§18运用目标达到法求解多目标规划

合集下载

多目标规划问题的几种常用解法

多目标规划问题的几种常用解法

多目标规划问题的几种常用解法(1) 主要目标法其基本思想是:在多目标问题中,根据问题的实际情况,确定一个目标为主要目标,而把其余目标作为次要目标,并且根据经验,选取一定的界限值。

这样就可以把次要目标作为约束来处理,于是就将原来的多目标问题转化为一个在新的约束下的单目标最优化问题。

(2) 线性加权和法其基本思想是:按照多目标f i (x) (i=1, 2, … ,m)的重要程度,分别乘以一组权系数λj (j=1, 2, … ,m)然后相加作为目标函数而构成单目标规划问题。

即 ∑==m j j j x f f 1)(min λ,其中∑==≥mj j j 110λλ且(3) 极大极小法其基本思想是:对于极小化的多目标规划,让其中最大的目标函数值尽可能地小,为此,对每个 x ∈R ,我们先求诸目标函数值f i (x)的最大值,然后再求这些最大值中的最小值。

即构造单目标规划:{})(max min 1x f f j mj ≤≤= (4) 目标达到法(步骤法)对于多目标规划:[])(,),(),(m in 21x f x f x f ms.t g j (x) ≤0 j=1, 2, … ,n先设计与目标函数相应的一组目标值理想化向量),,(**2*1m f f f ,再设γ为一松弛因子标量。

设),,,(21m w w w W =为权值系数向量。

于是多目标规划问题化为:()kj x g m j f w x f j j j j x ,,2,10)(,,2,1min *, =≤=≤-γγγ(5)字典序法对目标的重要性进行排序,依次求解各单目标规划(前一个目标的最优解不唯一,其结果作为下一个目标的约束),到有唯一解时结束。

目标规划与多目标规划

目标规划与多目标规划

x11

x 21

x 31

d
7

d
7
200,
x12
x 22
x 32

d
8

d
8
100,
x13
x 23
x 33

d
9

d
9

450,
x14 x 24 x 34 d10 d10 250,
min
d
7

d
8

d
9

d10
(5)新运费尽量不超过不考虑各个目标费用的10%:
34
min z
cij x ij
4 i j1
xij ai , i 1,2,3
j1
s.t.
3
xij b j, j 1,2,3,4
i 1
xij 0, i 1,2,3; j 1,2,3,
上述模型的求解程序及结果为
sets:
gch/1..3/:a;
yhu/1..4/:b;
P1>>P2>>P3>>P4.
2
列出每个部门的目标愿望分为决策值和目标值。决策值
依赖于问题的决策变量,使决策变量的表达式,目标值是该
决策值的一个愿望参考值。比如,设决策者决定生产产品I x1 件,产品II x2件。则四个部门的目标决策值和目标值分别为
部门 营销部门 材料部门 设备管理 财务部门
目标决策值f
c=5 2 6 7 3546
计算得到最小运费为2950元.
4 5 2 3;
enddata

多目标决策方法讲义PPT92页

多目标决策方法讲义PPT92页
详细信息如下
图3
对应于第二优先等级,将 =0作为约束条件,建立线性规划问题:
用LINGO求解,得最优解 =0 , ,最优值为6。具体LINGO程序及输出信息如下:LINGO程序为(参见图4):
model:min=d2_;10*x1+15*x2+d1_-d1=40;x1+x2+d2_-d2=10;d1=0;END
图4
LINGO运算后输出为(参见图5):
图5
对应于第三优先等级,将 =0, 作为约束条件,建立线性规划问题:
用LINGO求解,得最优解是 , ,最优值为7。具体LINGO程序及输出信息如下(参见图6) :
目标函数
目标约束
绝对约束
非负约束
在以上各式中,kl+ 、kl- 分别为赋予pl优先因子的第 k 个目标的正、负偏差变量的权系数,gk为第 k个目标的预期值,xj为决策变量,dk+ 、dk- 分别为第 k 个目标的正、负偏差变量。
目标函数
目标约束
绝对约束
非负约束
目标规划数学模型中的有关概念。
(1) 偏差变量 在目标规划模型中,除了决策变量外,还需要引入正、负偏差变量 d +、d - 。其中,正偏差变量表示决策值超过目标值的部分,负偏差变量表示决策值未达到目标值的部分。 因为决策值不可能既超过目标值同时又未达到目标值,故有d +×d - =0成立。
第二部分 多目标决策的数学模型及其非劣解
一、多目标决策的数学模型
(一)任何多目标决策问题,都由两个基本部分组成: (1)两个以上的目标函数; (2)若干个约束条件。
(二)对于多目标决策问题,可以将其数学模型一般地描写为如下形式:

数学毕业论文-浅谈多目标规划及解法

数学毕业论文-浅谈多目标规划及解法

数学毕业论文-浅谈多目标规划及解法数学毕业论文-浅谈多目标规划及解法浅谈多目标规划及解法摘要:本文对多目标规划问题的解决方法进行了归纳和总结,并且进行了1定的评论。

基本方法有主要目标法、分层序列法;评价函数法,理想点法、线行加权和法、平方和权法;功效系数法。

特别地介绍了1种关于线性多目标规划求最优解的方法。

通过归纳和总结,熟知各解决方法的`特点,以便以后在实际中能够得到更好的应用。

并且给出了1种新的评价函数。

关键词: 多目标规划;解决方法;弱有效解;算法On multi-objective programming and Its SolutionAbstract: This article has carried on the induction and the summary to the multi-objective programming, and has carried on the certain commentary. The main method has the primary-object method,Lexicographic method,evaluation function methods,robustness estimate,linearity weighted sum method, involution weighted sum method efficiency coefficient method .Specially introduced one kind of method of optimal solution about muti-objective linear programming. Through the induction and the summary, knows very well each solution the characteristic, in order to later in will be actual can obtain a better application. And has produced one kind of new evaluation function.Keywords: multi-objective programming; solution; weak efficient solution; algorithm 目录中文题目 (1)中文摘要和关键词 (1)英文题目 (1)英文摘要和关键词 (1)前言 (2)正文 (3)1 有关多目标规划的基本概念 (3)1.1 标准形式 (3)1.2 多目标规划的解 (4)2 基本方法 (4)2.1主要目标法 (5)2.2 分层序列法 (5)2.2.1不容许宽容 (5)2.2.2允许宽容 (6)2.3评估函数 (7)2.3.1理想点法 (7)2.3.2线性加权和法 (8)2.3.3平方加权法 (8)2.4功效系数法 (8)2.4.1直线法 (9)2.4.2指数法 (10)2.5 线行多目标规划最优解求法 (10)2.5.1(LVP)弱有效解的解集性质与求解方法 (10)2.5.2 决策者满意解的确定方法 (15)2.5.3 算法步骤 (15)2.6确定权数法 (16)2.7新的评价函数 (17)3 结束语 (17)参考文献 (18)致谢 (20)【包括:毕业论文、开题报告、任务书】【说明:论文中有些数学符号是编辑器编辑而成,网页上无法显示或者显示格式错误,给您带来不便请谅解。

求解多目标决策常用的三种方法Read

求解多目标决策常用的三种方法Read

x2 d1-
d1+
d2+
o
x1 d2-
d3+
d3-
最优解为黄色线段上任一点
一般来说,目标期望值可调整以适应实际情况。
三、目标规划的lindo求解
(以《运筹学》P107例5.(2)为例) 主要思想:化成单目标问题,多阶段求解
min
z
P1d
3
P2 (2d1
3d
2
)
P3d
4
x1 x2 d1 d1 10
例1 利润最大化问题:
某工厂在计划期内要安排生产Ⅰ、 Ⅱ两种产品,已知 有关数据如下表所示:
Ⅰ Ⅱ 拥有量
原材料 kg
2
1
11
设备台时 hr 1
2
10
利润 元/件
8
10
试求获利最大的方案。
解:这是一个单目标规划问题,可用线性规划模 型表述为:
目标函数 max z = 8x1+10x2
约束条件 2x1 + x2 ≤11
d2-+d2+
4.利润额不小于56元
8x1+10x2 ≥ 56
极小化
8x1+10x2+d3--d3+ =56
d3-
综上可得目标规划模型
min
z
P1
d
1
P2
(
d
2
d
2
)
P3
d
3
2 x1 x2
11
x1
x2
d
1
d
1
0
x1
2 x2
d
2
d
2
10
8 x1
10 x2
d
3

多目标规划求解

多目标规划求解

相比 的目标超过值和不足值,即正、负偏差变 lk 、 lk 表示在同一优 量;p l 表示第l个优先级;
先级 p l 中不同目标的正、负偏差变量的权系数。
五、目标达到法
首先将多目标规划模型化为如下标准形式
f1 ( X ) minF(x) min f 2 ( X ) f ( X ) k
第2节 多目标规划求解技术简介
效用最优化模型 罚款模型
约束模型
目标规划模型 目标达到法
为了求得多目标规划问题的非 劣解,常常需要将多目标规划问题 转化为单目标规划问题去处理。实 现这种转化,有如下几种建模方法:
一、效用最优化模型
建摸依据:规划问题的各个目标函数可以 通过一定的方式进行求和运算。这种方法将一 系列的目标函数与效用函数建立相关关系,各 目标之间通过效用函数协调,使多目标规划问 题转化为传统的单目标规划问题
Φ ( x , x , , x ) g ( i 1 , 2 , , m ) i 1 2 n i
或写成矩阵形式
T min Z ( F F ) A ( F F )
Φ (X )G
式中: a i 是与第i个目标函数相关的权重;
A是由 a 组成的m×m对 角矩阵。 ( i 1 , 2 , , k ) i
1 ( X ) 0 2 ( X ) 0 Φ(X ) ( X ) 0 m
(6.2.21)
(6.2.22)
在求解之前,先设计与目标函数相应的一 * 组目标值理想化的期望目标 f i 1 , 2 , , k ),每 i( 一个目标对应的权重系数为 w ( i 1 , 2 , , k ),再 i 设 为一松弛因子。那么,多目标规划问题 (6.2.21)~(6.2.22)就转化为

多目标规划的原理和

多目标规划的原理和

多目标规划的原理和多目标规划是一种优化方法,用于解决同时存在多个目标函数的问题。

与单目标规划不同,多目标规划的目标函数不再是单一的优化目标,而是包含多个决策者所关心的目标。

目标函数之间可能存在冲突和矛盾,因此需要找到一个平衡点,使得各个目标都能得到满意的结果。

1.目标函数的建立:多目标规划需要明确各个决策者所关心的目标,并将其转化为数学模型的形式。

目标函数可以是线性的、非线性的,也可以包含约束条件。

2.解集的定义:解集是指满足所有约束条件的解的集合。

在多目标规划中,解集通常是一组解的集合,而不再是单个的最优解。

解集可以是有限的或无限的,可以是离散的或连续的。

3.最优解的确定:多目标规划中的最优解不再是唯一的,而是一组解的集合,称为非劣解集。

非劣解集是指在所有目标函数下都没有其他解比其更好的解。

要确定最优解,需要考虑非劣解集中的解之间的关系,即解集中的解是否有可比性。

4.解的评价:首先需要定义一种评价指标来比较不同解之间的优劣。

常用的方法有加权法、广义距离法、灰色关联法等。

评价指标的选择应该能够反映出决策者对不同目标的重视程度。

5. Pareto最优解:对于一个多目标规划问题,如果存在一组解,使得在任意一个目标函数下都没有其他解比其更好,那么这组解就被称为Pareto最优解。

Pareto最优解是解集中最为重要的解,决策者可以从中选择出最佳的解。

6.决策者的偏好:在实际应用中,决策者对不同目标的偏好有时会发生变化。

因此,多目标规划需要考虑决策者的偏好信息,并根据偏好信息对解集进行调整和筛选。

多目标规划在解决实际问题中具有广泛的应用,尤其在决策支持系统领域发挥了重要作用。

它不仅能够提供一组有竞争力的解供决策者参考,还能够帮助决策者更好地理解问题的本质和各个目标之间的权衡关系。

多目标规划既可以应用于工程、经济、管理等领域的决策问题,也可以用于社会、环境等领域的问题求解。

总之,多目标规划通过将多个目标函数集成为一个数学模型,寻找一组最佳的解集,从而在多个目标之间实现平衡和协调。

多目标规划问题中的优化求解方法

多目标规划问题中的优化求解方法

多目标规划问题中的优化求解方法在现实生活中,我们经常面临多个目标之间的冲突和权衡。

例如,企业在决策过程中需要考虑利润最大化和成本最小化之间的平衡;城市规划者需要同时考虑经济发展、环境保护和社会公平等多个目标。

这种情况下,多目标规划问题就显得尤为重要。

多目标规划问题可以定义为在给定的约束条件下,同时优化多个目标函数的问题。

传统的单目标规划问题只需要找到一个最优解,而多目标规划问题则需要找到一组最优解,这些解之间没有明显的优劣关系。

因此,多目标规划问题的求解方法与单目标规划问题有很大的不同。

在多目标规划问题中,最常用的求解方法之一是权衡法。

该方法通过引入一个权衡参数,将多个目标函数转化为一个综合目标函数。

然后,通过求解这个综合目标函数,可以得到一组最优解。

权衡法的优点是简单易行,但是需要人为设定权衡参数,这可能会引入主观因素。

除了权衡法外,还有一些其他的优化求解方法可以用于解决多目标规划问题。

其中一个常用的方法是基于优先级的方法。

该方法将多个目标函数按照优先级进行排序,然后逐个解决。

在解决每个目标函数时,将其他目标函数作为约束条件进行求解。

这种方法的优点是能够考虑不同目标函数之间的依赖关系,但是需要确定目标函数的优先级,这可能会引入一定的主观性。

另一个常用的方法是基于目标规划的方法。

目标规划方法将每个目标函数的最优值作为一个约束条件,然后求解一个综合目标函数。

通过不断调整约束条件的权重,可以得到一组最优解。

这种方法的优点是能够考虑到每个目标函数的重要性,但是需要确定约束条件的权重,这同样可能引入主观因素。

此外,还有一些进化算法可以用于求解多目标规划问题。

例如,遗传算法和粒子群优化算法等。

这些算法通过模拟生物进化的过程,逐步优化解空间,从而找到一组最优解。

这些算法的优点是能够在解空间中进行全局搜索,但是计算复杂度较高,需要较长的求解时间。

综上所述,多目标规划问题中的优化求解方法有很多种。

不同的方法有不同的优点和局限性,适用于不同的问题场景。

多目标规划(运筹学

多目标规划(运筹学

环境与资源管理
资源利用
多目标规划可用于资源利用优化,以最 大化资源利用效率、最小化资源浪费为 目标,同时考虑环境保护、可持续发展 等因素。
VS
环境污染控制
多目标规划可以应用于环境污染控制,以 最小化污染排放、最大化环境质量为目标 ,同时考虑经济成本、技术可行性等因素 。
城市规划与交通管理
城市布局
发展更高级的建模语言和工具, 以简化多目标规划问题的描述和 求解过程。
求解算法
02
03
混合整数规划
研究更高效的求解算法,以处理 大规模、高维度的多目标规划问 题。
研究如何将连续变量和离散变量 有效地结合在多目标规划问题中, 以解决更广泛的优化问题。
数据驱动的多目标优化
数据驱动决策
利用大数据和机器学习技术,从大量数据中提取有用的信息,以 支持多目标决策过程。
案例二:投资组合优化
总结词
投资组合优化是多目标规划在金融领域的应 用,旨在实现投资组合的风险和回报之间的 最佳平衡。
详细描述
在投资组合优化中,投资者需要权衡风险和 回报两个目标。多目标规划方法可以帮助投 资者找到一个最优的投资组合,该组合在给 定风险水平下能够获得最大的回报,或者在 给定回报水平下能够实现最小的风险。通过 考虑多个目标,多目标规划可以帮助投资者 避免过度依赖单一目标而导致的潜在风险。
在多目标规划中,约束条件可能包括资源限制、时间限制、技术限制等,需要综合考虑各种因素来制 定合理的约束条件。
决策变量
决策变量是规划方案中需要确定的参 数,其取值范围和类型根据问题的实 际情况而定。
在多目标规划中,决策变量可能包括 投资规模、生产能力、产品种类等, 需要合理选择和定义决策变量,以便 更好地描述问题。

多目标规划ppt

多目标规划ppt

多目标规划问题的典型实例
例1 木梁设计问题
用直径为 1(单位长)的圆木制成截面为矩形的梁。为使重量最轻面强度最大, 问截面的宽和高应取何尺寸? 假设矩形截面的宽和高分别为 x1 和 x2 ,那么根据几何知识可得:
2 x12 + x2 = 1
且此时木梁的截面面积为 x x 。同时根据材料力规划的解集
绝对最优解
* * 设 x* ∈ R ,如果对于 ∀x ∈ R 均有 F ( x ) ≤ F ( x ) ,则称 x 为多目标规划问题的绝对最
*
优解。多目标规划问题的绝对最优解的全体可以记为 Rab ,其含义为:该最优解与 任意一个可行解都是可以进行比较的。下图为当 n = 1, p = 2 时绝对最优解的示意图。
以显然 A2 比 A3 好。 对于方案 A1 和 A2 ,由于无法确定其优劣, 而且又没有比它们更好的其他方案,所 以它们就被称之为多目标规划问题的有效解 有效解 (或者非劣解) ,其余方案都称为劣解。所有 非劣解构成的集合称为非劣解集 非劣解集。 非劣解集
O
f2 A5 A4 A1 A3 A2 f1 A6 A7
x2 L xn ] ; F ( x ) = f1 ( x )
T
f2 ( x ) L
f p ( x ) , p ≥ 2
对向量形式的 p 个目标函数求最小,且目标函数 F ( x ) 和约束函数 gi ( x ) 、hi ( x ) 可以 是线性函数也可以是非线性函数。
令 R = {x | gi ( x ) ≤ 0, i = 1, 2,..., m} ,则称 R 为问题的可行域,V-min F ( x ) 指的是
多目标规划问题的典型实例
例2 工厂采购问题
某工厂需要采购某种生产原料,该原料市场上有 A 和 B 两种,单价分别为 2 元/kg 和 1.5 元/kg。现要求所花的总费用不超过 300 元,购得的原料总重量不少于 120kg,其中 A 原料不得少于 60kg。间如何确定最佳采购方案,花最少的钱,采 购最多数量的原料。 设 A、B 两种原料分别采购 x1 、 x2 kg,那么总的花费为: f1 ( x ) = 2 x1 + 1.5 x2 购得的原料总量为: f 2 ( x ) = x1 + x2 那么我们求解的目标即是使得花最少的钱买最多的原料,即最小化 f ( x ) 的同时

18.运用目标达到法求解多目标规划

18.运用目标达到法求解多目标规划

§18. 运用目标达到法求解多目标规划用目标达到法求解多目标规划的计算过程,可以通过调用Matlab软件系统优化工具箱中的fgoalattain函数实现。

在Matlab的优化工具箱中,fgoalattain函数用于解决此类问题。

其数学模型形式为:minγF(x)-weight ·γ≤goalc(x) ≤0ceq(x)=0A x≤bAeq x=beqlb≤x≤ub其中,x,weight,goal,b,beq,lb和ub为向量;A和Aeq为矩阵;c(x),ceq(x)和F(x)为函数。

调用格式:x=fgoalattain(F,x0,goal,weight)x=fgoalattain(F,x0,goal,weight,A,b)x=fgoalattain(F,x0,goal,weight,A,b,Aeq,beq)134x=fgoalattain(F,x0,goal,weight,A,b,Aeq,beq,lb,ub)x=fgoalattain(F,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon)x=fgoalattain(F,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon,options)x=fgoalattain(F,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon,options,P1,P2)[x,fval]=fgoalattain(…)[x,fval,attainfactor]=fgoalattain(…)[x,fval,attainfactor,exitflag,output]=fgoalattain(…)[x,fval,attainfactor,exitflag,output,lambda]=fgoalattain(…)说明:F为目标函数;x0为初值;goal为F达到的指定目标;weight为参数指定权重;A、b为线性不等式约束的矩阵与向量;Aeq、beq为等式约束的矩阵与向量;lb、ub为变量x的上、下界向量;nonlcon为定义非线性不等式约束函数c(x)和等式约束函数ceq(x);options中设置优化参数。

多目标优化问题的求解方法

多目标优化问题的求解方法

多目标优化问题的求解方法一、引言多目标优化问题常用于现实中的各种决策问题,旨在满足多个目标的需求。

比如,在物流配送问题中,我们需要平衡货物运输效率和成本,同时也需要满足货物运输的安全性等多个目标。

多目标优化问题求解难度大,需要综合考虑多个目标函数之间的相互影响和矛盾。

本文将从多个方面介绍多目标优化问题的解法和算法。

二、多目标优化问题的概念多目标优化问题可以定义为:在有限规定下,针对多个优化指标,找到最优的解答,使其能尽可能地满足各个指标的要求。

多目标优化问题的解决需要在考虑问题的最优解的情况下,同时平衡多个指标之间的优化目标。

换言之,多目标优化问题寻求的是各种参考结果中的最高综合价值。

三、多目标优化问题的特点多目标优化问题是一个复杂、多变的问题,具有以下特点:1.多目标:多目标优化问题在解决之前要考虑多个目的。

2.多维:多目标优化问题需要同时考虑多个指标,因而其可表达的变量和解空间维度更高。

3.非凸性:多目标优化问题在最优解中可能存在较多的局部最优解。

4. 非线性:多目标优化问题不仅涉及到多个目标,同时还需要考虑目标之间的复杂关系。

四、多目标优化问题的解法1.最优性方案法:最优性方案法的做法是:采用一个权重向量来描述优化问题的权重,然后使用这个权重向量计算出所有可能的目标函数的最小值,在计算过程中,只有在某个k值的情况下,目标函数的值达到了它的最小值,才能被认为是优化问题的最优解。

2. 约束规划法:约束规划法,经典的引导式求解方法,仅需要我们的关注变量是目标函数中相互矛盾的或者不可实现的特征。

使用约束规划方法,我们可以找出那些基于目标函数的情况下不可实现的方案,从而确定实现目标要求的最优方案。

3.遗传算法:遗传算法是一种模仿自然进化法的优化方法。

具有高度的鲁棒性、适应性和有效性。

通过模拟生物进化过程,从初始种群中寻找最适合目标的个体,并通过不断迭代优化算法的方式计算出最终的优化结果。

4. 粒子群算法:粒子群算法是一种模拟群体行为的优化算法。

多目标规划教材

多目标规划教材

多目标规划教材简介多目标规划是一种在决策问题中同时考虑多个目标的优化方法。

在实际生活和工作中,我们经常会遇到需要在多个目标之间进行权衡和取舍的情况。

多目标规划通过将目标设置为一个优化问题的一部分,帮助决策者在各种不确定因素和限制条件下做出更科学、更合理的决策。

本教材将介绍多目标规划的基本概念、常用方法和应用案例,旨在帮助读者快速了解和掌握多目标规划的基本原理和应用技巧。

目录1.多目标规划概述2.多目标规划基本概念3.多目标规划求解方法1.加权和方法2.线性加权和方法3.Pareto优化方法4.扩展Pareto优化方法4.多目标规划应用案例1.生产配置的多目标优化2.项目投资的多目标决策3.能源系统的多目标优化5.多目标规划在实践中的挑战6.结语1. 多目标规划概述在日常生活和工作中,我们常常需要在多个目标之间做出决策。

比如,一个公司在制定生产计划时既要考虑生产成本,又要考虑产品质量和交货时间;一个投资者在选择投资项目时既要考虑投资收益,又要考虑投资风险和投资期限。

这些决策问题都存在多个目标,并且这些目标之间可能存在矛盾和冲突。

多目标规划是一种在这种情况下进行决策的优化方法。

它通过将多个目标设置为一个优化问题的一部分,将多目标问题转化为单目标问题求解。

多目标规划不仅能够帮助决策者进行各种不确定因素和限制条件下的决策,还能够提供一系列备选方案,以便决策者选择最优解。

2. 多目标规划基本概念多目标规划涉及一些基本概念和术语,下面是一些常用的概念:•目标函数:多目标规划的目标函数是待优化的函数,通常包含多个变量和目标。

目标函数的具体形式取决于具体的问题。

•可行解:满足约束条件的解称为可行解。

多目标规划的目标是找到一组可行解中的最优解。

•支配关系:多目标规划中的支配关系是指一个解在所有目标上优于另一个解。

一个解支配另一个解意味着它在所有目标上都比另一个解好。

•Pareto最优解:一个解在不被其他解支配的情况下被称为Pareto最优解。

多目标规划模型

多目标规划模型

多目标规划模型多目标规划模型是一种决策模型,用于解决具有多个目标的问题。

在现实生活中,许多问题往往涉及到多个决策目标,这些目标可能相互矛盾或相互关联。

例如,企业在生产过程中可能既希望降低成本,又希望提高产品质量;政府在制定经济政策时可能要考虑到经济增长、就业率和环境保护等多个方面的目标。

多目标规划模型的目标是找到一个可行解,使得所有目标都能达到一定的水平,同时尽量使各个目标之间的矛盾最小化。

为了达到这个目标,多目标规划模型通常涉及到寻找一系列最优解的问题。

多目标规划模型可以用以下形式表示:Minimize f(x) = (f1(x), f2(x), ..., fn(x))subject toh1(x) <= 0,h2(x) <= 0,...hm(x) <= 0,g1(x) = 0,g2(x) = 0,...gp(x) = 0,lb <= x <= ub.其中,f(x) = (f1(x), f2(x), ..., fn(x))是一个向量函数,表示多个决策目标,h(x) = (h1(x), h2(x), ..., hm(x))表示多个约束条件(不等式约束),g(x) = (g1(x), g2(x), ..., gp(x))表示多个约束条件(等式约束),x是决策变量的向量,lb和ub是决策变量的上下界。

多目标规划模型的求解过程通常涉及到权衡各个目标之间的重要性,设计一个适当的加权函数来对不同目标进行权重分配。

然后,可以利用优化算法进行求解。

常见的多目标优化算法包括线性规划(LP)、混合整数线性规划(MILP)、非线性规划(NLP)和遗传算法等。

多目标规划模型的应用非常广泛。

例如,在供应链管理中,企业需要同时考虑库存成本、运输成本和供货可靠性等多个目标;在金融投资中,投资者需要同时考虑风险和收益等多个目标;在城市规划中,政府需要同时考虑经济发展、环境保护和社会福利等多个目标。

lingo-多目标规划模型

lingo-多目标规划模型

在生产系统、工程系统、社会经济系统中, 多目标决策问题更是屡见不鲜。比如在炼油厂的 生产计划中,基本的决策问题是如何根据企业的 外部环境与内部条件,制定出具体的作业计划。 该计划应能使企业的各种主要的经济指标达到预 定的目标。这些指标包括:利润、原油量、成本、 能耗等。其他企业一般也有类似的多目标计划决 策问题。 多目标决策问题有两个共同的特点,即各目 标的不可公度性和相互之间的矛盾性。所谓目标 的不可公度性指各目标之间没有统一的量纲,因 此难以作相互比较。
多目标决策问题的案例及特点 我们介绍两个日常生活中常见的决策问题。第 一个是顾客到商店购买衣服。对于顾客而言,购买 衣服就是一个决策问题,顾客本人是决策者,各种 各样的衣服是行动方案集。该决策问题的解就是顾 客最终买到一件合适的衣服(或选择一个满意的方 案)。那么,一件衣服(即一个方案)合适否(满 意否)应该根据几个指标来评价,比如衣服的质量、 价格、大小、式样、颜色等。 因此,顾客购买衣服的问题是多目标决策问题。 又如,公务人员外出办事总要乘某种交通工具。这 也是一个决策问题,决策者是公务员,备选方案是 可利用的交通工具。公务员为了选择合适的交通工 具,需要考虑几个指标,比如:时间、价格、舒适 性、方便程度等。显然这也是一个多目标决策问题。
图5
d 对应于第三优先等级,将 1 =0,d 2 6 作为约束条件,建立
线性规划问题:
min z d 3 10x1 15x2 d1 d1 40 x x d d 1 2 2 2 10 x2 d 3 d 3 7 s.t. d1 0, d 2 6 x , x , d , d 1 2 j j 0, j 1,2,3
由于模型的不准确性和单一目标的片面性,这 种所谓最优的方案并不一定是决策者满意的。自然, 用这种最优方案作为决策者的最终决策具有强迫性 质,往往难以为决策者接受。另一方面,多目标方 法向决策者提供经过仔细选择的备选方案(多种方 案)。这样使得决策者有可能利用自己的知识和经 验对这些方案进行评价和判断,从中找出满意方案 或给出偏好信息以及寻找更多的备选方案。 概括起来,多目标决策方法处理实际决策问题 有三个方面的优点:(1)加强了决策者在决策过程 中的作用;(2)可以得到范围更为广泛的备选决策 方案;(3)决策问题的模型和分析者对问题的直觉 将更加现实。

笔记--多目标规划

笔记--多目标规划

处理多目标规划的方法1.约束法 1.1原理约束法又称主要目标法,它根据问题的实际情况.确定一个目标为主要目标,而把其余目标作为次要目标,并根据决策者的经验给次要的目标选取一定的界限值,这样就可以把次要目标作为约束来处理,从而就将原有多目标规划问题转化为一个在新的约束下,求主要目标的单目标最优化问题。

假设在p 个目标中,()1f x 为主要目标,而对应于其余(p-1)个目标函数()i f x 均可以确定其允许的边界值:(),2,3,...,ii i af b i p ≤≤=x 。

这样我们就可以将这()1p -个目标函数当做最优化问题的约束来处理,于是多目标规划问题转化称为单目标规划问题SP 问题:公式1()()()1min s.t.0(1,2,...,)(2,3,...,)i j j j f g i m a f b j p ⎧⎪≥=⎨⎪≤≤=⎩x x x上述问题的可行域为()(){}|0,1,2,...,;,2,3,...,i j j j R g i m a f b j p '=≥=≤≤=x x x2.评价函数法其基本思想就是将多目标规划问题转化为一个单目标规划问题来求解,而且该单目标规划问题的目标函数是用多目标问题的各个目标函数构造出来的,称为评价函数,例如若原多目标规划问题的目标函数为F(x),则我们可以通过各种不同的方式构造评价函数h(F(x)),然后求解如下问题:()()min s.t.h R⎧⎪⎨∈⎪⎩F x x 求解上述问题之后,可以用上述问题的最优解x *作为多目标规划问题的最优解,正是由于可以用不同的方法来构造评价函数,因此有各种不同的评价函数方法,下面介绍几种常用的方法。

评价函数法中主要有:理想点法、平方和加权法、线性加权和法、乘除法、最大最小法2.1理想点法考虑多目标规划问题:()()V-mins.t.0(1,2,...,)i g i m ⎧⎨≥=⎩F x x ,首先分别求解p 个单目标规划问题:()()min(1,2,...,)s.t.0(1,2,...,)i j f i p g j m ⎧=⎪⎨≥=⎪⎩x x令各个问题的最优解为*(1,2,...,)ii p =x ,而其目标函数值可以表示为:()*min ,1,2,...,i i Rf f i p ∈==x x其中:(){}|0(1,2,...,)jR g j m =≥=x x一般来说,不可能所有的*(1,2,...,)ii p =x 均相同,故其最优值*(1,2,...,)i f i p =组成的向量0***12[]T pfff =F 并不属于多目标规划的象集,所以0F 是一个几乎不可能达到理想点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§18. 运用目标达到法求解多目标规划
用目标达到法求解多目标规划的计算过程,可以通过调用Matlab软件系统优化工具箱中的fgoalattain函数实现。

在Matlab的优化工具箱中,fgoalattain函数用于解决此类问题。

其数学模型形式为:
minγ
F(x)-weight ·γ≤goal
c(x) ≤0
ceq(x)=0
A x≤b
Aeq x=beq
lb≤x≤ub
其中,x,weight,goal,b,beq,lb和ub为向量;A和Aeq为矩阵;c(x),ceq(x)和F(x)为函数。

调用格式:
x=fgoalattain(F,x0,goal,weight)
x=fgoalattain(F,x0,goal,weight,A,b)
x=fgoalattain(F,x0,goal,weight,A,b,Aeq,beq)
134
x=fgoalattain(F,x0,goal,weight,A,b,Aeq,beq,lb,ub)
x=fgoalattain(F,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon)
x=fgoalattain(F,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon,options)
x=fgoalattain(F,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon,options,P1,P2)
[x,fval]=fgoalattain(…)
[x,fval,attainfactor]=fgoalattain(…)
[x,fval,attainfactor,exitflag,output]=fgoalattain(…)
[x,fval,attainfactor,exitflag,output,lambda]=fgoalattain(…)
说明:F为目标函数;x0为初值;goal为F达到的指定目标;weight为参数指定权重;A、b为线性不等式约束的矩阵与向量;Aeq、beq为等式约束的矩阵与向量;lb、ub为变量x的上、下界向量;nonlcon为定义非线性不等式约束函数c(x)和等式约束函数ceq(x);options中设置优化参数。

x返回最优解;fval返回解x处的目标函数值;attainfactor返回解x处的目标达到因子;exitflag描述计算的退出条件;output返回包含优化信息的输出参数;lambda返回包含拉格朗日乘子的参数。

例1:教材第6章第4节第二小节,即生产计划问题:
某企业拟生产A和B两种产品,其生产投资费用分别为2100元/t和4800元/t。

A、B两种产品的利润分别为3600元/t和6500元/t。

A、B产品每月的最大生产能力分别为5t和8t;市场对这两种产品总量的需求每月不少于9t。

试问该企业应该如何安排生产计划,才能既能满足市场需求,又节约投资,而且使生产利润达到最大最。

135
136
该问题是一个线性多目标规划问题。

如果计划决策变量用1x 和2x 表示,它们分别代表A 、B 产品每月的生产量(单位:t );),(211x x f 表示生产A 、B 两种产品的总投资费用(单位:元);),(212x x f 表示生产A 、B 两种产品获得的总利润(单位:元)。

那么,该多目标规划问题就是:求1x 和2x ,使:
2121148002100),(min x x x x f +=
2121265003600),(max x x x x f +=
而且满足:
⎪⎪⎩⎪⎪⎨⎧≥≥+≤≤0,9
8
5
212121x x x x x x
求解程序如下:
① 编辑目标函数M 文件ff12.m
function f=ff12(x)
f(1)=2100*x(1)+4800*x(2);
f(2)=-3600*x(1)–6500*x(2);
② 按给定目标取:
goal=[30000,-45000];
weight=[30000,-45000];
③ 给出:
x0=[2,2];
A=[1 0; 0 1;-1 -1];
b=[5,8,-9];
lb=zeros(2,1);
④ 调用fgoalattain 函数:
[x,fval,attainfactor,exitflag]=fgoalattain(@ff12,x0,goal,weight,A,b,[],[],lb,[])
运行后,输出结果为:
137
x = 5 4 fval = 29700 -44000 attainfactor = -0.0100 exitflag = 1
例2:教材第6章第4节第三小节,即投资问题:
某企业拟用1000万元投资于A 、B 两个项目的技术改造。

设1x 、2x 分别表示分配给A 、B 项目的投资(万元)。

据估计,投资项目A 、B 的年收益分别为投资的60%和70%;但投资风险损失,与总投资和单项投资均有关系:
212221001.0002.0001.0x x x x ++。

据市场调查显示, A 项目的投资前景好于B 项
目,因此希望A 项目的投资额不小B 项目。

试问应该如何在A 、B 两个项目之间分配投资,才能既使年利润最大,又使风险损失为最小?
该问题是一个非线性多目标规划问题,将它用数学语言描述出来,就是:求1x 、2x ,使:
2121170.060.0),(max x x x x f +=
212221212001.0002.0001.0),(min x x x x x x f ++= 而且满足:
⎪⎩⎪⎨⎧≥≤+-=+0,0
1000212121x x x x x x
求解程序如下:
①首先编辑目标函数M文件ff13.m
function f=ff13(x)
f(1)=-0.6*x(1)-0.7*x(2);
f(2)=0.001*x(1)^2+0.002*x(2)^2+0.001*x(1)*x(2);
②按给定目标取:
goal=[-625,875];
weight=[-625,875];
③给出:
x0=[200,200];
A=[-1,1];
b=0;
Aeq=[1,1];
beq=1000;
lb=zeros(2,1);
④调用fgoalattain 函数:
[x,fval,attainfactor,exitflag]=fgoalattain(@ff13,x0,goal,weight,A,b,Aeq,beq,lb,[]) 运行后,输出结果为:
x =
750.0000 250.0000
fval =
-625.0000 875.0000
attainfactor =
-5.4254e-016
exitflag =
1
138。

相关文档
最新文档