论和期望值的计算方法,我们可以分析不同的赌博策略,并计算出每种策略的期望收益,从而选择最佳的赌博策略。
7. 音乐偏好的聚类分析问题假设我们想研究人们的音乐偏好,通过收集一定数量的人的音乐偏好数据,并使用聚类分析的方法,我们可以将人们分成不同的群组,每个群组代表不同的音乐偏好类型,从而了解人们的音乐偏好分布情况。
8. 产品销售量与广告投放的关系问题假设我们想知道产品销售量和广告投放之间的关系。
通过收集一定数量的产品销售量和广告投放数据,并进行回归分析,我们可以得出销售量和广告投放之间的相关程度和回归方程,从而评估广告对产品销售的影响程度。
统计学案例
统计学案例总量指标与相对指标案例1:指出下面的统计分析报告摘要错在哪里?并改正:1、本厂按计划规定,第一季度的单位产品成本应比去年同期降低10%,实际执行结果是,单位产品成本较去年同期降低8%,仅完成产品成本计划的80%(即8%÷10%=80%)。
2、本厂的劳动生产率(按全部职工计算)计划在去年的基础上提高8%,计划执行结果仅提高4%,劳动生产率的计划任务仅实现一半(即4%÷8%=50%)。
3、该车间今年1月份生产老产品的同时,新产品首次小批投产,出现了2件废品(按计算,车间废品率为1.2%)。
2月份老产品下马,新产品大批投产,全部制品1000件,其中废品8件,废品量是1月份的4倍,因此产品质量下降了。
4、在组织生产中,本厂先进小组向另一组提出高产优质的挑战竞赛。
本月先进小组的产量超过了另一小组的1倍,但是在两组废品总量中该组却占了60%,所以在产品质量方面,先进小组明显地落后了。
案例11试计算所有可能计算的相对指标。
案例2:根据下表资料分析哪个企业对社会贡献更大?平均指标与变异指标案例3、以组平均数补充说明总平均数案例4:某单位有10个人,其中1人月工资为10万元,9人每人月工资为1000元。
该单位职工月平均工资为10900元。
即:)(109001091000100000元=⨯+你认为这个平均数有代表性吗?如果缺乏代表性应如何改正?案例5:以下是各单位统计分析报告的摘录1、 本局所属30个工厂,本月完成生产计划的情况是不一致的。
完成计划90%的有3个,完成96%的有5个,完成102%的有10个,完成110%的有8个,完成120%的有4个。
平均全局生产计划完成程度为104.33%。
即:304%1208%11010%1025%963%90⨯+⨯+⨯+⨯+⨯=104.33%2、 本厂开展增产节约运动以后,产品成本月月下降,取得显著的成绩,根据财务部门的报告,1 月份开支总成本15000元,平均单位产品成本为15元,2月份开支总成本25000元,平均单位产品成本下降为10元,3月份开支总成本45000元,平均单位产品成本仅8元。
统计典型案例剖析
统计典型案例剖析
以下是一些统计典型案例的剖析:
1. 全国统一标准的房屋建筑统计调查方案(1992):为了更准确地反映房
屋建筑业的生产成果,对统计报表制度进行改革,建立全国统一标准的房屋建筑统计调查方案。
该方案将房屋建筑业统计范围划分为施工准备、施工过程和竣工交付使用三个阶段,并规定了一系列统计指标和计算方法。
2. 全国第一次经济普查(2004):普查标准时点为2004年12月31日,
普查对象是在我国境内从事第二产业和第三产业的全部法人单位、产业活动单位和个体经营户。
普查主要内容包括单位基本属性、从业人员、财务状况、生产经营情况等。
普查数据主要用于政府决策和国民经济社会发展规划,也为企业和社会公众提供了重要参考。
3. 中国碳排放权交易市场建设:为应对全球气候变化,中国启动了碳排放权交易市场建设。
该市场基于统计监测和核算体系,对碳排放量进行核定和配额分配,并通过交易机制促进企业降低碳排放。
该市场不仅有助于中国实现碳减排目标,也为国内外投资者提供了新的交易平台和投资机会。
这些案例表明,统计在国家治理、经济发展和社会进步中发挥着重要作用。
通过制定科学的统计调查方案、实施有效的数据采集和分析,可以更好地服务宏观决策和微观经济管理,推动经济社会的可持续发展。
统计、统计案例
1 0 .0 , 第 一 、 三 、
四 、 五 小 组 的 频 率 分 布 别 是 ∴第 二 小 组 的 频 率 为 : 1 .0 0 -( 0 3 .0
+0 1 .5 +0 1 .0 +0 0 .5 )
=0 4 .0 .
第十章
统计、统计案例
走向高考 ·高考总复习 ·北师大版 ·数学
∴落在 5 9 5 . ~6 9 5 .
方法,即简单随机抽样、系统抽样、分层抽样.
第十章
统计、统计案例
为了考查某校的教学水平,将抽查这个学校高三年级的部分学
生本年度的考试成绩.为了全面反映实际情况,采取以下三种方式进行抽查 (已知该校高三年级共有20个班,并且每个班内的学生已经按随机方式编好了
学号,假定该校每班学生的人数相同):
①从高三年级 20 个班中任意抽取一个班,再从该班中任意抽取 20 名学 生,考察他们的学习成绩;
2
13)2] =0 8 ..
2 ( 2 ) 由 s2 > s 知 乙 的 成 绩 较 稳 定 . 从 折 线 图 看 , 甲 成 绩 基 甲 乙可
本 呈 上 升 状 态 , 而 乙 的 成 绩 上 下 波 动 , 可 知 甲 的 成 绩 在 不 断 提 高 , 而 乙 的 成 绩 则 无 明 显 提 高 .
法 抽 取 6 0 人 ; 在 普 通 生 中 用 简 单 随 机 抽 样 法 抽 取
第十章
统计、统计案例
走向高考 ·高考总复习 ·北师大版 ·数学
关于用样本估计总体的问题 用样本估计总体,主要包括用样本的频率分布估计总体的 分布,用样本的数字特征去估计总体的数字特征两部分内容, 这两部分是从不同角度对收集到的样本数据进行加工、整理, 并分析、判断样本数据的分布状况和数字特征,进而对总体进
09统计案例
12
28
性格
外向
43
17
研究案例(8)
某教师想考察英语学习过程中社会支持(一个人 能向其他人寻求支持的程度)能否预测学生英 语学习心理健康。他从所教的学生中随机抽取 了25名,测量了他们的社会支持和心理健康指 标(百分制,且得分越高,程度越高)。他应 用什么方法分析数据?
研究案例(4)
王老师在某培训学校进行CET-4考前辅导。临 考前,他用一套模拟题给所教学生进行了 模拟考试,并计算出分数。正式考试后, 他收集到了每位学生的考分。他想考察, 模拟考试的成绩在多大程度上反应了学生 的真实成绩,该用什么方法?为什么?
研究案例(5)
孙老师凭多年教学经验发现,父母职业背景对 学生英语学习态度有一定影响。于是,他 调查了父母是公务员、外企公司职员和英 语教师这三类学生的英语学习态度(态度 用Likert五点量表测量)。他该用什么方法 考察这些学生的态度差异?为什么?
一位研究员想考察性格类型(内向型、外向型)和学习方式选 择(小组学习、自学)是否有关系。他对100名参加这项研 究的人做了性格测试,分成内向型和外向型两组。然后要求 每个参与者在小组学习和自学两者之中选择更喜欢的学习方 式(结果如下)。他应采用什么方法分析数据?
单位:人数
喜欢的学习方式
小组学习
自学
内向
研究案例(6)
某校心理咨询师想考察两种治疗方法(1. 认知行为; 2. 精神分析)控制英语学习焦虑的效果。30名自 陈有英语学习焦虑感的学生被随机分配接受两个 疗法(每组15人)。一个学期后,他记录下每个 人的焦虑得分。他想考察哪种治疗方法更有效地 缓解了焦虑症状,应该用什么方法?
研究案例(7)
统计方法与数据分析
———研究案例
大数据统计案例
大数据统计案例1. 零售业销售数据分析:一个大型零售公司通过收集和分析大量的销售数据,包括销售额、销售渠道、产品类别等信息,以了解不同产品的销售情况、销售趋势和消费者购买偏好,从而调整产品供应链和制定营销策略。
2. 金融风险评估:一家银行利用大数据分析客户的贷款申请、还款记录、信用评分等信息,以及外部数据如市场经济指标、行业数据等,对客户的信用风险进行评估和预测,以降低不良贷款风险。
3. 医疗健康管理:一家医疗机构通过收集和分析大量的医疗数据,如患者病历、医疗记录、医疗费用等,以及患者的生活习惯、基因信息等,来进行疾病预测、治疗方案优化和健康管理。
4. 交通流量优化:一座城市的交通管理部门通过收集和分析交通摄像头、车辆GPS数据等大量数据,以及天气预报、活动信息等外部数据,来实时监控交通流量、优化交通信号灯配时和交通路线规划,提高交通效率和缓解交通拥堵。
5. 社交媒体情感分析:一家社交媒体公司通过分析用户在社交平台上的帖子、评论和情感表达,以了解用户对不同产品、事件和话题的态度和情感,从而帮助企业制定营销策略和改进产品。
6. 电商推荐系统:一家电商公司通过分析用户的浏览、购买和评价行为,以及商品的属性、销售数据等,来推荐个性化的商品给用户,提高用户的购物体验和购买转化率。
7. 航空公司运营优化:一家航空公司通过收集和分析大量的航班数据、乘客数据和机场数据,以及天气、空管等外部数据,来优化航班调度、乘客服务和航空安全。
8. 物流配送优化:一家物流公司通过收集和分析物流订单、货物跟踪数据、配送路线等信息,以及交通、天气等外部数据,来优化配送路线、减少运输成本和提高配送效率。
9. 能源消耗管理:一家能源公司通过收集和分析能源消耗数据,如电力、水、燃气等,以及建筑、设备等相关数据,来进行能源消耗监控、能源管理和能效改进,以降低能源消耗和环境影响。
10. 人力资源分析:一家公司通过收集和分析员工招聘、培训、离职等数据,以及员工绩效、满意度调查等信息,来优化人力资源管理,包括招聘策略、培训计划和员工激励措施。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其中事件A“两天空气质量等级都为良”包含的基本事件为 (a,b),(a,c),(a,d),(b,c),(b,d),(c,d),共6个, 所以P(A)= 6 = 3 .
10 5
方法 3 样本的数字特征
1.利用频率分布直方图估计样本的数字特征
(1)在样本数据的频率分布直方图中,众数就是最高矩形底边中点的横
(4)如果总体容量N能被样本容量n整除,则抽样间隔k=
N n
,如果总体容量
N不能被样本容量n整除,可随机地从总体中剔除余数个个体,然后再按
系统抽样的方法抽样.
2.分层抽样适用于由差异明显的几部分组成的总体,抽取的步骤是:
(1)按某种特征将总体分成若干部分.
(2)按比例确定每层抽取的个体数.
(3)各层按简单随机抽样或系统抽样的方法抽取个体. (4)综合每层抽取的个体,组成样本. 例1 (2016广东肇庆三模,3)一个总体中有100个个体,随机编号为0,1,2, …,99.依编号顺序平均分成10个小组,组号依次为一,二,三,…,十.现用系 统抽样方法抽取一个容量为10的样本,如果在第一组随机抽取的号码为 m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同.若m=6, 则在第七组中抽取的号码是 ( A ) A.63 B.64 C.65 D.66
解析 (1)∵0.004×50= 20 ,∴n=100,
n
∵20+40+m+10+5=100,∴m=25.
40 =0.008; 25 =0.005; 10 =0.002; 5 =0.001.
100 50
100 50
100 50
100 50
由此完成频率分布直方图,如图:
(2)由频率分布直方图得该组数据的平均数为 25×0.004×50+75×0.008×50+125×0.005×50+175×0.002×50+225×0.001× 50=
关系,这条直线叫做回归直线,直线方程叫做回归直线方程.
求回归直线方程的步骤:
n
n
(1)整理数据,计算出
i1
xi2
,
i1
xiyi,
x
,
y
.
^^
(2)计算回归系数a ,b ,公式为
b^
n
xi yi
i1
n
n x y ,
xi2 nx?2
i1
a^
y
^
b
x.
(3)写出回归直线方程
x)2 ]
.
注意:方差和标准差描述了一组数据与平均数的离散程度,反映了一组
数据相对于平均数的波动情况,标准差和方差越大,说明这组数据的波
动性越大.
3.关于平均数、方差的有关性质
(1)若x1,x2,…,xn的平均数为 x,那么mx1+a,mx2+a,…,mxn+a的平均数为m x
+a.
(2)数据x1,x2,…,xn与数据x'1=x1+a,x'2=x2+a,……,x'n=xn+a的方差相等.
录和表示都带来了方便.
考点三 样本的数字特征 1.众数、中位数、平均数
2.方差和标准差 方差和标准差反映了数据波动程度的大小.
1
(1)方差:④ s2= n [(x1- x )2+(x2- x )2+…+(xn-x )2] ;
(2)标准差:s=
1 n [(x1
x)2
( x2
x)2
( xn
n
i1
tiyi-nt
y =120-5×3×7.2=12,
^
从而b
=
lty
=12
^
=1.2,a
=
y
^
-b
t
=7.2-1.2×3=3.6,
ltt 10
^
故所求回归方程为 y =1.2t+3.6.
^
(2)将t=6代入回归方程可预测该地区2015年的人民币储蓄存款为 y =1.2
×6+3.6=10.8(千亿元).
^
a
中,
n
^ ti yi nt y ^
^
= b i1 n
,a = y-b t.
ti2 nt ?2
i1
解析 (1)列表计算如下:
t
2 i
这里n=5,t
=
1 n
n
i1
ti=
15 5
=3,
y
=
1 n
n
yi=
i1
36 5
=7.2.
又ltt=
n
i1
ti2
-n
t
2
=55-5×32=10,lty=
解析 若m=6,则在第7组中抽取的号码个位数字与13的个位数字相同, 而第7组中的编号依次为60,61,62,63,…,69,故在第7组中抽取的号码是63.
方法 2 频率分布直方图
频率
1.小长方形的面积=组距×组距 =频率. 2.各小长方形的面积之和等于1. 例2 (2017安徽黄山二模,19)全世界越来越关注环境保护问题,某监测 站点于2016年8月某日起连续n天监测空气质量指数(AQI),数据统计如 下表:
n
xi2
2
nx
,
i 1
i 1
a^
y
^
b
x.
其中(
x,
y
)为样本点的中心, x =
1 n
n
xi,
i1
y
=
1 n
n
yi.
i1
n
xi yi nx y
2.样本相关系数r=
i1
n
i1
xi2
2
nx
n
i1
yi2
2
ny
.
如果|r|>r0.05,那么表明有95%的把握认为x与y具有线性相关关系.如果|r|
当K2>3.841时,有95%的把握说X与Y有关;
当K2>6.635时,有99%的把握说X与Y有关;
当K2>10.828时,有99.9%的把握说X与Y有关.
方法技巧
方法 1 系统抽样与分层于元素个数很多且均衡的总体;
(2)各个个体被抽到的机会均等;
(3)总体分组后,在起始部分采用的是简单随机抽样;
)2+(x2-
x
)2+…+(xn-
x
)2];
标准差:s=
1 n
[( x1
x)2
( x2
x)2
( xn
x)2 ]
.
方差、标准差描述数据的离散程度.
例3 (2017湖北黄冈3月质检,7)已知数据x1,x2,x3,…,xn是某市n(n≥3,n∈
N*)个普通职工的年收入,设这n个数据的中位数为x,平均数为y,方差为z,
考点五 独立性检验 1.分类变量:变量的不同“值”表示个体所属的不同类别,像这样的 变量称为分类变量. 2.列联表:列出两个分类变量的频数表,称为列联表.假设有两个分类变 量X和Y,它们的可能取值分别为{x1,x2}和{y1,y2},其样本频数列联表(称为 2×2列联表)如下:
可构造一个随机变量K2=
(2)如果确实属于这类问题,要科学地抽取样本,样本容量要适当,不可太
小;
(3)根据数据列出2×2列联表;
(4)提出假设H0:所研究的两类对象(X、Y)无关;
(5)根据公式计算K2=
n
进行.
考点二 频率分布直方图与茎叶图
1.频率分布直方图的特征
(1)各个小矩形的面积和为1.
(2)纵轴的含义为
频率 组距
,矩形的面积=组距×
频 组率 距=频率.
(3)样本数据的平均数的估计值等于每个小矩形的面积乘矩形底边中点
横坐标之和.
(4)众数为最高矩形的底边中点的横坐标.
2.茎叶图的优点
茎叶图的优点是可以保留原始数据,而且可以随时记录,这给数据的记
坐标.
(2)在频率分布直方图中,中位数左边和右边的直方图的面积应该相等,
由此可以估计中位数的值.
(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个
小矩形的面积与小矩形底边中点的横坐标的积之和.
2.平均数: x= x1 x2 x3 xn ;
n
方差:s2=
1 n
[(x1-
x
§10.2 统计及统计案例
知识清单
考点一 抽样方法 1.三种抽样方法的比较
2.分层抽样中公式的运用
样本容量 各层所抽取的个体数
抽样比=① 个体总量 = 各层个体数量
.
3.简单随机抽样 每次每个个体被抽到的概率都相等,都是N1 . 在抽样过程中,每个个体被抽到的概率都是n .
N
4.系统抽样的步骤
当
n(ad bc)2
,其中n=a+b+c+d为
(a b)(c d )(a c)(b d )
样本容量.
3.独立性检验
利用独立性假设、随机变量K2来确定是否有一定把握认为“两个分类
变量有关系”的方法称为两个分类变量的独立性检验.
两个分类变量X和Y是否有关系的判断标准:
统计学研究表明:当K2≤3.841时,认为X与Y无关;
(3)若x1,x2,…,xn的方差为s2,那么ax1+b,ax2+b,…,axn+b的方差为a2s2.